東海大學環境科學與工程學系研究所碩士論文

添加助熔劑於淨水場污泥燒製

輕質骨材之研究

A study of lightweight aggregate formation from sintering water treatment plant sludge with flux addition

研究生:施維禮 指導教授:魏玉麟 教授

中華民國九十九年七月

東海大學碩士班研究生

論文指導教授推薦書

<u>環境科學與工程學</u>系施維禮君所提之論文

題目:添加助熔劑於淨水場污泥燒製輕質骨材之研究

係由本人指導撰述,同意提付審查。

指導教授: 10 之 强制 (簽章)

99年7月29日

東海大學環境科學系碩士班

論文口試委員審定書

<u>環境科學與工程學系</u>碩士班施維禮君所提之論文

題目:添加助熔劑於淨水場污泥燒製輕質骨材之研究

經本委員會審議,認為符合碩士資格標準。

您 (簽章) 論文口試委員召集 委員事務之下時期

中華民國__99_年_7_月_29_日

摘要

本研究主要目的探討淨水污泥中 SiO₂與 Al₂O₃含量對輕質骨材製備之影響,故額外添加不同助熔劑(黏土或廢玻璃粉)後燒製成輕質骨材。結果發現,各淨水場污泥在1000~1150°C 下燒製15 分鐘,僅Lin淨水污泥隨著燒製溫度提高而內部孔隙明顯增大,且外部緻密化效果較顯著,各淨水場污泥燒製成輕骨材後,其顆粒密度介於0.77~2.43 g/cm³,吸水率1.74~44.21 %,抗壓強度112~169.9 kg/cm²。另外,添加助熔劑(黏土或廢玻璃粉)可增加試體之燒結效果,其輕骨材顆粒密度分別為0.89~2.54 g/cm³及0.37~2.01 g/cm³,吸水率分別為7.89~26.20 %及5.74~27.35%,抗壓強度106.6~198.8 kg/cm²及108.4~124.7 kg/cm²,且隨著廢玻璃粉/汙泥比例提高至100/100時,試體外部緻密化效果較顯著,且M-TCLP測試,所有試體重金屬溶出濃度皆符合綠建材資源化再利用之標準。

關鍵詞:輕質骨材、燒結、發泡、緻密化、污泥回收、污泥再利用

A study of lightweight aggregate formation from sintering water treatment plant sludge with flux addition

Abstract

To ease their disposal problems, drinking-water treatment sludge (DWTS) were used as constituents for the preparation of lightweight aggregate (LWA). This study investigates the effect of SiO_2 and Al_2O_3 on the sintering mechanism and characteristics of LWA, Different fluxes, such as clay and waste glass, were added for enhancing the productivity of LWA. Only Lin DWTS has good potential for manufacturing LWA in this study.

All DWTS were sintered at temperature between 1000° C and 1150° C for 15 min. These LWAs are characterized with a particle density of 0.77-2.43 g/cm³, a water absorption rate of 1.74-44.21% and a compressive strength were 112-169.9 kgcm⁻². In addition, adding appropriate amounts of clay and waste glass could promote the sintering effect during LWA formation. The particle density of LWAs are 0.89-2.54and 0.37-2.01 g/cm³, respectively. Their corresponding water absorption rates are 7.89-26.20 and 5.74-27.35%. For their compressive strength, they are 106.6-198.8 and 108.4-124.7 kg/cm², respectively. As the ratio of waste glass/DWTS is 100/100, the resulting LWA has the lowest particle density and water absorption rate. In addition, the results of M-TCLP test meet the Taiwan environmental regulatory requirements, indicating that all LWA are non-hazardous and can be used for green construction reuse.

Keywords: drinking-water treatment sludge, lightweight aggregate, sintering, sludge recycle, sludge reuse

目錄

第一章 前言
1.1 研究緣起1
1.2 研究目的
第二章 文獻回顧
2.1 淨水污泥現況分析
2.1.1 淨水處理過程簡介
2.1.2 淨水污泥來源及產量
2.1.3 淨水污泥成分及其特性
2.1.4 淨水污泥資源再利用
2.2 黏土之性質
2.3 國內廢玻璃現況
2.3.1 廢玻璃來源及產量
2.3.2 廢玻璃處理現況與資源化之用途
2.4 輕質骨材之概述
2.4.1 輕質骨材之種類
2.4.2 輕質骨材之特性
2.5 輕質骨材製造之原理
2.5.1 成分

2.5.2 成形方式	10
2.6 輕質骨材之燒成理論	10
2.6.1 預熱機制	10
2.6.2 燒結機制	11
2.6.3 影響燒結要素	12
2.6.4 發泡機制	13
2.7 國內外相關研究	16
第三章 研究設備與方法	24
3.1 實驗材料與設備	24
3.1.1 實驗材料	24
3.1.2 實驗藥品	24
3.1.3 實驗設備	25
3.1.4 分析儀器	25
3.2 實驗流程	
3.3 實驗分析方法	29
第四章 结果	32
4.1 各淨水場污泥與助熔劑之基本成份分析	
4.1.1 物理性質	
4.1.2 化學組成	35

析
4.2.1 微結構變化
4.2.2 重量損失變化40
4.2.3 顆粒密度變化40
4.2.4 吸水率變化40
4.2.5 抗壓強度變化41
4.2.6 TGA/DTA 分析結果43
4.2.7 結晶物種分析45
4.2.8 毒性特性溶出程序47
4.3 各淨水場污泥添加不同比例黏土及添加廢玻璃粉在不同加熱溫
度下燒製成輕質骨材之特性分析49
4.3.1 微結構變化49
4.3.2 重量損失變化51
4.3.3 顆粒密度變化51
4.3.4 吸水率變化52
4.3.5 抗壓強度測試52
4.3.6 多次萃取之毒性溶出試驗56
第五章 討論

4.2 各淨水場污泥在不同加熱溫度下燒製成輕質骨材之特性分

5.1.1 化學組成 57
5.1.2 微結構變化59
5.1.3 結晶物種分析60
5.1.4 TGA/DTA 分析結果61
5.1.5 顆粒密度變化62
5.1.6 吸水率變化63
5.1.7 抗壓強度變化64
5.1.8 TCLP64
第六章 結論與建議65
6.1 結論
6.2 建議
參考文獻67

圖目錄

圖 2.1 Riley 所提出適合製成輕質骨材的三相圖8
圖 2.2 粒子間燒結反應示意圖12
圖 3.1 淨水污泥燒製實驗流程圖
圖 3.2 淨水污泥添加黏土或廢玻璃粉後燒製實驗流程圖
圖 4.1.1 各淨水場污泥之粒徑分佈比例與累積百分比
圖 4.1.2 廢玻璃粉與黏土之粒徑分佈比例與累積百分比
圖 4.1.3 (A)各淨水污泥及黏土(B) Tung/Clay 和 Jia/Clay(C) Tung/Glass
圖 4.1.3 (A)各淨水污泥及黏土(B) Tung/Clay 和 Jia/Clay(C) Tung/Glass 和 Jia/Glass 之三成份
 圖 4.1.3 (A)各淨水污泥及黏土(B) Tung/Clay 和 Jia/Clay(C) Tung/Glass 和 Jia/Glass 之三成份
 圖 4.1.3 (A)各淨水污泥及黏土(B) Tung/Clay 和 Jia/Clay(C) Tung/Glass 和 Jia/Glass 之三成份
 圖 4.1.3 (A)各淨水污泥及黏土(B) Tung/Clay 和 Jia/Clay(C) Tung/Glass 和 Jia/Glass 之三成份
 圖 4.1.3 (A)各淨水污泥及黏土(B) Tung/Clay 和 Jia/Clay(C) Tung/Glass 和 Jia/Glass 之三成份
 圖 4.1.3 (A)各淨水污泥及黏土(B) Tung/Clay 和 Jia/Clay(C) Tung/Glass 和 Jia/Glass 之三成份

表目錄

表 2.1 氣體之類型及分解溫度1	5
表 2.2 各化學成份逸出氣體之種類及溫度1	5
表 2.3 國外輕質骨材相關文獻之晶相整理2	0
表 4.1.1 土壤粒徑分級3	4
表 4.1.2 化學組成(Wt %,以氧化物表示)	7
表 4.2.1 各淨水場污泥燒製後試體之物理特性分析4	2
表 4.2.2 各淨水污泥 TGA/DTA 之分析4	4
表 4.2.3 各淨水污泥 500°C 預熱前後之 LOI (成型壓力: 3000psi)44	4
表 4.2.4 各淨水場污泥鍛燒前重金屬溶出測試結果4	8
表 4.3.1 淨水污泥添加不同比例黏土燒製後試體之特性分析5	3
表 4.3.2 淨水污泥添加不同比例廢玻璃粉燒製後試體之特性分析5	3

第一章 前言

1.1 研究緣起

由於台灣地區地狹人稠,再加上近年來隨著經濟發展,許多建設也漸漸蓬勃起 來。近年來,為了解決資源缺乏之困境,已有學者探討利用淨水污泥來製成輕質骨 材,以便解決有限天然資源的耗竭量【Huang et al., 2005;Xu et al., 2009】。輕質骨 材密度低,重量比一般重骨材少三分之一至二分之一,可大量減少鋼筋耗材的使用。 此外,輕質骨材之內部空隙多,具低熱傳導性能,有優異之隔熱、隔音及防火功能。 興建外牆隔熱效果佳,室內外溫差可達攝氏二至三度,對於建築物落成後之空調用 電量,具有省電節能重要意義及高度經濟效益。

在台灣,每日淨水污泥產量約 24000~280000 噸,污泥年產量隨著都市人口增 加不斷提高,94~97 年度無機性污泥(含淨水污泥)平均年產量約為 67 萬公噸,淨水 污泥平均年產量約為 16 萬公噸,顯示出隨著民生用水普及率提高,淨水污泥之產量 也逐漸增加,如何妥善處理已成為重要的課題。目前大部份淨水污泥處置方式以掩 埋為主,而污泥通常在掩埋前均經過淨水程序過程之化學藥劑處理與機械脫水等步 驟,對於如何處理淨水污泥有許多替代方案,如資源化再利用或找尋更經濟與合理 的處置方式已成為目前政府與人民關心的課題,同時台灣地區因人口密集加上土地 有限,造成掩埋場址不足及操作成本提高等,如能有效將淨水污泥資源化再利用, 不但能解決淨水污泥最終處置的問題,以達到減量化、安定化、無害化及資源化之 目標。

1.2 研究目的與內容

近年來國內外有許多學者致力於以廢棄污泥(淨水污泥及下水污泥)替代天然 資源燒製成輕質骨材,結果顯示使用淨水污泥替代天然資源製備輕質骨材具有相當 程度之成效。由於淨水污泥組成中包含大量的矽鋁氧化物與其他類似黏土之物質, 是一種適合用來作為製備輕質骨材的基本材料。

本研究內容主要分為兩部份:第一部份以各淨水場污泥為材料,分別比較各淨 水污泥在 3000psi 成型壓力下,不同溫度燒製後之燒結發泡情形;第二階段為淨水 污泥 (Tung 及 Jia) 添加助熔劑 (黏土及廢玻璃粉),在 1000psi 成型壓力,不同配比 及不同溫度燒製,期盼能增加骨材外部燒結效果,如下所述:

- 探討各淨水污泥燒製成輕質骨材之燒結與發泡機制,包括粒徑分佈、化學組成 TGA 熱重損失變化、微結構變化、顆粒密度、吸水率、抗壓強度、結晶物種分 析及重金屬溶出試驗等,以探討燒結與發泡之效果。
- 探討 Tung 及 Jia 淨水污泥添加黏土及廢玻璃粉,燒製成輕質骨材之特性,包括 微結構變化、顆粒密度、吸水率、抗壓強度、M-TCLP,以了解輕質骨材是否符 合綠建材規範及判斷對環境之危害性。

預期本研究將可透過這些資料的建立,歸納,研判,且由燒結發泡期間之變化深入 探究,進而了解控制發泡的條件。並改良其技術,以利國內相關輕骨材製造技術之 提升。

第二章 文獻回顧

2.1 淨水污泥現況分析

2.1.1 淨水處理過程簡介

台灣地區原水水源主要來自河川及水庫等地表水,通常各淨水場處理流程是依 據水源水質設計而採取不同的處理方式,在淨水處理過程中均須經過濾、消毒、混 凝、沉澱等步驟,以去除原水中的雜質,來達到淨化水質目的,故分別針對淨水處 理過程與廢水處理過程概述如下:

淨水處理過程概述【台灣省自來水公司;台北自來水事業處】:

- 分水井:主要將原水 (水庫、地表水或地下水)與污泥分開,將水引入混凝池,污 泥則流至污水池;其功能在調節水量,並將沉砂處理後之原水,分送至後續淨水 處理單元。
- 快混池:為吸附及凝聚原水中懸浮固體、於原水中加入 PAC (多元氯化鋁或硫酸
 鋁)等混凝劑,藉由各種形式之快混機攪拌,使水中雜質與藥劑均勻混合。
- 膠凝池 (慢混池):添加藥劑混合之原水,藉由膠凝機快慢攪拌,使粒子間相互碰 撞吸附逐漸變大變重後,形成膠羽再引入沉澱池。
- 沉澱池:混凝後的原水引入沉澱池時,顆粒較大的雜質沉澱,原水中已形成膠羽 顆粒,經足夠滯留時間藉重力之沉降作用。
- 5. 快濾池:由濾料(濾砂、礫石)依顆粒大小排成濾床,原水經由濾床砂層阻隔的 作用,過濾出乾淨的水,但經過一段時間,需要以反沖洗方式清除濾床中累積的 雜質,維持良好的過濾效果。
- 清水池:經快濾池過濾後之清水,在清水池中最後加氯消毒,此時以符合飲用水 標準之自來水,接著分送至各用戶。

廢水處理過程概述:

- 1. 廢水池:收集膠凝池、沉澱池、快濾池、淨水作業流程所產生之污泥及廢水。
- 廢水初沉池:廢水池收集之廢水送至初沉池,經固態液態分離後、上澄液經回收

池再利用,底部污泥則經收集後送至污泥回收槽。

- 污泥濃縮池:將污泥回收槽運送之污泥再次進行固液分離、而此時上澄液流至廢 水池再處理,底部污泥則經收集後送至污泥回收槽、送至污泥儲留槽。
- 4. 污泥儲留槽:主要功能為污泥乾燥及固化處理。
- 5. 脫水機:藉各式脫水設備將濃縮之污泥去除水分為污泥餅。
- 污泥餅儲存槽:放置污泥餅之位置,並待清運公司運送處理。

2.1.2 淨水污泥來源及產量

由於台灣目前淨水污泥大部分來源為河水及水庫沉積物,因此重金屬含量並不高,屬於無機性污泥。其中,「淨水污泥」即為淨水程序中所產生的副產物。在淨水 處理過程中,最常使用之混凝劑為硫酸鋁或多元氯化鋁(PAC),混凝劑與水中雜質 經適當攪拌後會形成較大的膠羽,於沈澱池中沈降下來而被去除,形成所謂的「淨 水污泥」,根據行政院環保署廢棄物管制中心上網申報資料統計,94~97 年度無機性 污泥(含淨水污泥)平均年產量約為 67 萬公噸,淨水污泥平均年產量約為 16 萬公噸, 顯示出隨著民生用水普及率提高,淨水污泥之產量也逐漸增加,如何妥善處理已成 為重要的課題。

2.1.3 淨水污泥成分及其特性

在淨水污泥組成方面,其中含有有機和無機存在固體、液體、和氣體形式中 【Bourgeoisa et al., 2004】,劉氏等人指出污泥特性隨著處理程序的不同,所產生的 污泥性質不同,鋁鹽污泥的組成主要為鋁、矽、鉀、鎂等,除了鋁為混凝劑外,其 餘皆與集水區域的土壤元素類似【劉氏,2002】。一般而言,淨水污泥主要以SiO2、 Al2O3與Fe2O3為主,約佔整體比例之80%,除了鋁、鐵主要來自於淨水處理過程中 添加之混凝劑外,二氧化矽乃因集水過程中夾帶大量砂土礦物,經混凝沉澱收集而 來。其他化學組成為少量之K2O、CaO、Na2O、MgO等金屬氧化物。另一方面,淨 水污泥特性則隨著原水水質、混凝劑種類等不同而有所差異,主要成分包含懸浮固 體、鐵鋁氫氧化物、混凝劑、水分及微量的有機物等。顏色由淺黃至灰黑均有,視 其原水性質、加藥種類及貯存時間而異【陳氏,2004】。

2.1.4 淨水污泥資源再利用

一般而言,淨水污泥之傳統處理方式為衛生掩埋,近年來,隨著工商業興起, 淨水污泥掩埋場址空間不足,因此,衛生掩埋已變成不實際的問題,故找到淨水污 泥可替代處理方式為目前優先考慮的問題【Huang *et al.*, 2005; Chiou *et al.*, 2006】。

現今,至少有四種處理技術方式與污泥有關,一、轉變污泥為增值的建築材料 或活性碳【Pan et al., 2001】,許多研究指出,回收再利用廢棄材料可應用於建築工 程(如:混凝土、磚塊)、陶瓷顆粒、輕質骨材等用途【Goldbold et al., 2003】。二、 從污泥中回收可利用的資源:透過污泥的熔化及裂解過程製備成燃料副產物 【Sachdeva et al., 2000; Stolarek et al., 2001】,熱處理為有效減少淨水污泥體積與穩 定化方式,燒結過程中會提升材料間鍵結力,由於燒結基質會有足夠的強度和降低 重金屬溶出性【Wang et al., 1998】。三、管理目前現存的汙泥處置。四、淨水處理 過程中減少污泥的產生而不是將產生之污泥委託國外處理。基本上,透過上述處理 方式能有效減少污泥量過多的問題,不僅能夠減少淨水汙泥的處理費用,且能夠維 持環境永續性發展。

2.2 黏土之性質

黏土是由矽酸鹽礦物風化後形成,通常定義為粒徑<2µm顆粒且屬於可塑性的 矽酸鋁鹽,其中黏土礦物種類繁多,主要可以分為四大群:高嶺石、伊萊石、綠泥 石、蒙脫石。目前,已有許多學者指出原料中添加黏土可製備成輕質骨材【Riley, 1951; Tay *et al.*, 1997; Jord'an *et al.*, 2005; Chandra *et al.*, 2003;Ducman *et al.*, 2009】, 非結構混凝土【Mun *et al.*, 2007】,其不同礦物成份和化學組成對黏土之膨脹性能均 有很大的影響。

2.3 國內廢玻璃現況

2.3.1 廢玻璃來源及產量

台灣近年來由於經濟發展快速,產生的垃圾量也逐年增加,一般而言,國內廢 玻璃主要來源為容器玻璃和平板玻璃兩者佔絕大多數,其他包含玻璃纖維以及特殊

玻璃等,而現有資源回收管道主要為玻璃製造業者,但目前每月處理量已不足以因 應現今回收數量之快速成長。根據行政院環保署廢棄物管制中心上網申報資料統 計,97年度每年廢玻璃申報量為48,186公噸,也突顯出如何有效處理,成為重要的 課題。

2.3.2 廢玻璃處理現況與資源化之用途

廢玻璃其主要化學成份大多以SiO2、CaO、Na2O、MgO為主,其導電度小,熱 導度低,具有高強度,且是種黏性極高的物質。另外,由於廢玻璃其質重不易分解, 台灣地區傳統上以掩埋方式來處理廢玻璃,佔用掩埋場大量空間,縮短掩埋場使用 年限,倘若以焚化處理則在高溫燒製後形成熔融態,基於環境因素考量,應積極推 動玻璃資源化。理論上,玻璃為百分之百可再生及再利用的材質【Sobolev et al., 2006】,目前台灣地區玻璃資源化再利用應用於建築材料(玻璃本身硬度高,可增加 混凝土強度)、道路材料【Chen et al., 2002】(玻璃瀝青路面具有反光與防滑特性, 可提高行車安全性)、玻璃容器(可回收碎玻璃與再生玻璃容器)、居家圓藝材料、地 磚材料等用途。因此,回收玻璃廢棄物可減少使用掩埋空間且減低使用天然材料於 建築上【Rakshvir et al., 2006】。

2.4 輕質骨材之概述

典型的輕質骨材是比重較一般常重骨材小,且其顆粒密度的標準 2 g/cm³以 下,Cheeseman文中提到,天然骨材之顆粒密度範圍2.4~2.8 g/cm³,而輕質骨材顆粒 密度範圍0.8~2.0 g/cm³,而輕質骨材也可製備用來當作輕質磚與輕質混凝土及輕質 建築材料【Cheeseman et al., 2005】。輕質骨材具有質輕、低熱傳導性能、隔熱和防 火的功能。輕質骨材之種類繁多,1917年美國S. J. Hayde使用某種膨脹性黏土及頁 岩在高溫下燒成小球,由於原料含有之成分,在高溫下使內部產生氣體,表皮形成 堅實的玻璃層,可視為輕質骨材研究之肇始【蕭氏,2001】。第一次世界大戰期間, 美國使用輕質骨材混凝土造船。而在聖路易斯的Park Plaza Hotel是建造在1920年代 輕質骨材混凝土早期例子。我國方面,1970年,成功大學土木系王櫻茂教授,首先 利用旋窯技術,燒製膨脹性頁岩,開創國內研製輕質骨材的大門,也為日後的研發

工作奠定紮實的基礎。

2.4.1 輕質骨材之種類

一般輕質骨材可分為天然及人造骨材兩種,典型輕質骨材之分類與基本性質如 下【李氏,1996;王氏,2001;楊氏,2007】:

1. 天然輕質骨材:

天然輕質骨材包含:浮石、泡沫熔岩、火山渣(凝灰岩)等,透過火山活動自然 形成之產物,其大多為多孔隙材質,故性質不穩定造成品質也不同,工程應用上也 大受影響。

2. 人造輕質骨材:

人造輕質骨材種類相當多,文獻中許多學者使用不同材料(如: 飛灰與底灰 【Cheeseman et al., 2005; Chiou et al., 2006; Lin et al., 2006】、下水與淨水污泥 【Cheeseman and Virdi et al., 2005; Chiou et al., 2006; Xu et al., 2008】、煤灰【Wang et al., 2009】、水庫淤泥【Wei et al., 2008; Chen et al., 2010】及黏土【Xu et al., 2008; Cusidó et al., 2003; Jord'an et al., 2005; Mun et al., 2007】) 燒製成輕質骨材。而人造輕質骨 材透過原料改變與操作參數調整,故可有效找到廢棄材料資源化再利用之方式。

2.4.2 輕質骨材之特性【李氏,1996; Cheeseman et al., 2005】

- 低顆粒密度(<2 g/cm³):根據 EN 13055-1, (2002)之"Lightweight Aggregates Part 1: Lightweight Aggregates for Concrete, Mortar and Grout"。
- 吸水率(2~20%): 根據 GB/T 17431.2-1998, China, Lightweight aggregates and its test methods—part 2. Test methods for lightweight aggregate, 土木工程應用上, 輕 質骨材(陶粒)吸水率標準需低於 15%以下,輕骨材一般吸水率範圍介於 2~20%
- 低抗壓強度(20~850 kg/cm²): 土木工程中, Chinese National Bureau of Standards(CNBS)對於燒製後之輕質陶瓷顆粒(Bulk density<900kgm⁻³)及其應用 上,所需之最小抗壓強度為 7.5 MPa=76.5 kg/cm²。
- 4. 高孔隙率(40%~95%)
- 5. 試體具有緻密化表面避免吸水率升高。

2.5 輕質骨材製造之原理

輕質骨材的機制為原料的膨脹性及不同溫度下氣體的分解試體產生發泡現象, 而 Riley 於 1951 年提出三點製作輕質骨材不可或缺之要素:

(1) 達燒結溫度時原料中需具有可產氣之物質。

(2)達燒結溫度時原料需具有高黏稠度之液相產生,以防止骨材內部產生的氣體在 未燒結前逸散。

(3) 在冷卻過程中表面產生一層玻璃質的不透水層,降低骨材吸水率。

原料若未具備以上三點要素,則需加入添加劑進行調質,利用快速升溫方式造成骨材表面先形成流動之玻璃相,骨材內部產生氣體將表面高黏稠度的玻璃質撐開,由於該高黏稠度之玻璃相具足夠黏度包覆內部氣體,冷卻後產生多孔性材料, 並於外層產生玻璃質薄膜【張氏,2005】。

2.5.1 成分

Riley所提出適合製成輕質骨材的三相圖如圖 2.1 所示,其 SiO₂、Al₂O₃和助熔 劑(Fe₂O₃+K₂O+Na₂O+CaO+MgO 等)之比例落於三相圖中,虛線範圍內為較 佳組成,而原料比例不僅對骨材膨脹性及骨材強度有影響,必要時需添加發泡材料 來達到低密度與膨脹性良好之骨材【Riley,1951】。

圖 2.1 Riley 所提出適合製成輕質骨材的三相圖

最早 1951 年起, Riley 利用原料的組成繪製出三相圖,來計算和評估樣品的發 泡行為【Riley, 1951】,研究提出在燒結行為上化學組成中每個成分扮演重要的角 色,主要成分以 SiO₂、Al₂O₃、Fe₂O₃、Na₂O、CaO、MgO、K₂O 等為主,而 SiO₂/(FeO+Fe₂O₃+CaO+MgO+K₂O+Na₂O)之比例,則用來決定原料是否達到足夠黏 稠度去捕捉氣體之能力。下列針對這些成分逐一探討:

1. SiO₂

在自然界地殼中多以 SiO₂ 形式存在,其物理性質具有硬度大、耐高溫、耐震性、 電絕緣的性能。此外, SiO₂ 是一種酸性氧化物且為玻璃之主要成分,也為物質中主 要之晶相。二氧化矽化學性質不活潑,不容易與水和酸發生反應,通常只能與鹼性 氧化物反應生成鹽。SiO₂ 是影響燒結溫度之重要成分,原料中添加適當地二氧化矽, 在 1000°C 時容易增加液相黏滯流形成,而在骨材外部包覆內部孔洞提升抗壓強度 和緻密化效果。【Skrifvars *et al.*, 1994; Xu *et al.*, 2008; Wang *et al.*, 2009】。 2. Al₂O₃

氧化鋁 (Aluminium oxide) 是一種白色固體,是鋁和氧的化合物。其熔點為 2054°C,在陶瓷工業中,氧化鋁常為製作高穩定性產品之條件,具有改善陶瓷體微 細結構之功能。添加適當地氧化鋁可以提高試體的化學穩定性與熱穩定性、物理化 學性能和機械強度【Tsai et al., 2006】。但含量過多提高燒成溫度,過少則試體易熔 【蔡氏,2002】。燒結過程中,在網絡結構中Al³⁺通常能取代Si⁴⁺,形成四面體網絡, 以加強玻璃網絡結構的功能,因此氧化鋁可以提高燒結試體的化學穩定性及抗壓強 度【Xu et al., 2008】。

3. Fe₂O₃

許多研究指出 Fe₂O₃ 扮演一助熔劑之角色,高含量 Fe₂O₃ 的輕質骨材,在高溫 燒結過程中, Fe₂O₃ 會釋出氧氣並形成複雜的結晶相,相對地也會提高試体的抗壓 強度。【Zou *et al.*, 2009】

4. Na₂O

在陶瓷工業中,Na₂O 也是助熔劑,其可在玻璃相中提高透明度,一般 Na₂O 總量不能添加太多,否則會急劇的降低燒成溫度與熱穩定性。

5. CaO 和 MgO

鹼土金屬氧化物(CaO、MgO 等)在陶瓷工業上,CaO、MgO 常被用來作為 降低燒結溫度之助熔劑,其原理為添加適當的CaO和MgO 能使高溫時促使粒子表 面形成液相,而增加表面擴散之燒結機制。Barbieri研究結果指出過量CaO 超過所 需要的離子時,會產生電中性而降低骨材之強度【Barbieri *et al.*, 2000; Xu *et al.*, 2009]。

2.5.2 成形方式

粉體成形機制可分為三個階段:

- 一、粒子滑動(packing):通常成形之最初效應為粒子跟粒子間的 滑動,造成粒子間的堆積方式重新排列,減少粒子間之空隙。
- 二、粒子變形 (plastic deformation):隨著應力增加,同時粒子產 生變形,使得粉體間之緻密度提升。
- 三、粒子破裂(brittle fracture):隨著粒子發生變形後,即是粒子 之破裂,不僅減少大孔隙之存在,更透過粒子的破裂,有效 地將小孔隙填密。

Bhatty 之研究成果指出,在試體在成形後具有較好的緻密性效果,試體強度經 測試後顯示出粒狀成形之試體比整塊燒結高。主要是試體內之孔隙均勻分布,故發 泡效果較佳。且經成形之試體所產生之黏滯玻璃層可造成黏度較大之玻璃層,使得 試體發泡集中,造成試體輕質化【Bhatty *et al.*, 1989;張氏, 1999;楊氏, 2007】。

2.6 輕質骨材之燒成理論

2.6.1 預熱機制(Preheating mechanism)

