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Abstract

Patilea and Rolin (2006, The Annals of Statistics, 34(2), 925-938.) proposed a product-

limit estimator of the survival function for twice censored data. In this article, based on

a modified self-consistent (MSC) approach, we propose an alternative estimator, the MSC

estimator. The asymptotic properties of the MSC estimator are derived. A simulation study

is conducted to compare the performance between the two estimators. Simulation results

indicate the MSC estimator outperforms the product-limit estimator and its advantage over

the product-limit estimator can be very significant when right censoring is heavy.

Key Words: left-censored; right-censored; modified self-consistent.

1. Introduction

Consider the example of a reliability system which consists of three components E1, E2

and E3, with E1 and E2 in series and E3 is parallel with this series system. Let T , U and L

denote the life times of the three components E1, E2 and E3, respectively. Suppose that T ,

U and L are independent to one another and when the system fails we are able to determine

which component failed at the same time as the system. When the system fails, we can only

observe a lifetime variable X = max[min(T, U), L] and an indicator variable δ with δ = 1 if

L < T ≤ U , δ = 2 if L < U < T and δ = 3 if min(T, U) ≤ L. We say that X is a twice

censored observation of T . Note that twice censoring at first glance is the same as double

censoring, where we also only observe a lifetime variable X = max[min(T, U), L]. However,

the two schemes turns out to be quite distinct ideas. As an example of double censorship,

Turnbull (1974) refers to a study of African infant precocity by Leiderman et al. (1973). A

sample of 65 children were considered and each child was tested monthly to see if he (or she)

had learned to accomplish certain tasks. The time from birth to the learning time was the

variable of interest (denoted by T ). In their analysis, double censoring occurred due to late



2

entries (i.e. left censoring: the child had already learned the skills before entering the study)

and loss to follow-up (i.e. right censoring: the child had dropped out or not acquired the skill

by the end of study). Hence, under double censoring scheme, L and U are dependent on each

other with P (L < U) = 1, and we only observe a lifetime variable X = max[min(T, U), L]

and an indicator variable δ with δ = 1 if L < T ≤ U , δ = 2 if U < T and δ = 3 if T ≤ L.

Let (X1, δ1), . . . , (Xn, δn) denote the observed sample and Y1 < Y2 < · · · < YJ be the

distinct values in increasing order of Xi’s. For component E1, let dj =
∑n

i=1 I[Xi=Yj ;δi=1],

denote the number of failure times at Yj. Similarly, define cj =
∑n

i=1 I[Xi=Yj ;δi=2] and ej =∑n
i=1 I[Xi=Yj ;δi=3] for components E2 and E2, respectively. Let F , Q, and G denote the

distribution functions of T , U and L, respectively. Under this model, Patilea and Rolin

(2006) proposed a product-limit estimator ŜP (t) of SF (t) = 1− F (t) = P (T > t) as follows:

ŜP (t) =
∏
Yi≤t

{
1− di

nĜn(Yi)−Rn(Yi−1)

}
,

where Rn(x) =
∑J

j=1 I[Yj≤x] and

Ĝn(x) =
J∏

Yj≥x

(
1− ej

Rn(Yj)

)
.

Note that Ĝn(x) is the product-limit estimator of G(x−) = P (L < x) and n−1Rn(x−) is the

empirical function of P (X < x) = P (L < x)P (min(T, U) < x). Hence, Ĝn(Yi)−n−1Rn(Yi−1)

is a consistent estimator of the probability P (L < t)P (min(U, T ) ≥ t).

Let aF = sup{t : F (t) = 0} and bF = inf{t : F (t) = 1} denote the left and right

support of T , respectively. Similarly, define aQ and bQ for U and aG and bG for L. Let

(D, || · ||) be the Banach space of all real valued functions defined on (0,∞) which are right-

continuous and have left limits at t ≤ ∞, and (D[a, b], || · ||) the restrictions of h ∈ D

on [a, b] ⊂ (0,∞). Under the condition F (aF ) = Q(aQ) = 0, Patilea and Rolin (2006)

established the strong convergence of ŜP , i.e. supaF≤t≤bF |ŜP (t)− SF (t)| → 0 almost surely.

