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Abstract

Patilea and Rolin (2006, The Annals of Statistics, 34(2), 925-938.) proposed a product-
limit estimator of the survival function for twice censored data. In this article, based on
a modified self-consistent (MSC) approach, we propose an alternative estimator, the MSC
estimator. The asymptotic properties of the MSC estimator are derived. A simulation study
is conducted to compare the performance between the two estimators. Simulation results
indicate the MSC estimator outperforms the product-limit estimator and its advantage over

the product-limit estimator can be very significant when right censoring is heavy.
Key Words: left-censored; right-censored; modified self-consistent.

1. Introduction

Consider the example of a reliability system which consists of three components Fy, Fs
and Fs3, with E; and F» in series and FEj3 is parallel with this series system. Let T, U and L
denote the life times of the three components Fy, E, and Fs, respectively. Suppose that T,
U and L are independent to one another and when the system fails we are able to determine
which component failed at the same time as the system. When the system fails, we can only
observe a lifetime variable X = max|min(7,U), L] and an indicator variable 6 with § = 1 if
L<T<U,6=2ifL<U<Tandd=3if min(7T,U) < L. We say that X is a twice
censored observation of T'. Note that twice censoring at first glance is the same as double
censoring, where we also only observe a lifetime variable X = max[min(7,U), L]. However,
the two schemes turns out to be quite distinct ideas. As an example of double censorship,
Turnbull (1974) refers to a study of African infant precocity by Leiderman et al. (1973). A
sample of 65 children were considered and each child was tested monthly to see if he (or she)
had learned to accomplish certain tasks. The time from birth to the learning time was the

variable of interest (denoted by T'). In their analysis, double censoring occurred due to late



entries (i.e. left censoring: the child had already learned the skills before entering the study)
and loss to follow-up (i.e. right censoring: the child had dropped out or not acquired the skill
by the end of study). Hence, under double censoring scheme, L and U are dependent on each
other with P(L < U) = 1, and we only observe a lifetime variable X = max[min(7,U), L]
and an indicator variable 0 with 0 = 1if L<T <U,6=2ifU <T and § =3if T < L.

Let (X1,01),...,(X,,6,) denote the observed sample and ¥; < Ys < --- < Y be the
distinct values in increasing order of X;’s. For component Fi, let d; = Z?ﬂ Iix,=v;:8,=1]
denote the number of failure times at Y;. Similarly, define ¢; = Y7 | Ijx,—y,;5,—2) and e; =
Yoy I1x,=v;.5,=3 for components E, and Fy, respectively. Let F, ), and G denote the
distribution functions of 7', U and L, respectively. Under this model, Patilea and Rolin
(2006) proposed a product-limit estimator Sp(t) of Sp(t) = 1 — F(t) = P(T > t) as follows:

Sp(t) =] {1 GV fiRn(Yi—ﬁ }

Yi<t

where R, (z) = >.7 Ty, <) and

o= 11 (- )

Y;>a

Note that Gy, (z) is the product-limit estimator of G(z—) = P(L < ) and n~ 'R, (z—) is the
empirical function of P(X < x) = P(L < 2)P(min(T,U) < z). Hence, G, (Y;)—n"'R,(Y;_1)
is a consistent estimator of the probability P(L < ¢)P(min(U,T) > t).

Let ap = sup{t : F(t) = 0} and bp = inf{t : F(t) = 1} denote the left and right
support of 7', respectively. Similarly, define ag and bg for U and ag and bg for L. Let
(D, || -||) be the Banach space of all real valued functions defined on (0, co0) which are right-
continuous and have left limits at ¢ < oo, and (Dla,b],|| - ||) the restrictions of h € D
on [a,b] C (0,00). Under the condition F(ar) = Q(ag) = 0, Patilea and Rolin (2006)
established the strong convergence of Sp, i.e. SUD, . <t<byp |Sp(t) — Sp(t)| — 0 almost surely.
Let G(t) = P(X < t,0 = 3), Q(t) = P(X < t,6 =2), F(t) = P(X < t,6 = 1), and
H(t) = F(t) + Q(t) + G(t). Let 7 > ap such that F(1—) + Q(7—) < 1. Under the condition
f(aﬁ’oo} G(du)/[H(u)]* < oo, they also established the weak convergence of Sp(t) in Dlag, 7).
Note that when F, @) and G are continuous, ag < min(ar, ag) and bg = bp = by, we have
ap = ap and 7 = bp. In this case, the strong consistency and weak convergence of gp(t)
hold on the set [ar, bg].