一般來說,在預熱處理過程中會有兩種物化現象發生:脫水和碳化。

- 脫水(Dehydration):預熱處理的目的是將顆粒中所含的吸收水和結晶水排出,同時避免顆粒在高溫燒製時破裂。
- 碳化(Carbonization):有機物質中會轉化成碳、一氧化碳、二氧化碳。預熱初期 產生的氣體會降低骨材的顆粒密度。相對的,碳在高溫發泡過程中是一種助熔劑

和反應物(與鐵氧化物反應後釋放出氧氣,特別是 Fe₂O₃ 在 1000-1100°C 時釋放 O₂)【Tsai *et al.*, 2006】。

Qi 等人研究結果指出,預熱低於 500°C 時,鐵氧化物的含量是固定的,C/Fe 比例中只有碳的含量隨之改變。此外,預熱時間長短對 C/Fe 比例有相互關係。當預 熱時間為 10 分鐘時,碳化效果並不完全,碳的含量佔低比例,因此碳和鐵(C/Fe)比 也相對較低,造成氣體產量不足,骨材亦無法膨脹。隨著預熱溫度上升,筒密度、 顆粒密度和吸水率降低。當預熱時間延長為 20~30 分鐘時,在 400°C 時,可以獲得 最小的筒密度、顆粒密度和吸水率,顯示出碳化過程中產生的碳使得 C/Fe 比對於顆 粒的發泡有更好的效果。然而,當溫度提高至 400°C 以上時,C/Fe 比過多會導致熔 點和黏稠度提高對骨材發泡有不利影響【Qi et al., 2010】。

2.6.2 燒結機制

所謂燒結反應係指在低於此物質之熔點下加熱,試體內部結構重新排列後,外 部可獲得較佳之緻密性效果【張氏,1999】。燒結反應若依物質或原子於燒結過程 中移動方式的不同可再區分為固態燒結、黏滯流燒結及液態燒結【Hupa,1989,余 氏,2000】。

- 固態燒結(solid-state sintering):利用表面擴散(Surface Diffusion)、 晶格擴散(Lattice Diffusion)、粒界擴散(Boundary Diffusion)或固態物質與周圍 氣氛之反應(如昇華-再凝結)之質量傳輸者。
- 黏滯流燒結(sintering by viscous flow) : 燒結是由非結晶 (non-crytalline)物質流動所造成的,在矽酸鹽環境下黏滯流燒結為主要之燒結 機制【Skrifvars,1994】。黏滯流燒結會形成密閉孔隙,其原因為液相表面 成晶格邊界的擴散而產生收縮【Nowok,1990】。
- 液態燒結(liquid phase sintering):利用熔解及固體再沈澱方式增加 顆粒大小及密度。

German 在其著作中建立了燒結機制之模型,如圖 2.2 所示。其理論將兩粒子間 之燒結過程分成四個步驟:

- 一、最初點接觸反應
- 二、初期頸部成長
- 三、後期頸部成長
- 四、最終全融合反應

作者認為燒結機制起初為粒子間之點接觸反應,接續後面的頸部成長效應,粒子與 粒子間形成新粒界 (grain boundary),並在足夠反應時間下,兩個粒子最後將融合 成一個大粒子 【German,1996】。

圖 2.2 粒子間燒結反應示意圖

2.6.3 影響燒結要素

影響燒結要素可分五點:燒結溫度、持溫時間、化學組成,成形壓力及粒徑分布。 1. 燒結溫度:通常燒結溫度約為試體熔點 0.6~0.8 倍,且與試體本身之熔點有關。 在燒結過程中,溫度不僅提供燒結所需之能量,更提供試體內部黏滯流之行為, 透過外部燒結包覆氣體而內部產生孔洞,達到輕質化效果。

- 持溫時間:到達燒結溫度後之持溫時間,此時骨材內部兩種機制同時進行,一種 是晶粒間的緻密化進行並在骨材外部形成燒結,另一種是骨材內部分解生成氣體 之反應持續進行,較長的持溫時間粒子間移動距離愈長,而有良好的燒結效果。
- 3. 化學組成:試體之化學組成是決定起始溫度之重要因子。一般鹼金族化合物及鐵

氧化物等有較低的熔融溫度,故可作為試體中降低燒結溫度之助溶劑。

- 4. 升溫速率:可分為慢速及快速升溫方式,慢速升溫就是以緩慢升溫的方式加熱輕 質骨材,相對的試體吸收熱量較緩慢,在低溫時隨著溫度上升先放出結晶水及分 解產氣之物質,高溫時再形成玻璃相而由試體產生之發泡氣體來膨脹骨材。快速 升溫,由於試體表面受熱較快,其骨材顆粒間快速緊縮,隨後生成之液相迅速形 成緻密外殼,使其內部結晶水、有機物質及碳酸鹽類等熔點低的物質仍存在試體 內部,但需要足夠持溫時間使氣體揮發,才能有效地膨脹骨材【傳氏,2009】。
- 成形壓力:不同的成形壓力使得試體粒子間排列密度也不同,成形壓力越大,顆 粒間的堆積越緻密,能提高燒結效果。
- 粒徑分佈:試體顆粒越小,單位體積內顆粒表面積越大,接觸面越多,燒結效
 果愈佳。

2.6.4 發泡機制

發泡是一個複雜且結合物理與化學之現象,試體產生之發泡現象為在軟化點與 最高加熱溫度之間,其中原料中之碳酸鹽類、氧化物、氫氧化碳及有機物等將氣體 釋放,形成細胞組織結構【Bhatty *et al.*, 1989】。

輕質骨材原料膨脹或發泡現象有兩個重要的條件:

- 「黏度條件」:當原料燒製於1100-1200°C時,試體表面升溫速度較快,同時, 試體外部具有足夠黏稠度之玻璃相,以包覆內部釋放的氣體,使其不易以氣泡 的方式於試體表面噴出逸散。而原料 SiO₂ 和 Al₂O₃ 則為玻璃相之主要成分 【Riley., 1951; Qi et al., 2010】。
- 「產氣條件」:原料達到具一定黏稠度的高溫態之後,原料中包含碳和鐵氧化物 (特別是 Fe₂O₃在 1000-1100°C 時釋放 O₂),碳和氧反應形成一氧化碳(CO)、二 氧化碳(CO₂)和氧氣(O₂)。而這些氣體 CO、CO₂、O₂ 會使顆粒本身膨脹,Qi 等 人提出適當地 C/Fe 比例對骨材發泡是重要的【Riley., 1951; Qi et al., 2010; Tsai et al., 2006】。

此外,Qi等人假設骨材包覆在內部之氣體為理想氣體且成形顆粒為球形,利用

ST (surface tension) 表面張力和BF (bulging force) 膨脹應力結合化學組成C/Fe比例 來解釋發泡現象,ST=BF=0當燒製溫度增加時,顆粒表面開始熔化,同時ST和BF 也隨之增加。當燒製溫度低於1000°C,玻璃相並未完全熔化且氣體也尚未產生 (ST 和BF兩者皆近乎於0),在低於1000°C之前,骨材含有較高吸水率,筒密度和顆粒 密度在此階段只有些微的變化。

ST>BF

燒製溫度介於1000~1100℃之間,顆粒表面開使熔化。ST增加之速率比BF來的強 烈,導致吸水率有急劇下降但並未觀察出筒密度與顆粒密度的變化。

ST=BF

當燒製溫度上升到1150℃,顆粒表面已被完全熔化,而且內部氣體釋放足夠的氣體 去膨脹骨材。吸水率、筒密度和顆粒密度皆接近最低點。

ST<BF

當燒製溫度大於1200 ℃,氣體冒出通過顆粒的表面然後骨材塌陷成片狀【Qi et al., 2010】。

輕質骨材製作過程中,氣體的產生來自原料不同的組成成份,而 Tsai 和 Huang 等人結果提出發泡氣體主要來源:

- 原料所含的吸附水 (存在於原料的細孔中,藉由吸附力連接於孔壁),或是在 600°C 時結晶水 (一般以 H₂O 型態與化合物結合)的蒸發和分離。
- 2. 硫化物及硫酸鹽在 400°C 氧化產生 SO₂。
- 3. 有機物(含碳物質約在700°C)與碳酸鹽的分解,產生CO2及CO。
- 4. 氧化鐵的在 1100°C 時高溫分解反應, Fe₂O₃ 反應可能包含有 6Fe₂O₃→4Fe₃O₄
 +O₂, FeS₂→FeS+S, S+O₂→SO₂, 2FeS + 3O₂→2FeO + 2SO₂ 【Tsai *et al.*, 2006; Huang *et al.*, 2007】。

蕭氏以熱分析質譜儀 (TA-Mass) 測定水庫淤泥中產出氣體之類型,並配合原料基本 成份分析及燒製特性分析結果驗證。結果顯示:熱分析質譜儀測定得知,輕質骨材 發泡氣體來源主要以H₂O、CO₂、CO、O₂等,如表 2.1 所示;輕質骨材中原料釋放 氣體之相關化學式,如表 2.2 所示。

氣體來源	氣體型態	溫度([°] C)
物理吸附水	H ₂ O	室溫~120
化合水	H_2O	200~600
礦物結晶水	H_2O	~900
有機物	$CO \cdot CO_2$	300~900
硫化物(FeS、FeS ₂)	$SO \cdot SO_2$	250~800
碳酸鹽類 (CaCO3、MgCO3)	$CO \cdot CO_2$	500~950
氧化鐵(Fe ₂ O ₃)	$O_2 \cdot CO \cdot CO_2$	1000~1300

表 2.1 氣體之類型及分解溫度

【Bethanis et al., 2002; Corrochano et al., 2009】【傅氏, 2009, 蕭氏, 2006】

反應方程式 反應溫度(°C) $FeS_2+O_2 \rightarrow FeS + SO_2 \uparrow$ $350 \sim 450$ $4\text{FeS} + 7\text{O}_2 \rightarrow 2\text{Fe}_2\text{O}_3 + 4\text{SO}_2 \uparrow$ $500 \sim 800$ $Fe_2(SO_4)_3 \rightarrow Fe_2O_3 + 3SO_3 \uparrow$ $560 \sim 775$ $400 \sim 900$ $MgCO_3 \rightarrow MgO + CO_2 \uparrow$ $Na_2CO_3 \rightarrow Na_2O + CO_2 \uparrow$ >400 $CaCO_3 \rightarrow CaO+CO_2 \uparrow$ $600 \sim 1050$ $CaSO_4 \rightarrow CaO + SO_3 \uparrow$ $1250 \sim 1300$ $FeCO_3 + 3CO_2 \rightarrow 2Fe_2O_3 + 4CO_2 \uparrow$ >800 $6Fe_2O_3 \rightarrow 4Fe_3O_4 + O_2 \uparrow$ $1000 \sim 1550$

表 2.2 各化學成份逸出氣體之種類及溫度

[Merck , 2001]

2.7 廢棄物燒製成輕質骨材之國內外相關研究

Mangialardi利用兩種不同之焚化飛灰,在267.5 kg/cm² 壓錠成形,燒製溫度為 1140°C,時間為15~120分鐘。研究結果顯示,隨著延長燒結時間,試體強度也隨 之提高,吸水率也有降低之趨勢,因此可利用熔融與燒結技術將重金屬穩定化於骨 材內部,避免有害物質溶出。【Mangialardi,2001】。

Cheeseman 等人使用底灰當做原料,球磨造粒後再製成小於8 mm 之生顆粒, 藉著調整造粒尺寸以及燒製溫度,藉旋窯燒製後可得到顆粒密度約 1.4 g/cm³~ 1.6 g/cm³,吸水率 10~15%,其抗壓強度小於 870 psi 之輕質骨材【Cheeseman *et al.*, 2005】。

周氏利用兩種水庫淤泥,以焚化飛灰與作為添加劑,燒製輕質骨材,其研究結 果顯示,當燒製於 1200°C 且飛灰添加量為 10%時,可有效降低骨材顆粒密度,並 符合輕質骨材之標準,其燒製後試體之 TCLP 重金屬溶出值皆合於法規標準【周氏, 2005】。

林氏使用添加水洗處理後之焚化飛灰於石門水庫淤泥中,並高溫燒製輕質骨材,研究結果顯示,當燒製於 1150°C 且飛灰添加量為 15%時,燒製後試體之顆粒 密度為 0.8 g/cm³,吸水率為 2.2%,符合輕質骨材非結構混凝土之規範【林氏,2006】。

Tsai 等人使用添加碎玻璃粉於下水污泥、Al₂O₃ 及焚化飛灰,高溫燒製輕質骨 材並探討改變 SiO₂-Al₂O₃-flux 比例對骨材發泡特性之影響。結果顯示,SiO₂不僅 可降低熔點且提升骨材燒製後之外部緻密化效果,同時 Al₂O₃ 之添加可有效提高骨 材抗壓強度,飛灰可作為助熔劑來降低試體燒結溫度,但添加過量會影響骨材之穩 定性【Tsai *et al.*,2006】。

楊氏利用自行配製材料模擬水庫淤泥之組成,且添加不同的調質劑(如:SiO₂、 Al₂O₃、鹼金屬碳酸鹽化合物、焚化飛灰),在 900~1150°C 下燒製 20 分,藉以在可 控制之單純化條件下,深入了解各成份在輕質骨材燒結與發泡的機制中所扮演角 色。,經高壓造粒後於 1000°C 燒製輕質骨材,結果顯示,由 SEM 圖看到微小孔洞 產生,當燒製溫度於 1100~1150°C,試體內部產生發泡反應而形成孔洞。其顆粒密 度為 0.98~1.37 g/cm³,吸水率為 2.5~6.8%。另外,添加 NaCO₃ 及 K₂CO₃ 當調質

劑,可有效降低燒結溫度。當飛灰添加量為20%時,在1150°C燒製時會產生共融現象,使得試體無法有效捕捉氣體。【楊氏,2007】。

莊氏利用台中浚港與水庫淤泥及添加 NaOH 與 CaCO₃後,燒製成輕質骨材。研究結果顯示,從微結構變化發現,添加 NaOH 可有效降低燒結溫度,當 NaOH 添加 量達 15%時,燒結溫度可降至 950°C,另外,額外添加 CaCO₃後發現,隨著 CaCO₃ 增加,燒結效果也隨之降低,由於其共熔溫度太高,使得燒結效果不佳,因此,CaCO₃ 添加量必須控制在 5%以下。經添加熔融劑以 950~1100°C 燒製後,水庫淤泥之顆 粒密度為 0.5~2.1 g/cm³,吸水率為 1.1~19.6%;浚港淤泥之顆粒密度為 0.5~2.8 g/cm³,吸水率為 1.9~19.6% 【莊氏, 2008】。

Huang 等人利用大理石、礦渣、電子廠重金屬污泥及焚化飛灰燒製輕質骨材。 結果顯示,骨材之符合輕質隔間之規範,其密度為 0.5~1.6 g/cm³,且當燒製溫度達 1150°C 以上時,其重金屬皆符合 TCLP 溶出標準,透過廢棄物回收再燒製成輕質骨 材,不僅找到目前天然骨材短缺的替代方案,也具有經濟效益【Huang et al., 2007】。

Xu 等人作者為了調查燒製溫度對於陶瓷顆粒特性影響並找到理想的燒製溫 度。分別使用乾燥下水污泥、黏土、水玻璃且混合比例為下水污泥/黏土=33%,水 玻璃/黏土=15%。混合之樣品燒製溫度 850~1200 °C,結果顯示:陶瓷顆粒燒製 1000 °C 有均匀地分佈之細孔洞(0.5 μm< pore size < 10.0 μm),相較於其他溫度燒製後樣 品有較少孔洞和粗糙表面。陶瓷顆粒其燒製低於 1000°C 主要晶相為 quartz 和 kyanite (藍晶石)。在 1000~1100°C 時,主要晶相以 kyanite (藍晶石)為主,在 1200 °C 時, 主要晶相以 mullite 為主。因此,燒製溫度對於陶瓷顆粒有一定之影響,而結果顯示 燒製於 1000 °C 為理想的燒製溫度【Xu et al., 2008】。

Xu 等人分別使用廢水處理廠之污泥和淨水處理廠之污泥當作製備陶瓷顆粒的 材料,並探討 SiO₂和 Al₂O₃在陶瓷顆粒中扮演之角色。TGA 圖譜顯示,低於 600 °C 之重量損失是由於結晶水和氣體的釋放,而 900 °C 以上,陶瓷顆粒內部的發泡與結 晶化是由無機物質的氧化和揮發所導致。高強度陶瓷顆粒中含有較少的 Na-Ca 長石 (礦)和非結晶型的 Si,經高溫燒製後可獲得緻密化的表面,範圍 18% \leq Al₂O₃ \leq 26%, 30% \leq SiO₂ \leq 45%,但範圍 14% \leq Al₂O₃ \leq 18% 和 22.5% \leq SiO2 \leq 30%,高溫燒 製後可獲得低強度和結晶相複雜之陶瓷顆粒。結果顯示,也証實此兩種污泥可用來

當做陶瓷顆粒材料之來源,並提供一個替代處理方式,理想 SiO₂和 Al₂O₃之含量範 圍分別在 14-26 %和 22.5-45 % 【Xu *et al.*, 2008】。

Wei 等人利用台中港區沉澱物燒製輕質骨材,結果顯示經 1050~1150°C 燒製後 之試體皆符合顆粒密度< 2.0 g cm⁻³和吸水率介於 2~20%之輕質骨材標準,且重金 屬(Hg, As, Cd, Cu, and Cr)溶出皆低於台灣法規,而 Pb 也符合 TCLP 溶出標準,該 研究針對以 Fe 同步輻射技術,針對鐵化合物在發泡機制的角色,提出了全新的解 釋,將以往之論點作了修改【Wei *et al.*, 2008】。

Wei 等人利用原始水庫淤泥在批次式高溫爐燒製於 1050°C 和 1150°C 熱處理的 過程中,包含了輕質骨材的發泡和燒結反應。燒製後輕質骨材的顆粒密度分別為 2.08 g cm⁻³和 1.18 g cm⁻³。Fe 化合物在淤泥中的發泡機制利用 X 光吸收光譜技術分析而 知,在原始的水庫淤泥中,59 %是以鐵化合物中之 Fe²⁺形式存在;除了在 1150°C 燒製後骨材的內核,燒製後之輕骨材 Fe 大多是被氧化成 Fe³⁺的形式。而發生在 1150°C 燒製後骨材內核之發泡反應是因 FeSO4 分解成 FeO 且過程中伴隨著 SO2、SO3 和 O2 氣體產生導致;且 Fe 的價數並未改變。一般發泡現象可接受的機制原因是由 Fe₂O3 還原成 FeO,且釋放 O₂;但在研究中並未觀察到此現象【Wei *et al.*, 2009】。

Xu等人分別使用廢水處理廠之污泥和淨水處理廠之污泥為材料,探討 (Fe₂O₃+CaO+MgO)/(SiO₂+Al₂O₃)(即定義為F/SA)之比例,並研究其比例對陶瓷顆粒 製備之影響。結果顯示,當0.175≦F/SA ratio≦0.275時,可獲得高強度和低孔隙度 之陶瓷顆粒,製備陶瓷顆粒之理想F/SA範圍0.175≦F/SA ratio≦0.45,在此範圍內可 製備出理想物化性質之陶粒,且解決兩種污泥的管理問題並可作為有效之參考指標 【Xu et al., 2009】。

Ducman等人添加廢玻璃當作發泡材料,當燒製在高溫時產生足夠黏度之黏滯流 可產生發泡現象,並增加骨材內部孔洞及降低顆粒密度,置入hot-stage microscope 進行燒製時,觀察原料在高溫時的發泡現象,再置入旋窯880°C,10~15 min燒製成 輕質骨材,顆粒密度由0.18降低至0.15 g/m³及吸水率為11%,並得到孔洞直徑大小為 0.1~1 mm的輕質骨材【Ducman *et al.*, 2002】。

Ducman 等人利用不同廢棄材料(例如:矽污泥、黏土、廢玻璃)在不同配比與溫度下製備輕質骨材,其原料廢玻璃中含有 7% MnO₂和 SiC 被當作發泡(pore-foaming

agent),且添加長石礦物和碎玻璃有效降低輕骨材之軟化點,結果顯示,基於燒製後 骨材之特性,隨著添加類似花崗岩的殘渣,最有潛力之混合物為黏土和矽污泥,燒 製於1220°C後顆粒密度範圍0.42-0.98 g/cm³。如果矽污泥中添加廢玻璃作為發泡 劑,則燒製於1150°C後氣體能有效的捕捉在內部,並可降低顆粒密度範圍0.57-0.82 g/cm³。因此,使用上述廢棄材料有潛力製備出顆粒密度介於0.4-2.0之間之輕質骨 材【Ducman *et al.*, 2009】。

Wang 等人使用下水污泥添加不同比例煤灰,經420°C 預熱 20 分鐘後以 1050-1100°C 燒製輕質骨材,研究結果顯示,添加煤灰有效改善燒結溫度,當添加 18-25 煤灰時,且經1100°C 燒製 30 分鐘後,可得到高品質的輕質骨材。此外,燒 製後產品經重金屬溶出測試,As,Pb,Cd,Cr,Ni,Cu,,Zn 其溶出值符合大陸法規標準 【Wang et al., 2009】。

Corrochano 等人利用水洗骨材污泥、飛灰、汽車馬達機油等材料,經混合造粒成形後,預熱五分鐘後以旋窯燒製 1150、1175、1200、1225°C 於 10-15 分鐘,研究結果顯示,當水洗骨材污泥: 飛灰=75 %:25 %和 50 %:50 %時,輕骨材可得到較低 顆粒密度、吸水率、高抗壓強度【Corrochano *et al.*, 2009】。

Chen 等人使用水庫淤泥添加不同配比之飛灰、反應灰、混合灰製備輕質骨材, 研究結果顯示,由於飛灰化學組成中 SiO₂含量較低,因此適用於當作添加劑使用, 且經商用旋窯高溫燒製後之骨材顆粒密度為 0.99 g/cm³,符合一般顆粒密度標準, 同時,可得到輕骨材筒密度為 593 kg/m³,也符合 ASTM C3305 粗骨材之筒密度低 於 880 kg/m³之標準。此外,試體經毒性溶出測試也符合台灣法規標準【Chen *et al.*, 2010】。

表 2.3 國外輕質骨材相關文獻之晶相整理

作者 (年份)	使用 材料	製備方式	結晶相整理
Merino <i>et</i> <i>al.</i> , 2005	下水污泥灰	高溫熱處理於 1200-1300℃, 特性分析	下水污泥:Quartz (SiO ₂), haematite (a-Fe ₂ O ₃), maghemite (c-Fe ₂ O ₃), calcite (CaCO ₃), hydrated calcium phosphate [Ca ₃ (PO ₄) ₂ A H ₂ O] and calcium-magnesium phosphate [(Ca,Mg) ₃ (PO ₄) ₂]。 經 1200°C 熱處理後:Quartz, haematite and calcium-magnesium phosphates [(Ca,Mg) ₃ (PO ₄) ₂ and Ca ₇ Mg ₂ (PO ₄) ₆]。 經 1300°C 熱處理後: Haematite and the former calcium-magnesium phosphates.
Shih <i>et al.</i> , 2005	兩種含有 重金 廢 渡 次 泥 、 水 泥	單軸壓力(49MPa) 高溫製備輕質混凝 上(1400℃,3h)	波特蘭水泥: Alite (Ca ₃ SiO ₅), Belite (Ca ₂ SiO ₄), Tricalcium Aluminate(Ca ₃ Al ₂ O ₆) and Calcium oxide (CaO), Calcium magnesium silicate, Nickel oxide, Calcium Aluminium silicate。
Cheeseman et al.,2005	下水污泥 灰、黏土	球型,滾筒燒結 (1020~1080℃)	Quartz(SiO ₂), hematite(Fe ₂ O ₃), whitlockite(Ca ₇ Mg ₂ P ₆ O ₂₄)
Cheeseman et al.,2005	焚化底灰	球型,滾筒燒結 (900~1080℃)	焚化底灰:Quartz(SiO ₂), Calcite(CaCO ₃), Hematite (Fe ₂ O ₃) and Ghelenite (Ca ₂ Al ₂ SiO ₇)。 經 1030°C 熱處理後: Wollastonite (CaSiO ₃), Diopside (CaMgSi ₂ O ₆) and Clinoenstatite (Mg ₂ Si ₂ O ₆), Albite-Na(AlSi ₃ O ₈)。

Xu <i>et al.</i> , 2005	飛灰、黏土	高溫製磚 (1050°C)	Quartz (SiO ₂), Mullite (Al ₂ O ₃ • SiO ₂), Illite (KH ₃ O)(AlMgFe) ₂ (SiAl ₄)O ₁₀ [(OH)H ₂ O], Calcite(CaCO ₃)方解石
Tsai <i>et al</i> ., 2006	下水污泥 灰、飛灰、 碎玻璃	燒結法(1050~1160 ℃)	下水污泥灰:Quartz (SiO ₂), Fe ₂ O ₃ , P ₂ O ₅ , Al ₂ O ₃
Acchar <i>et</i> <i>al.</i> , 2006	黏土、大理 石、花崗岩	球磨,單軸壓力 (30MPa),製備陶瓷 材料(950-1150℃)	恭上: Quartz (SiO ₂), Illite (KH ₃ O)(AlMgFe) ₂ (SiAl ₄)O ₁₀ [(OH)H ₂ O], Muscovite 白雲母 KAl ₂ (AlSi ₃ O ₁₀)(OH) ₂ Rutile, Kaolinite (Al ₂ Si ₂ O ₅ (OH) ₄) Reject(marble+granite): Quartz (SiO ₂), Biotite (K(Mg,Fe) ₃ AlSi ₃ O10(F,OH) ₂), Albite-Na(AlSi ₃ O ₈), Anorthite-Ca(Al ₂ Si ₂ O ₈), Ortoclase-KAlSi ₃ O ₈ , Calcite(CaCO ₃), Dolomite-CaMg(CO ₃) ₂
Lin <i>et al.</i> , 2006	下水污泥灰	高壓造粒 (3.5MPa), (600-1000°C, 1/2~4 h)	下水污泥灰: Quartz (SiO ₂), P ₂ O ₅ , Fe ₂ O ₅ , AlPO ₄ , Al(OH) ₃
Xu <i>et al</i> ., 2006	下水污泥、 黏土、玻璃	滾筒造粒,燒結法 (1000℃,10min)	Quartz (SiO ₂), Kyanite(AlSiO ₅), AlbiteNa(AlSi ₃ O ₈), Mullite (Al ₂ O ₃ • SiO ₂) °
Merino <i>et</i> <i>al.</i> , 2007	下水 添加土、 、	高溫燒製陶瓷顆粒 900-1200℃	恭上: Quartz (SiO ₂), Calcite (CaCO ₃) and illite (KH ₃ O)(AlMgFe) ₂ (SiAl ₄)O ₁₀ [(OH)H ₂ O], Dolomite (MgCO ₃ ACaCO ₃), Chlorite, Felspars(AlSi ₃ O ₈), Andalusite(Al ₂ SiO ₅) \circ

Mun <i>et al.</i> , 2007	下水污泥、 黏土	球形造粒 (5-10mm), 高温燒製 LWAC (1050-1150°C, 10-15 min)	下水污泥: Quartz (SiO ₂), Feldspar (AlSi ₃ O ₈), Muscovite 白雲母 KAl ₂ (AlSi ₃ O ₁₀)(OH) ₂ , Chorite-(Fe, Mg, Al)6(Si, Al) ₄ O ₁₀ (OH) ₈ 。
Wang <i>et al.</i> , 2008	下水污泥	單軸壓模,燒結法 (950-1080°C,15, 30,45min)	Quartz (SiO ₂), 2CaO.Al ₂ O ₃ .SiO ₂ , CaCO ₃ , K ₂ O.Al ₂ O ₃ .4SiO ₂ , P ₂ O ₅ , AlPO ₄ , Fe ₂ O ₃ , CaSO ₄ , 3 Al ₂ O ₃ .2SiO ₂ \circ
Xu <i>et al.</i> , 2008	下水污泥	滾筒造粒,添加 (Cd(NO ₃) ₂ , K ₂ CrO ₄ , Pb(NO ₃) ₂ ,CuSO ₄) 到下水污泥,並以 850-1200℃高溫 燒製陶瓷顆粒且 穩定化重金屬。	Kyanite(AlSiO ₅), Albite-Na(AlSi ₃ O ₈), Quartz (SiO ₂), Pb ₂ O(CrO ₄), CdSiO ₃ , CuO
Xu <i>et al</i> ., 2008	廢水污泥、 飲用水污泥	滾筒造粒,燒結 (1000°C,35 min)	Quartz (SiO ₂), Kyanite(AlSiO ₅), Albite-Na(AlSi ₃ O ₈), Anorthite-Ca(Al ₂ Si ₂ O ₈), Sillimanite-(Al _{1.98} Fe _{0.2})SiO ₅ , Enstatite-(Mg ₂ Si ₂ O ₆) \circ
Xu <i>et al.</i> , 2008	下水污泥、黏土、玻璃	滾筒造粒,燒結法 (850-1200°C)	Quartz (SiO ₂), Anorthoclase((Na,K)AlSi ₃ O ₈), Kyanite(AlSiO ₅), AlbiteNa(AlSi ₃ O ₈), Sodium silicate(Na ₂ Si ₂ O ₅), Mullite (Al ₂ O ₃ \cdot SiO ₂), Sillimanite(Al ₂ SiO ₅) \circ