Let G̃(t) = P (X ≤ t, δ = 3), Q̃(t) = P (X ≤ t, δ = 2), F̃ (t) = P (X ≤ t, δ = 1), and

H̃(t) = F̃ (t) + Q̃(t) + G̃(t). Let τ > ãF such that F̃ (τ−) + Q̃(τ−) < 1. Under the condition∫
(aF̃ ,∞]

G̃(du)/[H̃(u)]2 <∞, they also established the weak convergence of ŜP (t) in D[aF̃ , τ ].

Note that when F , Q and G are continuous, aG ≤ min(aF , aQ) and bG = bF = bQ, we have

aF̃ = aF and τ = bF . In this case, the strong consistency and weak convergence of ŜP (t)

hold on the set [aF , bF ].
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In Section 2, based on a modified self-consistent (MSC) approach, we propose an alter-

native estimator of SF (t), the MSC estimator (denoted by Ŝn). The asymptotic properties

of the MSC estimator are derived. In Section 3, a simulation is conducted to compare the

performance between the two estimators, ŜP and Ŝn.

2. The Proposed Estimator

First, we shall demonstrate that the product-limit estimator ŜP can be expressed as

inverse-probability-weighted (IPW) average. For random censoring model, Satten and Datta

(2001) showed that the Kaplan-Meier (1958) estimator of F (t) can be expressed as an IPW

average (see Robins (1993, 2000)). For the univariate random truncation and censoring

model, Shen (2003) showed that the truncation nonparametric maximum likelihood estimator

(NPMLE) (see Woodroofe (1985)) and the censoring-truncation NPMLE (see Wang (1987))

of survival function can also be expressed as IPW averages. For the twice censored data

described in Section 1, the following arguments provide the motivation for using an IPW

estimator.

Consider the subdistribution function

F̃ (t) = P (L < T ≤ U, T ≤ t) =

∫ t

aF

G(u−)SQ(u−)F (dx),

where SQ(u) = 1−Q(u). Thus, we have F (dx) = [G(x−)SQ(x−)]−1F̃ (dx). When G and SQ

are known, S(t) can be estimated by

n−1
n∑
i=1

I[Xi>t,δi=1]

G(Xi−)SQ(Xi−)
,

where I[·] is the indicator function. Let H(x) = P (min(T, U) ≤ x). Similar to Ĝn(x), we can

estimate H(x−) using the following product-limit estimator:

Ĥn(x) =
J∏

Yj≥x

(
1− dj + cj

Rn(Yj)

)
.

Note that 1 − Ĥn(x) is a consistent estimator of SF (x−)SQ(x−). Hence, given SF (x), the

survival function SQ(x−) can be estimated by [1 − Ĥn(x)]/SF (x−). Therefore, an IPW

estimator of SF (t) can be obtained by simultaneous solving the following two equations:

ŜW (t) = n−1
J∑
j=1

djI[Yj>t]

Ĝn(Yj)ŜQW (Yj−)
(1)
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and

ŜQW (t−) = [1− Ĥn(t)]/ŜW (t−). (2)

When F , Q and G are continuous, it is easy to show that Ĝn(Yi)Ĥn(Yi) = n−1Rn(Yi−1).

Hence, Ĝn(Yi) − n−1Rn(Yi−1) = Ĝn(Yi)[1 − Ĥn(Yi)]. The jump in ŜP at time Yi is given

by ŜP (Yi−1)di/{nĜn(Yi)[1 − Ĥn(Yi)]}. If we replace ŜQW (Yj−) in (1) by ŜQp(Yj−) = [1 −
Ĥn(Yj)]/ŜP (Yj−1), it follows that the jump in ŜW at time Yi is equal to that of ŜP . Hence,

the product-limit estimator ŜP can also be obtained by simultaneously solving the equations

(1) and (2). By (1) and (2), it follows that the product-limit estimator ŜP satisfies the

following modified self-consistent equation:

ŜP (t) =

∫ ∞
t

F̃n(dx)
Ĝn(x)−n−1Rn(x−)

ŜP (x−)

.

Next, using the approach similar to the case of doubly censored data (see Turnbull (1974),

Tsai and Crowley (1985), Chang and Yang (1987)), we propose a modified self-consistent

(MSC) estimator of SF . Consider the subdistribution function Q̃(t) = P (L < U < T,U ≤
t) =

∫ t
aF
G(u−)SF (u)Q(du). When G and SF are known, SQ(t) can be estimated by

n−1
n∑
i=1

I[Xi>t,δi=2]

G(Xi−)SF (Xi)
.