In Section 2, based on a modified self-consistent (MSC) approach, we propose an alter-
native estimator of Sg(t), the MSC estimator (denoted by Sn) The asymptotic properties
of the MSC estimator are derived. In Section 3, a simulation is conducted to compare the

performance between the two estimators, Sp and S,,.

2. The Proposed Estimator

First, we shall demonstrate that the product-limit estimator Sp can be expressed as
inverse-probability-weighted (IPW) average. For random censoring model, Satten and Datta
(2001) showed that the Kaplan-Meier (1958) estimator of F'(t) can be expressed as an IPW
average (see Robins (1993, 2000)). For the univariate random truncation and censoring
model, Shen (2003) showed that the truncation nonparametric maximum likelihood estimator
(NPMLE) (see Woodroofe (1985)) and the censoring-truncation NPMLE (see Wang (1987))
of survival function can also be expressed as IPW averages. For the twice censored data
described in Section 1, the following arguments provide the motivation for using an IPW

estimator.

Consider the subdistribution function

Fit)=P(L<T<UT<t) = /t G(u—)Sg(u—)F(dx),

where Sg(u) = 1 —Q(u). Thus, we have F(dz) = [G(x—)Sg(z—)] " F(dz). When G and S

are known, S(t) can be estimated by

e Iix;>t.8,=1]
n 1 [Xi>t,0; ’
; G(Xi—)So(Xi—)
where [ is the indicator function. Let H(z) = P(min(7,U) < ). Similar to G(x), we can
estimate H(z—) using the following product-limit estimator:
J
- d; + ¢;
i =1 (1-552)
H 5w
Note that 1 — H,(x) is a consistent estimator of Sp(z—)Sg(z—). Hence, given Sp(x), the

survival function Sg(z—) can be estimated by [1 — H,(x)]/Sr(z—). Therefore, an IPW

estimator of Sg(t) can be obtained by simultaneous solving the following two equations:

djly; >
7 Ga(Y;)Sow (Y;—)

Sw(t)=n""

J

(1)

J



and

Saw(t=) = [L = Ha(1))/Sw (t-). (2)
When F, Q and G are continuous, it is easy to show that G, (Y;)H,(Y;) = n 'R, (Yi_y).
Hence, Gn(iﬁ) —n R, (Y1) = @n(K)[l — I:In(Y;)] The jump in Sp at time Y; is given
by Sp(Yi-1)di/{nG,(Y;)[1 — H,(Y7)]}. If we replace Sow(Y;—) in (1) by Sgu(Y;—) = [1 —
H,(Y;)]/Sp(Y;_1), it follows that the jump in Sy at time Y; is equal to that of Sp. Hence,
the product-limit estimator Sp can also be obtained by simultaneously solving the equations
(1) and (2). By (1) and (2), it follows that the product-limit estimator Sp satisfies the

following modified self-consistent equation:

A e E,(d)
t) = - .
SP( ) /t Gn(z)—n—1R,(z—)

Sp(it*)

Next, using the approach similar to the case of doubly censored data (see Turnbull (1974),
Tsai and Crowley (1985), Chang and Yang (1987)), we propose a modified self-consistent
(MSC) estimator of Sp. Consider the subdistribution function Q(t) = P(L < U < T,U <

faF G(u—)Sp(u)Q(du). When G and Sp are known, Sg(t) can be estimated by

1 X >t 51—2]
n Z G(X X))

Let W(t) = P(X >t) and Sg(t) = 1 — G(t). Then

W(t) = Sa(t) + Sp(t)Sq(t) — Skt)Sa(t)Se(t). (3)
Note that equation (3) can be rewritten as
Sp(t) =W (t) — Sa(t) + Sp(t)Q(t) + Sr(t)Sa(t)Sq(t).