Wei <i>et al.</i> , 2009	水庫淤泥	高壓造粒 5000 psi) (1050-1150 °C , 20 min)	Quartz (SiO ₂), Hydrate (SiO ₂), Al ₂ O ₃ (Corundum, syn), FeO (wustite, syn)
Zou <i>et al.</i> , 2009	廢水污泥、 飲用水污泥	滾筒造粒,燒結法 (1000℃,35 min)	Quartz(SiO ₂), Kyanite(AlSiO ₅), Albite-Na(AlSi ₃ O ₈), AnorthiteCa(Al ₂ Si ₂ O ₈), Sillimanite(Al _{1.98} Fe _{0.2})SiO ₅ , Enstatite(Mg ₂ Si ₂ O ₆), Ferrosilite magnesian-(Fe,Mg)SiO ₃ °
Xu <i>et al.</i> , 2009	廢水污泥、 飲用水污 泥、玻璃	滾筒造粒,燒結法 (1000°C,35 min)	Albite-Na(AlSi ₃ O ₈), AnorthiteCa(Al ₂ Si ₂ O ₈), Enstatite(Mg ₂ Si ₂ O ₆), Ferrosilite magnesian-(Fe,Mg)SiO ₃ , Kyanite(AlSiO ₅), Quartz(SiO ₂), Sillimanite(Al _{1.98} Fe _{0.2})SiO ₅ \circ
Ducman <i>et</i> <i>al.</i> , 2009	矽污泥、黏 土、廢玻璃	手壓造粒,燒結法 (900-1220°C)	Quartz(SiO ₂), Feldspar(AlSi ₃ O ₈), Illite 伊萊石 (KH ₃ O)(AlMgFe) ₂ (SiAl ₄)O ₁₀ [(OH)H ₂ O]/ Mullite(Al ₂ O ₃ · SiO ₂), Muscovite 白雲母 KAl ₂ (AlSi ₃ O ₁₀)(OH) ₂
Shin <i>et al.</i> , 2009	黏土、焚化 灰渣、焚化 底灰	高壓造粒 (10MPa),燒結製 磚(800-1050°C, 2h)	Quartz(SiO ₂), Feldspar(AlSi ₃ O ₈), Illite, Cristobalite 方石英(SiO ₂)
Anagnostop oulos <i>et al.</i> , 2009	兩種底灰 (高低碳量) 和飛灰	旋轉造粒,高溫製 備 LWAC (1000℃↑)	Quartz(SiO ₂), AnorthiteCa(Al ₂ Si ₂ O ₈), Cristobalite 方石英(SiO ₂), wollastonite (CaSiO ₃), Hematite (Fe ₂ O ₃), Magnetite (Fe ₃ O ₄)。
Yue <i>et al.</i> , 2010	紅土、皂土	擠壓造粒(1.5 mm),400°C預熱 20min後以 (650-800°C, 10min)	Calcium oxide(CaO), Petaline(Ca ₃ Al ₂ O ₆) Andradite(Ca ₃ Fe ₂ Si ₃ O ₁₂), Fe ₂ O ₃ , FeO, α -Al ₂ O ₃ \circ

第三章

研究設備與方法

3.1 實驗材料與設備

3.1.1 實驗材料

1. 淨水污泥 (Drinking-water treatment sludge)

本研究所使用之污泥為台灣地區五處自來水營運處,分別為 Feng、Hou、 Tung、Jia、Lin。淨水污泥採集完成經分類、挑選程序後,以 105°C 乾燥至恆重 經研磨過篩 50 mesh 後,置於 PE 瓶備用。

2. 廢玻璃 (Waste glass)

本研究所使用之廢玻璃取自於實驗室之廢棄玻璃。廢玻璃經分類、挑選程 序後,以105°C 乾燥至恆重經研磨過篩50 mesh後,置於PE瓶備用。

3. 黏土 (Clay)

本研究所採用之黏土為明春窯業股份有限公司所提供。黏土經分類、挑選程 序後,以105°C乾燥至恆重經研磨過篩50 mesh後,置於PE瓶備用。

3.1.2 實驗藥品

- 1. 硝酸 (Nitric acid, HNO₃): 69%, G.R.級, Merck, Germany。
- 2. 硫酸 (Sulfuric acid, H₂SO₄) : 98 %, G.R.級, Merck, Germany。
- 3. 鹽酸 (Hydrochloric acid, HCl): 37 %, G.R.級, Ridel-de Haën, Germany。
- 4. 氫氟酸 (Hydrofluoric acid, HF): 48 %, G.R.級, Ridel-de Haën, Germany。
- 5. 冰醋酸 (Acetic acid, CH₃COOH): 99.8%, G.R.級, Merck, Germany。
- 6. 過氧化氫 (Hydrogen peroxide solution, H₂O₂): 30%, G.R.級, Ridel-de Haën, Germany。
- 標準溶液(Standard solution): Al、Cd、Cr、Cu、Fe、K、Mg、Mn、Na、Ni、 Pb、Hg、Co、Zn 1,000 mg/L, Merck, Germany。

3.1.3 實驗設備

1. 天平 (Balance):(1) 可精秤至 10⁻⁴克, LIBROR AEX-200B, SHIMADZU Corp., Japan。

(2) 可精秤至 $10^{\text{-2}}$ 克, GF-3000, A&D Company,

Limited , Japan •

- 2. 恆溫烘箱 (Hot air rapid drying oven): RHD-120L, max. temperature 200°C, RISEN, USA。
- 高溫灰化爐:程式控制器 N4440, WEST Co., UK; max. temperature 1,450℃中
 聯高熱工業有限公司, Taipei, Taiwan。
- 微波消化器:微波消化器(Microwave oven): MWS-2, Berghof Laborprodukte GmbH, Germany。
- 5. pH 測定儀(pH meter): pH/mV/temp.meter SP-701, SUNTEX, Taipei, Taiwan。
- 旋轉裝置(Mixing devices, 30±2 rpm): TYPE 34R4BFCI-5R, Associated Design, Gearmotor, Chicago, USA。
- 7. 油壓打片機: Max. shape pressure 25 ton, Pan-Chum Scientific Corp, Taiwan。
- 8. 毒性特性溶出設備:TYPE 34R4BFCI-5R, Gearmbtor, Associated Design and Mfg Co, Virginia, USA。
- 9. 濾紙: (1) Ashless Circles #41,90 mmψ, Whatman Co., England。
 (2) Advantec glass fiber filter Gf75, 142mmψ, Toyo Roshi Ksisha Co, Japan。

3.1.3 分析儀器

- 感應耦合電漿原子發射光譜儀(Inductively Coupled Plasma Atomic Emission Spectrometer, ICP-AES): Optima 3000DV, Perkin Elmer, USA。
- 火焰式原子吸收光譜儀(Flame Atomic Absorption Spectrophotometer, FAAS):
 Z-6100, Hitachi, Japan。
- 3. 環境掃描式電子顯微鏡 (Environmental Scanning Electron Microscope, ESEM):
Quanta 400 F , FEI , USA 。

- 多功能 X 光粉末繞射機(Multipurpose X-ray Powder Diffractometer, XRD): D8 Advance, Bruker AXS, UK。
- 熱重-卡量計雙重分析儀 (Thermogravimetry and Differential Thermal Analysis, TG/DTA): Pryis Diamond TG/DTA, PerkinElmer, USA。
- 6. 雷射繞射粒徑分析儀 (Laser Diffraction Particle Analyzer) :LS230, Beckman Coulter, Germany。
- 7. 離子層析儀 (Ion Chromatography, IC): DX-100, Dionex, USA。

3.2 實驗流程

本研究主要分成兩階段:第一階段為各淨水場污泥燒製實驗,分別比較各淨水 污泥在 3000psi 成型壓力下,不同溫度燒製後之燒結發泡情形;第二階段為淨水污 泥 (Tung 及 Jia) 添加助熔劑 (黏土及廢玻璃粉),在 1000psi 成型壓力,不同配比及 不同溫度燒製,期盼能增加骨材外部燒結效果。

圖 3.1 淨水污泥燒製實驗流程圖

圖 3.2 淨水污泥添加黏土或廢玻璃粉後燒製實驗流程圖

3.3 實驗分析方法

1. 感應耦合電漿原子發射光譜儀及質譜儀(ICP-AES)

ICP-AES 的原理為消化後的樣品溶液由氫氣帶入三個同心圓管的石英管,經 Tesla coil 將 Ar 激發為 Ar[⊕]和 e^{\bigcirc}。在冷水管的 induction coil 經 27 MHz 交流電(radio frequency generator)的振動,產生一個磁場。由於[Ar[⊕]+e^{\bigcirc} + 磁場]可得到高溫(約 6000-8000°C)的熱氣團物質(電漿),當化合物被分解為元素態後,此電漿可將 週期表上約 90% 元素的電子組態由基態(ground state)激發到激態(excited state), 當各元素電子組態由激態回到基態時,可發射出不同的能量和波長,藉由 emission 的強度可作為定量之用,而不同的發射波長可作為定性(或鑑別)之用。

2. 多功能 X 光粉末繞射機 (XRD)

X光射線繞射法由von Laun在1912年發現,其原理為將X光以角度θ撞擊樣品內 部,由物種內部K層電子所反射之2θ角度所形成之特定波長,因不同的物種的晶格 特性相異,因此可藉由反射回來之特定波長λ,依據Bragg方程式:2d sinθ=nλ,可 求得晶格的層間距離d,因每種物種之晶體層間距離相異,因此可依此鑑定物種。此 外利用繞射線波形及繞射線強度(Bragg intensity)可決定晶粒大小、晶格扭曲或晶 格應力。掃瞄後所得之繞射圖譜,比對粉末繞射標準聯合委員會(The Joint Committee on Powder Diffraction Standards, JCPDS)資料庫之圖譜,進行晶種的鑑定。

3. 熱重-卡量計雙重分析儀 (TG/DTA)

本儀器可用於量測試樣於不同溫度所產生之重量變化及吸/放熱值現象。樣品在 升溫時發生變化(包括玻璃轉化、結晶、熔化、氧化與分解等反應),而伴隨著吸熱 或放熱現象,藉由測定樣品與參考樣品在不同溫度時之熱量差異,繪製成溫度與熱 流量關係圖,並藉此來判定樣品在加熱過程中發生的反應種類。本研究設定之分析 條件為樣品重量為10 mg,空氣流量100 ml/min,升溫速率10℃/min,最高溫度為 1200℃。

4. 環境掃描式電子顯微鏡 (ESEM)

本研究採用了環境掃描式電子顯微鏡(E-SEM)觀察試體內部之微結構變化,並可 藉由內部的孔洞變化來推測解釋燒製過程對於試體物理性質之相關性。本實驗所使 用之環境掃描式電子顯微鏡為Quanta 400F, FEI, USA (Scannig Electron Microscope, SEM), SEM 是利用高能量的電子聚集光束掃描樣品表面,利用正偏訊號收集器 將二次電子產生的低能量轉換成陰極管可辨識之訊號,進行SEM 影像之觀察;然 而在進行影像觀察前須先將樣品表面鍍金,使樣品之導電性增加,隨後即可觀測樣 品結構與與水化產物之生成,以提供佐證巨觀試驗之結果及瞭解微觀結構之組織。

5. 粒徑分佈 (Particle size distribution)

利用篩網過篩法及比重計法進行分析,以求得水庫淤泥與焚化飛灰之粒徑分佈。 粒徑在0.053 mm以上使用篩網過篩法,小於0.053 mm則使用比重計法分析,最後數 據以累積數列圖表示。

6. 重量損失 (Weight loss)

500°C前處理後之試體置入高溫爐,在1050、1100、1150℃加熱時間20分鐘, 燒製成輕質骨材,加熱後之重量差值即定義為重量損失。其計算公式如下:

> 重量損失(%)=[(W₁-W₂)/W₁]×100 % W₁:加熱前試體重量(g) W₂:加熱後試體重量(g)

7. 燒失重 (Loss of ignition, LOI)

將水庫淤泥置入 900℃之高溫爐,三小時,加熱後之重量損失即定義為燒失重。 其計算公式如下:

 W_0 :加熱前淤泥重量(g)

 W_d :加熱後淤泥重量(g)

8. 吸水率測量方法(Water absorption)

不同溫度下燒製之骨材之吸水率變化,係依據中國國家標準【CNS-487 細粒料 比重及吸水率試驗法】進行測試。將試體浸入 23℃水中 24 小時,取出後,將試體 表面水拭乾後,測其重量,可得試體面乾水飽和試體之重量。吸水率計算公式如下: 吸水率(%)=[(W_s-W_d)/W_d]×100 %

 W_d :乾燥試體重量(g)

Ws: 面乾水飽和試體重量 (g)

9. 顆粒密度密度測量方法 (Particle density)

以阿基米得(Archimedes)原理之排水體積法為原理,求得試體體積後,再與 試體重量相除,即可得試體密度,密度計算公式如下:

試體體積 V_s (cm³) = V_w - (W_b - W_a) / ρ_w

試體密度 ρ_s (g·cm⁻³) = W_s/V_s

 V_s : 試體體積 (cm³) ; ρ_s : 試體密度 (g·cm⁻³)

W_s: 乾燥試體重量 (g)

Wa:量筒+燒結試體重量(g)

 W_b :量筒+燒結試體重量+定量至刻度 100 ml 之水重 (g)

 V_w : 定量至刻度之水體積 (cm³)

 ρ_w :當時氣溫下水之密度 $(g \cdot cm^{-3})$

事業廢棄物毒性溶出試驗程序(Toxicity Characteristic Leaching Procedure, TCLP)

以毒性特性溶出程序 (TCLP, NIEA R201.13C) 測試之 Cr、Cd、Cu、Pb、Zn、 Se、Ba、As、Hg 溶出值。步驟如下:首先決定萃取液之種類,取 5g sample 加入 96.5 ml 去離子水,攪拌五分鐘後測 pH 值,若 pH 值<5, 則使用萃取液 A。若 pH 值> 5,則再加入 3.5 ml 1.0 N HCl,在 50 ℃加熱 10 分鐘,冷卻至室溫,測 pH 值,若 pH 值<5,則使用萃取液 A;若 pH 值仍>5,則使用萃取液 B。萃取液 A 為 CH₃COOH / NaOH 混合液,其 pH 值為 4.93 ±0.05;而萃取液 B 則為 CH₃COOH 之水溶液,其 pH 值為 2.88 ±0.05。量取 20 倍樣品重之萃取液,針對粉碎至 1mm 以下之試體(5 g) 進行 18 小時之萃取 (30 rev/min),溶出液經高壓濾出後,使用 ICP-AES 分析溶出 液之重金屬濃度。

11. 火焰式原子吸收光譜儀 (FAAS)

樣品經消化、過濾和定量的水溶液藉由伯努力原理,自毛細管被吸入,撞擊霧化器(nebulizer)後被分散成噴霧的小水滴,然後與燃料(乙炔)、氧化劑混合(空氣),經由火燄燃燒,使樣品之成份原子化,以中空陰極燈管為光源,當原子蒸氣(atomic vapor)吸收該元素特定波長的光, 依畢耳定律(Beer's Law)此吸光度值與溶液中分析物之濃度成正比。

第四章 結果

4.1 各淨水場污泥與助熔劑之基本成份分析

輕質骨材之物理性質受限於燒製溫度、持溫時間、化學組成、升溫速率、成型 壓力與粒徑分佈等【Riley,1951;Wang et al.,2009;Shih et al.,2009;Anagnostopoulos et al.,2009;Lin et al.,2006;傅氏,2009】。故本研究所使用之淨水污泥取自台灣五 處淨水場,其簡稱分別為 Feng、Hou、Tung、Jia、Lin,污泥採集後經分類、挑選 及烘乾程序,並添加廢玻璃粉與黏土進行調質,燒製後之試體以ICP-AES、XRD、 SEM、M-TCLP、粒徑分析、抗壓強度等儀器分析元素組成、物種變化、微結構及 重金屬溶出試驗等,以探討燒結與發泡之效果。

4.1.1 物理性質

淨水污泥經採集後,經分類、挑選、烘乾、破碎後,以篩號 50 號標準篩網進行 過篩實驗,再以雷射粒徑分析儀判斷粒徑分佈情況。此外,依據美國農業部 USDA 土壤粒徑分級如表 4.1.1,礫石粒徑 >2 mm 以上,砂粒(sand)為粒徑在 16 號篩 (2.00 mm)至 270 號篩(0.053 mm)之間,坋粒(silt)為粒徑在 0.053 mm 至 0.002 mm 之間,黏土(clay)之粒徑則小於 0.002 mm。以粒徑分佈累積圖表示。分析結 果如圖 4.1.1 所示,Feng、Jia、Lin 淨水污泥之 D₅₀平均粒徑分別為 5.24 至 5.97 μm 之間,結果顯示 Feng、Jia、Lin 淨水污泥中坋粒佔有最大比例,黏土佔有比例為次 之,坋粒佔了八成以上,屬於較細粒之土壤分類,其高比例之細粒將有助於燒結發 泡反應發生。相對於 Tung 和 Hou 淨水污泥則 D₅₀平均粒徑分別為 13.33 及 20.95 μm, 其坋粒與黏土比例約佔六成,顯示出 Tung 和 Hou 淨水污泥中含有部份的砂粒,屬

廢玻璃粉和黏土之粒徑分析結果如圖 4.1.2 所示,廢玻璃粉之 D₅₀ 平均粒徑 96.75 μm,若以土壤粒徑分級屬於中顆粒為主。黏土 D₅₀ 平均粒徑 7.11 μm,其坋粒 佔有最大比例,黏土佔有比例為次之,因此試體大小粒徑之混合均勻有助益於提升 燒結體之強度,試體顆粒越小,單位體積內顆粒表面積越大,接觸面越多,燒結效 果愈佳。

名稱	粒徑(mm)	美國農業部 USDA 分類系統分級
礫石(gravel)	>2	
砂粒(sand)	2-0.05	
坋粒(silt)	0.05-0.002	
黏粒(clay)	0.002以下	

Feng (Number percentage) — (Cumulative number percentage) 100 100 Cumulative number percentage (%) Hou Number percentage (%) 40 20 40 20 (Number percentage)
 (Cumulative number) Waste glass Cumulative number percentage (%) (Number percentage) 100 80 60 40 100 80 60 40 20 (Cumulative number percentage Number percentage (%) Tung (Number percentage) (Cumulative number percent 100 100 80 60 40 20 100 Jia clay (Number percentage) Cumulative number n 100 100 (Number percentage) Lin (Cumulative number percentage) (Number percentage) - (Cumulative number percentage) 39.97.69.62 89.62.22.8 121.8-234.1 234.1.541.9 23:52 $\begin{array}{c} & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ Particle size range (\mu m) \end{array}$ 89.61.22.8 121.8-234.1 30.19.69.62 234.1541.9 23.52 3.52.10.78 10.78-30.01 Particle size range (µm) 圖 4.1.2 廢玻璃粉與黏土之粒徑分 圖 4.1.1 各淨水場污泥之粒徑分佈比 佈比例與累積百分比 例與累積百分比

表 4.1.1 土壤粒徑分級

4.1.2 化學組成

由於化學組成對燒製成輕質骨材有極大影響,因此須對各淨水場污泥之組成進 行化學成份分析,由表 4.1.2 結果得知,各淨水場污泥的化學成分都以 SiO₂、Al₂O₃ 及 Flux (Fe₂O₃、K₂O、Na₂O、CaO、MgO 等)元素為主,此乃因在自來水集水過程 中夾雜大量砂土落葉,經混凝劑混凝沉澱,造成各淨水污泥之 Al₂O₃ 的含量佔比例 約 16.48~25.95 %之間,主要是在淨水程序中採用鋁系混凝劑 (如硫酸鋁或氯化鐵等) 所致,同時也可觀察出 Hou、Tung、Jia 三淨水污泥相對 SiO₂ 含量較少,將這些關 鍵成份與 Reily 所提出之適合形成輕質骨材之成份三成份圖做比較,如圖 4.1.3(A) 發現此 Lin 淨水污泥落在圖中虛線範圍內,為最佳燒結發泡成輕質骨材之化學組 成,Feng 淨水污泥稍偏離該範圍 【Riley, 1951】。

廢玻璃與黏土的主要成分為 SiO₂,分別為 93.83 %與 61.06 %,由於 SiO₂ 是影響燒結溫度之重要成分,原料中添加適當地二氧化矽,容易增加液相黏滯流形成, 而提升試體強度和外部緻密化效果【Xu et al., 2008】。同時,由表 4.1.2 中可發現淨 Hou、Tung、Jia 等淨水場其 SiO₂ 含量偏低,燒製後無法有效製備成輕質骨材。故本 研究分別混合不同比例黏土和廢玻璃粉至 Tung 及 Jia 淨水污泥中來補充淨水污泥中 SiO₂ 含量的不足。將這些關鍵成份與 Reily 所提出之適合形成輕質骨材之成份三成 份圖做比較,如圖 4.1.3(B)(C)發現 (Tung/Glass=50/50、Jia/Glass=50/50)兩種混合比 例落在圖中虛線範圍內,顯示出具備燒製成輕質骨材之潛力。

此外,各淨水污泥中 Flux (Fe₂O₃+K₂O+CaO+Na₂O+MgO) 比例介於 10.83~15.73 %之間,添加劑黏土 Flux 亦佔一定比例,因此在燒結過程中 Fe₂O₃、K₂O、CaO、 MgO 及 Na₂O 扮演著助熔劑之角色,有降低燒結溫度之潛力。

圖4.1.3 (A)各淨水污泥及黏土(B) Tung/Clay和Jia/Clay(C) Tung/Glass和Jia/Glass 之三成份。

Wt %	Feng	Hou	Tung	Jia	Lin	glass	clay
SiO ₂ ^b	59.08±0.24	39.24±0.13	41.20±0.62	44.86±0.37	65.18±0.03	93.83 ±0.09	61.06±0.14
Al_2O_3 ^a	17.33 ± 0.02	25.73 ± 0.32	25.95 ± 0.21	23.49 ± 0.17	16.48±0.19	0.12±0.00	16.60±0.13
Fe ₂ O ₃ ^a	4.98 ± 0.01	3.21±0.00	5.34 ± 0.02	7.23±0.24	5.60±0.01	1.27±0.01	6.81±0.06
K ₂ O ^a	3.27±0.32	2.23±0.07	3.08±0.13	3.81±0.27	3.44±0.31	0.68±0.02	3.53 ± 0.04
CaO ^a	0.02±0.01	1.11±0.17	0.13±0.01	0.96±0.16	0.40 ± 0.04	0.05±0.02	0.13±0.01
Na ₂ O ^a	6.22±0.31	6.61±0.36	1.86±0.02	2.81±0.25	1.17±0.03	3.37±0.07	2.38±0.02
MgO ^a	N.D.	2.35±0.04	0.42±0.04	0.92±0.32	0.86±0.20	0.01±0.00	0.72±0.06
CoO ^a	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
NiO ^a	N.D.	0.01 ± 0.00	N.D.	N.D.	N.D.	N.D.	N.D.
ZnO ^a	N.D.	N.D.	0.01±0.00	0.01±0.00	N.D.	N.D.	N.D.
CuO ^a	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
PbO ^a	N.D.	0.01 ± 0.00	0.01 ± 0.00	0.02 ± 0.00	0.01 ± 0.00	N.D.	N.D.
Cr ₂ O ₃ ^a	0.01±0.00	0.03±0.02	0.01±0.00	0.02 ± 0.00	0.01±0.00	0.25±0.01	0.01±0.00
CdO ^a	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
BaO ^a	0.01±0.00	0.03±0.00	0.01±0.01	0.02±0.01	0.01 ± 0.00	N.D.	0.01±0.00
Hg ^a	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
As ^a	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
Se ^a	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
Cl^{-d}	0.03±0.01	0.17±0.00	0.10±0.00	0.07±0.01	0.03 ± 0.00	N.D.	0.05 ± 0.00
SO_4^{2-d}	0.10±0.02	0.41±0.01	0.26±0.00	0.21±0.02	0.28±0.03	N.D.	0.72±0.01
LOI ^e	8.55	18.87	21.19	14.98	6.27	0.40	7.97
LOI500 ^f	5.44	13.41	18.47	10.80	5.11	_	_
Flux ^g	14.49	15.51	10.83	15.73	11.47	5.38	13.57
CaO+MgO	0.02	3.46	0.55	1.88	1.26	0.06	0.85
Flux/(S+A) ^h	0.19	0.24	0.16	0.23	0.14	0.06	0.17
(F+C+M)/ (S+A) ⁱ	0.07	0.10	0.09	0.13	0.08	0.01	0.10
SiO ₂ /Flux	4.08	2.53	3.80	2.85	5.68	17.44	4.50
SiO ₂ /Al ₂ O ₃	3.41	1.53	1.59	1.91	3.96	781.92	3.68

表 4.1.2 化學組成(Wt%,以氧化物表示)

a: 樣品微波消化後,將消化液以ICP-AES進行金屬濃度測量 (n=2)

b:以矽定量(CNS11393石灰石化學分析法)之方法測得。

c:*N.D.表示檢測值低於儀器偵測極限 (Cr:0.005 mg/L;Cd:0.008 mg/L;Cu:0.003 mg/L; Mn:0.007 mg/L;Zn:0.005 mg/L;Ni:0.011 mg/L;Mg:0.018 mg/L;Se:0.021 mg/L;As: 0.462 mg/L;Hg:0.008 mg/L)。

d:取 2g 樣品,加入100mL的水,於沸騰的水中煮30分鐘,過濾後將澄清液以IC進行分析。

e: LOI = Loss of ignition at 900°C for 3hr.

f : LOI_{500} = Loss of ignition at 900°C for 3hr after preheating at 500°C for 2 min (temp ramp:100°C min⁻¹ for 5 min), pellet formed at 3000 psi.

g: Flux= Fe₂O₃+ K₂O+CaO+Na₂O+MgO \circ

h: Flux/(S+A)= Flux/(SiO₂+Al₂O₃) °

4.2 各淨水場污泥在不同加熱溫度下燒製成輕質骨材之特性分析

本研究利用各淨水場污泥燒製成輕質骨材資源化研究,實驗參數為:成型壓力 (3000 psi),燒製溫度1000~1150°C,升溫速率(室溫~500 °C,100 °C/min),燒製時 間(500°C 預熱2分鐘後,冷卻至室溫,再以1000~1150°C 持續燒製15分鐘)。燒 製後之骨材以 SEM 觀察微結構變化、並量測重量損失、顆粒密度、吸水率、抗壓 強度、熱重損失、結晶相物種分析及重金屬 TCLP 變化,以探討骨材之特性。

4.2.1 微結構變化

SEM 結果顯示, Hou 和 Tung 淨水污泥當燒製於 1000~1150°C 時, 試體內部 無孔洞產生, 其形態類似片狀堆疊燒結而成, 且試體外觀有明顯孔隙存在, 而 Feng 和 Jia 淨水污泥當燒製於 1100°C 時微小孔洞產生, 其中 Jia 淨水污泥燒製於 1150°C 時, 試體內部孔洞有變大趨勢。此外, Lin 淨水污泥隨著燒製溫度提高而孔洞明顯 增大。

4.2.2 重量損失變化

各淨水場污泥經燒製後之重量損失如表 4.2.1 所示, Hou、Tung、Jia 三者之重 量損失較大,重量損失為 16.27~22.55 %,而相對的 Feng 和 Lin 兩者之重量損失較 小,重量損失為 5.93~9.35 %,此結果與熱重分析結果相符合。

4.2.3 顆粒密度變化

根據 EN 13055-1, 2002. Lightweight Aggregates – Part 1: Lightweight Aggregates for Concrete, Mortar and Grout, 一般輕質骨材顆粒密度的標準2 g/cm³以下,由表 4.2.1 顆粒密度變化觀察下,五個淨水場污泥之顆粒密度會隨著燒製的溫度越高而下 降,因為越高溫時,骨材燒結的情況越良好,越易捕捉住燒製所產生之氣體,因此 骨材發泡較好,顆粒密度也越低。且顆粒密度範圍落於 0.77~2.43 g/cm³,但顆粒密 度大部分皆未達顆粒密度標準,並且比較微結構之型態,發現 Hou、Tung、Jia 其污 泥中 SiO₂ 含量不足與重量損失過盛為主要原因導致試體外部燒結效果不顯著,但其 它淨水污泥在不同溫度燒製後之顆粒密度,有部分符合顆粒密度之標準。此外,Lin 淨水污泥燒製於 1150°C 時,試體外觀緻密化效果較好。