Let W (t) = P (X > t) and SG(t) = 1−G(t). Then

W (t) = SG(t) + SF (t)SQ(t)− SF (t)SG(t)SQ(t). (3)

Note that equation (3) can be rewritten as

SF (t) = W (t)− SG(t) + SF (t)Q(t) + SF (t)SG(t)SQ(t).

Let W̃n and Q̃n denote the empirical survival and distribution functions of W and Q̃, respec-

tively. Now, we require the estimators of SF , Q and SQ (denoted by Ŝn, Q̂n and ŜQ, respec-

tively) to relate Q̃n. Imposing the condition ŜQ(0) = 1, we have Q̂n(t) =
∫ t
0

1

Ĝn(u)Ŝn(u)
Q̃n(du)

and ŜQ(t) = 1−Q̂n(t). Thus, a MSC estimator Ŝn(t) can be obtained by solving the following

equation:

Ŝn(t) = W̃n(t)− ŜGn(t) + Ŝn(t)

∫ t

0

Q̃n(du)

Ĝn(u)Ŝn(u)
+ Ŝn(t)ŜGn(t)

[
1−

∫ t

0

Q̃n(du)

Ĝn(u)Ŝn(u)

]
, (4)
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where ŜGn(t) = 1− Ĝn(t).

Note that for doubly censored data (i.e. P (L < U) = 1), equation (4) is reduced to

Ŝn(t) = W̃n(t) + Ŝn(t)

∫ t

0

Q̃n(du)

Ŝn(u)
− [1− Ŝn(t)]ŜGn(t). (5)

In this case, since the subdistribution function G̃(t) = P (Xi ≤ t, δi = 3) =
∫ t
aG

[1 −
SF (x−)]G(dx). When SF is known, SG(t) can be estimated by

∫∞
t

[1/(1 − Ŝn(t))]G̃n(dt),

where G̃n is the empirical function of G̃(t). Replacing ŜGn in (5) with
∫∞
t

[1/(1−Ŝn(t))]dG̃n(t),

we obtain the following self-consistent estimation equation for doubly censored data (see (5.1)

in Tsai and Crowley (1985) or (2.11) in Chang and Yang (1987)):

Ŝn(t) = W̃n(t) + Ŝn(t)

∫ t

0

Q̃n(du)

Ŝn(u)
− [1− Ŝn(t)]

∫ ∞
t

1

1− Ŝn(u)
G̃n(du). (6)

Before we go into deriving the asymptotic properties of the MSC estimator Ŝn, we briefly

review the asymptotic properties of the self-consistent estimator Ŝn for doubly censored data

(i.e. for the case P (L < U) = 1). Under assumptions (A) P (L ≤ t ≤ U) > 0 for t ∈ (aF , bF ),

Gu and Zhang (1993) showed that supt∈(aF ,bF ) |Ŝn(t)− SF (t)| → 0 a.s.. Under assumptions

(A) and (B)
∫
τ<SF (u)<1

Q(du)
G(u)−Q(u)

+
∫
0<SF (u)<τ

G(du)
G(u)−Q(u)

<∞ for all 0 < τ < 1, Gu and Zhang

(1993) obtained the asymptotic normality of Ŝn(t) on (aF , bF ). Mykland and Ren (1996)

(see Theorem 2) showed that the nonparametric maximum likelihood estimator (NPMLE)

satisfies the equation (6) and provided an explicit sufficient and necessary condition for a self-

consistent estimator to be the NPMLE. Theorem 2 of Mykland and Ren (1996) implies that

the NPMLE is a self-consistent estimator. Their proof is based on the following likelihood

function of (Yj, dj, cj, ej) (j = 1, . . . , J) for SF :

L(SF ) = C

J∏
j=1

(SF (Yj−1)− SF (Yj))
dj(SF (Yj))

cj(1− SF (Yj))
ej ,

where C is the term that depends only on (L,U) and SF (Y0) = 1. However, for twice

censored data, since P (L < U) < 1, the likelihood function for SF is proportional to the

function

L(SF ) =
J∏
j=1

(SF (Yj−1)− SF (Yj))
dj(SF (Yj))

cj [1− SF (Yj)SQ(Yj)]
ej .