Let W, and Q,, denote the empirical survival and distribution functions of W and Q, respec-
tively. Now, we require the estimators of Sg, @ and Sg (denoted by S, Qn and S'Q, respec-
tively) to relate Q,. Imposing the condition SQ( ) = 1, we have Qn fo an S @ Qn(du)
and So(t) = 1—Q,(t). Thus, a MSC estimator S, (t) can be obtained by solvmg the following

equation:

80000 = 0400 = 80,0+ 5000 [ 2P 8 03,01 [ 2],



where S¢; (t) = 1 — Gy (t).

Note that for doubly censored data (i.e. P(L < U) = 1), equation (4) is reduced to

$u(t) = Wt Q" [9) 1y 8,016, (1), (5)

In this case, since the subdistribution function G(t) = P(X; < t,8; = ) = fa 1 —
Sp(z—)]G(dx). When Sp is known, Sg(t) can be estimated by [7[1/(1 — S(t ))]é (dt),
where G, is the empirical function of G(t). Replacing Sg,, in (5) with /- S, ()]G (),
we obtain the following self-consistent estimation equation for doubly censored data (see (5.1)
in Tsai and Crowley (1985) or (2.11) in Chang and Yang (1987)):

Sa(t) = W (t Q” (du) _ [1—S,(t)] /:O ﬁ@n(du). (6)

Before we go into deriving the asymptotic properties of the MSC estimator S, we briefly
review the asymptotic properties of the self-consistent estimator S, for doubly censored data
(i.e. for the case P(L < U) = 1). Under assumptions (A) P(L <t <U) > 0fort € (ap,br),
Gu and Zhang (1993) showed that sup;e (g, ) 15,(t) — Sp(t)] = 0 a.s.. Under assumptions
(A) and (B) fT<SF( y<1 %—l—fksp (w)<r % < ooforall 0 <7< 1, Guand Zhang
(1993) obtained the asymptotic normality of S,(t) on (ap,br). Mykland and Ren (1996)
(see Theorem 2) showed that the nonparametric maximum likelihood estimator (NPMLE)
satisfies the equation (6) and provided an explicit sufficient and necessary condition for a self-
consistent estimator to be the NPMLE. Theorem 2 of Mykland and Ren (1996) implies that
the NPMLE is a self-consistent estimator. Their proof is based on the following likelihood
function of (Y, d;,cj,e;) (7 =1,...,J) for Sg:

J

L(Sp) = CT[(Sr(Yj-1) = Sr(¥;) 5 (Sp(Y3)% (1 — Sp(Y;))7,
j=1
where C' is the term that depends only on (L,U) and Sg(Y) = 1. However, for twice
censored data, since P(L < U) < 1, the likelihood function for Sg is proportional to the

function
J

L(Sp) = [ [(Sr(Yim) = Sp(¥;)" (Sp(¥;))9[1 = Sp(Y))Sa(¥7))"
j=1
Since the likelihood function involves both Sr and S, it is not easy to derive the NPMLE of
Sr. We briefly discuss the relationship between the NPMLE and self-consistent estimator.



Define fo(x) = Ps,.(X = z) and f(z) = Ps(X = x). Given Sp and G, we have

D a,>a, Jol23) 1og f ;)

n

ESF [log L(S)|Xz = Ty, 51] = Z |:I[51:1] log f(ZEZ) + 1[51:2]

P Sr(2:)G (i)
SQ(€i) Dy, <y Jo(w5) l0g f(x;) Q(xi) 325 folz;)log f(x;)
o= 1 — Sp(:) S0 () lisi=a 1 — Sp(:) S0 () '

Similar to the proof of Theorem 6 of Mykland and Ren (1996), given Sp, we can show
that the following modified self-consistent equation is asymptotically equivalent to the EM

algorithm:

~

8u(t) = Wan(t) + Wan(t) + Su(t) / % T 8u() / T QW &

[ SeliSe) = Se(w)
t 1= 25p(u)Se(u)

where Wi, (t) and W, (t) are the empirical functions of Wi(t) = P(X; > t,6; = 1) and

Wy(t) = P(X; > t,8; = 1), respectively. Note that the equation above is different from

equation (4), which does not involve Sg. For twice censored data, further research is required

to establish the relationship between the NPMLE and SCE.

Next, we shall derive the asymptotic properties of the MSC estimator S,. The proof
of the following Theorem is inspired from Gu and Zhang (1993), where they derived the
asymptotic properties of the SCE of equation (6) for doubly censored data.