4.2.4 吸水率變化

根據 GB/T 17431.2-1998, China, Lightweight aggregates and its test methods—part 2. Test methods for lightweight aggregate, 土木工程應用上,輕質骨材(陶粒)吸水率標 準需低於 15%以下,一般而言當溫度越高時,輕質骨材會因燒結狀況越好使得表面 緻密玻璃化情況增加,導致吸水率降低,各淨水場污泥經 1000~1150°C 燒製後,結 果如表 4.2.1 顯示,吸水率範圍落於 1.74~44.21%,也發現部分樣品皆超出吸水率標 準,特別是 Jia 淨水污泥燒製於 1000~1150°C 時,吸水率結果起伏大,比較試體外 觀後發現表面存在著氣體造成的孔隙,推測在進行吸水率測試的過程中,試體吸水 量增加所致。但部份樣品符合一般輕質骨材要求之吸水率介於 2~20%之間。

4.2.5 抗壓強度變化

土木工程中, Chinese National Bureau of Standards(CNBS)對於燒製後之輕質陶 瓷顆粒(Bulk density<900kgm⁻³)及其應用上,所需之最小抗壓強度為 7.5 MPa=76.5 kg/cm²(1MPa=10.2 kg/cm²)。進一步對抗壓強度探討,結果如表 4.2.1 顯示,顆粒抗 壓強度範圍在 112~169.9 kg/cm²之間,各淨水污泥經不同溫度燒製後皆符合輕質骨 材顆粒抗壓強度之標準。此外,由於 Hou 淨水污泥燒製於 1000 和 1050°C 後,燒製 後試體本身易碎裂故造成量測抗壓強度時,數據誤差較大,故不放在表 4.2.1 中。

	Temp. (°C)	Feng	Hou	Tung	Jia	Lin
	1000	8.84	20.1	22.36	16.27	6.23
Weight loss	1050	8.64	19.86	21.89	16.84	5.93
(%)	1100	8.78	20.26	22.4	16.98	9.35
	1150	8.94	20.19	22.55	16.83	8.21
D	1000	2.43	2.41	2.42	1.77	2.43
Particle	1050	2.36	2.39	2.19	1.96	2.13
(g/cm^3)	1100	2.28	2.23	1.78	1.36	2.21
	1150	2.07	1.99	1.57	0.95	0.77
	1000	36.12	44.21	29.9	19.61	35.98
Water	1050	25.3	30.66	15.39	10.45	21.94
absorption (%)	1100	17.21	28.29	13.05	9.39	9.82
(,0)	1150	10.88	25.89	11.89	10.51	1.74
	1000	169.9	_	130.1	126.5	126.5
Compressive	1050	140.9	—	135.5	153.6	128.3
(kg/cm^2)	1100	135.5	122.9	128.3	119.3	113.8
	1150	108.4	122.9	106.5	112	130.1

表 4.2.1 各淨水場污泥燒製後試體之物理特性分析

4.2.6 TGA/DTA 分析結果

輕質骨材燒結過程中,在不同之加熱溫度下,部分化合物分解產生氣體,其溢 出氣體為試體膨脹之主因,故氣體逸出溫度為研究輕質骨材機制之重點。本研究將 各淨水場污泥先經由熱重分析儀(TGA, Thermal Gravimetric Analyzer)及(DTA, Differential Thermal Analyzer)量測材料於加熱或冷卻過程其吸熱或放熱反應。熱重分 析儀分析條件為樣品重量約10 mg,於空氣氣氛下進行,升溫速率20℃/min,升溫 範圍為室溫至1200℃。

實驗結果如圖 4.2.2 所示,五個淨水污泥從室溫加熱至約 350℃時,DTA 圖譜顯 示明顯的放熱峰變化(如圖 A 點所示),推測為吸收水轉化為水蒸氣和矽酸鹽的脫 水造成。加熱溫度於 350~617℃時,DTA 圖譜顯示明顯的吸熱變化(如圖 B 點所示, 但 Lin 淨水污泥溫度於 431.47~573.90℃時,吸熱反應發生),TGA 圖譜顯示淨水污 泥之重量快速減少,推測主要為結晶水的釋放和有機物質的反應。此時,預熱升溫 速率和預熱溫度與持溫時間的控制,將影響後續高溫 1000~1150℃加熱時,是否能 成功發泡的關鍵。Lin 和 Hou 淨水污泥吸熱反應產生(推測為碳酸鹽釋出 CO₂ 氣 體),而 Feng 和 Tung 淨水污泥放熱反應產生(推測為有機物燃燒造成)(如圖 C 點 所示),DTA 圖譜顯示溫度於 617~1000℃時,此階段推測主要與碳酸鹽類分解成 CO₂,推測主要與晶格變化有關(矽酸鹽礦物之結晶相轉變)。

此外,如圖 4.2.2 所示,五個淨水污泥中又以 Hou、Tung 和 Jia 淨水污泥之 TGA 圖譜顯示重量損失較大,此結果也與表 4.2.1 之燒製後試體重量損失結果相符合,可 見上述三者所含之部分有機物質和發泡氣體將有助於輕質骨材的發泡。

圖 4.2.2 各淨水污泥 TGA/DTA 分析圖譜

表	4.2.2	各淨水污泥	TGA/DTA	之分析

		TG	A (Weight los	s, %)	
	<u>Feng</u>	<u>Hou</u>	<u>Tung</u>	<u>Jia</u>	<u>Lin</u>
Room temp.(°C)	100	100	100	100	100
500 °C	8.31	17.44	22.76	14.05	3.50
900 °C	11.31	21.87	27.30	20.21	8.74
1200 °C	12.21	22.83	28.11	21.82	10.33

表 4.2.3 各淨水污泥 500°C 預熱前後之 LOI (成型壓力: 3000psi)

	Но	me-made furr	nace LOI (no	o-preheating)
	Feng	Hou	<u>Tung</u>	<u>Jia</u>	Lin
900 °C	8.43 %	19.56 %	22.88 %	16.11 %	6.09 %
	ŀ	Iome-made fu	urnace LOI (preheated)	
	Feng	<u>Hou</u>	<u>Tung</u>	<u>Jia</u>	<u>Lin</u>
900 °C	5.44 %	13.41 %	18.47 %	10.80 %	5.11 %

4.2.7 結晶物種分析

各淨水污泥在燒製前 (105°C 烘乾)與 1150°C 燒製後所含之結晶相型態,以 XRD 進行觀察物種變化,掃描角度 2θ=5~80°,實驗結果如圖 4.2.3 顯示,五種淨水污泥 在燒製前 (105°C 烘乾)所含之結晶物種主要以 SiO₂ (quartz)為主,其次為 Al₂O₃ (corundum),並有部分的 FeO、Fe₂O₃、K₂O、CaO 及 Na₂O 存在。

隨著燒製溫度提高,各淨水污泥在燒製後1150°C所含之結晶相型態,如圖4.2.4 顯示,五種淨水污泥在燒製後1150°C所含之結晶物種大多以礦物Al₂SiO₅ (kyanite)為 主,其次為SiO₂ (quartz)、Al₂SiO₅ (sillimanite)、NaAlSi₃O₈ (albite)、Al₆Si₂O₁₃ (mullite) 等晶相存在。由圖4.1.5可知,隨著燒製溫度的提高,各淨水污泥之SiO₂結晶相強度 逐漸減少,各淨水污泥之SiO₂結晶相在燒結溫度達1150°C時,結晶相物質轉化成非 結晶形態之玻璃相,產生玻璃化現象,導致SiO₂的波峰強度減弱【陳氏,2004】。 Xu等人XRD結果顯示,當燒製溫度於900°C以上時,也顯示出矽酸鹽礦物由非結晶 型轉化成結晶相的過程【Xu et al., 2008】。

圖 4.2.3 各淨水場污泥燒製前 XRD 圖譜

圖 4.2.4 各淨水場污泥 1150°C 燒製後 XRD 圖譜

4.2.8 毒性特性溶出程序(TCLP)

重金屬溶出濃度為各國判定是否為有害廢棄物的指標之一,因此,欲了解各淨 水場污泥其溶出物質是否對環境造成不利影響,則需進行事業廢棄物毒性特性溶出 程序之檢測。由 TCLP 結果如表 4.2.4 顯示, Feng 淨水污泥中其鋅與鋇重金屬溶出 濃度比其他淨水場污泥高,但各淨水場污泥之重金屬溶出濃度皆低於法規限值,故 均屬一般事業廢棄物,若將其做為輕質骨材原料則能達到資源化回收再利用之效果。

		Leaching	g concentration (1	ng L ⁻¹)		ROC EPA
	Feng	Hou	Tung	Jia	Lin	regulation $(mg L^{-1})^{a}$
Cr ^b	N.D.	N.D.	N.D.	N.D.	N.D.	5
Cd ^b	N.D.	N.D.	N.D.	N.D.	N.D.	1
Cu ^b	N.D.	N.D.	0.01	N.D.	N.D.	15
Pb ^b	0.13	0.13	0.10	N.D.	N.D.	5
Zn ^b	2.36	2.04	2.30	1.17	1.69	25
Se ^b	0.19	0.29	0.20	0.10	0.10	1
Ba ^b	2.75	1.18	1.04	0.61	0.24	100
As ^b	0.70	0.70	0.44	0.18	0.23	5
Hg ^b	N.D.	N.D.	N.D.	N.D.	N.D.	0.2

表 4.2.4 各淨水場污泥鍛燒前重金屬溶出測試結果

^a : Toxicity Characteristic Leaching Procedure, Test Methods for Evaluating Solid Waste, NIEA R201.13C, Environmental Protection Agency, ROC, 2003.

^b:N.D.表示檢測值低於儀器偵測極限 (Cr:0.005 mg/L;Cd:0.008 mg/L;Cu:0.003 mg/L;Pb:0.012 mg/L;Zn:0.005 mg/L;Se:0.021 mg/L;As:0.462 mg/L;Hg:0.008 mg/L)

4.3 各淨水場污泥添加不同比例黏土及添加廢玻璃粉在不同加熱溫度下 燒製成輕質骨材之特性分析

文獻上許多學者已成功利用下水污泥添加黏土與廢玻璃粉製備輕質骨材【Xu et al., 2008; Cusidó et al., 2003; Jord'an et al., 2005; Mun et al., 2007; Ducman et al., 2009】, 在本節中將探討 Tung 與 Jia 淨水污泥分別添加黏土及廢玻璃粉,並調整添 加比例、燒製時間等條件,燒製成的輕質骨材之特性,並探討影響輕質骨材特性之 關鍵因子。本研究黏土及廢玻璃粉使用之添加比例分別為 20、50、80 wt%, Tung 及 Jia 淨水污泥分別添加黏土及廢玻璃後,再加入等量的水經旋轉架 (轉速=30±2 rpm) 混合 24 小時,再經烘乾破碎後以 1000 psi 壓錠成型,燒製溫度為 1000 ~ 1150℃,預熱之升溫速率(由室溫至 500℃, 100℃/min),燒製時間(添加黏土之試 體以 1000 ~ 1150℃ 持續燒製 15 分鐘,添加廢玻璃粉之試體則以 1000 ~ 1150℃ 持 續燒製 5 分鐘)。燒製後之骨材以 SEM 觀察微結構變化、量測重量損失、顆粒密度、 吸水率、抗壓強度、結晶相物種分析及 M-TCLP 變化,以探討骨材之特性。

4.3.1 微結構變化

Tung 及 Jia 淨水污泥添加黏土燒製後之微結構變化如圖 4.3.1 所示, Jia 淨水污 泥當添加 20%黏土燒製 1050°C 以上時,試體內部開始產生微小孔洞,隨著黏土比 例的增加與燒製溫度的提高,孔洞有明顯增大的趨勢,而 Tung 淨水污泥添加 80% 比例黏土燒製 1100°C 以上時,試體內部孔洞才有明顯的增加。對於 Tung 及 Jia 添 加廢玻璃粉燒製後之試體內部結構變化如圖 4.3.2 所示,當燒製於 1100°C 玻璃粉添 加比例為 50%時,試體內部因高溫形成足夠黏滯玻璃相,緻密化效果較顯著。

4.3.2 重量損失變化

Tung 及 Jia 淨水污泥添加黏土及玻璃粉,經燒製後之重量損失如表 4.3.1 及表 4.3.2 所示, Tung 淨水污泥添加黏土之重量損失會隨著黏土比例增加而呈遞減趨勢, 重量損失為 12.69~22.58 %;反之, Jia 淨水污泥添加黏土之重量損失則會隨著黏土 比例呈遞增趨勢,重量損失為 11.07~16.05 %。此外,如表 4.3.2 所示, Tung 及 Jia 淨水污泥添加廢玻璃粉之重量損失隨玻璃粉比例增加呈遞減趨勢,重量損失分別為 11.49~20.79 %及 8.92~14.64 %。此外,由於 Tung 和 Jia 分別添加 50%、80%廢玻璃 粉燒製後,試體由於部分試體因高溫燒製後有顯著熔融現象而黏於坩鍋,故造成量 測重量損失時,數據不準確,故不放在表 4.3.1 及表 4.3.2 之中。

4.3.3 顆粒密度變化

根據 EN 13055-1, (2002)之"Lightweight Aggregates – Part 1: Lightweight Aggregates for Concrete, Mortar and Grout",一般輕質骨材顆粒密度的標準 2 g/cm³ 以下,由表 4.3.1 及表 4.3.2 顆粒密度變化顯示,Tung 及 Jia 淨水污泥添加黏土不同 比例在不同溫度燒製後之顆粒密度範圍落於 0.89~2.54 g/cm³,而添加玻璃粉顆粒密 度落於 0.37~2.01 g/cm³。兩淨水污泥分別添加不同比例黏土及廢玻璃粉之顆粒密度 會隨著燒製的溫度提高而降低,同時,比較兩淨水污泥添加助熔劑經高溫燒製後微 結構之試體外觀變化,可發現隨著黏土添加比例的增加,試體在外觀上有明顯的孔 隙,推測為部分氣體在高溫燒製時逸散所造成,而添加廢玻璃粉之試體在高溫 1100°C 以上燒製後之顆粒密度比添加黏土相對來的低,推測主要原因為玻璃粉中較 多的 SiO₂含量在高溫燒製時試體外部形成良好的燒結效果,並將內部污泥本身產生 的氣體包覆住。由此可知,兩淨水污泥添加不同比例玻璃粉在不同溫度燒製後之顆 粒密度皆符合標準,但添加不同比例黏土在不同溫度燒製後之顆粒密度,只有部分 符合顆粒密度之標準。此外,由於 Tung 和 Jia 分別添加 50%、80%廢玻璃粉燒製後, 試體由於部分試體因高溫燒製後有顯著熔融現象而黏於坩鍋,故造成量測顆粒密度 時,數據不準確,故不放在表 4.3.1 及表 4.3.2 之中。

4.3.4 吸水率變化

一般而言,根據GB/T 17431.2-1998 (China)之"Lightweight aggregates and its test methods—part 2. Test methods for lightweight aggregate",在土木工程應用上,輕 質骨材(陶粒)吸水率標準需低於15%以下。吸水率變化通常與輕質骨材開放孔隙多 寡有關,當試體中開放孔隙愈多,吸水率也愈高,而試體收縮程度高時,孔隙率減 少,吸收水分也減少【陳氏,2004】。Tung及Jia淨水污泥分別添加不同比例黏土及 廢玻璃粉之吸水率變化,經1000~1150°C燒製後,結果如表4.3.1及表4.3.2顯示,兩 淨水污泥添加不同比例黏土燒製之試體吸水率範圍為7.89~26.20%,而添加不同比 例廢玻璃粉之或體吸水率範圍位於5.74~27.35%。同時,兩淨水污泥添加不同比例 廢玻璃粉之吸水率隨著燒製溫度提高而降低,但添加黏土之吸水率則起伏較大,且 燒製溫度於1150°C時吸水率皆提高,推測為燒製後試體表面孔隙吸水造成。此外, 由於 Tung 和 Jia 分別添加50%、80%廢玻璃粉燒製後,試體由於部分試體因高溫 燒製後有顯著熔融現象而黏於坩鍋,故造成量測吸水率時,數據不準確,故不放在 表4.3.1及表4.3.2之中。

4.3.5 抗壓強度變化

土木工程中, Chinese National Bureau of Standards(CNBS)對於燒製後之輕質陶 瓷顆粒(Bulk density<900kgm⁻³)及其應用上,所需之最小抗壓強度為7.5 MPa=76.5 kg/cm²。進一步對抗壓強度探討,結果如表 4.3.1 及 4.3.2 顯示,Tung 及 Jia 淨水污 泥分別添加不同比例黏土之顆粒抗壓強度範圍在 106.6~198.8 kg/cm²之間,而添加 不同比例玻璃粉之顆粒抗壓強度範圍在 108.4~124.7 kg/cm²之間,可觀察出添加不 同比例廢玻璃粉之試體及其抗壓強度比添加不同比例黏土之試體來的低,但所有樣 品經不同溫度燒製後皆符合輕質骨材顆粒抗壓強度之標準。此外,由於Tung 和 Jia 分別添加 50%、80%廢玻璃粉燒製後,試體由於部分試體因高溫燒製後有顯著熔融 現象而黏於坩鍋,故造成量測抗壓強度時,數據不準確,故不放在表 4.3.1 及表 4.3.2 之中。

			Tung/Clay			Jia/Clay	
	Temp. (°C)	Tung/Clay 80:20	Tung/Clay 50:50	Tung/Clay 20:80	Jia/Clay 80:20	Jia/Clay 50:50	Jia/Clay 20:80
Weight loss (%)	1000 1050 1100	22.24 22.56 22.44	17.87 17.75 18.18	12.69 13.03 13.20	11.30 11.07 11.55	13.48 13.52 13.77	15.54 15.97 16.05
Particle density (g/cm ⁻³)	1150 1000 1050 1100	22.58 2.54 2.20 1.69	2.52 2.19 1.69	2.07 1.98 1.49	1.34 1.98 1.78 1.39	2.08 1.80 1.33	2.20 2.05 1.23
Water absorption (%)	1150 1000 1050 1100 1150	1.66 26.20 14.36 11.20 11.24	1.41 16.35 11.14 9.46 10.99	1.02 21.70 10.89 7.89 11.85	1.02 19.37 9.03 8.61 12.32	1.02 14.26 11.09 10.50 13.86	0.89 18.08 11.54 11.98 13.55
Compressive strength (kg/cm ²)	1000 1050 1100 1150	142.8 144.6 121.1 117.5	146.4 140.9 122.9 115.6	130.1 166.2 121.1 112	119.3 128.3 119.3 113.8	198.8 126.5 112 117.5	160.8 122.9 121.1 106.6

表 4.3.1 淨水污泥添加不同比例黏土燒製後試體之特性分析

表 4.3.2 淨水污泥添加不同比例廢玻璃粉燒製後試體之特性分析

			Tung/Glass			Jia/Glass	
	Temp. (°C)	Tung/Glass 80:20	Tung/Glass 50:50	Tung/Glass 20:80	Jia/Glass 80:20	Jia/Glass 50:50	Jia/Glass 20:80
	1000	19 71	13 71	_	14.04	8 97	_
	1050	20.06	13.71	_	14.04	10.21	_
Weight loss (%)	1100	20.79	11.49	_	14.64	11.84	_
	1150	20.76	_	—	14.53	_	—
	1000	2.01	1.08	_	1.73	1.12	_
Particle density	1050	1.49	0.94	_	1.47	0.67	_
(g/cm ⁻³)	1100	1.34	0.55	_	1.11	0.37	_
	1150	1.36	_	—	0.78	_	_
	1000	27.35	8.69	_	17.99	11.2	_
Water	1050	23.23	9.6	_	14.91	10.4	_
absorption (%)	1100	21.21	5.74	_	13.49	9.62	—
	1150	19.15	—	—	12.17	—	—
	1000	117.5	117.5	_	115.6	115.6	_
Compressive	1050	117.5	121.1	_	115.6	124.7	_
(kg/cm ²)	1100	119.3	119.3	_	108.4	119.3	_
	1150	121.1	—	_	117.5	—	—

4.3.6 多次萃取之毒性溶出試驗(Multiple toxicity characteristic leaching procedure)

本研究使用 Tung 及 Jia 淨水污泥添加黏土及廢玻璃粉在不同配比與不同溫度燒 製後之多次萃取之毒性溶出試驗,由表 4.3.3~4.3.6 顯示,各樣品於 1100~1150°C 燒 製後,其鋅重金屬濃度較高 (範圍 2.43~7.83 mg/L),其次為鋇重金屬濃度 (範圍 1.54~5.17 mg/L),因此,添加劑(黏土及廢玻璃粉)與淨水污泥混合燒製後之重金屬型 態,推測為安定且不易溶出之物質,故所有試體經檢測後其重金屬濃度皆符合溶出 毒性事業廢棄物法規標準。

表 4.3.3

	重	金屬	M-'	TCL	P 溶	出濃	[度(mg/l	L)	=		重	金屬	έ M-	TCL	P 溶	出濃	度()	mg/I	.)
TCLP		Tu	ng/cl	lay=2	20/8	0	110	0°C			TCLP		J	ia/cl	ay=2	20/8	0 1	100°	С	
溶出 次序	Cu	Cr	Zn	Se	Cd	Pb	Ba	As	Hg		溶出 次序	Cu	Cr	Zn	Se	Cd	Pb	Ba	As	Hg
1	ND	ND	2.56	ND	ND	ND	3.16	0.07	ND	-	1	ND	ND	2.43	ND	ND	ND	3.51	0.09	ND
2	ND	ND	3.67	0.01	ND	ND	2.62	ND	ND		2	ND	ND	3.39	0.04	ND	ND	2.60	ND	ND
3	ND	ND	3.29	0.03	ND	ND	3.16	ND	ND		3	ND	ND	3.28	0.03	ND	ND	3.27	ND	ND
4	ND	ND	3.14	0.01	ND	ND	2.46	ND	ND		4	ND	ND	3.13	0.02	ND	ND	2.81	ND	ND
5	ND	ND	2.96	0.01	ND	ND	2.10	ND	ND		5	ND	ND	2.83	0.02	ND	ND	2.01	ND	ND
6	ND	ND	2.83	0.03	ND	0.01	2.30	ND	ND		6	ND	ND	3.22	0.02	ND	0.04	2.59	ND	ND
7	ND	ND	2.67	ND	ND	ND	1.54	ND	ND	_	7	ND	ND	2.59	0.01	ND	ND	1.69	ND	ND
溶出標準	15	5	25	1	1	5	100	5	0.2		溶出 標準	15	5	25	1	1	5	100	5	0.2
										-										
	重	金屬	M-'	TCL	P 溶	出濃	【度(mg/l	L)	=		重	金屬	έM-	TCL	.P 溶	出濃	度()	mg/I	.)
TCLP	重	金屬 Tu	M-' ng/c	TCL lay=	P 溶 : 20/ 3	出濃 80	【度(1150	mg/l ⁰C	L)	=	TCLP	重	金屬 Ji	§ M- a/cla	TCL ay=2	.P 溶 0/80	出濃	度(1 50 °	mg/I C	.)
TCLP 溶出 次序	重 Cu	金屬 Tu Cr	M-' ng/c Zn	TCL lay= Se	P 溶 2 0/3 Cd	出濃 80 Pb	【度(1150 Ba	mg/l PC	L) Hg	=	TCLP 溶出 次序	重 Cu	金屬 Ji Cr	∦ M- a/cla Zn	TCL ay=2 Se	.P 溶 0/80 Cd	出濃 1 Pb	[度(□ 1 50º Ba	mg/I C As	L) Hg
TCLP 溶出 次序 1	重 Cu ND	金屬 Tu Cr ND	M-' ng/c Zn 3.46	TCL lay= Se	P 溶 2 0/3 Cd ND	出濃 80 Pb ND	【度(1150 Ba 3.04	mg/l P°C As	L) Hg ND	-	TCLP 溶出 次序 1	重 Cu ND	金屋 Ji Cr ND	M- a/cla Zn 2.57	TCL ay=2 Se ND	P 溶 0/80 Cd ND	出濃) 1 Pb ND	度(1 150° Ba 2.70	mg/I C As 0.07	L) Hg ND
TCLP 溶出 次序 1 2	重 Cu ND ND	金屬 Tu Cr ND ND	M-' ng/c Zn 3.46 3.99	TCL lay= Se ND 0.01	P 溶 20/3 Cd ND ND	出濃 80 Pb ND ND	度(1150 Ba 3.04 2.32	mg/l P°C As 0.08 ND	L) Hg ND ND	-	TCLP 溶出 次序 1 2	重 Cu ND ND	金屬 Ji Cr ND ND	M- a/cla Zn 2.57 4.02	TCL ay=2 Se ND 0.02	P 溶 0/80 Cd ND ND	出濃 Pb ND 0.03	度(1 150° Ba 2.70 1.96	mg/I C As 0.07 ND) Hg ND ND
TCLP 溶出 次序 1 2 3	重 Cu ND ND ND	金屬 Tu Cr ND ND ND	M-' ng/c Zn 3.46 3.99 3.53	TCL lay= Se ND 0.01 0.03	P 溶 20/3 Cd ND ND	出濃 80 Pb ND ND ND	度(1150 Ba 3.04 2.32 3.01	mg/J PC As 0.08 ND ND	L) Hg ND ND ND	-	TCLP 溶出 次序 1 2 3	重 Cu ND ND	金屢 Ji Cr ND ND ND	M- a/cla Zn 2.57 4.02 3.06	TCL y=2 Se ND 0.02 0.03	P 溶 0/80 Cd ND ND	出濃 Pb ND 0.03 ND	度(1 150° Ba 2.70 1.96 2.03	mg/I C As 0.07 ND ND) Hg ND ND ND
TCLP 溶出 次序 1 2 3 4	重 Cu ND ND ND ND	金屬 Tu Cr ND ND ND	M-' ng/c Zn 3.46 3.99 3.53 3.28	TCL lay= Se ND 0.01 0.03 0.04	P 溶 20/3 Cd ND ND ND	出濃 80 Pb ND ND ND	度(1150 Ba 3.04 2.32 3.01 2.78	mg/l P°C As 0.08 ND ND ND	L) Hg ND ND ND ND	-	TCLP 溶出 次序 1 2 3 4	重 Cu ND ND ND	金属 Ji Cr ND ND ND ND	M- a/cla Zn 2.57 4.02 3.06 3.81	TCL ay=2 Se ND 0.02 0.03 0.02	P 溶 0/80 Cd ND ND ND	出濃 Pb ND 0.03 ND 0.01	度(1 150° Ba 2.70 1.96 2.03 2.81	mg/I C As 0.07 ND ND ND) Hg ND ND ND ND
TCLP 溶出 次序 1 2 3 4 5	重 Cu ND ND ND ND	金屬 Tu Cr ND ND ND ND	M-' ng/c Zn 3.46 3.99 3.53 3.28 3.37	TCL lay= Se ND 0.01 0.03 0.04 0.03	P 溶 20/3 Cd ND ND ND ND	出濃 80 Pb ND ND ND ND ND	度(1150 Ba 3.04 2.32 3.01 2.78 2.38	mg/l P°C As 0.08 ND ND ND ND	Hg ND ND ND ND	-	TCLP 溶出 次序 1 2 3 4 5	重 Cu ND ND ND ND	金屬 Ji Cr ND ND ND ND ND	M- a/cla Zn 2.57 4.02 3.06 3.81 3.06	TCL y=2 Se ND 0.02 0.03 0.02 0.01	P 溶 0/80 Cd ND ND ND ND	出濃 Pb ND 0.03 ND 0.01 ND	度(1 150° Ba 2.70 1.96 2.03 2.81 1.88	mg/I C As 0.07 ND ND ND ND) Hg ND ND ND ND ND
TCLP 溶出 次序 1 2 3 4 5 6	重 Cu ND ND ND ND ND ND	金屬 Tu Cr ND ND ND ND ND	M-' mg/c Zn 3.46 3.99 3.53 3.28 3.28 3.37 3.66	TCL lay= Se ND 0.01 0.03 0.04 0.03 0.02	P 溶 20/3 Cd ND ND ND ND ND	出 濃 Pb ND ND ND ND 0.05	度(1150 Ba 3.04 2.32 3.01 2.78 2.38 3.42	mg/J P°C As 0.08 ND ND ND ND ND	L) Hg ND ND ND ND ND ND	-	TCLP 溶出 次序 1 2 3 4 5 6	重 Cu ND ND ND ND ND	金屬 Cr ND ND ND ND ND ND	M- a/cla Zn 2.57 4.02 3.06 3.81 3.06 3.37	TCL y=2 Se ND 0.02 0.03 0.02 0.01 0.01	P 溶 0/80 Cd ND ND ND ND ND	出濃 Pb ND 0.03 ND 0.01 ND 0.04	度(1 150° Ba 2.70 1.96 2.03 2.81 1.88 2.56	mg/I C As 0.07 ND ND ND ND) Hg ND ND ND ND ND ND
TCLP 溶出 次序 1 2 3 4 5 6 7	重 Cu ND ND ND ND ND ND	金屬 Tu Cr ND ND ND ND ND ND	M-' ng/c Zn 3.46 3.99 3.53 3.28 3.37 3.66 2.67	TCL lay= Se ND 0.01 0.03 0.04 0.03 0.04 0.03 0.02 ND	P 溶 20/3 Cd ND ND ND ND ND ND	出濃 80 Pb ND ND ND ND ND 0.05 ND	<u></u> (上) (上) (上) (上) (上) (上) (上) (上) (上) (上)	mg/J °C As 0.08 ND ND ND ND ND ND	Hg ND ND ND ND ND ND ND	-	TCLP 溶出 次序 1 2 3 4 5 6 7	重 Cu ND ND ND ND ND ND	金屬 Ji Cr ND ND ND ND ND ND ND	M- a/cla Zn 2.57 4.02 3.06 3.81 3.06 3.37 2.85	TCL y=2 Se ND 0.02 0.03 0.02 0.01 0.01 0.01	P 溶 0/80 Cd ND ND ND ND ND ND	出濃 Pb ND 0.03 ND 0.01 ND 0.04 ND	度(1 150° Ba 2.70 1.96 2.03 2.81 1.88 2.56 1.55	mg/I C As 0.07 ND ND ND ND ND ND) Hg ND ND ND ND ND ND