Since the likelihood function involves both SF and SQ, it is not easy to derive the NPMLE of

SF . We briefly discuss the relationship between the NPMLE and self-consistent estimator.
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Define f0(x) = PSF
(X = x) and f(x) = PS(X = x). Given SQ and G, we have

ESF
[logL(S)|Xi = xi, δi] =

n∑
i=1

[
I[δi=1] log f(xi) + I[δi=2]

∑
xj>xi

f0(xj) log f(xj)

SF (xi)G(xi)

+I[δi=3]

SQ(xi)
∑

xj≤xi f0(xj) log f(xj)

1− SF (xi)SQ(xi)
+ I[δi=3]

Q(xi)
∑n

j=1 f0(xj) log f(xj)

1− SF (xi)SQ(xi)

]
.

Similar to the proof of Theorem 6 of Mykland and Ren (1996), given SQ, we can show

that the following modified self-consistent equation is asymptotically equivalent to the EM

algorithm:

ŜE(t) = W̃1n(t) + W̃2n(t) + ŜE(t)

∫ t

0

Q̃n(du)

Ĝn(u)ŜE(u)
+ ŜE(t)

∫ ∞
0

Q(u)

1− ŜE(u)SQ(u)
G̃n(du)

+

∫ ∞
t

SQ(u)[ŜE(t)− ŜE(u)]

1− ŜE(u)SQ(u)
G̃n(du),

where W̃1n(t) and W̃2n(t) are the empirical functions of W̃1(t) = P (Xi > t, δi = 1) and

W̃2(t) = P (Xi > t, δi = 1), respectively. Note that the equation above is different from

equation (4), which does not involve SQ. For twice censored data, further research is required

to establish the relationship between the NPMLE and SCE.

Next, we shall derive the asymptotic properties of the MSC estimator Ŝn. The proof

of the following Theorem is inspired from Gu and Zhang (1993), where they derived the

asymptotic properties of the SCE of equation (6) for doubly censored data.

Theorem 1.

Suppose that G is continuous and

SQ(t)G(t) > 0 holds on (aF , bF ). (7)

Then, supaF<t<bF |Ŝn(t)− SF (t)| → 0 a.s..

Proof:

Similar to Theorem 1 of Gu and Zhang (1993), we shall first prove the uniqueness of the

solution (4) (STEP A) and then prove the uniform consistency of Ŝn (STEP B).

STEP A: Uniqueness of the solution of (4)
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The proof of uniqueness is similar to that of Lemma 1 of Gu and Zhang (1993) (see

Appendix, page 619). First, since W̃n → W and Ĝn → G uniformly and Ŝn satisfies (4),

Ŝnk
(t)→ S(t) for each t as nk →∞ implies

S(t) = W (t)− SG(t) + S(t)

∫ t

0

Q̃(du)

G(u)S(u)
+ S(t)SG(t)

∫ ∞
t

Q̃(du)

G(u)S(u)
. (8)

Let S be a [0,1]-valued nonincreasing function with left support aF and right support bF .

Let h be a function such that

h(t)K(t) = −
∫
u≤t

S(t)

G(u)S(u)
h(u)Q(du)−

∫
u>t

S(t)SG(t)

G(u)S(u)
h(u)Q(du), (9)

where K(t) = SQ(t)G(t). Suppose that (7) holds. We shall show that h(t) = 0 for all

t ∈ (aF , bF ) by setting h(t) = S(t) − SF (t). Assume h(t0) > 0 and 0 < S(t0) < 1 at some

point t0. Our goal is to establish a contradiction.

Define

g(t) = −
∫
u≤t

h(u)

G(u)S(u)
Q(du)−

∫
u>t

h(u)SG(t)

G(u)S(u)
Q(du).

Note that both K(t) and g(t) are right continuous and their definitions are different from

that of Gu and Zhang (1993), where they were defined as K(t) = SQ(t)− SG(t) and

g(t) = −
∫
u≤t

h(u)

S(u)
Q(du) +

∫
u>t

h(u)

1− S(u)
G(du).