Theorem 1.
Suppose that G is continuous and
So(t)G(t) > 0 holds on (ap, br). (7)

Then, sup, . sy, 15, (t) — Sp(t)] — 0 as..
Proof:

Similar to Theorem 1 of Gu and Zhang (1993), we shall first prove the uniqueness of the
solution (4) (STEP A) and then prove the uniform consistency of S, (STEP B).

STEP A: Uniqueness of the solution of (4)



The proof of uniqueness is similar to that of Lemma 1 of Gu and Zhang (1993) (see
Appendix, page 619). First, since W,, — W and G, — G uniformly and S, satisfies (4),
S, (t) — S(t) for each t as ny — oo implies

S(t) = W(t) - Sa(t) +S(t)/0 % T SSa(t) /t“%‘

Let S be a [0,1]-valued nonincreasing function with left support ar and right support bg.
Let h be a function such that

(8)

roxe=- [ %h(@@(du) -/ ) %h@)@(du» (9)

where K(t) = So(t)G(t). Suppose that (7) holds. We shall show that h(t) = 0 for all
t € (ap,bp) by setting h(t) = S(t) — Sp(t). Assume h(ty) > 0 and 0 < S(tp) < 1 at some

point ty. Our goal is to establish a contradiction.

Define
h(u) h(u)Sg(t)

t)=— —————Q(du) — / ————2Q(du).

o0 == | G52 ~ [, Gags @

Note that both K(t) and g(t) are right continuous and their definitions are different from
that of Gu and Zhang (1993), where they were defined as K (t) = So(t) — S¢(t) and

By (9), we have K(t)h(dt+) = ¢(t)S(dt+) and K(t—)h(dt) = g(t—)S(dt), where h(dt) =
h(t) — h(t—) and h(dt+) = h(t+) — h(t). Define t; = sup{ar < t < to : h(t) < 0},
ty = inf{ty <t < bp : h(t) < 0} and H = {t : h(t) > 0,4, <t < to}. Then, t, € H, and
(t1,t2) C H C [t1,t2]. First,

Q) Sa(t)Q(dn)

g(dt) = —h(t) Gt)S({t)  G#)S(t)

<0 on H. (10)
To establish a contradiction, we need Step 1 as follows.
Step 1: Show that g(t) = g(t—) = 0 on H.

By assumption (7) and the arguments of Lemma 1 of Gu and Zhang (1993) (see page
620), it follows that g(t) = g(t—) = 0 on H.

Step 2: Find a contradiction.



Since h(t) > 0 on H, by assumption (7), Step 1 and (10), we have Q(dt) = 0, K(t) =
K(t—) =constant > 0 on H. Hence, we have h(dt) = h(dt+) = 0 on H, so that h(t) =
h(to) > 0 on ‘H and ty € H = (t1,t2). Therefore, h(t;) < 0 and h(t1+) = h(ty) > 0. Since
K(t1) > 0, it follows that g(t14) < 0, which is a contradiction to Step 1, i.e. g(t1+) = 0.

By setting h(t) = S(t) — Sp(t), it follows that h(t) = 0 for t € (ar,br). The proof of the

uniqueness is completed.
STEP B: Uniform consistency

By (4) all limit points of S, must satisfy (8), by Helly-Bray selection theorem we have
Sn(t) = Sp(t) as. for t € (ap,bp). Let S(t) = P(X >t,0 = 1) and S,(t) be the empirical
function of S(t). If Sp(dt) < 0 then by (4),

S,,(dt) Qn(du) 5 Qn(du) S(dt)
S (dt) =1- /u<t_6 Go(uw)S,(u) 1= Calt)] /m G (u) | Se(dt)

as n — oo and then e — 04, which implies |5, (dt)] > (1—0(1))|S(dt)|, since S, (dt)/S(dt) —
1. Hence, Supe(qy b, 15, (t) — Sp(t)] — 0 as.