表 4.3.4

*N.D.表示檢測值低於儀器偵測極限 (Cr:0.005 mg/L;Cd:0.008 mg/L;Cu:0.003 mg/L;Pb:0.012 mg/L;Zn:0.005 mg/L;Se:0.021 mg/L;As:0.462 mg/L;Hg: 0.008 mg/L)

表 4.3.5

	重	金屬	5 M-	TCL	P 溶	出濃	【度(mg/I	L)		重	金屬	M-	TCL	P 溶	出濃	【度(mg/I	_)
TCLP		Tun	g/Gl	lass=	=50/	50	110	0°C		TCLP		Jia	/Gla	ss =:	50/5	0	1100)°C	
溶出 次序	Cu	Cr	Zn	Se	Cd	Pb	Ba	As	Hg	溶出 次序	Cu	Cr	Zn	Se	Cd	Pb	Ba	As	Hg
1	ND	0.03	2.47	ND	ND	ND	2.88	0.08	ND	1	ND	0.07	2.59	ND	ND	ND	4.25	0.08	ND
2	ND	ND	4.35	0.02	ND	0.01	3.72	ND	ND	2	ND	ND	3.40	0.02	ND	0.01	2.46	ND	ND
3	ND	ND	3.17	0.04	ND	ND	3.91	ND	ND	3	ND	ND	3.26	0.03	ND	ND	2.79	ND	ND
4	ND	ND	3.53	0.03	ND	ND	3.25	ND	ND	4	ND	ND	3.42	0.03	ND	ND	3.48	ND	ND
5	ND	ND	3.38	0.03	ND	ND	2.52	ND	ND	5	ND	ND	3.43	0.03	ND	ND	2.33	ND	ND
6	ND	ND	4.36	0.01	ND	0.13	3.04	ND	ND	6	ND	ND	2.91	0.01	ND	0.06	3.58	ND	ND
7	ND	ND	3.36	0.01	ND	ND	2.32	ND	ND	7	ND	ND	3.62	0.01	ND	ND	2.46	ND	ND
溶出 標準	15	5	25	1	1	5	100	5	0.2	溶出 標準	15	5	25	1	1	5	100	5	0.2
1213 1																			
1/11	重	金屬	M-	TCL	P 溶	出濃	【度(mg/I	L)		重	金屬	M-	TCL	P 溶	出濃	【度(mg/I	.)
TCLP	重 ,	金屬 Tun	; M-' g/ Gl	TCL lass :	P 溶 = 50 /	出濃 ′50	【度(11	mg/I 50°C	L) :	TCLP	重	金屬 Jia	M- /Gla	TCL ss =:	P 溶 50/5	出濃 10	【度(115(mg/I)⁰C	.)
TCLP 溶出 次序	重 , Cu	金屬 Tun Cr	g/ G Zn	TCL lass : Se	P 溶 = 50 / Cd	出濃 ′50 Pb	達度(11: Ba	mg/l 50°C As	L) L Hg	TCLP 溶出 次序	重 Cu	金屬 Jia Cr	M- /Gla Zn	TCL ss =: Se	P 溶 5 0/5 Cd	出濃 0 Pb	【度(115(Ba	mg/I P°C As	L) Hg
TCLP 溶出 次序 1	重 Cu ND	金屬 Tung Cr ND	M- g/ Gl Zn 2.73	TCL lass : Se ND	P 溶 =50/ Cd ND	出滞 ′50 Pb ND	<度(11: Ba 4.40	mg/I 50°C As 0.09	L) Hg ND	TCLP 溶出 次序 1	重 Cu ND	金屬 Jia Cr 0.07	M- /Gla Zn 3.77	TCL ss =: Se ND	P 溶 50/5 Cd ND	出濃 0 Pb ND	度(115(Ba 2.37	mg/I)°C As	L) Hg ND
TCLP 溶出 次序 1 2	重 Cu ND 0.01	金屬 Tun Cr ND ND	M-' g/ Gl Zn 2.73 7.83	TCL ass = Se ND 0.02	P 溶 = 50/ Cd ND ND	出 濃 ′50 Pb ND 0.03	<u>度(</u> 11: Ba 4.40 3.03	mg/I 50°C As 0.09 ND	L) Hg ND ND	TCLP 溶出 次序 1 2	重 Cu ND ND	金屬 Jia Cr 0.07 ND	M- /Gla Zn 3.77 4.15	TCL ss =: Se ND 0.03	P 溶 50/5 Cd ND ND	出濃 0 Pb ND 0.02	度(115(Ba 2.37 5.17	mg/I)°C As 0.11 ND	L) Hg ND ND
TCLP 溶出 次序 1 2 3	重 Cu ND 0.01 ND	金屬 Tun; Cr ND ND ND	M- g/ G 2.73 7.83 4.99	TCL ass = ND 0.02 0.04	P 溶 = 50/ Cd ND ND	出 濃 /50 Pb ND 0.03 0.01	<u>度(</u> 11: Ba 4.40 3.03 1.83	mg/I 50°C As 0.09 ND ND	L) Hg ND ND ND	TCLP 溶出 次序 1 2 3	重 Cu ND ND	金屬 Jia Cr 0.07 ND ND	M- /Gla Zn 3.77 4.15 3.65	TCL ss =: Se ND 0.03 0.04	P 溶 50/5 Cd ND ND	出濃 0 Pb ND 0.02 ND	度(115(Ba 2.37 5.17 2.90	mg/I P°C As 0.11 ND ND	Hg ND ND ND
TCLP 溶出 次序 1 2 3 4	重 Cu ND 0.01 ND ND	金屬 Tun Cr ND ND ND	M- g/ Gl 2.73 7.83 4.99 3.28	TCL ass = Se ND 0.02 0.04 0.04	P 溶 =50/ Cd ND ND ND	出 濃 ′50 Pb ND 0.03 0.01 ND	(度) 11: Ba 4.40 3.03 1.83 2.78	mg/I 50°C As 0.09 ND ND ND	L) Hg ND ND ND ND	TCLP 溶出 次序 1 2 3 4	重 Cu ND ND ND	金屬 Jia Cr 0.07 ND ND ND	M- /Gla Zn 3.77 4.15 3.65 4.12	TCL ss =: ND 0.03 0.04 0.04	P 溶 50/5 Cd ND ND ND	出 濃 O Pb ND 0.02 ND 0.01	度(115(Ba 2.37 5.17 2.90 4.43	mg/I P°C As 0.11 ND ND ND	Hg ND ND ND ND
TCLP 溶出 次序 1 2 3 4 5	重 Cu ND 0.01 ND ND ND	金屬 Tun; Cr ND ND ND ND	M- g/ Gl 2.73 7.83 4.99 3.28 3.62	TCL ass = Se ND 0.02 0.04 0.04 0.02	P 溶 =50/ Cd ND ND ND ND	出 濃 /50 Pb ND 0.03 0.01 ND ND	注度(11: Ba 4.40 3.03 1.83 2.78 4.16	mg/I 50°C As 0.09 ND ND ND ND	L) Hg ND ND ND ND	TCLP 溶出 次序 1 2 3 4 5	重 Cu ND ND ND ND	金屬 Jia Cr 0.07 ND ND ND ND	M- /Gla Zn 3.77 4.15 3.65 4.12 3.80	TCL ss = Se ND 0.03 0.04 0.04 0.02	P 溶 50/5 Cd ND ND ND ND	出 濃 0 Pb ND 0.02 ND 0.01 ND	度(115(Ba 2.37 5.17 2.90 4.43 3.44	mg/I P°C As 0.11 ND ND ND ND	Hg ND ND ND ND ND
TCLP 溶出 次序 1 2 3 4 5 6	重 Cu ND 0.01 ND ND ND ND	金屬 Tun Cr ND ND ND ND ND ND	M- g/ G 2.73 7.83 4.99 3.28 3.62 5.80	TCL Se ND 0.02 0.04 0.04 0.02 0.02	P 溶 =50/ Cd ND ND ND ND ND ND	出 滞 /50 Pb ND 0.03 0.01 ND 0.40	(度) (月) (月) (月) (月) (月) (月) (月) (月) (月) (月	mg/I 50°C As 0.09 ND ND ND ND ND	L) Hg ND ND ND ND ND	TCLP 溶出 次序 1 2 3 4 5 6	重 Cu ND ND ND ND ND	金屬 Jia Cr 0.07 ND ND ND ND ND	M- /Gla Zn 3.77 4.15 3.65 4.12 3.80 3.60	TCL ss =: ND 0.03 0.04 0.04 0.02 0.02	P 溶 50/5 Cd ND ND ND ND ND	出 濃 0 Pb ND 0.02 ND 0.01 ND 0.01	度(115(Ba 2.37 5.17 2.90 4.43 3.44 3.31	mg/I P°C As 0.11 ND ND ND ND	Hg ND ND ND ND ND ND
TCLP 溶出 次序 1 2 3 4 5 6 7	重 Cu ND 0.01 ND ND ND ND ND ND	金屬 Fun ND ND ND ND ND ND	M- g/ G 2.73 7.83 4.99 3.28 3.62 5.80 3.58	TCL ass = ND 0.02 0.04 0.04 0.02 0.02 0.02	P 溶 =50/ Cd ND ND ND ND ND ND	出 濃 750 Pb ND 0.03 0.01 ND 0.40 ND	E度(11: Ba 4.40 3.03 1.83 2.78 4.16 3.89 2.29	mg/I 50°C As 0.09 ND ND ND ND ND	Hg ND ND ND ND ND ND ND	TCLP 溶出 次序 1 2 3 4 5 6 7	重 Cu ND ND ND ND ND ND ND ND	金屬 Jia Cr 0.07 ND ND ND ND ND ND ND	M- /Gla 3.77 4.15 3.65 4.12 3.80 3.60 3.43	TCL ss =: ND 0.03 0.04 0.02 0.02 0.01	P 溶 50/5 Cd ND ND ND ND ND ND	出 濃 O Pb ND 0.02 ND 0.01 ND 0.01 ND	度(115(Ba 2.37 5.17 2.90 4.43 3.44 3.31 2.62	mg/I P°C As 0.11 ND ND ND ND ND	L) Hg ND ND ND ND ND ND

表 4.3.6

*N.D.表示檢測值低於儀器偵測極限 (Cr:0.005 mg/L;Cd:0.008 mg/L;Cu:0.003 mg/L;Pb:0.012 mg/L;Zn:0.005 mg/L;Se:0.021 mg/L;As:0.462 mg/L;Hg: 0.008 mg/L)

第五章 討論

5.1.1 化學組成

由於化學組成對燒製成輕質骨材有極大影響,文獻中許多學者針對化學組成中 進行探討,最早1951年起,Riley利用原料的組成繪製出三相圖,來計算和評估樣品 的發泡行為【Riley, 1951】, 而SiO₂/(FeO+Fe₂O₃+CaO+MgO+K₂O+Na₂O)之比例,則 用來決定原料是否達到足夠黏稠度去捕捉氣體之能力。由表4.1.2之SiO/Flux與 SiO₂/Al₂O₃比例顯示, Feng和Lin兩者之SiO₂/Flux比例較高,分別為4.08及5.68,但由 Feng淨水污泥之TGA圖4.2.2顯示平滑曲線,且溫度700°C以前氣體釋放較快,導致 温度上升至高温時,重量損失較小,推測試體外部可能已產生燒結反應,但內部氣 體釋放較少,故未形成發泡;而Lin淨水污泥之TGA圖譜顯示在高溫時,重量損失較 大,與SEM圖結果比較,僅Lin淨水污泥具有燒製成輕骨材之潛力,但各淨水場污泥 SiO₂/Al₂O3比例皆未落在4~5.6之間。此外,比較SEM圖4.2.1微結構變化可知Lin淨水 污泥燒製於1150°C時,發泡效果較顯著。從Xu等人研究觀點,與表4.1.2 結果比較, 顯示本研究之(F+C+M)/(S+A)比例各淨水場污泥皆未落在0.175≦(F+C+M)/(S+A)≦ 0.450,雖然Hou、Tung、Jia三者之SiO2與Al2O3含量落於高強度範圍內(18%≦Al2O3) ≦26%,30%≦ SiO₂≦45%) 【Xu et al., 2009】,但高溫燒製後試體並未發泡,推測 為SiO2含量不足,導致試體外部無法形成燒結並有效捕捉氣體。因此,需調整汙泥 中SiO2含量來達到發泡最佳化之效果。由Chen等人研究觀點,與表4.1.2 結果比較, 各淨水場污泥之F/(S+A)比例皆落於0.1~0.285之間,但是比照SEM圖4.2.1微結構變化 顯示,當Hou、Tung淨水污泥即使燒製於1150℃時,試體內部仍無孔洞產生,推測 主要是因為Al2O3含量太高,破壞SiO2網狀結構,不易形成完整燒結體,而各淨水污 泥中CaO+MgO之比例皆未超過7%。

近年來, De'Gennaro等人利用沸石材料製備輕質骨材, 在1350~1500°C下燒製 2~5分鐘,結果顯示製備一個輕質骨材筒密度落於0.5~0.7 g/cm³, LOI >10 %,則 SiO₂/Flux 重量比例範圍需要在4~7.5之間,且SiO₂/Al₂O₃比例在4~5.6之間 【De'Gennaro *et al.*,2004】。Fakhfakh等人使用黏土材料製備輕質骨材,並提出當SiO₂/

Flux<2時會有較低的黏稠度,導致在燒製過程中輕質骨材不能有效將氣體包覆在內部【De'Gennaro et al.,2004; Fakhfakh et al.,2007】。由上述學者看來,當SiO₂/Flux>2時,可獲得較好的黏稠度來製備輕質骨材,

Xu等人使用廢水污泥和淨水污泥當作製備陶瓷顆粒的材料,並探討SiO₂和 Al₂O₃在陶瓷顆粒中扮演之角色。高強度陶瓷顆粒中含有較少的Na-Ca長石(礦)和非 結晶型的Si,經高溫燒製後可獲得緻密化的表面(範圍18% \leq Al₂O₃ \leq 26%,30% \leq SiO₂ \leq 45%);但範圍14% \leq Al₂O₃ \leq 18%和 22.5% \leq SiO₂ \leq 30%,高溫燒製後 可獲得低強度結晶相之陶瓷顆粒【Xu *et al.*,2008】。Xu等人結果顯示,輕質陶粒特 性取決於(F+C+M)/(S+A)=(Fe₂O₃+CaO+MgO)/(SiO₂+Al₂O₃)比例,因此,需要調整 原料中(F+C+M)/(S+A)比例來得到以下特性,製備輕質陶瓷顆粒之範圍0.175 \leq (F+C+M)/(S+A)比例來得到以下特性,製備輕質陶瓷顆粒之範圍0.175 \leq (F+C+M)/(S+A) \leq 0.450,當(F+C+M)/(S+A)增加,會降低其抗壓強度【Xu *et al.*, 2009】。Chen等人使用水庫淤泥添加飛灰及反應灰來製備輕質骨材,文中提到,若 F/(S+A)比例過低,則燒製溫度與軟化點溫度也隨之提高,原因是低F/(S+A)比例會 引起液相高黏稠度。另一方面,過高的F/(S+A)比例意味著較低的熔解溫度和液相黏 稠度,而低黏稠度使得燒製過程中輕質骨材不能有效捕捉氣體。研究結果顯示, F/(S+A) = Flux/(SiO₂+Al₂O₃)比例介於0.1~0.285之間和(CaO+MgO)不超過7%,則 可得到一個適合發泡材料,因為高量的CaO或MgO,會破壞SiO₂網狀結構,反而降 低抗壓強度【Chen *et al.*,2010】。

本研究為進一步探討淨水污泥中SiO2與Al2O3含量對輕質骨材製備之影響,故添加黏土與廢玻璃粉作為助熔劑,並與Riley提出之三相圖做比較,由圖4.1.3顯示, Tung/Glass=50/50、Jia/Glass=50/50兩種混合比例落在圖中虛線範圍內,具有燒製成 輕質骨材之潛力。除此之外,在實驗中也觀察到 Tung/Clay=20/80、Jia/Clay=80/20、 50/50、20/80和Tung/Glass=80/20、Jia/Glass=80/20落在虛線範圍外之配製樣品,由 SEM圖4.3.1及4.3.2所示,當燒製於1150°C時,試體內部孔洞明顯增大,顯示出Riley 提出之三相圖範圍外之亦有製備成輕骨材之可行性。

5.1.2 微結構變化

結果顯示,Hou和Tung淨水污泥當燒製於1000~1150°C時可觀察到試體內部 無孔洞產生,其形態類似片狀堆疊燒結而成,且試體外觀有明顯孔隙存在,推測原 因為有機物分解產生氣體但兩者其顆粒粒徑較大及SiO2含量較少,故造成在高溫時 試體結構鬆散外部無法燒結並包覆住氣體,造成試體外部開放孔隙大,比較表4.2.1 結果,顯示出顆粒密度結果皆普遍偏高,證實顆粒密度與試體微結構變化有關。而 Feng 和 Jia 淨水污泥當燒製於 1100°C 時微小孔洞產生,其中 Jia 淨水污泥燒製於 1150°C 時,試體內部孔洞有變大趨勢。此外,Lin 淨水污泥隨著燒製溫度提高而孔 洞明顯增大,推測原因為污泥本身粒徑小且SiO2含量足夠與 Fluxing 高溫形成試體 外部燒結反應【Xu et al., 2008】,加上污泥燒失重(LOI)較低,高溫時發泡氣體易 促進骨材生成。

進一步觀察 Tung 及 Jia 淨水場污泥添加黏土高溫燒製後之微結構變化,如圖 4.3.1 所示,Jia 淨水污泥當添加 20%黏土燒製 1050°C 以上時,試體內部開始產生微 小孔洞,隨著黏土比例的增加與燒製溫度的提高,孔洞有明顯增大的趨勢,而 Tung 淨水污泥添加 80%比例黏土燒製 1100°C 以上時,試體內部孔洞才有明顯的增加。 對於 Tung 及 Jia 添加廢玻璃粉燒製後之試體內部結構變化如圖 4.3.2 所示,Wang 等 人研究下水污泥燒製輕質骨材其 SEM 圖結果顯示,燒製溫度 1050°C 以上時,試體 內部熔化現象和膨漲行為開始發生,當燒製溫度 1080°C 以上時,更多的氣體產生, 黏滯的玻璃相也開始被氣體撐破的現象 [Wang et al., 2008]。本研究當燒製於 1100°C 玻璃粉添加比例為 50%時,試體內部因高溫 SiO₂ 含量足夠與 Flux 形成足夠黏滯玻 璃相,繳密化效果較顯著,推測原因為顆粒間的頸部成長和緻密化提高 [Xu et al., 2008]。

5.1.3 結晶物種分析

文獻上,Merino等人使用下水污泥焚化灰渣燒製輕質陶粒,XRD結果顯示, SiO₂(Quartz), α-Fe₂O₃(haematite), γ-Fe₂O₃ (maghemite), CaCO₃(calcite), [Ca₃(PO₄)₂ A H₂O](hydrated calcium phosphateand) [(Ca,Mg)₃(PO₄)₂] 【Merino *et al.*, 2005】。Xu等 人利用下水污泥、黏土、玻璃等材料製備陶瓷顆粒,XRD結果顯示,當燒製低於 1000°C時,其主要晶相為SiO₂(quartz)和Al₂SiO₅(kyanite)。燒製1000~1100°C 時,其 主要晶相以Al₂SiO₅ (kyanite)、NaAlSi₃O₈ (albite)為主,其次為Al₆Si₂O₁₃ (mullite)、 Al₂SiO₅ (sillimanite),在燒製1200°C時,主要晶相以mullite (Al₆Si₂O₁₃)為主【Xu *et al.*, 2008】。

隨著燒製溫度提高,各淨水污泥在1150°C燒製後所含之結晶相型態,如圖4.1.5 顯示,其所含之結晶物種大多以礦物Al₂SiO₅ (kyanite)為主,其次為SiO₂ (quartz)、 Al₂SiO₅ (sillimanite)、NaAlSi₃O₈ (albite)、Al₆Si₂O₁₃ (mullite)等晶相存在,此結果與 Xu論點相符【Xu et al., 2008】。由圖4.1.5可知,隨著提高燒製溫度,各淨水污泥之 SiO₂結晶強度也相對減少,推測是當溫度愈高,各淨水污泥之SiO₂結晶相在燒結溫 度達1150°C時,轉化成非結晶形態之玻璃相,導致SiO₂的波峰強度減弱。Xu等人 TGA/DTA結果顯示,當燒製溫度於900°C以上時,此時吸熱現象與晶格形成有關, 係矽酸鹽礦物由非結晶型轉化成結晶相。【Xu et al., 2008】

5.1.4 TGA/DTA分析結果

實驗結果如圖 4.1.6 所示,五個淨水污泥從室溫加熱至約 350℃時,DTA 圖譜顯 示明顯的放熱峰變化(如圖 A 點所示),推測為吸收水轉化為水蒸氣 [Bethanis et al., 2002; Corrochanoa et al., 2009 】。Xu 等人文中提到, DTA 圖譜在低於 450℃ 時放熱反 應可能會降低其結晶性,而高於 450℃以上時,吸熱反應可能會增加結晶強度和穩 定度。加熱溫度於 350~617℃時, DTA 圖譜顯示明顯的吸熱變化(如圖 B 點所示, 但 Lin 淨水污泥溫度於 431.47~573.90 ℃時, 吸熱反應才發生), TGA 圖譜顯示各淨 水場污泥之重量損失降低,推測主要為結晶水的釋放和有機物質的反應【Tsai et al., 2006; Huang et al., 2007; Corrochanoa et al., 2009】。此時,當加熱於 1000℃時, Lin 和 Hou 吸熱反應產生 (推測為碳酸鹽釋出 CO2 氣體),而 Feng 和 Tung 淨水污泥放 熱反應產生 (推測為有機物燃燒造成) (如圖 C 點所示),DTA 圖譜顯示溫度於 617~1000℃時,此階段推測主要與碳酸鹽類分解成 CO2【Mangialardi et al., 1998; Tsai et al., 2006; Huang et al., 2007; Corrochanoa et al., 2009】及晶格變化有關(矽酸鹽礦 物之結晶相轉變)。Xu 等人文中提到,溫度高於 900℃以上時,推測為矽酸鹽礦物 由非結晶轉變到結晶化過程【Xu et al., 2008】。當燒製溫度於 1000~1200℃時,文獻 上,學者針對此階段發泡氣體提出不同觀點, Slavo 文中提到此階段推測為鹼土金 屬硫酸鹽類分解成 SO2 氣體 【Slavo et al., 2000; Corrochanoa et al., 2009】, Wei 等人 文中提到,在1150℃ 燒製後骨材內核之發泡反應是因 FeSO4 分解成 FeO 且過程中 伴隨著 SO2、SO3 和 O2 氣體產生導致 【Wei et al., 2009】, Huang 等人文中提到, 氧 化鐵在 1100℃ 時高溫分解反應, Fe₂O₃ 反應可能包含有 6Fe₂O₃→4Fe₃O₄ +O₂, $FeS_2 \rightarrow FeS_+S$, $S+O_2 \rightarrow SO_2$, $2FeS_+ 3O_2 \rightarrow 2FeO_+ 2SO_2$ [Huang *et al.*, 2007] \circ

此外,如圖 4.2.2 所示,五個淨水污泥中又以 Hou、Tung 和 Jia 淨水污泥之 TGA 圖譜顯示重量損失較大(21.82~28.11%),此結果也與表 4.2.1 之燒製後試體重量損 失結果相符合,可見上述三者所含有機物質和發泡氣體將有助於輕質骨材的發泡。
5.1.5 顆粒密度變化

顆粒密度為判斷骨材是否輕質化之依據,在燒結反應中緻密化程度是決定燒結 效率的重要指標,而緻密化程度則會影響顆粒密度的大小。Cheeseman 文中提到, 典型地天然骨材之顆粒密度範圍 2.4~2.8 g/cm³,而輕質骨材顆粒密度範圍 0.8~2.0 g/cm³,而輕質骨材也可製備用來當作輕質磚與輕質混凝土及輕質建築材料 【Cheeseman *et al.*, 2005】。根據 EN 13055-1, 2002. Lightweight Aggregates – Part 1: Lightweight Aggregates for Concrete, Mortar and Grout,一般輕質骨材顆粒密度的標 準 2 g/cm³以下。文獻中許多學者針對顆粒密度提出論點:在高溫燒製時,顆粒密度 的降低是由於發泡反應,而發泡效應與試體內部孔隙的體積增加有關【Merino *et al.*, 2005; Cheeseman, 2003】。Mun 文中解釋,高溫燒製時,主要是有機物質燃燒時產 生氣體促進發泡有關【Chiou *et al.*, 2006; Mun *et al.*, 2007】。

由表4.2.1顆粒密度變化觀察下,五個淨水場污泥之顆粒密度會隨著燒製的溫度 越高而下降,但比較各淨水污泥微結構之型態,Hou、Tung、Jia三者其SiO?含量不 足與Fluxing(Fe₂O₃、K₂O、CaO、MgO、Na₂O)形成外部燒結及重量損失過盛為主要 原因。隨著燒製溫度的提高,骨材內部發泡和燒結的反應同時進行,發泡反應過盛 而燒結反應尚未結束則無法有效包覆住氣體形成膨脹,導致試體外部燒結效果不顯 著。且比較SEM圖4.2.1結果顯示,觀察Hou、Tung、Jia三者試體內部孔隙,燒製於 1000℃時,並沒有發泡現象產生,欲改善此現象,Xu等人提到燒結過程中,Si⁴⁺是 被固定在tectosilicate(網矽酸鹽)中,且以網狀四面體之結構SiO44(Si-O-Si)形式存 在,適當地添加SiO2可在1000 ℃增加液相生成,且適當添加Al2O3可以和其他化合 物形成礦物相(例如Anorthite鈣長石-CaO·Al2O3·2SiO2),相對地在1000°C可降低 熔點和增加液相黏滯流生成【Accar et al., 2006, Xu et al., 2008】。因此,本實驗適 當地添加SiO2含量再加上本身淨水污泥前處理已添加混凝劑,其化學組成已含有 Al₂O₃,由表4.3.1及4.3.2 (P.53) 顯示,兩淨水污泥分別添加不同比例黏土及廢玻璃 粉之顆粒密度隨著燒製溫度提高而降低,推測原因為高溫燒製環境導致粒子與粒子 間移動劇烈,促進燒結反應形成,試體內部產生旺盛氣體利於發泡反應進行【Wei et al., 2008】,且當燒製溫度愈高,可維持粉末足夠之動力,頸部成長作用完全,粒

62

子與粒子間緊密黏結【陳氏,2004】。玻璃粉添加比例為50%之試體在高溫1100°C以 上燒製後之顆粒密度比添加黏土相對來的低,推測為SiO2含量足夠與Fluxing形成足 夠黏滯玻璃相,因此在高溫生成包覆氣體之黏滯性非結晶玻璃相時,試體開始發泡 同時內部密閉孔隙增多,燒結試體之密度因而降低。

5.1.6 吸水率變化

一般輕質骨材屬於多孔隙結構,吸水率常因孔隙不同性質差異而不同,而吸水 率與孔隙率(porosity)的多寡有關,而孔隙率大小與強度有相關性【Wassmen et al., 1997】,故可藉由骨材吸水率間接瞭解孔隙率與強度之關係,並推測骨材其緻密性與 耐久性。此外,【Souza et al., 2004】研究指出燒結溫度為影響磚體本身吸水率之重 要參數,隨著燒結溫度的增加,吸水率有降低之趨勢,尤其在燒結溫度1000℃以上 愈為明顯,此與玻璃相的形成有關。Lin等人使用下水污泥灰燒製600~1000℃,吸水 率結果提到,骨材燒製於1000℃以下時,吸水率因試體外部開孔孔隙而導致其吸水 率較大【Cheeseman et al., 2005】,燒製於1050℃以上,吸水率明顯降低,由於試體 內部孔隙體積減少和緻密化效應造成【Lin et al., 2006】。