By (9), we have K(t)h(dt+) = g(t)S(dt+) and K(t−)h(dt) = g(t−)S(dt), where h(dt) =

h(t) − h(t−) and h(dt+) = h(t+) − h(t). Define t1 = sup{aF < t ≤ t0 : h(t) ≤ 0},
t2 = inf{t0 ≤ t < bF : h(t) ≤ 0} and H = {t : h(t) > 0, t1 ≤ t ≤ t2}. Then, t0 ∈ H, and

(t1, t2) ⊂ H ⊂ [t1, t2]. First,

g(dt) = −h(t)

[
Q(dt)

G(t)S(t)
− SG(t)Q(dt)

G(t)S(t)

]
≤ 0 on H. (10)

To establish a contradiction, we need Step 1 as follows.

Step 1: Show that g(t) = g(t−) = 0 on H.

By assumption (7) and the arguments of Lemma 1 of Gu and Zhang (1993) (see page

620), it follows that g(t) = g(t−) = 0 on H.

Step 2: Find a contradiction.
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Since h(t) > 0 on H, by assumption (7), Step 1 and (10), we have Q(dt) = 0, K(t) =

K(t−) =constant > 0 on H. Hence, we have h(dt) = h(dt+) = 0 on H, so that h(t) =

h(t0) > 0 on H and t0 ∈ H = (t1, t2). Therefore, h(t1) ≤ 0 and h(t1+) = h(t0) > 0. Since

K(t1) > 0, it follows that g(t1+) < 0, which is a contradiction to Step 1, i.e. g(t1+) = 0.

By setting h(t) = S(t)− SF (t), it follows that h(t) = 0 for t ∈ (aF , bF ). The proof of the

uniqueness is completed.

STEP B: Uniform consistency

By (4) all limit points of Ŝn must satisfy (8), by Helly-Bray selection theorem we have

Ŝn(t) → SF (t) a.s. for t ∈ (aF , bF ). Let S̃(t) = P (X > t, δ = 1) and S̃n(t) be the empirical

function of S̃(t). If SF (dt) < 0 then by (4),

S̃n(dt)

Ŝn(dt)
≤ 1−

∫
u<t−ε

Q̃n(du)

Ĝn(u)Ŝn(u)
− [1− Ĝn(t)]

∫
u≥t

Q̃n(du)

Ĝn(u)Ŝn(u)
→ S̃(dt)

SF (dt)

as n→∞ and then ε→ 0+, which implies |Ŝn(dt)| ≥ (1−o(1))|SF (dt)|, since S̃n(dt)/S̃(dt)→
1. Hence, supt∈(aF ,bF ) |Ŝn(t)− SF (t)| → 0 a.s.

The proof is completed. �

In order to derive the asymptotic normality of
√
n[Ŝn(t)− SF (t)], similar to Theorem 2

of Gu and Zhang (1993) (see page 613), we define four linear operators as follows. For any

survival function S, let AS, RS, K and BS be the linear operators defined by

(ASh)(t) = −
∫
u≤t

S(t)

G(u)S(u)
h(u)Q(du)−

∫
u>t

S(t)[1−G(t)]

G(u)S(u)
h(u)Q(du), (11)

RS = AS −K, (Kh)(t) = K(t)h(t), (12)

and

BS(h(1), h(2), h(3), h(4))(t) =

3∑
j=1

[1−h(j)(t)]−[1−h(4)(t)]−
∫
u≤t

S(t)

S(u)h(4)(u−)
h(2)(du)−

∫
u>t

S(t)[1− h(4)(t)]
S(u)h(4)(u−)

h(2)(du). (13)

By (11), we have

AŜn
(Ŝn − SF ) = BŜn

(F̃ , Q̃, G̃, G)(t)− Ŝn(t) +K(t)[Ŝn(t)− SF (t)].
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Since Ŝn(t) = BŜn
(F̃n, Q̃n, G̃n, Ĝn)(t), RŜn

ξn = BŜn
Zn, where ξn =

√
n(Ŝn − SF ) and

Zn = (
√
n(F̃n − F̃ ),

√
n(Q̃n − Q̃),

√
n(G̃n − G̃),

√
n(Ĝn −G)).

Let (D(aF , bF ), || · ||F ) be the Banach space of all real-valued functions defined on (aF , bF )

which are right-continuous and have left-limit at t < bF , where ||h(t)||F = supaF<t<bF h(t).