The proof is completed. [J

In order to derive the asymptotic normality of v/n[S,(t) — Sp(t)], similar to Theorem 2
of Gu and Zhang (1993) (see page 613), we define four linear operators as follows. For any
survival function S, let Ag, Rg, K and Bg be the linear operators defined by

(st =~ [ g - [ At o
Rs = As — K, (Kh)(t) = K(t)h(t), (12)

and




~ ~ ~ ~

Since S,,(t) = By (Fn, Quy Gn, Gn)(t), Rg & = Bg, Zy, where &, = \/n(S, — Sp) and

Zn = (\/E(F’n - F)7 \/E(Qn - Q)? \/ﬁ(én - é)7 \/ﬁ(én - G))

Let (D(ap,br),|| - ||r) be the Banach space of all real-valued functions defined on (ap, br)
which are right-continuous and have left-limit at ¢ < bg, where ||h(t)||r = sup,, 1<, h(t).
Define Banach spaces (Dg(ar,br),|| - ||lk) = {h : Kh € D(ar,br)}, ||h||lx = ||Khl||F,
(Dz, || - |lz) ={h € D@ D®D® D : Bs,(h) € D(ap,bg)}, ||[(RV,h® h® hH)||, =
> -1 [1B9][p. By (11), we have Bs,(E, — F), (Qn — Q), (Gn = G), (G, = G)) € D(ar, br)
and

Zn-%57 = (21, Z, Z3, Z4) in Dy, (14)

where E[Zi(0)] = 0(i = 1,2,3,4), E[Z1() Z1(s)) = F(max(t, s))=F(0)F(s), -+ , BlZa(t)Za(s)] =
G(max(t, 8)) — G()G(s); and E[Z,(t) Zs(s)] = —E(1)O(s), -+ , E[Zs(t)Za(s)] = —G()G(s).

Next, we derive the asymptotic normality of \/n(S, — Sr). The proof of the following
theorem is similar to that of Theorem 2 of Gu and Zhang (1993) (see page 617). The main
idea of the proof is via strong continuity of linear operators indexed by survival functions in
the metric space Fg = {S: S — Sp € D(ap,br)} with the distance ||S — Sp||F.

Theorem 2. Under the assumptions of Theorem 1 and

1
/<aF,bF> S >0 (15)

Then, Ry!, the inverse of Rg, in (14), exists as a bounded operator from D(ap,br) to
DK(CLF, bF), and

Vi(Su(t) = Sp(t)) = &6 = R5!Bs, Z in Di(ap, bp),

where Z is the Gaussian process in (14).

Proof:

Let S7,, m > 1 be a finite discrete survival function such that ||Sr, — S||r — 0. Let
Qu.m be a finite discrete distribution function such that ||Qu., — Q||r — 0. Note that the
existence of Sy, and Qu,, is guaranteed by (7) and (15). Let Ay, gn. m > 1, and g be
functions in D(ap,br) such that ||g,, — g|| — 0 and R,,hyy = gm, where R,, = A,y — Ky,
and A,,, R,,, and K,, are defined as (11)-(13) with (S, Q, G) replaced by (St.m, Quam, Gm)-
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Under assumption (15) we have

lim sup [ / 1/ G (W) Quim (dus) + / 1/@m(u)QU,m(du)} =0. (16)
T2art m | J1-r<Sp(u)<l 0<Sp(u)<T

Note that condition (16) is different from condition (4.3) of Gu and Zhang (1993) (see Lemma
2, page 617), which is the following:

lim sup {/1_ o 1/[GU,m(U)—QU,m]QU,m(dU)+/

TaRt o, 0<Sp(u)<T

1/[GU,m<u)_QU,m]GU,m(du)} =0,

where Gy, be a finite discrete distribution function such that ||Gy., — Q||r — 0.

In our case, condition (16) is required for the existence of h € Dg(ap,br) such that
||Khy — Kh||p — 0 and Rgh = g. Define

o = _/ ?T,m(t)hm(u>
" u<t Gm(u)Sﬂm(u)

Qum(du)

and

o [ Sra®SeWhaw) ,
: / e Qua(

Note that the definitions of v, and v, are different from that of Gu and Zhang (1993), where

they were defined as
t)h
v, = —/ —ST’T( ) m(u)QUm(du)
u<t ST,m(U)

and

o / L= Sn(hnl@) g
u>t 1-— ST,m(u)

By definition of v}, v, and R, hy, = gm, we have K, h,, = gm + v} 4+ v,

Step 1: Existence of Rg' as a linear operator from D(ap,br) to Dy(ap,br) for all S €
.FS = {S 0 S — SF € D(ap,bp)}.