由表4.2.1結果顯示,各淨水場污泥燒製於1000℃時,吸水率範圍19.61~44.21之間, 尤其觀察Hou淨水污泥其試體外部開放孔隙大導致吸水率偏高,且與Cheeseman論點 相符。隨著溫度提高至1150℃,推測原因顆粒粒徑較大及SiO2含量較少,故造成在 高溫時試體結構鬆散外部無法燒結並包覆住氣體。而Lin淨水污泥當燒製於1150℃ 時,有較佳的吸水率,推測原因為污泥本身粒徑小且SiO2含量足夠與Fluxing高溫形 成試體外部燒結反應,加上污泥燒失重(LOI)較低,高溫時發泡氣體易促進骨材生 成。Huang等人文中提到,輕質骨材中內部孔隙的大小和多寡為吸水率高低的影響 因子,結果顯示,吸水率低於10%時,表示輕質骨材表面玻璃化效果較好【Huang et al., 2007】。對本實驗而言,Tung及Jia淨水污泥添加不同比例之黏土後,由表4.3.1 結果顯示,兩者添加黏土不同比例燒製後其吸水率結果並沒有顯著變化;表4.3.2顯 示,隨著廢玻璃粉添加比例為50%,當燒製於1100℃時,吸水率皆低於10%以下, 且由試體外觀觀察發現骨材外部燒結效果最好,推測原因由於廢玻璃粉中大多以

63

SiO2含量為主,當高溫燒製時,試體內部較易產生液相燒結,加速顆粒的黏結速率 和消除顆粒間之孔隙【陳氏,2004】,有助於燒結體之緻密化作用,因而試體中開放 孔隙降低,吸水率隨之降低。

5.1.7 抗壓強度變化

輕質骨材的抗壓強度其資源化再利用方式之重要參考指標,抗壓強度和以下因 子有關,例如:(1) 骨材的密度和形狀(高密度和球形會有較高的抗壓強度)、(2) 表 面完整性(破碎或破裂的外觀具低抗壓強度)、(3) 吸水率(低吸水率具有較高的抗 壓強度)、(4) 孔隙的大小和分布、(5)由於燒結和發泡造成的緻密化效應,形成的 新晶相【Chang et al., 2007; Fakhfakh et al., 2007; Corrochanoa et al., 2009】。Xu等人文 中提到,當適當地SiO2含量增加時,輕質陶粒表面的緻密化效應是抗壓強度增加的 主要原因,其結構扮演重要的角色【Xu et al., 2008】。Park and Heo等人結果顯示, SiO2可促進網狀結構形成,故適當增加SiO2含量,可使試體較穩定【Park et al., 2002】。由表4.3.1及4.3.2結果來看,Tung及Jia淨水污泥當黏土與廢玻璃粉含量增加 時,經不同溫度燒製後之輕質骨材的強度與未添加前並無明顯變化。推測原因為當 高溫燒製時,樣品中所含化學組成(Fe2O3、K2O、CaO、MgO、Na2O)可能為降低骨 材強度的影響因子【Toya et al., 2004】,且添加過多SiO2含量時,試體外部緻密化效 果顯著,但抗壓強度並沒有明顯升高。因此,從本研究看來,SiO2含量對抗壓強度 的影響不大與Xu等人結果相符【Xu et al., 2008】。

5.1.8 TCLP

目前,在環境中重金屬溶出是一個重要的課題,文獻中許多學者利用毒性溶出 測試來判斷廢棄物是否符合法規標準,且當高溫燒結會降低骨材之重金屬濃度 【Chen et al., 2010, Wang et al., 2009】, Wang 等人提出,燒結溫度和溶出行為之間 的關係主要決定於重金屬的型態或者化合物形成的溫度【Wang et al., 1998】。由 TCLP 結果如表 4.2.2 顯示, Feng 淨水污泥中其鋅與鋇重金屬溶出濃度比起其他淨 水場污泥來的高,但各淨水場污泥之重金屬溶出濃度皆低於法規限值,故均屬一般 事業廢棄物,若將其做為輕質骨材原料則能達到資源化回收再利用之效果。

第六章 結論與建議

6.1 結論

- 從試體及微結構變化發現,Feng、Hou、Tung 淨水污泥當燒製於 1000~1150°C 時,試體外觀並沒有明顯發泡,其中Jia 淨水污泥燒製於 1150°C時,試體內 部孔洞有變大趨勢。此外,Lin 淨水污泥隨著燒製溫度提高而孔洞明顯增大。 Tung 及Jia 淨水污泥添加不同配比黏土或廢玻璃粉高溫燒製後,且隨著黏土 比例增加與燒製溫度提高,孔洞有明顯增大的趨勢;當燒製溫度於 1100°C 玻璃粉添加比例為 50%時,試體內部緻密化效果較顯著。
- 2. 各淨水污泥經 1000~1150°C 高溫燒製後,其顆粒密度為 0.77~2.43 g/cm³,吸水 率為 1.74~44.21%,顆粒抗壓強度範圍 112~169.9 kg/cm²之間,但大部分樣品皆 超出顆粒密度與吸水率標準,所有樣品皆符合輕質骨材顆粒抗壓強度之標準。 Tung 及 Jia 淨水污泥添加黏土或廢玻璃粉部分,其顆粒密度分別為 0.89~2.54 g/cm³及 0.37~2.01 g/cm³,吸水率分別為 7.89~26.20%及 5.74~27.35%,顆粒抗 壓強度範圍 106.6~198.8 kg/cm²及 108.4~124.7 kg/cm²之間,兩淨水污泥添加不 同比例玻璃粉在不同溫度燒製後之顆粒密度皆符合標準,但添加不同比例黏土在 不同溫度燒製後之顆粒密度,只有部分符合顆粒密度之標準,而添加不同比例驗 玻璃粉之吸水率隨著燒製溫度提高而降低,但添加黏土之吸水率則起伏較大,所 有樣品皆符合輕質骨材顆粒抗壓強度之標準(顆粒密度標準 2 g/cm³以下,吸水 率範圍 2~20%,顆粒抗壓強度需大於 76.5 kg/cm²)。
- 3. TCLP 及 M-TCLP 結果顯示, Feng 淨水污泥中其鋅與鋇重金屬溶出濃度比其他 淨水場污泥高,但各淨水場污泥之重金屬溶出濃度皆低於法規限值(見表 4.2.4), 故均屬一般事業廢棄物;而 Tung 和 Jia 兩淨水污泥添加黏土或廢玻璃粉經不同 配比混合燒製後試體進行多次萃取之毒性溶出試驗(M-TCLP),表 4.3.3~4.3.6 顯 示,各樣品於 1100~1150 °C 燒製後,其鋅重金屬濃度較高 (範圍 2.43~7.83

mg/L),其次為鋇重金屬濃度 (範圍 1.54~5.17 mg/L),但所有試體經檢測後其重 金屬濃度皆符合溶出毒性事業廢棄物法規標準。

6.2 建議

- 廢玻璃可改善試體外部燒結,建議可調整廢玻璃粉添加量及粒徑大小,並比較含 不同成份之玻璃,來改善燒製後試體之燒結、並降低其顆粒密度與吸水率。
- 建議可透過TGA-Mass分析,對於原料於各加熱溫度所釋出之氣體種類與 質量,有助於探討發泡機制,並將理論與實用結合付諸實際應用。
- 建議比較不同造粒尺寸與方式(滾筒造粒、高壓造粒、球形造粒、常壓造粒等方式)及改變爐體(Batch式高溫爐與旋轉窯)燒製。
- 建議可將燒製後之輕質骨材與混凝土混合,製成輕質骨材混凝土,做為綠建材之
 用途,並進行各項綠建材之測試。

- Acchar, W., Vieira, F. A., and Hotza, D. 2006. Effect of marble and granite sludge in clay materials. Materials Science and Engineering A. 419:306-309.
- Anagnostopoulos, I. M., and Stivanakis, V. E. 2009. Utilization of lignite power generation residues for the production of lightweight aggregates. Journal of Hazardous Materials. 163:329-336.
- Barbieri, L., Bonamartini, A. C., Lancellotti, I. 2000. Alkaline and alkaline-earth silicate glasses and glass-ceramics from municipal and industrial wastes. Journal of European Ceramic Society. 20(14–15):2477–2483.
- Bethanis, S., Cheeseman C. R., Sollars, C. J. 2002 Properties and microstructure of sintered incinerator bottom ash. Ceramics International. 28:881-886.
- Bhatty, J. I., and Redit, K. J. 1989. Moderate strength concrete from lightweight sludge ash aggregates. The International Journal of Cement Composites and Lightweight Concrete. 11(3):179-187.
- Bourgeoisa, J. C., Walshb, M. E., Gagnonb, G. A. 2004. Treatment of drinking water residuals: comparing sedimentation and dissolved air flotation performance with optimal cation ratios. Water Research. 38:1173–1182.
- Chandra, S., Berntsson, L. 2003. Lightweight Aggregate Concrete, Science, Technology, and Applications. Noyes Publications, William Andrew Publishing, Norwich, New York, USA.
- Chang, F. C., Lo, S. L., Lee, M. Y., Ko, C. H., Lin, J. D., Huang, S. C., and Wang, C. F. 2007. Leachability of metals from sludge-based artificial lightweight aggregate. Journal of Hazardous Materials. 146(1–2):98-105.
- Chen, G., Lee, H., Young, K. L., Yue, P. L., Wong, A., Tao, T., Choi, K. K. 2002. Glass recycling in cement production-an innovative approach. Waste Management. 22(7):47-753.
- Chen, H. J., Wang, S. Y., and Tang, C. W. 2010. Reuse of incineration fly ashes and reaction ashes for manufacturing lightweight aggregate. Construction and Building Materials. 24:46-55.
- Cheeseman, C. R., Sollars, C. J., McEntee, S. 2003. Properties, microstructure and leaching of sintered sewage sludge ash. Resources, Conservation and Recycling. 40:13-25.
- Cheeseman, C. R., Makinde, A., and Bethanis, S. 2005. Properties of lightweight aggregate produced by rapid sintering of incinerator bottom ash. Resources, Conservation and Recycling. 43:147-162.
- Cheeseman, C. R., Virdi, G. S. 2005. Properties and microstructure of lightweight aggregate produced from sintered sewage sludge ash. Resources, Conservation and Recycling. 45:18-30.
- Chiou, I. J., Wang, K. S., Chen, C. H., and Lin Y. T. 2006. Lightweight aggregate made from sewage sludge and incinerated ash. Waste Management. 26:1453-1461.
- Corrochano, B. G., Azcárate, J. A., and Rodas, M. 2009 Characterization of lightweight aggregates manufactured from washing aggregate sludge and fly ash. Resources, Conservation and Recycling. 53:571-581.
- Cusidó, J. A., Cremades, L.V., González M. 2003. Gaseous emissions from ceramics

manufactured with urban sewage sludge during firing processes. Waste Management. 23:273-280.

- De'Gennaro, R., Cappelletti., Cerri, G., De'Gennaro, M., Dondi, M., Langella, A. 2004. Zeolitic tuffs as raw materials for lightweight aggregate. Applied Clay Science. 25:71-81.
- Ducman, V., Mladenovic, A., and Suput, J. S. 2002. Lightweight aggregate based on waste glass and its alkali-silica reactivity. Cement and Concrete Research. 32:223-226.
- Ducman, V., and Mirtic^{*}, B. 2009. The applicability of different waste materials for the production of lightweight aggregates. Waste Management. 29:2361-2368.
- Fakhfakh, E., Hajjaji, W., Medhioub, M., Rocha, F., López-Galindo, A., Setti, M., Kooli, F., Zargouni, F., and Jamoussi, F. 2007. Effects of sand addition on production of lightweight aggregates from Tunisian smectite-rich clayey rocks. Applied Clay Science. 35:228-237.

German, R. M. 1996. Sintering theory practice. An Imprint of Wiley. ISBN:0-471-05786-X.

- Goldbold, P., Lewin, K., Graham, A., and Barker, P. 2003. The potential reuse of water utility products as secondary commercial materials. WRC technical report series. No UC 6081, project contract no. 12420-0, Foundation for Water Research, UK.
- Hansen, B., Karlsson, I., Cassidy, S., and Pettersson, L. 2000. Operation experiences from a sludge recovery plant. Water Science And Technology. 41:23-30.
- Huang, C., Rushing, J., and Liu Y. 2005. Mixing water treatment residual with excavation waste soil in back and artificial aggregate making. Journal of Environmental Engineering-ASCE. 272-277.
- Huang, S. C., Chang, F. C., Lo, S. L., Lee, M. Y., Wang, C. F., and Lin, J. D. 2007. Production of lightweight aggregates from mining residues, heavy metal sludge, and incinerator fly ash. Journal of hazardous materials. 144(1-2):52-58.
- Hupa, M., Skrifvars B. J., and Moilanen, A. 1989. Measuring the sintering tendency of ash by a laboratory method. Journal of the Institute of Energy. 131-137.
- Jord'an, M. M., Almendro-Candel, M. B., Romero, M., Rinco'n, J. Ma. 2005. Application of sewage sludge in the manufacturing of ceramic tile bodies. Apply Clay Science. 30:219-224.
- Lin, K. L., Chiang K. Y., and Lin D. F. 2006. Effect of heating temperature on the sintering characteristics of sewage sludge ash. Journal of Hazardous Materials. 128:175-181.
- Mangialardi, T., Piga, L., Schena, G., Sirini, P. 1998 Characteristics of MSW incinerator ash for use in concrete. Environmental Engineering Science. 15(4):291-297.
- Mangialardi, T. 2001. Sintering of MSW fly ash for reuse as a concrete aggregate. Journal of Hazardous Materials. B87:225-239.
- Merck & Co., Inc. 2001. The Merck Index. Merck Research Laboratories. Thirteenth edition. ISBN:0911910-13-1.
- Merino, I., Arĕvalo, L. F., Romero, F. 2005. Characterization and possible uses of ashes from wastewater treatment plants. Waste Management. 25:1046-1054.
- Merino, I., Arĕvalo, L. F., Romero, F. 2007. Preparation and characterization of

ceramic products by thermal treatment of sewage sludge ashes mixed with different additives. Waste Management. 27:1829-1844.

- Mun, K. J. 2007. Development and tests of lightweight aggregate using sewage sludge for nonstructural concrete. Construction and Building Materials. 21:1583-1588.
- Nowok, J. W., Benson, S. A., Jones, M. L., and Kalmanovitch, D. P. 1990. Sintering behaviour and strength development in various coal ashes. Fuel. 69:1020-1028.
- Pan, S. C., Tseng, D. H. 2001. Sewage sludge ash characteristics and its potential application. Water Science And Technology. 44:261-268.
- Park, Y. J., and Heo, J. 2002. Vitrification of fly ash from municipal solid waste incinerator. Journal of Hazardous Materials. B91:83-93.
- Qi, Y., Yue, Q., Han, S., Yue, M., Gao, B., Yu, H., and Shao, T. 2010. Preparation and mechanism of ultra-lightweight ceramics produced from sewage sludge. Journal of Hazardous Materials. 176:76-84.
- Rakshvir, M., Barai, S. V. 2006. Studies on recycled aggregates-based concrete. Waste Management & Research. 24(3):225-233.
- Riley, C. M. 1951. Association of chemical process to the bloating clay. Journal of American Ceramic Scission. 34(4):121-128.
- Sachdeva, V., Tyagi, R. D., Valero, J. R. 2000. Production of biopesticides as a novel method of wastewater sludge utilization/disposal. Water Science And Technology. 42:211-216.
- Shin, D. Y., and Kim, K. N. 2009. Preparation of fired bricks as construction materials by replacing clay with municipal incinerator residue slag. Journal of Ceramic Processing Research. 10(6):739~743.
- Shih, P. H., Chang, J. E., Lu, H. C., and Chiang, L. C. 2005. Reuse of heavy metal-containing sludges in cement production. Cement and Concrete Research. 35:2110-2115.
- Skrifvars, B. J., Hupa, M., Backman, R., and Hiltunen, M. 1994. Sintering mechanisms of FBC ashes. Fuel. 73(2):171-176.
- Slavo, V. M., Campostrini, R., Maurina S., Carturan G, Mongheddu M, Budroni G, Cocco G. 2000 Bauxite red mud in the ceramic industry, Part 1: Thermal behaviour. Journal of European Ceramic Society. 20:235-244.
- Souza, G. P., Holanda, J. N. F. 2004. Densification Behaviour of Petroleum Waste Bearing Clay-Based Ceramic Bodies. Ceramics International. 30:99-104.
- Sobolev, K., Turker, P., Soboleva, S., Iscioglu, G. 2006. Utilization of waste glass in ECO-cement: strength properties and microstructural observations. Waste Management. 27(7):971-976.
- Stern, K. H., Weise, E. L. 1966. High Temperature properties and decomposition of inorganic salts, Part 1: Sulphates. USA: NSRDS National Bureau of Standards. p. 7.
- Stolarek, P., Ledakowicz, S. 2001. Thermal processing of sewage sludge by drying, pyrolysis, gasification and combustion. Water Science And Technology. 44:333-340.
- Tay, J. H., Show, K. Y. 1997. Resource recovery of sludge as a building and construction material-a future trend in sludge management. Water Science And Technology. 36:259-266.
- Toya, T., Kameshima, Y., Yasumori, A., Okada, K. 2004. Preparation and properties

of glass-ceramics from wastes (Kira) of silica sand and kaolin clay refining. Journal of European Ceramic Society. 24:2367–2372.

- Tsai, C. C., Wang, K. S., and Chiou, I. J. 2006. Effect of SiO₂-Al₂O₃-flux ratio change on the bloating characteristics of lightweight aggregate material produced from recycled sewage sludge. Journal of Hazardous Materials. B134:87-93.
- Wang, K. S., Chiang, K.Y., Perng, J. K., Sun, C. J. 1998. The characteristics study on sintering of municipal solid waste incinerator ashes. Journal of hazardous materials. 59:201-210.
- Wang, X., Jin, Y., Wang, Z., Mahar, R. B., and Nie, Y. 2008. A research on sintering characteristics and mechanisms of dried sewage sludge. Journal of Hazardous Materials. 160:489-494.
- Wang, X., Jin, Y., Wang, Z., Nie, Y., Huang, Q., and Wang, Q. 2009. Development of lightweight aggregate from dry sewage sludge and coal ash. Waste Managemnet. 29:1330-1335.
- Wasserman, R., and Bentur, A. 1997. Effect of Lightweight aggregate Fly Ash Aggregate Microstructure on the Strength of Concrete. Cement and Concrete Research. 27(6):525-537.
- Wei, Y. L., Yang, J. C., Lin, Y. Y., Chuang, S. Y., and Wang, H. P. 2008. Recycling of harbor sediment as lightweight aggregate. Marine Pollution Bulletin. 57: 867-872.
- Wei, Y. L., and Lin, Y. Y. 2009. Role of Fe compounds in light aggregate formation from a reservoir sediment. Journal of Hazardous Materials. 171:111-115.
- Xu, G. R., Zou, J. L., Dai, Y. 2006. Utilization of dried sludge for making ceramsite. Water Science & Technology. 54(9):69-79.
- Xu, G. R., Zou, J. L., Li, G. B. 2008. Ceramsite Made with Water and Wastewater Sludge and its Characteristics Affected by SiO₂ and Al₂O₃. Environmental Science & Technology. 42:7417-7423.
- Xu, G. R., Zou, J. L., Li, G. B. 2008 Effect of sintering temperature on the characteristics of sludge ceramsite. Journal of Hazardous Materials. 150:394-400.
- Xu, G. R., Zou, J. L., Li, G. B. 2008. Stabilization of heavy metals in ceramsite made with sewage sludge. Journal of Hazardous Materials. 152:56-61.
- Xu, G. R., Zou, J. L., Li, G. B. 2009. Ceramsite obtained from water and wastewater sludge and its characteristics affected by (Fe₂O₃+CaO+MgO)/ (SiO₂+Al₂O₃). Water Research. 43:2885-2893.
- Xu, L. L., Guo, W., Wang T., Yang N. 2005. Study on fired bricks with replacing clay by fly ash in high volume ratio. Construction and Building Materials. 19:243-247.
- Yue, Q., Zhao, Y., Li, Q., Li, W., Gao, B., Han, S., Qi Y., and Yi H. 2010. Research on the characteristics of red mud granular adsorbents (RMGA) for phosphate removal. Journal of Hazardous Materials. 176:741-748.
- Zou, J. L., Xu, G. R., Li, G. B. 2009 Ceramsite obtained from water and wastewater sludge and its characteristics affected by Fe₂O3, CaO, and MgO. Journal of Hazardous Materials. 165:995-1001.
- 余岳峰,「下水污泥焚化灰渣燒成輕質骨材特性之研究」,碩士論文,國立中央大學 環境工程研究所,(2000)。

- 劉志成、賴志彦,「污泥調理脫水技術及其新發展」,環保月刊,第二卷第八期, pp.141~149,(2002)。
- 陳宜晶,「利用添加劑提昇淨水污泥燒結之材料品質研究」,碩士論文,逢甲大學 環境工程與科學學系,(2004)。
- 蕭澄清,「骨材級配對輕質骨材混凝土性質之影響」,碩士論文,國立中興大學土 木工程研究所,(2001)。
- 李俊德,「輕質骨材性質與最佳混凝土強度之研究」,碩士論文,國立台灣工業技術學院營建工程技術研究所,(1996)。
- 王順元,「淤泥輕質骨材燒製研究」,碩士論文,國立中興大學土木工程研究所, (2001)。
- 張家碩,「水庫淤泥燒製輕質骨材的燒結行為之研究」,碩士論文,國立成功大學 資源工程研究所,(2005)。
- 周贊祐,「水庫淤泥燒結與發泡之研究」,碩士論文,東海大學環境科學研究所, (2005)。
- 林永揚,「水庫淤泥混合焚化飛灰燒製輕質骨材」,碩士論文,東海大學環境科學 與工程研究所,(2006)。
- 楊景強,「輕質骨材燒結與發泡機制之研究」,碩士論文,東海大學環境科學與工 程研究所,(2007)。
- 莊世鈺,「廢棄淤泥添加發泡熔融劑燒製輕質骨材之研究」,碩士論文,東海大學 環境科學與工程研究所,(2008)。
- 傳建璋,「升溫速率對石門水庫淤泥製備輕質骨材之影響」,碩士論文,國立成功 大學資源工程研究所,(2009)。
- 蕭博仰,「水庫淤泥輕質骨材之膨脹氣體生成研析」,碩士論文,國立中興大學土 木工程研究所,(2006)。
- 張毓舜,「下水污泥焚化灰渣燒結特性之研究」,碩士論文,國立中央大學環境工程 研究所,(1999)。
- 蔡昆城,「淤泥再生輕質骨材混凝土工程性質之研究」,碩士論文,國立台灣科 技大學營建工程研究所,(2002)。
- CNS487,「細粒料比重及吸水率試驗法」,中國國家標準。
- CNS11393,「石灰石化學分析法」,中國國家標準。
- NIEA R201.13C,「事業廢棄物毒性特性溶出程序,Toxicity Characteristic Leaching Procedure,TCLP」有害事業廢棄物認定標準。
- 台灣省自來水公司 <u>http://www.water.gov.tw/</u>
- 台北自來水事業處 <u>http://www.twd.gov.tw</u>
- 事業廢棄物管制資訊網 <u>http://waste.epa.gov.tw/prog/IndexFrame.asp</u>
- 綠建材標章 <u>http://www.cabc.org.tw/gbm/HTML/website/about.asp</u>

附錄一

附圖 1 各淨水場污泥之燒製後特性分析

附圖 2 淨水污泥添加不同比例黏土燒製後試體之特性分析

附圖 3 淨水污泥添加不同比例廢玻璃粉燒製後試體之特性分析

SPECTRO X-LabPro		Jo	b Number: 9906
Preset Sample	Data		
Sample Name: Description: Method: Job Number: Sample State: Sample Type: Sample Status:	T99051907 6242tqk- 990601 Cuvette, 28 mm Cuvette (powder) A A A X X X	Dilution Material: Sample Mass (g): Dilution Mass (g): Dilution Factor: Sample rotation: Date of Receipt: Date of Evaluation:	4.0000 0.0000 1.0000 No 2010/06/01 2010/06/01

The error is the statistical error with 1 sigma confidence interval

Sc	creening analysis					Mai	n comp	ounds			
13	AI	> 366300	±	7300	ppm	14	Si	> 604000	 	2200	
14	Si	> 604900	±	2200	ppm	19	ĸ	24490	- H	2200	ppm
15	P	6151	±	82	ppm	26	Fe	18740	- I	110	ppm
16	S	796	±	12	ppm			10/40	T	30	ppm
17	CI	45.4	±	5.4	ppm	Sum	ı		1	01.4	0/
19	ĸ	24490	±	110	ppm				1	01.4	70
20	Ca	5459	±	39	ppm						
22	I TI	2211	±	15	ppm						
23	V		<	8.0	ppm						
24	Cr		<	26	ppm						
25	Mn	283.5	±	5.9	ppm						
26	Fe	18740	±	30	ppm						
27	Co		<	26	ppm						
28	Ni	14.8	±	0.8	ppm						
29	Cu	13.2	±	0.7	ppm						
30	Zn	81.8	±	1.0	ppm					×	
31	Ga	11.2	±	0.4	ppm						
32	Ge		<	1.4	ppm						
33	As	16.9	±	0.4	ppm						
34	Se		<	0.6	ppm						
35	Br	3.1	±	0.1	ppm						
37	Rb	60.4	±	0.3	ppm						
38	Sr	36.3	±	0.2	ppm						
39	Y	11.9	±	0.2	ppm						
40	Zr		<	50	ppm						
47	Ag		<	30	nnm						
48	Cd	3.7	±	04	nnm						
50	Sn	15.2	±	0.7	nnm						
51	Sb		<	6.2	nnm						
52	Те		<	72	ppm						
53	1		<	17	ppm						
56	Ba	178.1	+	46	ppm						
80	Hg	00 0 .0	<	3.0	ppm						
81	TI		<	27	nnm						
82	Pb	13.2	+	0.5	ppm						
83	Bi		<	2.8	ppm						
90	Th		<	2.0	ppin						
92	U		<	6.9	ppm						
<i>l</i> lair	o compoun	ds									
13	Al	> 366300	±	7300	ppm						

Date: 2010/06/01

.

.

.