Define Banach spaces (DK(aF , bF ), || · ||K) = {h : Kh ∈ D(aF , bF )}, ||h||K = ||Kh||F ,

(DZ , || · ||Z) = {h ∈ D ⊗ D ⊗ D ⊗ D : BSF
(h) ∈ D(aF , bF )}, ||(h(1), h(2), h(3), h(4))||Z =∑4

j=1 ||h(j)||F . By (11), we have BSF
(F̃n − F̃ ), (Q̃n − Q̃), (G̃n − G̃), (Ĝn − G)) ∈ D(aF , bF )

and

Zn
d−→Z = (Z1, Z2, Z3, Z4) in DZ , (14)

where E[Zi(t)] = 0 (i = 1, 2, 3, 4), E[Z1(t)Z1(s)] = F̃ (max(t, s))−F̃ (t)F̃ (s), · · · , E[Z4(t)Z4(s)] =

G(max(t, s))−G(t)G(s); and E[Z1(t)Z2(s)] = −F̃ (t)Q̃(s), · · · , E[Z3(t)Z4(s)] = −G̃(t)G(s).

Next, we derive the asymptotic normality of
√
n(Ŝn − SF ). The proof of the following

theorem is similar to that of Theorem 2 of Gu and Zhang (1993) (see page 617). The main

idea of the proof is via strong continuity of linear operators indexed by survival functions in

the metric space FS = {S : S − SF ∈ D(aF , bF )} with the distance ||S − SF ||F .

Theorem 2. Under the assumptions of Theorem 1 and∫
(aF ,bF )

1

G(t)
Q(dt) > 0, (15)

Then, R−1SF
, the inverse of RSF

in (14), exists as a bounded operator from D(aF , bF ) to

DK(aF , bF ), and

√
n(Ŝn(t)− SF (t)) = ξn

d−→ξ = R−1SF
BSF

Z in DK(aF , bF ),

where Z is the Gaussian process in (14).

Proof:

Let ST,m m ≥ 1 be a finite discrete survival function such that ||ST,m − S||F → 0. Let

QU,m be a finite discrete distribution function such that ||QU,m − Q||F → 0. Note that the

existence of ST,m and QU,m is guaranteed by (7) and (15). Let hm, gm. m ≥ 1, and g be

functions in D(aF , bF ) such that ||gm − g|| → 0 and Rmhm = gm, where Rm = Am − Km,

and Am, Rm, and Km are defined as (11)-(13) with (S,Q,G) replaced by (ST,m, QU,m, Ĝm).
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Under assumption (15) we have

lim
τ→aF+

sup
m

[∫
1−τ<SF (u)<1

1/Ĝm(u)QU,m(du) +

∫
0<SF (u)<τ

1/Ĝm(u)QU,m(du)

]
= 0. (16)

Note that condition (16) is different from condition (4.3) of Gu and Zhang (1993) (see Lemma

2, page 617), which is the following:

lim
τ→aF+

sup
m

[∫
1−τ<SF (u)<1

1/[GU,m(u)−QU,m]QU,m(du)+

∫
0<SF (u)<τ

1/[GU,m(u)−QU,m]GU,m(du)

]
= 0,

where GU,m be a finite discrete distribution function such that ||GU,m −Q||F → 0.

In our case, condition (16) is required for the existence of h ∈ DK(aF , bF ) such that

||Khm −Kh||F → 0 and RSh = g. Define

v−m = −
∫
u≤t

ST,m(t)hm(u)

Ĝm(u)ST,m(u)
QU,m(du)

and

v+m = −
∫
u>t

ST,m(t)SG(t)hm(u)

Ĝm(u)ST,m(u)
QU,m(du).

Note that the definitions of v−m and v+m are different from that of Gu and Zhang (1993), where

they were defined as

v−m = −
∫
u≤t

ST,m(t)hm(u)

ŜT,m(u)
QU,m(du)

and

v+m = −
∫
u>t

1− ST,m(t)hm(u)

1̂− ST,m(u)
GU,m(du).

By definition of v+m, v−m and Rmhm = gm, we have Kmhm = gm + v+m + v−m.

Step 1: Existence of R−1S as a linear operator from D(aF , bF ) to DK(aF , bF ) for all S ∈
FS = {S : S − SF ∈ D(aF , bF )}.