A sequence of functions is totally bounded if every subsequence contains a uniformly
convergent further subsequence. By (14), for a fixed 0 < 79 < 1, both v} ()/[s()<r,] and
v, (0 I1st)y>7) are totally bounded for the case |[Kphn||r < 1. Further, since S — Sp €
D(ap,br), we have ||v,, (t)||r = 0,(1) and ||v;} (¢)||r = 0,(1). Similar to the arguments of
Steps 3 and 4 of Lemma 2 of Gu and Zhang (1993)), under condition (16), it follows that
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there exists h € Dg(ap,bp) such that ||Kh,, — Kh||r — 0, Rsh = g and the solution h of
Rgh = g is unique. Define h = Rg'g. This completes the proof of Step 1.

Step 2: Strong continuity of {Rg', S € Fs}.

Let g,, € D(ap,br) and S,, in Fs be such that ||g,, — g||r — 0 and ||S,, — S||r — 0.
Similar to Step 2 of Theorem 2 of Gu and Zhang (1993), it follows that || K,,hm—K Rg'gl|r —
0, which implies that |[KRg 9, — KRg'g||[r — 0. Hence, we have the strong continuity.
This completes the proof of Step 2.

Step 3: Strong continuity of {Bg, S € Fg}.

Let h be a simple function in Dy. Since S — Sp € D(ap,br), by (13), Bsh — Bg,h in
D(ap,br) as ||S — Sp||lr — 0. Since ||Bg||r < 2 and the collection of simple functions is

dense in Dy, we have the strong continuity. This completes the proof of Step 3.

Similar to the arguments of Steps 4 and 5 of Theorem 2 of Gu and Zhang (1993), it
follows that /n(S,(t) — Sg(t)) converges in distribution in Dy (ap, b).

The proof is completed. [

3. Simulation Study

A simulation study is conducted to compare the performance between the two estimators
Sp and S,. The T’s are i.i.d. exponential distributed with scale parameter equal to 1, i.e.
F(z)=1—e" for x > 0. The U’s are i.i.d. exponential distributed with scale parameters
Ag» 1e. Q(z) =1 — e for x > 0. The L’s are i.i.d. exponential distributed with scale
parameters )\, i.e. G(z) =1 —e " for x > 0. The T, U and L are independent to one
another. Then the variables X and 0 are generated as described in Section 1. The goal is to
estimate the survival function of 7 Sg(t) = ps, where p; is chosen as p; = 0.75,0, 5, 0.25.
The values of (\;, \;) are chosen as (0.75,1.0), (30,4.0), (15,1.0), (2.0,0.5), and (4.0,0.1).
The sample sizes are chosen as 100 and 200. The replication is 1000 times. Tables 1 through
3 show the biases and root mean squared errors (denoted by rmse) of the two estimators for
S5(0.29) = 0.75, 5(0.69) = 0.5 and S(1.39) = 0.25, respectively. Tables 1 through 3 also show
the ratio of root mean squared errors of S, to that of Sp (denoted by r. Further, Tables 1
through 3 also list the simulated proportions for 6 = 1, § = 2 and § = 3, denoted by p1, p2

and ps, respectively.



Table 1. Simulation results for biases and rmse of Sp and S,, S(0.29) = 0.75

Sp(0.29) S,(0.29)

Ay Ng n D1 P2 P3 bias rmse bias rmse r
0.75 1.0 100 0.14 0.16 0.70 0.035 0.135 -0.032 0.112 0.83
0.75 1.0 200 0.14 0.16 0.70 0.034 0.091 -0.019 0.077 0.85

30 4.0 100 0.15 0.71 0.14 0.019 0.065 -0.003 0.060 0.92

30 4.0 200 0.15 0.71 0.14 -0.001 0.049 -0.010 0.044 0.90

15 1.0 100 0.42 0.44 0.14 0.010 0.053 -0.006 0.051 0.96

15 1.0 200 0.42 0.44 0.14 0.008 0.036 -0.009 0.037 1.03
2.0 0.5 100 0.43 0.16 0.41 0.022 0.082 -0.013 0.075 0.87
2.0 0.5 200 043 0.16 0.41 0.014 0.061 -0.010 0.055 0.90
4.0 0.1 100 0.72 0.10 0.18 0.024 0.065 -0.003 0.051 0.78
4.0 0.1 200 0.72 0.10 0.18 0.014 0.043 -0.003 0.037 0.86