Page 1

附圖 4 豐原淨水污泥之 XRF 分析

_

Job Number: 990601

--- Preset Sample Data -

Sample Name: Description: Method: Job Number: Sample State: Sample State: Sample Status:	T99051908 6242tqk- 990601 Cuvette, 28 mm Cuvette (powder) A A A X X X	Dilution Material: Sample Mass (g): Dilution Mass (g): Dilution Factor: Sample rotation: Date of Receipt: Date of Evaluation:	4.0000 0.0000 1.0000 No 2010/06/01 2010/06/01

The error is the statistical error with 1 sigma confidence interval

Scr	eening a	analysis				Mai	n compo	ounds			
13	AI	> 453000	±	7000	ppm	14	Si	> 526900	+	2000	nnm
14	Si	> 526900	±	2000	ppm	19	ĸ	13170	÷	70	ppm
15	Р	6175	±	77	ppm	26	Fe	14360	±	30	ppm
16	S	2324	±	19	ppm	(1 <u></u>					PPILI
17	CI	1058	±	12	ppm	Sun	n		1	00.8	%
19	ĸ	13170	±	70	ppm						
20	Ca	8119	±	40	ppm						
22	Ti	1707	±	11	ppm						
23	V	11.5	±	1.0	ppm						
24	Cr	86.8	±	5.0	ppm						
25	Mn	2637	±	12	ppm						
26	Fe	14360	±	30	ppm						
27	Co		<	25	ppm						
28	Ni	22.4	±	0.8	ppm						
29	Cu	11.9	±	0.6	ppm						
30	Zn	34.7	±	0.6	ppm						
31	Ga	10.4	±	0.4	mag						
32	Ge		<	1.4	ppm						
33	As	30.9	±	0.4	ppm						
34	Se		<	0.6	ppm						
35	Br	9.0	±	0.2	ppm						
37	Rb	27.8	±	0.2	ppm						
38	Sr	41.3	±	0.2	ppm						
39	Y	7.1	±	0.1	ppm						
40	Zr		<	50	ppm					3	
47	Ag		<	30	ppm						
48	Cd		<	30	ppm						
50	Sn	13.9	±	0.6	ppm						
51	Sb	12.9	±	0.6	ppm						
52	Те		<	65	ppm						
53	1		<	17	ppm						
56	Ba	81.6	±	3.7	ppm						
80	Hg		<	2.8	ppm						
81	TI		<	2.8	ppm						
82	Pb	8.0	±	0.3	ppm						
83	Bi		<	2.8	ppm						
90	Th		<	3.3	ppm						
92	U		<	5.7	ppm						
Mai	n compo	ounds									
13	AI	> 453000	±	7000	ppm						

Date: 2010/06/01

Page 2

附圖 5 后里淨水污泥之 XRF 分析

Job Number: 990601

- Preset Sample Data -

Sample Name: Description: Method: Job Number: Sample State: Sample Type: Sample Status:	T99051909 6242tqk- 990601 Cuvette, 28 mm Cuvette (powder) A A A X X X	Dilution Material: Sample Mass (g): Dilution Mass (g): Dilution Factor: Sample rotation: Date of Receipt: Date of Evaluation:	4.0000 0.0000 1.0000 No 2010/06/01 2010/06/01
Results			

The error is the statistical error with 1 sigma confidence interval

Scr	eening	analysis				Mai	n comp	ounds			
13	AI	> 490000	±	7800	ppm	14	Si	> 477300	+	2000	
14	Si	> 477300	±	2000	ppm	19	ĸ	21630	+	100	ppm
15	Р	5563	±	76	ppm	26	Fe	22070	+	30	ppm
16	S	1526	±	16	ppm				_	30	ppm
17	CI	838	±	12	ppm	Sun	n		1	01.1	0/
19	ĸ	21630	±	100	ppm		-			01.1	70
20	Ca	6354	±	38	ppm						
22	Ti	2743	±	15	ppm						
23	V	23.2	±	1.7	mag						
24	Cr		<	30	mag						
25	Mn	1387	±	10	ppm						
26	Fe	22070	±	30	ppm						
27	Co		<	30	ppm						
28	Ni	19.1	±	0.8	ppm						
29	Cu	13.9	±	0.6	ppm						
30	Zn	53.8	±	0.8	ppm						
31	Ga	9.7	±	0.4	ppm						
32	Ge		<	1.5	ppm						
33	As	16.8	±	0.4	ppm						
34	Se		<	0.7	ppm						
35	Br	10.6	±	0.2	ppm						
37	Rb	47.1	±	0.3	ppm						
38	Sr	51.7	±	0.2	ppm						
39	Y	11.5	±	0.2	nom						
40	Zr		<	50	ppm						
47	Ag		<	30	ppm						
48	Cd	3.7	±	0.4	ppm						
50	Sn	13.2	±	0.6	npm						
51	Sb	12.3	±	0.6	ppm						
52	Te		<	55	ppm						
53	1		<	17	ppm						
56	Ba	151.4	±	4.2	ppm						
80	Hg		<	2.6	ppm						
81	TI		<	2.8	ppm						
82	Pb	11.7	±	0.4	ppm						
83	Bi		<	2.8	mag						
90	Th		<	3.8	ppm						
92	U		<	6.6	ppm						
Mair	n compo	ounds									
13	AI	> 490000	±	7800	ppm						

Date: 2010/06/01

Page 3

附圖 6 東興淨水污泥之 XRF 分析

_

Job Number: 990601

Preset Sample Data -

Sample Name: Description: Method: Job Number: Sample State: Sample Type: Sample Status:	T99051910 6242tqk- 990601 Cuvette, 28 mm Cuvette (powder) A A A X X X	Dilution Material: Sample Mass (g): Dilution Mass (g): Dilution Factor: Sample rotation: Date of Receipt: Date of Evaluation:	4.0000 0.0000 1.0000 No 2010/06/01 2010/06/01
Results			

The error is the statistical error with 1 sigma confidence interval

Scr	Screening analysis						Main compounds							
13	AI	> 436400	±	8300	ppm	14	Si	> 501400	+	2100				
14	Si	> 501400	±	2100	ppm	19	ĸ	29050	Ŧ	120	ppm			
15	Ρ	6162	±	89	ppm	20	Ca	21410	±	70	ppm			
16	S	1161	±	16	ppm	26	Fe	20160	Ŧ	10	ppm			
17	CI	555	±	12	ppm	20	10	29100	T	40	ppm			
19	к	29050	±	120	ppm	Sum			1	11 7	0/			
20	Ca	21410	±	70	nnm	oun			1	J1.7	%			
22	Ti	3259	±	19	ppm									
23	V	20.2	±	1.9	ppm									
24	Cr		<	31	nnm					1				
25	Mn	806.9	+	9.0	nom									
26	Fe	29160	÷	40	ppm									
27	Co		<	33	nom									
28	Ni	31.3	+	11	ppm									
29	Cu	21.4	+	0.8	npm									
30	Zn	55.7	+	0.0	ppm									
31	Ga	14 4	÷	0.0	ppm									
32	Ge	14.4	÷	1.5	ppm									
33	As	24.0	+	0.5	ppin									
34	Se	24.0	-	0.5	ppm									
35	Br	10.3	+	0.7	ppm									
37	Rh	68.7	T	0.2	ppm									
38	Sr	68.0	T	0.3	ppm									
30	v	11 1	T	0.3	ppm									
40	Żr	1.1.1	T	0.2	ppm									
47	An		2	20	ppm									
48	Cd		2	30	ppm									
50	Sn	15 7	-	3.5	ppm									
51	Sh	10.7	±	0.7	ppm									
52	To	12.1	±	0.7	ppm									
53	ie i		~	54	ppm									
56	Ba	105.0	<	18	ppm									
90	La	0.001	Ŧ	4.8	ppm									
91	TI		<	3.1	ppm									
01	Dh	44.0	<	2.4	ppm									
02	PU Di	14.8	±	0.5	ppm									
00	DI		<	3.0	ppm									
90	in		<	4.2	ppm									
92	U		<	7.5	ppm									
Mair	n comp	ounds												
13	AI	> 436400	±	8300	ppm									

Date: 2010/06/01

 a^{A}

Page 4

附圖7 嘉義淨水污泥之 XRF 分析

Job Number: 990601

----- Preset Sample Data --

Sample Name: Description: Method: Job Number: Sample State: Sample Type: Sample Status:	T99051911 6242tqk- 990601 Cuvette, 28 mm Cuvette (powder) A A A X X X	Dilution Material: Sample Mass (g): Dilution Mass (g): Dilution Factor: Sample rotation: Date of Receipt: Date of Evaluation:	4.0000 0.0000 1.0000 No 2010/06/01 2010/06/01
Results			

The error is the statistical error with 1 sigma confidence interval

Screening analysis					Mai	Main compounds					
13	AI	> 330600	±	7300	ppm	14	Si	> 618400	1	2200	
14	Si	> 618400	±	2200	ppm	19	ĸ	32800	±	120	ppm
15	Ρ	5653	±	81	mag	26	Fe	28500	+	40	ppm
16	S	809	±	13	ppm			20000		40	ppm
17	CI		<	4.6	ppm	Sun	n		1	01.0	0/
19	К	32890	±	130	ppm		142 		1	01.0	70
20	Ca	8414	±	49	ppm						
22	Ti	3866	±	20	ppm						
23	V	11.4	±	1.5	ppm						
24	Cr		<	31	pom						
25	Mn	213.5	±	52	ppm						
26	Fe	28500	±	40	ppm						
27	Co		<	33	ppm						
28	Ni	18.5	±	0.9	ppm						
29	Cu	10.8	÷	0.7	ppm						
30	Zn	53.3	÷	0.8	ppm						
31	Ga	12.3	÷	0.5	nom						
32	Ge	1.5	+	0.3	ppm						
33	As	10.6	+	0.4	nom						
34	Se		<	0.6	nom						
35	Br	0.8	+	0.1	nnm						
37	Rb	74.6	+	0.3	nnm						
38	Sr	53.1	+	0.2	nnm						
39	Y	13.3	Ŧ	0.2	nom						
40	Zr		<	50	nom						
47	Ag		<	30	ppm						
48	Cd	3.8	+	04	nnm						
50	Sn	19.1	+	0.8	nom						
51	Sb	12.5	÷	0.7	ppm						
52	Те		<	65	nnm						
53	1		<	18	nom						
56	Ba	194.9	+	50	ppm						
80	Ha		<	32	nnm						
81	ТĬ		<	28	nnm						
82	Pb	12.2	+	0.5	npm						
83	Bi		<	2.8	nnm						
90	Th		<	4 1	ppm						
92	U		<	7.8	ppm						
Maiı	n compo	ounds									
13	AI	> 330600	±	7300	ppm						

Date: 2010/06/01

Page 5

附圖 8 林內淨水污泥之 XRF 分析

附錄二

-708	JCPDS-ICDD Copyright (c) 1994	PDF-2	Sets 1-44 database	Rad	.= 1.5405	6 Qualit	y: *
				2-theta	Int.	h}	< 1
S10					1 1		
2							
				20.542	40	1 4	0
Silicon Oxide				26.346	100	1) 1
				35.921	10	1	1 0
				39.080	6	1 1	0 2
				41.683	18	2	0 0
Rad: Lambda:	Filter:	d	-sp:				
Cutoff: Int: Dif	ffractometer I/Icor:			44.996	12	2	0 1
Ref: Roy, Z. Kristallog:	r., Kristallgeom., Kristallphys	., Kristal	lchem., 111 185	49.439	60	1	12
(1959)				54.024	4	2	0 2
				58.846	25	2	1 1
Sys: Hexagonal	S.G.:			66.546	20	2	12
a: 4.994(2) b:	c: 5.438(7)	A :	C: 1.0889	1	1 I		
A: B:	C :	Z: 3	mp:	67.141	35	3	0 1
Ref: Ibid.							
Dx: 2.548 Dm:	SS/FOM: F11=9(.067,19)						
ea: nwB: Ref:	ey: Sign:	2V:					
Distinguished from Sili Silica-rich end of sili SiO2. Has a distorted parameters generated by c=5.459. Mwt: 60.08.	ca K by absence of 3.85 and 3.1 ca O series (SiO2 - LiAlSiO4), quartz structure, caused by lat least squares refinement. Ref Volume[CD]: 117.45.	7 reflect: probably n tice dison erence rep	ions. not pure cder. Cell ports: a=5.006,				

Strong lines: 3.38/X 1.84/6 4.32/4 1.39/4 1.57/3 1.40/2 2.17/2 2.01/1

ĸ.

	37.784	42	
	41.683		
at. Curai Dambda: 1.54056 Filter: Mono. d-sp: Diff.	43.362		
r: Welton-Holzer, J., McCarthy, G., North Dakota State University, D	46.183	1	
Kota, USA, ICDD Grant-in-Aid, (1989)	52.558	42	0 2 4
	57.502	82	1 1 6
s: Knombohedral (Hex) S.G.: R-3c (167)	59.772	2	2 1 1
4.7588(1) b: C: 12.992(1) A: C: D. 2001	61.133	5	1 2 2
B: C: Z: 6			
r: Ibia. Inp: 2050 deg.	61.303	7	0 - 1 8
	66.520	3.0	2 1 4
: 3.99 Dm: 4.05 SS/FOM: F30=221(.004,31)	68.207	45	3 0 0
3 7/01	70.417	1	1 2 5
f: Nota nwB: 1.7686 ey: Sign: - 2V: f: Winchell, A., Winchell, H., Microscopic Character of Artificial F	74.300	1	2 0 8
b., 60 (1964) P-1 Hardetter of Artificial Inorg. Solid	76.880	13	1 0 10
b	77.234	6	1 1 9
IOT: White	80.423	2	2 1 7
ak neight intensities. Sample is the National Institute of Standards	80.692	5	2 2 0
nnology corundum standard reference material 674. Also called: ruby. Also lled: sapphire. sigma(lobs)=+/-0.01. Al203 type. Corundus	83.217	1	3 0 6
rundum subgroup. Also called: alumina, Also called: aluminum tr	84.366	4	2 2 3
amonite. Si used as internal standard, PSC: bR10 To replace	85.144	<1	1 3 1
lidated by calculated pattern 43-1484. Structure references Toling	86.356	4	3 1 2
, Acta Crystallogr., Sec. B, 26 228 (1980). Mut. 101 Sec. Ishizawa, N. et	86.500	3	1 2 8
1.80. Volume[CD]:	88.997	5	0 2 10

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	90.705	+-	11 K I	2-theta Int.	h k 1	2-theta	Int.	h k l	
102.832 1 1 1 120.211 <1	91.190 95.248 98.393 101.064	6 12 2 9	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	110.993 2 114.068 2 116.101 9 116.589 7 117.838 5	3 1 8 2 2 9 3 2 4 0 1 14 4 1 0	131.118 132.207 132.639 136.094	4 <1 <1 16	2 0 14 3 2 7 2 1 13 4 1 6	
	102.832 103.316 109.539 109.868 110.833	1 2 <1 2 2	1 1 12 4 0 4 3 2 1 1 2 11 2 3 2	120.211 <1 122.048 3 124.596 2 127.677 10 129.887 4	2 3 5 4 1 3 0 4 8 1 3 10 3 0 12				

. Strong lines: 2.09/X 2.55/X 1.60/8 3.48/7 1.37/5 2.38/4 1.74/4 1.40/3

FeO	2-theta	I Int	··· ··································
		++	5 N 0
Iron Oxide	36.040	80]	3 0 1
Wustite, syn	41.927	100	2 0 0
	72.737	25	2 2 0
Fac: CoKa Lambda: 1.7902 Filter: Fe d-sp:	76.588	1.5	2 2 2
Ref: Allen, W., U.S. Steel Fundamental Res. Lab. Private Gran	91.321	15	4 0 0
- Has, Hivate Communication	102.454	10	3 3 1
Sys: Cubic S.G.: Fm3m (226)	106.221	15	4 2 0
a: 4.307 b: C: A: C:	1		
Ref: Ibid. C: Z: 4 mp: 13	72 C		
Dx - 5 97 D= 5 0-			
SXI 5.57 Dut: 5.74 SS/FOM: F8=36(.027,8)			
ea: nwB: 2.32 ey: Sign: 2V:			
sand 3 System of Mineralogy, 7th Ed.			
Color: Black			
Average of 13 patterns of sample prepared by fusion of Record			
iron crucibles. Fe203 varies 8-11% by analysis. Crystals are rounded upo	ler	1	
RR2Re=18.3, Disp.=16, VHN=490 (mean at 100, 200, 200)	2:		
.317, 18.4, Ref.: IMA Commission on Ore Microscopy QDF. ClNa type. Halif	e	ĺ	
- 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.			
-/- 1.08/2 0.96/2 0.9	9/1		
1.55/5 1.24/2 1.08/2 0.96/2 0.9	9/1		
1.08/2 0.96/2 0.9	9/1		
0.9	9/1		
0.9	9/1		
	9/1		
	9/1		
	9/1		
	9/1		
	9/1		
	9/1		
	9/1		
	9/1		
	9/1		
	9/1		
	9/1		
	9/1		
	9/1		
	9/1		
	9/1		
	9/1		
	9/1		
	9/1		
	9/1		
	9/1		
	9/1		

Fe O							2-theta	Int.	h	k l
2 3								++-		
							24 138	20	0	
Iron Oxide							33 152	1 100	1	1 2
							35.611	70	1	1 0
Hematite, syn							39.276		0	0 6
							40.854	20	1	1 3
Rad: CuKal Lambo	la: 1.540598	Filter	: Mono.	d-	sp: Diff.			1 - 1	-	
Cutoff: Int:	Diffractometer	I/Icor	: 2.4				43.518	3	2	0 2
Ref: Natl. Bur. Stand	l. (U.S.) Monog	r. 25, 18 37	(1981)				49.479	40	0	2 4
							54.089	45	1	1 6
Cup, Dhomboheduel ///							56.150	1 1	2	1 1
Sys: Knombonedral (He	x) S.G.: R	-3C (167)					57.428	5	1	2 2
a: p. upport) D:		c: 13.7489(1	/) A:		C: 2.7303			[]		
n: B: Ref. Thid		C:	Z :	6	mp: 1350-1	360 deg.	57.589	10	0	1 8
Not. IDIG.							62.449	30	2	14
Dx: 5.27 Dm. 5	26 PE/EOM	E20 (0/ 010	201				63.989	30	3	0 0
DA. 5.27 Ditt: 5.	26 SS/FOM:	F30=69(.011,	39)				[66.026]	<1	[1	2 5]
ea · 2 94	3 22 01						69.599	3	2	0 8
Ref Danale Svetem of	Mineralogy 7	: th D4 T FOX	sign: -	2V:						
	mineralogy, /	ch 50., 1 52;	(1944)			1	71.935	10	1	0 10
							72.260	6	1	1 9
Color: Dark reddish b	rown						75.428	8	2	2 0
Pattern taken at 25 0	. Sample from	Pfizer, Inc.	New Yor	k New V	ork USA		77.727	4	3	0 6
heated at 800 C for 3	days. CAS no	.: 1309-37-1	Opaque	mineral	ontical data		/8./58	2	2	2 3
on specimen from Elba	, R1R0=30.2, R	R2Re=26.1, Di	sp.=16. \	HN=1038	(mean at		80 700		-	
100, 200, 300), Color	values=1 .29	9, .309, 29.8	. 2 . 299	309.	25.7 Ref ·		82 927		T	2 8
IMA Commission on Ore	Microscopy QD	F. Pattern m	eviewed b	v Svvins	ki. W .		84 913		0	2 10
McCarthy, G., North I	akota State Un	iversity, Far	go, North	Dakota,	USA, ICDD		88 539	1 7	2	2 4
Grant-in-Aid (1990).	Agrees well w	ith experimer	tal and o	alculate	d patterns.		91 342	1 2	2	2 0
Additional weak refle	ction [indicate	ed by bracket	s] was ob	served.	Also called		221010		0	4 2
crocus mantis. Also	called: veneti	an red. Also	called:	ferrite.	Also called	1:				
indian red. Also cal	led: crocus	Al2O3 type.	Corundum	group, c	orundum					
subgroup. Also calle	d: burnt ochre	. Also calle	d: colcot	har. Al	so called:			í í		
rouge. Ag used as in	ternal standar	d. PSC: hR10). To rep	lace 13-	534 and			1		
validated by calculat	ed pattern 24-	72. Mwt: 159	.69. Vol	ume[CD]:	301.93.	1				
								- CONTRACT OF DECK		
2 thota Tak	h. 1. 1	1 A								

					·					
93.712	7	2	1	10	116.040	5	1	3	10	[]] [
95.236	< 1	1	1	12	117.753	1	3	0	12	
95.659	3	4	0	4	118.692	3	2	0	14	
102.282	4] 3	1	8	122.425	6	4	1	6	
104.910	< 1	2	2	9	125.923	1	2	3	8	
1 1		1			1	1	i			
106.619	5	3	2	4	128.752	3	4	0	10	
107.021	4	0	1	14	131.871	5	1	2	14	
108.086	5	4	1	0	133.235	- 3	3	3	0	
111.514	2	4	1	3	144.448	4	3	2	10	
113.590	2	0	4	8	147.961	4	2	4	4	

Strong lines: 2.70/X 2.52/7 1.69/5 1.84/4 3.68/3 1.49/3 1.45/3 2.21/2

1.1

					l 2-theta	l Inr i	b k l
alu							
						1 1	
					24.164	40	
lcium Oxic	de				26.749	100	
					29.756	100	
					35.597	20	
					39.491	60	
d: CuKa	Lambda: 1.5	418 Filte	r: Ni	d-sp:	1	1	
toff:	Int: Diffra	ctometer I/Ico	r :		43.253	40	
f: Kovgan	, Nakhodnova, Ru	iss. J. Inorg. Chem.	(Engl. Transl.), 18 208 (1973)	47.568	60	
					48.375	60	
						1 (
(S:		S.G.:				1 1	
	b:	с:	A :	С:		1	
	В:	C :	Z :	mp:		1 1	
≥£:						1 1	
					Ì	1 1	
к:	Dm :	SS/FOM:			1	1 1	
						1 1	
a :	nwB :	ey:	Sign: 2	V :		1 1	
ef:					i i	1 1	
						1 1	
						1	
vt: 56.08.						1 1	
						1 1	
					1	1 1	
						1	
						1 1	
					1	i i	
						1	
						i i	
						1 1	

.

.

.

Strong lines: 3.33/X 3.00/X 2.28/6 1.91/6 1.88/6 3.68/4 2.09/4 2.52/2

.

.

		. 1.540.	56 Quality: *
g0	2-theta	Int.	h k l
	36.946	10	1 1 1
aghesian Oxide	42.908	100	2 0 0
	62.304	52	2 2 0
ericlase, syn	74.677	4	3 1 1
	78.611	12	2 2 2
ad: Cutal Lambda: 1.5405 Filter: Ni d-sp:	1		
f. Swapper Table With D. Solar Million 2,10	93.991	5	4 0 0
er. Swanson, Targe, Nati. Bur. Stand. (U.S.), Circ. 539, 1 37 (1953)	105.685	2	3 3 1
	109.729	17	4 2 0
vs. Cubic P.C.: Emil: (200)	127.190	15	4 2 2
4 213 b.	143.576	3	5 1 1
B C A: C:			
ef: Ibid.			
x: 3.58 Dm: 3.56 SS/FOM; F10=56(.018.10)			
a: nwB: 1.732 ey: Sign: 2V.			
ef: Dana's System of Mineralogy, 7th Ed., II 499			
plor: Colorless			
attern taken at 26 C. High purity phosphor sample from RCA heated at 1800 C			
or 3 hours. Spectrographic analysis (%): Ca and Si 0.01-1.00, Al, B, Cr, Fe,	1 1		
i 0.001-0.01. Pattern reviewed by Martin, K., McCarthy, G., North Dakota			
Late University, Parge, North Dakota, USA, ICDD Grant-in-Aid (1990).			
xcept for (220) reflections, there is good agreement with experimental and	i 1		
alculated patterns. The experimental pattern had had $I(220)=28$; the			
aiculated value is I(220)=49. ClNa type. Halite group, periclase subgroup.			

Strong lines: 2.11/X 1.49/5 1.22/1 0.94/2 0.86/2 2.43/1 1.05/1 1.27/1

,

K O		2 theta In	.t.) h
2			··· + · · · · · · · · · · · · · · · · ·
		72 001 -	
Potassium C:	.de	27.601 1	
1		39 / 91 10	2
1		46 683	2
		48.879 1	3 3
Rad: CuKal	Lambda: 1.5405 Filter: d-sp- (alculated	
Cutoff:	Int: Calculated I/Icor:	57.081 1	.0 4
Rel: Naci. E	Ir, Stand. (U.S.) Monogr. 25, 10 (1972)	64.581 1	1 4
		71.620 1	.3 4
Sys: Cubia		85.024	3 4
a: 6 449	5.G.: Fm3m (225)	91.561	3 6
A:	B: C: A: C:	1 1	Ĵ.
Ref: Zintl (ai., Z. Elektrochem 40 589 (1924)	98.120	3 6
	(1)54)	104.803	2 6
Dx: 2.333	Dm: SS/FOM: F15=149(005 20)	111.677	1 4
		118.931	1 6
ea: Ref:	nwB: ey: Sign: 2V:	126.710	4 6
PSC: cF12.	<pre>iwt: 94.20. Volume[CD]: 268.21.</pre>		
			Ļ
			1
e E			
			l
é.			1

•

.

Strong lines: 2.28/X 3.23/8 3.72/2 1.86/1 1.32/1 1.44/1 1.61/1 0.86/1

3- 1074		JCPDS-ICDD Co										
Na O			pyright (c)	1994	PDF -	2 Set	s 1-44 database	Rac	1.= 1.	54056 Qua	lity	y:
2								2-theta	Int.	1 1	 h k	1
Sodium Ovida									+	+		
owide								27,946	1 40			
								32.411	40	1	1	1
								46.534	1 100	2	0	0
Rad: CuKal	Lambde	and the second sec						54.935	1 10	2	2	0
Cutoff:	Int.	54056	Filter:			d		- 57.557	1 20	3	1	1
Ref: Matthews.	F Conodi-		I/Icor:			u-sp:			20	2	2	2
-,	Canadia	in industries	Ltd, Privat	e Comm	unicati	07		67.306	30		~	
	C. S.					011		74.677	51	4	0	0
Sys: Cubic		0.0						76.807	20	3	3	1
a: 5.55	b:	5.G.: Fm3m	(225)			_		- 85.948	30	4	2	0
A :	В:	с:		Α:		c		92.090	5	4	2	2
Ref: Ibid.		C:		Z :	4	m		1	1	2	1	1
								103.627	20	4	4	0
DX: 2.408 E	m: 2.270	SS/FOM. Bar						110.059	5	5	3	1
		00/10/1. F1/=	(.148,17)					112.724	10	4	4	2
≅a:	nwB:	AV.						122.759	20	6	2	0
(ef:		Cy.	Si	gn:	2V:			131.148	3	5	3	3
								1	1		-	-
								1 133.936	5	6	2 3	2
ofor: Colorles:	5							148.161	5	4 4	4 4	1
AS NO.: 1313-5	3-3. Sample	from Eimer a	ad Amond .									
275 deg., PSC:	cF12. Mwt	: 61.98. Volu	ime[CD]: 17(Decompo D.95.	osition	temp	rature					
								1	1			
								1	i i			
									l I			
								1	- F			1

Strong lines: 1.95/X 3.19/4 2.76/4 1.39/3 1.13/3 1.60/2 1.24/2 0.98/2

	2-theta	Int.	h k l
2 E		+ + -	
	Į.		
Aluminum Silicate	13.203	3	1 0 0
	15.029	3	-1 1 0
Kvanite	20.073	5	1 1 0
A Junite	20.639	25	-1 1 1
Rad-CuKal Lambda, 1 5406 Pilbon Man	23.579	20	0 2 0
Curoff. Januari 1.5405 Filter: Mono. d-sp: D.S114.6	ļ.		
Ref. de Wolff P. Technicch Durgiache Disert Delfer manuel a serie	25.879	5	~2 1 0
Commigation	26.586	65	2 0 0
Committee Cont	28.036	100	-2 1 1
Sve. Trielipic	29.554	15	0 2 1
a, 7, 112 b, 7, 244 c,	30.304	20	-2 2 0
A: 9.00 B: 101 C: 5.574 A: 0.9067 C: 0.7106	1		
Raf. Total	32.148	1 1	2 1 0
NGL IDIG.	32.815	9	-1 0 2
	33.165	25	2 -1 1
DX: 5.67 DM: 5.65 SS/FOM: F3U=32(.014,65)	33.228	25	-2 -1 1
	34.303	7	-1 1 2
ea: 1.713 nws: 1.722 ey: 1.728 Sign: - 2V: 82 deg.	1	1 1	
Rel: Winchell, A., Elements of Optical Mineralogy	34.439	3	-1 3 0
	35.597	30	0 1 2
Color, Duo	35.758	20	0 3 0
Color: Bide	36.495	5	2 -2 1
<pre>perimen from zittercal, Tyrol, Austria. Intensities verified by calculated pattern. PSC: aP32. Mwt: 162.05. Volume[CD]: 292.98.</pre>	37.999	<1	-1 3 1
	38.083	<1	-2 0 2
	38.184	30	-2 1 2
	38.268	30	-2 3 0
	38.592	20	1 -3 1
	39.636	11	0 -2 2

2-theta	Int.	h	k	1	2-theta	Int.	h k l	2-theta	Int.	h k 1
40.358	9	0	3	1	50.946	<1	-1 -1 3	62.868	+ 1 5	3 3 0
43.719	15	2	2	0	51.783	11	-4 1 1	62.963	15	2 4 0
41.364	7	- 2 -	2	1	52.100	<1	-2 0 3	63.443	1	2 - 2 3
41.623	5	1	1	2	52.325	3	0 1 3	64.078	5	-3 5 0
41.724	20	-2	1	2	54.722	9	4 0 0	65.031	1 1	-3 3 3
41.968	3	-1 -	2	2	55.658	3	-1 -2 3	66.016	2	
45.162	7.	3 -	1	1	56.743	7	-4 3 1	66.600	3	-4 1 3
45.960	3	2 -	-1	2	57.322	3	-2 -3 2	67.196	25	-5 2 0
46.233	55	-1	4	0	57.834	20	1 1 3	67.415	7	-5 1 0
46.916	50	1	3	1	58.640	3	4 -1 1	68.027	75	4 - 4 1
47.045	50	- 3	3	1	60.153	ج1	-2 -2 3			
48.293	5	0	4	0	61.075	1	0 -3 3	4	1	
48.789	3	1 -	3	2	61.524	7	0 5 0			
49.325	3	1 -	4	1	61.706	9	2 -1 3		1	
50.077	<1	0	0	3	62.258	<1	-3 -3 1			