A sequence of functions is totally bounded if every subsequence contains a uniformly

convergent further subsequence. By (14), for a fixed 0 < τ0 < 1, both v+m(t)I[S(t)≤τ0] and

v−m(t)I[S(t)>τ0] are totally bounded for the case ||Kmhm||F ≤ 1. Further, since S − SF ∈
D(aF , bF ), we have ||v−m(t)||F = op(1) and ||v+m(t)||F = op(1). Similar to the arguments of

Steps 3 and 4 of Lemma 2 of Gu and Zhang (1993)), under condition (16), it follows that
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there exists h ∈ DK(aF , bF ) such that ||Khm −Kh||F → 0, RSh = g and the solution h of

RSh = g is unique. Define h = R−1S g. This completes the proof of Step 1.

Step 2: Strong continuity of {R−1S , S ∈ FS}.

Let g
′
m ∈ D(aF , bF ) and Sm in FS be such that ||g′m − g||F → 0 and ||Sm − S||F → 0.

Similar to Step 2 of Theorem 2 of Gu and Zhang (1993), it follows that ||Kmhm−KR−1S g||F →
0, which implies that ||KR−1ST,m

g
′
m −KR−1S g||F → 0. Hence, we have the strong continuity.

This completes the proof of Step 2.

Step 3: Strong continuity of {BS, S ∈ FS}.

Let h be a simple function in DZ . Since S − SF ∈ D(aF , bF ), by (13), BSh → BSF
h in

D(aF , bF ) as ||S − SF ||F → 0. Since ||BS||F ≤ 2 and the collection of simple functions is

dense in DZ , we have the strong continuity. This completes the proof of Step 3.

Similar to the arguments of Steps 4 and 5 of Theorem 2 of Gu and Zhang (1993), it

follows that
√
n(Ŝn(t)− SF (t)) converges in distribution in DK(aF , bF ).

The proof is completed. �

3. Simulation Study

A simulation study is conducted to compare the performance between the two estimators

ŜP and Ŝn. The T ’s are i.i.d. exponential distributed with scale parameter equal to 1, i.e.

F (x) = 1− e−x for x > 0. The U ’s are i.i.d. exponential distributed with scale parameters

λq, i.e. Q(x) = 1 − e−λqx for x > 0. The L’s are i.i.d. exponential distributed with scale

parameters λg, i.e. G(x) = 1 − e−λgx for x > 0. The T , U and L are independent to one

another. Then the variables X and δ are generated as described in Section 1. The goal is to

estimate the survival function of T : SF (t) = pf , where pf is chosen as pf = 0.75, 0, 5, 0.25.

The values of (λg, λq) are chosen as (0.75, 1.0), (30, 4.0), (15, 1.0), (2.0, 0.5), and (4.0, 0.1).

The sample sizes are chosen as 100 and 200. The replication is 1000 times. Tables 1 through

3 show the biases and root mean squared errors (denoted by rmse) of the two estimators for

S(0.29) = 0.75, S(0.69) = 0.5 and S(1.39) = 0.25, respectively. Tables 1 through 3 also show

the ratio of root mean squared errors of Ŝn to that of ŜP (denoted by r. Further, Tables 1

through 3 also list the simulated proportions for δ = 1, δ = 2 and δ = 3, denoted by p1, p2

and p3, respectively.
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Table 1. Simulation results for biases and rmse of ŜP and Ŝn, S(0.29) = 0.75

ŜP (0.29) Ŝn(0.29)
λg λq n p1 p2 p3 bias rmse bias rmse r

0.75 1.0 100 0.14 0.16 0.70 0.035 0.135 -0.032 0.112 0.83
0.75 1.0 200 0.14 0.16 0.70 0.034 0.091 -0.019 0.077 0.85

30 4.0 100 0.15 0.71 0.14 0.019 0.065 -0.003 0.060 0.92
30 4.0 200 0.15 0.71 0.14 -0.001 0.049 -0.010 0.044 0.90
15 1.0 100 0.42 0.44 0.14 0.010 0.053 -0.006 0.051 0.96
15 1.0 200 0.42 0.44 0.14 0.008 0.036 -0.009 0.037 1.03
2.0 0.5 100 0.43 0.16 0.41 0.022 0.082 -0.013 0.075 0.87
2.0 0.5 200 0.43 0.16 0.41 0.014 0.061 -0.010 0.055 0.90
4.0 0.1 100 0.72 0.10 0.18 0.024 0.065 -0.003 0.051 0.78
4.0 0.1 200 0.72 0.10 0.18 0.014 0.043 -0.003 0.037 0.86