Table 2. Simulation results for biases and rmse of Sp and S,, $(0.69) = 0.50

=

Sp(0.69) S,(0.69)

Ay Ag n P2 D3 bias rmse bias rmse r
0.75 1.0 100 0.14 0.16 0.70  0.037 0.142 -0.017 0.128 0.90
0.75 1.0 200 0.14 0.16 0.70  0.019 0.095 -0.009 0.090 0.95

30 4.0 100 0.15 0.71 0.14 0.015 0.124 0.021 0.103 0.83

30 4.0 200 0.15 0.71 0.14  0.009 0.103 0.011 0.078 0.76

15 1.0 100 0.42 0.44 0.14  0.004 0.066 -0.005 0.067 1.02

15 1.0 200 0.42 0.44 0.14  0.005 0.045 -0.002 0.043 0.96
20 0.5 100 0.43 0.16 0.41 0.029 0.082 -0.003 0.076 0.93
20 0.5 200 043 0.16 0.41 0.016 0.054 -0.003 0.054 1.00
40 0.1 100 0.72 0.10 0.18 0.008 0.056 -0.005 0.052 0.93
40 0.1 200 0.72 0.10 0.18 0.011 0.043 -0.001 0.039 0.91
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Table 3. Simulation results for biases and rmse of Sp and S, S(1.39) = 0.25

Sp(1.39) Sy (1.39)

Ay Ag n D1 P P3 bias rmse bias rmse r
0.75 1.0 100 0.14 0.16 0.70 0.028 0.105 0.007 0.097 0.92
0.75 1.0 200 0.14 0.16 0.70 0.011 0.075 -0.007 0.069 0.92

30 4.0 100 0.15 0.71 0.14 0.165 0.216 0.113 0.146 0.68

30 4.0 200 0.15 0.71 0.14 0.100 0.171 0.074 0.095 0.55

15 1.0 100 0.42 0.44 0.14 0.012 0.074 0.007 0.072 0.97

15 1.0 200 0.42 0.44 0.14 0.006 0.049 0.003 0.047 0.96
2.0 0.5 100 0.43 0.16 0.41 0.024 0.062 0.009 0.058 0.94
2.0 0.5 200 043 0.16 0.41 0.012 0.047 0.003 0.043 0.91
4.0 0.1 100 0.72 0.10 0.18 0.008 0.050 0.001 0.045 0.90
4.0 0.1 200 0.72 0.10 0.18 0.005 0.035 -0.003 0.035 1.00

Based on the results of Tables 1 through 3, we conclude that:

(i) For the estimation of $(0.29) = 0.25, the bias and standard deviation of S, are smaller
than that of Sn for most of the cases considered. In terms of rmse, the MSC estimator Sn
outperforms the product estimator Sp. The ratio of root mean squared errors of S, to that
of Sp ranges from 0.78 to 1.03.

(i) For the estimation of S(0.69) = 0.5, the bias and standard deviation of S, are smaller
than that of S p for most of the cases considered. In terms of rmse, the estimator Sn

outperforms Sp. The ratio of root mean squared errors of S, to that of Sp ranges from
0.76 to 1.02.

(iii) For the estimation of S(1.69) = 0.75, the bias and standard deviation of S, are smaller
than that of Sp for all the cases considered. In terms of rmse, the estimator S, outperforms
Sp. When right censoring is heavy (i.e. po = 0.71), the bias and standard deviation of S,
are much smaller than that of S p. One explanation for the results is that F’n on which S p is
based, is a function of the data with X; < ¢ and §; = 1 and Q,,, on which S, is based, is a
function of the data with X; <t and §; = 2. The ratio of root mean squared errors of Sn to
that of Sp ranges from 0.55 to 1.00.

4. Discussion

For twice censored data considered by Patilea and Rolin (2006), we have proposed an
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alternative estimator, the MSC estimator, and established its asymptotic properties. Our
simulation results indicate that the MSC estimator outpeforms the produt-limit estimator.
The advantage of the MSC estimator over the product-limit estimator can be very significant

when right censoring is heavy.
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