Table 2. Simulation results for biases and rmse of ŜP and Ŝn, S(0.69) = 0.50

ŜP (0.69) Ŝn(0.69)
λg λq n p1 p2 p3 bias rmse bias rmse r

0.75 1.0 100 0.14 0.16 0.70 0.037 0.142 -0.017 0.128 0.90
0.75 1.0 200 0.14 0.16 0.70 0.019 0.095 -0.009 0.090 0.95

30 4.0 100 0.15 0.71 0.14 0.015 0.124 0.021 0.103 0.83
30 4.0 200 0.15 0.71 0.14 0.009 0.103 0.011 0.078 0.76
15 1.0 100 0.42 0.44 0.14 0.004 0.066 -0.005 0.067 1.02
15 1.0 200 0.42 0.44 0.14 0.005 0.045 -0.002 0.043 0.96
2.0 0.5 100 0.43 0.16 0.41 0.029 0.082 -0.003 0.076 0.93
2.0 0.5 200 0.43 0.16 0.41 0.016 0.054 -0.003 0.054 1.00
4.0 0.1 100 0.72 0.10 0.18 0.008 0.056 -0.005 0.052 0.93
4.0 0.1 200 0.72 0.10 0.18 0.011 0.043 -0.001 0.039 0.91
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Table 3. Simulation results for biases and rmse of ŜP and Ŝn, S(1.39) = 0.25

ŜP (1.39) Ŝn(1.39)
λg λq n p1 p2 p3 bias rmse bias rmse r

0.75 1.0 100 0.14 0.16 0.70 0.028 0.105 0.007 0.097 0.92
0.75 1.0 200 0.14 0.16 0.70 0.011 0.075 -0.007 0.069 0.92

30 4.0 100 0.15 0.71 0.14 0.165 0.216 0.113 0.146 0.68
30 4.0 200 0.15 0.71 0.14 0.100 0.171 0.074 0.095 0.55
15 1.0 100 0.42 0.44 0.14 0.012 0.074 0.007 0.072 0.97
15 1.0 200 0.42 0.44 0.14 0.006 0.049 0.003 0.047 0.96
2.0 0.5 100 0.43 0.16 0.41 0.024 0.062 0.009 0.058 0.94
2.0 0.5 200 0.43 0.16 0.41 0.012 0.047 0.003 0.043 0.91
4.0 0.1 100 0.72 0.10 0.18 0.008 0.050 0.001 0.045 0.90
4.0 0.1 200 0.72 0.10 0.18 0.005 0.035 -0.003 0.035 1.00

Based on the results of Tables 1 through 3, we conclude that:

(i) For the estimation of S(0.29) = 0.25, the bias and standard deviation of Ŝn are smaller

than that of Ŝn for most of the cases considered. In terms of rmse, the MSC estimator Ŝn

outperforms the product estimator ŜP . The ratio of root mean squared errors of Ŝn to that

of ŜP ranges from 0.78 to 1.03.

(ii) For the estimation of S(0.69) = 0.5, the bias and standard deviation of Ŝn are smaller

than that of ŜP for most of the cases considered. In terms of rmse, the estimator Ŝn

outperforms ŜP . The ratio of root mean squared errors of Ŝn to that of ŜP ranges from

0.76 to 1.02.

(iii) For the estimation of S(1.69) = 0.75, the bias and standard deviation of Ŝn are smaller

than that of ŜP for all the cases considered. In terms of rmse, the estimator Ŝn outperforms

ŜP . When right censoring is heavy (i.e. p2 = 0.71), the bias and standard deviation of Ŝn

are much smaller than that of ŜP . One explanation for the results is that F̃n on which ŜP is

based, is a function of the data with Xi ≤ t and δi = 1 and Q̃n, on which Ŝn is based, is a

function of the data with Xi ≤ t and δi = 2. The ratio of root mean squared errors of Ŝn to

that of ŜP ranges from 0.55 to 1.00.

4. Discussion

For twice censored data considered by Patilea and Rolin (2006), we have proposed an
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alternative estimator, the MSC estimator, and established its asymptotic properties. Our

simulation results indicate that the MSC estimator outpeforms the produt-limit estimator.

The advantage of the MSC estimator over the product-limit estimator can be very significant

when right censoring is heavy.
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