Strong lines: 3.18/X 1.38/B 3.35/7 1.96/6 1.94/5 1.93/5 2.52/3 2.36/3

NaAlSi O		÷			2-theta	Int.	hkl
3.8						-+	
Sodium Alu	minum Silicato				13 847	20	
1	STICKCE				14 902	20	0 0
Albite, or	dered				15.841	2	-1 -1
					22.038	1 16	-1 1
Rad: CuKal	Lambda: 1.5405	Dilham Mi			23.040	8	-2 0
Cutoff:	Int: Diffractometer	T/Teen D.		d-sp:			1 -1
Ref: Smith	, Mineral. Mag., 31 47 (195)	4/1COF: 2.1			23.516	25	1 1
1	· · · · · · · · · · · · · · · · · · ·	- /			24.138	20	1 3
					24.278	16	-1 -3
Sys: Tricl	inic S.G.: C-1	(2)			25.361	10	-1 -1
a: 8.144	b: 12.787 c.	: 7.160	Δ.	0	25.546	2	-2 -2
A: 94.26	B: 116.6 C:	: 87.67	Z · A	C:		1 1	
: Ref: ibid.				mb: TITS de	9. 26.386	8	-1 1 3
Du o re					27.893	100	0 0
UX: 2.62	Dm: 2.61 SS/FOM: F3	30=36(.014,60)			28.299	10	-2 2 (
1 000 1 000					30.126	10	1 - 3
Ref: Winche	nwH: 1.529 ey: 1	1.536 Sign	: + 2V:	70 deg.	30.452	16	0 -2 2
1	in , crements of Optical	l Mineralogy, 2	312 (1951)		31,182		
					31.440	2	131
Color: Colo	rless, gray, white, bluigh				32.089	21	~1 ~3 2
Specimen fr	om Amelia, Virginia, USA	Composition (ut			33.941	6	-1 3 3
orthoclase	1.8. Low temperature struc	ture For vari	ره، albite	98.2,	34.980	8	-2 -4 1
composition	to 50% anorthite see Smith	Mineral Mag	actons in 2	theta with			
(1956), als	o Smith, Yoder, Am. Minera	1., 41 632 (1954	, JL 47 5) - Doldar	- 10	35.336	2	-3 -1 2
group, plag	ioclase subgroup. C.D. Cel	1: a=7.439 h-7	710 e 7 1	ar	35.728	2	1 -1 2
alpha=107.3	2, beta=100.44, gamma=115.0	3, a/b=0.9638	$h_{10}, C=7.1$	6U,	35.950	6	2 - 2 1
PSC: aP26.	To replace 1-739 and validation	ated by calculat	ed nattern	S.G.=P-1 (2).	36.495	6	2 2 1
262.22. Vo	lume[CD]: 332.42.	, include	ou puttern	20-554. Mwt:	36.758	4	-2 4 1

[2-theta] Int.	h k l	2-theta Int. h k l	2-theta Int. h k l
36,946 2 37,360 2 37,636 4 38,783 4 39,527 2	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	45.305 2 2 0 2 45.786 4 0 6 1 47.123 2 2 2 2 48.130 8 2 2 2 49.163 2 -4 0 3	
41.206 4 42.506 8 42.632 6 43.560 2 44.484 2	0 4 2 0 6 0 -1 -3 3 2 -4 1 2 4 1	49.382 3 -2 6 1 49.814 4 -2 6 0 49.960 18 0 -4 3 50.553 6 1 1 3 51.129 8 -2 0 4	

Strong lines: 3.20/X 3.78/3 6.39/2 3.68/2 1.82/2 4.03/2 3.66/2 2.93/2

i

Al Si O							2-theta	Int.	1	h k	1	
6 2 1	3							+	+			
Aluminum	Silicate						16.432	50	l	1 1	0	
				23.554	8	1	2 0	0				
Mullite.	svn						25.971	95	1	1 2	0	
				26.267	100	l .	2 1	0				
Rad: CuKa	al La In	mbda: 1.54056	30.960	20		0 0	1					
Ref: Nat'	1 Bur St	and (U.S.) Menn	t 1/100r				33.228	40		2 2	0	
NOL: NGC.	a. Dur. Du	anu. (0.8.) Mono	92.25,33 (1964)			35.278	50	[1 1	1	
							36.993	14	í .	1 3	0	
SVR · Orth	horbombic	e a .					37.554	< 2		31	0	
a: 7.5456	6	b: 7.6898	c: 2.8842	A :	0.9812 C: 0	.3751	38.992	4		0 2	1	
Ref. This	a	D .	C:	Z :	.75 mp:		39.276	20		2 0	1	
were into	ч.						40.874	60		1 2	1	
Dy. 3 11	7	3.00 00/000	D20 60 / 3				42.590	25		2 3	0	
DA: 3.1	· DIU:	5.00 SS/POM	: F30=60(.014	,37)			42.908	8		3 2	õ	
ea: 1.63	7 nw	B: 1.641 e	y: 1.652	Sign: +	2V: 45-50 d	.eg.	46.059	2		2 2	1	
Ner. wind	cherr, cie	menus or optical	Mineralogy,	2 401			47.227	2		9 4	0	
							48.184	8		1 0	0	
Color: C	olorless						48.845	<2		4	0	
CO101. CC	ororress											
Pattern t	taken at 2	5 C Sample was	propagad fre	and the second second second	was any a set a		49.468	10		\$ 1	1	
Pattern t Al2D3 and temperatu	taken at 2 d SICEIxHE ure of 172	5 C. Sample was C. Sample was rep 5 C. Spectrogram	prepared fro peatedly grou	m stoichi nd and he	ometric mixture ated up to	of	49.468 50.812	10 <2		3 3	0	
Pattern t AliC3 and temperatu 0.01% eac	taken at 2 d SICEIxHE ure of 172 ch of Ca.	5 C. Sample was C. Sample was rej 5 C. Spectrograj Cr. Mo: Mo: Ni	prepared fro peatedly grou phic analysis	m stoichi nd and he : 0.01 to	ometric mixture ated up to 0.1% Fe, and 0	of .001 to	49.468 50.812 53.462	10 <2 6		3 1 3 3 2 4	0	
Pattern t All03 und temperatu 0.01% eac 61.6, SiC	taken at 2 d SICEIxHE ure of 172 ch of Ca, 02 38 (mol)	5 C. Sample was C. Sample was rej 5 C. Spectrograj Cr, Mg, Mn, Ni, 1 e%). W used as	prepared fro peatedly grou bhic analysis Fi and Zr. C	m stoichi nd and he : 0.01 to hemical a	ometric mixture ated up to 0.1% Fe, and 0 nalysis showed i	of .001 to A1203	49.468 50.812 53.462 53.883	10 <2 6 14		3 1 3 3 2 4 3 2	0	
Pattern t A1203 und temperatu 0.01% eac 61.6, SiC 426.05.	taken at 2 J SICDIXHD ure of 172 ch of Ca, - 02 38 (mol- Volume[CD	5 C. Sample was C. Sample was rej 5 C. Spectrograj Cr, Mg, Mn, Ni, ' e%). W used as : 1: 167.35.	prepared fro peatedly grou bhic analysis Fi and Zr. C internal stan	m stoichi nd and he : 0.01 to hemical a dard. PS	ometric mixture ated up to 0.1% Fe, and 0 nalysis showed i C: oP15.75. Mwd	of .001 to A1203 t:	49.468 50.812 53.462 53.883 54.093	10 <2 6 14 10		3 1 3 3 2 4 3 2 4 2	0 0 1 0	
Pattern t AllD3 and temperatu 0.01% eac 61.6, SiC 426.05.	taken at 2 J SICEIXHE ure of 172 ch of Ca, - 02 38 (mol- Volume[CD	5 C. Sample was C. Sample was rep 5 C. Spectrograg Cr, Mg, Mn, Ni, ? e%). W used as :]: 167.35.	prepared fro peatedly grou bhic analysis fi and Zr. C internal stan	m stoichi nd and he : 0.01 to hemical a dard. PS	ometric mixture ated up to 0.1% Fe, and 0 nalysis showed ; C: oP15.75. Mwg	of .001 to A1203 t:	49.468 50.812 53.462 53.883 54.093 57.561	10 <2 6 14 10 20		3 1 3 3 2 4 3 2 4 2 3 2 4 2 0 4	0 0 1 0 1	
Pattern t Al203 and temperatu 0.01% eac 61.6, SiC 426.05.	taken at 2 d SIC21xH2 ure of 172 ch of Ca, 02 38 (mol- Volume[CD	5 C. Sample was C. Sample was rej 5 C. Spectrograj Cr, Mg, Mn, Ni, ' e%). W used as :]: 167.35.	prepared fro peatedly grou phic analysis Fi and Zr. C internal stan	m stoichi nd and he : 0.01 to hemical a dard. PS	ometric mixture ated up to 0.1% Fe, and 0 nalysis showed i C: oP15.75. Mwt	of .001 to A1203 t:	49.468 50.812 53.462 53.883 54.093 57.561 58.412	10 <2 6 14 10 20 12		3 1 3 3 2 4 3 2 4 2 4 2 0 4	0 0 1 0 1 1	
Pattern t Ali03 and temperatu 0.01% eac 61.6, SiC 426.05.	taken at 2 J SiGDIXHB ure of 172 ch of Ca, - 02 38 (mol- Volume[CD	5 C. Sample was rej C. Sample was rej C. Spectrogra Cr, Mg, Mn, Ni, (e%). W used as :]: 167.35.	prepared fro peatedly grou phic analysis fi and Zr. C internal stan	m stoichí nd and he : 0.01 to hemical a dard. PS	ometric mixture ated up to 0.1% Fe, and 0 nalysis showed <i>i</i> C: oP15.75. Mwf	of .001 to Al203 t:	49.468 50.812 53.462 53.883 54.093 57.561 58.412	10 <2 6 14 10 20 12		3 1 3 3 2 4 3 2 4 2 3 2 4 2 4 0		
Pattern t Al103 and temperatu 0.01% ead 61.6, SiC 426.05. 2-theta	taken at 2 J SIC51xHD ure of 172 ch of Ca, 02 38 (mol. Volume(CD	5 C. Sample was C. Sample was rej S C. Spectrograp Cr, Mg, Mn, Ni, ' e'). W used as :]: 167.35. h k l	prepared fro peatedly group bhic analysis Fi and Zr. C Internal stan	m stoichí nd and he : 0.01 to hemical a dard. PS Int.	ometric mixture ated up to 0.1% Fe, and 0 nalysis showed J C: oP15.75. Mwn h k l	of .001 to Al203 t: 2-theta	49.468 50.812 53.462 53.883 54.093 57.561 58.412	10 <2 6 14 10 20 12	h k l	3 1 3 3 2 4 3 2 4 2 0 4 4 0		-
Pattern t Al203 and temperatu 0.01% eac 61.6, SiC 426.05. 2-theta 58.994	taken at 2 d SiC21xHD ure of 172 ch of Ca, - 02 38 (mol. Volume(CD - Int. - 2 2	5 C. Sample was C. Sample was rej 5 C. Spectrograp Cr, Mg, Mn, Ni, ' *). W used as : 167.35. h k l h k l 1 4 1	prepared fro peatedly grou bhic analysis Fi and Zr. C Internal stan 2-theta 70.991	m stoichi nd and he : 0.01 to hemical a dard. PS Int. Int.	ometric mixture ated up to 0.1% Fe, and 0 nalysis showed J C: oP15.75. Mwr h k 1 h k 1 2 1 2	of .001 to A1203 t: 2-theta 84.493	49.468 50.812 53.462 53.883 54.093 57.561 58.412	10 <2 6 14 10 20 12 12	h k 1			
Pattern t Al103 and temperatu 0.01% eac 61.6, SiO 426.05. 2-theta 58.994 59.763	taken at 2 d SiC21xHD ure of 172 ch of Ca, - 02 38 (mol. Volume (CD Int. 2 2 2 2 2 2	5 C. Sample was C. Sample was rej C. Spectrograp Cr. Mg. Mn. Ni. (**). W used as 1: 167.35. h k l h k l 1 4 1 4 1 1	prepared fro peatedly grou bhic analysis fi and Zr. C internal stan 2-theta 70.991 71.576	m stoichi nd and he : 0.01 to hemical a dard. PS Int. Int. 4	ometric mixture ated up to 0.1% Fe, and 0 nalysis showed J C: oP15.75. Mwr h k 1 2 1 2 5 1 1	of .001 to A1203 t: 2-theta 84.493 87.002	49.468 50.812 53.883 54.093 57.561 58.412	10 <2 6 14 10 20 12 12 12 4 4	h k 1 0 2 6 1	3 1 3 3 2 4 3 2 4 2 0 4 1 0		
Pattern t Al103 and temperatu 0.01% eac 61.6, SiC 426.05. 2-theta 58.994 59.763 60.711	taken at 2 J SiC21xHD urê of Ca, - 02 38 (mol. Volume[CD Int. 2 2 2 35	5 C. Sample was C. Sample was rej Cr. Mg, Mn, Ni. (et). W used as 1: 167.35. h k l h k l 1 4 1 4 1 1 3 3 1	prepared fro peatedly grou bhic analysis fi and Zr. C internal stan 2-theta 70.991 71.576 71.903	m stoichi nd and he : 0.01 to hemical a dard. PS Int. Int. 4 3	<pre>ometric mixture ated up to 0.1% Fe, and 0 nalysis showed i C: oP15.75. Mwt h k l</pre>	of .001 to Al203 t: 2-theta 84.493 87.002 88.569	49.468 50.812 53.883 54.093 57.561 58.412	10 <2 6 14 10 20 12 12 12 4 22 2 2	h k 1 0 2 6 1 4 2	1 3 2 4 3 2 4 2 4 2 4 0 4 0		
Pattern t All03 uni temperatu 0.01% ead 61.6, SiC 426.05. 2-theta 58.994 59.763 60.711 61.492 64.692	taken at 2 d siC31xH5 ure of 172 ch of Ca, 02 38 (mol. Volume[CD Int. 2 2 2 35 2 2 35 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	<pre>5 C. Sample was C. Sample was C. Sample was rej 5 C. Spectrograp Cr, Mg, Mn, Ni, ' ************************************</pre>	prepared fro peetadly grou bhic analysis fi and Zr. C internal stan 2-theta 70.991 71.576 71.903 72.647	m stoichí nd and he : 0.01 to hemical a dard. PS Int. Int. 4 3 4	<pre>ometric mixture ated up to 0.1% Fe, and 0 nalysis showed J C: oP15.75. Mwr h k l 2 1 2 5 1 1 3 5 0 5 3 0</pre>	of .001 to Al203 t: 2-theta 84.493 87.002 88.569 89.090	49.468 50.812 53.462 53.683 54.093 57.561 58.412	10 <2 6 14 10 20 12 12 12 2 4 2 2 4 4 4 4	h k 1 0 2 6 1 4 2 2 2	1 3 2 4 3 2 4 2 4 2 4 0 4 1 0		
Pattern t All03 und temperatu 0.01% eac 61.6, Sic 426.05. 2-theta 58.994 59.763 60.711 61.492 62.674	taken at 2 d slc21xHD ure of 172 ch of Ca,	<pre>5 C. Sample was C. Sample was C. Sapectrograp Cr, Mg, Mn, Ni, ' **' **' **' **' **' **' **' **' **' *</pre>	prepared fro beatedly grou bhic analysis fi and Zr. C internal stan 2-theta 70.991 71.576 71.903 72.647 73.901	m stoichi nd and he : 0.01 to hemical a dard. FS Int. Int. 4 4 3 4 7 	ometric mixture ated up to 0.1% Fe, and 0 nalysis showed J C: oP15.75. Mwr h k 1 2 1 2 5 1 1 3 5 0 5 3 0 0 6 0	of .001 to Al203 t: 2-theta 84.493 87.002 88.569 89.090 93.817	49.468 50.812 53.462 53.883 54.093 57.561 58.412 Int. <2 1 4 5 5 5 5 5 5	10 <2 6 14 10 20 12 12 4 22 4 22 4 2	h k 1 0 2 6 1 4 2 2 2 7 0	3 1 3 3 2 4 3 2 4 2 0 4 4 0		×
Pattern t ALCS and temperatu 0.01% eac 61.6, Si 426.05. 2-theta 59.763 59.763 60.711 61.492 62.674 63.054	taken at 2 3 S:CD14WB ure of 172 2 Ch of Ca, vo 2 38 (mol.) Volume[CD Int. 2 2 2 3 5 4 2 4 4 2 4 4 2 4	5 C. Sample was C. Sample was rej Cr. Mg, Mm, Ni, Ci Cr. Mg, Mm, Ni, Ci M, Wused as 1: 167.35. h k l h k l 1 4 1 3 3 1 1 5 0 5 1 0 2 4 1	prepared fro peetadly grou obtic analysis fi and Zr. C internal stan 2-theta 70.991 71.576 71.903 72.647 73.901 1 74.191	m stoichi nd and he : 0.01 to hemical a dard. PS Int. 1 4 3 4 3 1 13	ometric mixture ated up to 0.1% Fe, and 0 nalysis showed J C: oP15.75. Mwr h k 1 2 1 2 5 1 1 3 5 0 5 3 0 0 6 0 2 5 1	of .001 to Al203 t: 2-theta 84.493 87.002 88.569 89.090 93.817	49.468 50.812 53.462 53.883 54.093 57.561 58.412 Int. 42 4 5 42 4	10 <2 6 14 10 20 12 12 12 4 22 4 22 4 22	h k 1 0 2 6 1 4 2 2 2 7 0	3 1 3 3 2 4 3 2 4 2 0 4 4 0		T.
Pattern t All03 und temperatu 0.01% eac 61.6, Sic 426.05. 2-theta 58.994 59.763 60.711 61.492 52.674 63.054 53.054	taken at 2 3 S.Col:NHP ure of 172 2 A S.Col:NHP 2 3 C (mol) Volume (CD Volume (CD Volume (CD 2 3 C (mol) 2 4 3 5 2 4 2 4 2 4 3 5 3 5 3 5 2 4 2 4 3 5 3 5 2 4 2 4 3 5 3 5 2 4 2 4 3 5 3 5 2 4 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5	<pre>5 C. Sample was C. Sample was rej 5 C. Spectrograp Cr, Mg, Mn, Ni, (*). W used as : }: 167.35. h k l 1 4 1 4 1 1 3 3 1 1 5 0 5 1 0 2 4 1 4 2 1</pre>	prepared fro peetadly grou bhic analysis Fi and Zr. C internal stan 2-theta 70.991 71.576 71.903 72.647 73.901 1 74.191 74.580	m stoichi nd and he : 0.01 to hemical a dard. PS 1nt. 4 4 3 4 7 7 13 6	<pre>ometric mixture ated up to 0.1% Fe, and 0 nalysis showed i C: oP15.75. Mwd h k l 2 1 2 5 1 1 3 55 0 5 3 0 0 6 0 2 5 1 2 2 2 2</pre>	of .001 to Al203 t: 2-theta 84.493 87.002 88.569 89.090 93.817 98.446 98.950	49.468 50.812 53.462 53.883 54.093 57.561 58.412 Int. Int. 	10 <2 6 14 10 20 12 12 12 12 4 4 22 2 4 4 22 1	h k 1 0 2 6 1 4 2 2 2 7 0 7 1	3 1 3 3 2 4 3 2 4 2 0 4 4 0		
Pattern t All03 uni temperatu 0.01% eac 61.6, Sic 426.05. 2-theta 58.994 59.763 60.711 61.492 62.674 63.664 54.571	taken at 2 3 \$:Cl14Me ure of 172 ch of Ca, v 2 38 (mol.) Volume (CD Volume (CD 1nt. 2 2 2 35 <2 35 <2 35 <2 35 <2 38 4 18	<pre>5 C. Sample was C. Sample was C. Sample was rej 5 C. Spectrograp Cr, Mg, Mn, Ni, ' ************************************</pre>	prepared fro peetadly grou oblic analysis fi and Zr. C internal stan 2-theta 70.991 71.576 71.903 72.647 73.901 74.191 74.580 75.162	m stoichi nd and he : 0.01 to hemical a dard. PS Int. 1 Int. 4 3 4 3 4 3 1 13 6 12	<pre>ometric mixture ated up to 0.1% Fe, and 0 nalysis showed J C: oP15.75. Mwr h k 1 2 1 2 5 1 1 3 5 0 5 3 0 0 6 0 2 5 1 2 2 2 5 2 1 </pre>	of .001 to Al203 t: 2-theta 84.493 87.002 88.569 89.090 93.817 98.958 98.958	49.468 50.812 53.462 53.883 54.093 57.561 58.412 1 1 4 1 5 2 1 4 4 4 4 4 4 4 4	10 20 6 14 10 20 12 12 4 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2	h k l 0 2 6 1 4 2 2 2 2 2 7 0 7 1 5 2	1 1 3 3 2 4 3 2 4 2 2 4 4 0		
Pattern t All03 and temperatu 0.01% eac 61.6, Sic 426.05. 2-theta 58.994 59.763 60.711 61.492 62.674 33.054 53.661 64.571 55.944	taken at 2 3 S.Col:NHP ure of 172 cch of Ca, · 02 38 (mol.) Volume [CD 	<pre>5 C. Sample was C. Sample was rej S C. Spectrograp Cr, Mg, Mn, Ni, ' et). W used as : l: 167.35. h k l l 4 1 l 3 3 1 l 5 0 2 4 1 l 4 2 1 0 0 2 2 5 0</pre>	prepared fro patedly grou phic analysis fi and Zr. C internal stan 2-theta 2-theta 70.991 71.576 71.903 72.647 73.901 74.191 74.580 75.162 75.555	m stoichi nd and he : 0.01 to hemical a dard. PS Int. Int. 4 4 3 4 7 13 6 12 52	ometric mixture ated up to 0.1% Fe, and 0 nalysis showed J C: oP15.75. Mwf h k 1 2 1 2 5 1 1 3 5 0 5 3 0 0 6 0 2 5 1 2 2 2 5 2 1 6 0 0	of .001 to Al203 t: 2-theta 84.493 87.002 88.669 89.090 93.817 98.446 98.958 99.868	49.468 50.812 53.462 53.883 54.093 57.561 58.412 1 Int. 4 1 4 1 5 1 4 2 4 4 4 4 4 4 8 1	10 <2 6 14 14 20 12 12 12 4 22 4 22 4 22 1 23 3	h k 1 0 2 6 1 4 2 2 2 7 0 7 1 5 2 7 0	1 1 3 3 2 4 3 2 4 2 2 4 4 0		
Pattern t Alloj and Alloj and temperatu 0.01¥ eac 61.6, Siú 426.05. 2-theta 58.994 59.763 60.711 61.492 53.054 53.0661 64.571 53.661 64.571 55.494	taken at 2 1 \$\$:Col:N# ure of 172 ch of Ca, . 2 \$\$:Col:N#	<pre>5 C. Sample was rep 5 C. Sample was rep 5 C. Spectrograp Cr, Mg, Mn, Ni, '</pre>	prepared fro patedly grou phic analysis fi and Zr. C internal stan 2-theta 2-theta 70.991 71.576 71.903 72.647 73.901 74.191 74.580 75.162 75.555 76.836	m stoichi nd and he : 0.01 to hemical a dard. PS Int. Int. 4 4 3 4 7 13 6 12 5 6 12 5 6 6 5	ometric mixture ated up to 0.1% Fe, and 0 nalysis showed J C: oP15.75. Mwf h k 1 2 1 2 5 1 1 3 5 0 5 3 0 0 6 0 2 5 1 2 2 2 5 2 1 2 2 2 5 2 1 6 0 0 1 3 2	of .001 to Al203 t: 2-theta 84.493 87.002 88.669 89.090 93.817 98.446 98.958 99.868	49.468 50.812 53.462 53.883 54.093 57.561 58.412 11 4 5 4 4 4 4 4 4 4 4 4 4 4 4 4	10 20 6 14 10 20 12 12	h k 1 0 2 6 1 4 2 2 2 7 0 7 1 5 2 7 0	3 1 3 3 2 4 3 2 4 2 3 2 4 2 0 4 4 0		τ.
Pattern t Alloj and Alloj and temperatu 0.01¥ eac 61.6, Siú 426.05. 2-theta 58.994 59.763 60.711 61.492 53.054 63.661 63.661 63.661 63.514 	taken at 2 3 \$:Col:N# ure of 172 ch of Ca, . och of Ca, . 02 38 (mol.) Volume [CD . . <t< td=""><td><pre>5 C. Sample was rep 5 C. Sample was rep 5 C. Spectrograp Cr, Mg, Mn, Ni, '</pre></td><td>prepared fro pateally grou phic analysis fi and Zr. C internal stan 2-theta 2-theta 70.991 71.576 71.903 72.647 73.901 74.191 74.580 75.162 75.555 76.836 77.182</td><td>m stoichi nd and he : 0.01 to hemical a dard. PS Int. Int. 4 4 3 4 7 13 6 12 5 6 2 2</td><td>ometric mixture ated up to 0.1% Fe, and 0 nalysis showed J C: oP15.75. Mwf h k 1 2 1 2 5 1 1 3 5 0 5 3 0 0 6 0 2 5 1 2 2 2 5 2 1 2 2 2 5 2 1 2 2 2 5 2 1 3 2 3 1 2</td><td>of .001 to Al203 t: 2-theta 84.493 87.002 88.669 89.090 93.817 98.446 98.958 99.868</td><td>49.468 50.812 \$3.462 53.883 54.093 57.561 58.412 1 1 4 4 5 4 4 4 4 4 4 4 4 4 4 4 4 4</td><td> 10 <2 <2 <2 <2 14 14 10 20 12 12 12 12 12 12 12 12</td><td>h k 1 0 2 6 1 4 2 2 2 7 0 7 1 5 2 7 0 7 0</td><td>3 1 3 3 2 4 3 2 4 2 3 2 4 2 0 4 1 0</td><td></td><td></td></t<>	<pre>5 C. Sample was rep 5 C. Sample was rep 5 C. Spectrograp Cr, Mg, Mn, Ni, '</pre>	prepared fro pateally grou phic analysis fi and Zr. C internal stan 2-theta 2-theta 70.991 71.576 71.903 72.647 73.901 74.191 74.580 75.162 75.555 76.836 77.182	m stoichi nd and he : 0.01 to hemical a dard. PS Int. Int. 4 4 3 4 7 13 6 12 5 6 2 2	ometric mixture ated up to 0.1% Fe, and 0 nalysis showed J C: oP15.75. Mwf h k 1 2 1 2 5 1 1 3 5 0 5 3 0 0 6 0 2 5 1 2 2 2 5 2 1 2 2 2 5 2 1 2 2 2 5 2 1 3 2 3 1 2	of .001 to Al203 t: 2-theta 84.493 87.002 88.669 89.090 93.817 98.446 98.958 99.868	49.468 50.812 \$3.462 53.883 54.093 57.561 58.412 1 1 4 4 5 4 4 4 4 4 4 4 4 4 4 4 4 4	10 <2 <2 <2 <2 14 14 10 20 12 12 12 12 12 12 12 12	h k 1 0 2 6 1 4 2 2 2 7 0 7 1 5 2 7 0 7 0	3 1 3 3 2 4 3 2 4 2 3 2 4 2 0 4 1 0		
Pattern t All03 uni temperatu 0.01% eac 6.510 426.05. 2-theta 58.994 59.763 60.711 61.492 62.674 63.054 53.661 55.494 55.494 55.616	taken at 2 3 S.C314M ure of 172 th of Ca, vo 3 8 (mol.) Volume [CD volume [CD 2 38 (mol.) 2 2 3 5 2 2 3 5 4 2 2 4 3 5 4 2 4 8 8 1 8 1 8 2 4 6 6 1	<pre>5 C. Sample was reg 5 C. Sample was reg 5 C. Spectrograp Cr, Mg, Mn, Ni, '</pre>	prepared fro peetadly grou obtic analysis fi and Zr. C internal stan 2-theta 70.991 71.576 71.903 72.647 73.901 74.191 74.191 74.580 75.162 75.555 76.836 77.182 78.311	m stoichi nd and he 0.01 to hemical a dard. PS 1nt. 1nt. 4 3 4 7 4 3 6 12 <2 2	<pre>ometric mixture ated up to 0.1% Fe, and 0 nalysis showed i C: oP15.75. Mwd h k l 2 1 2 5 1 1 3 5 0 5 3 0 0 6 0 2 5 1 2 2 2 5 2 1 6 0 0 1 3 2 3 1 2 4 4 1</pre>	of .001 to Al203 t: 2-theta 84.493 87.002 88.569 89.990 93.817 98.446 98.958 99.868	49.468 50.812 53.462 53.883 54.093 57.561 58.412 1 Int. 4 58.412 1 2 58.412 1 1 4 5 5 5 8.412 1 2 5 5 4.093 5 7.561 5 8.412 1 4 4 4 4 4 4 4 5 5 1 4 5 1 4 1 4 5 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4	10 <2 <2 12 14 10 20 20 20 12 12 12 4 22 24 4 2 2 2 1 2 3 3	h k 1 0 2 6 1 4 2 2 7 0 7 1 5 2 7 0	3 1 3 3 2 4 3 2 4 2 3 2 4 2 0 4 4 0		
Pattern t All03 uni temperatu 0.01% eac 61.6, Sic 426.05. 2-theta 58.994 59.763 60.711 61.492 62.674 63.661 53.654 63.661 55.494 56.4571 55.494 56.14 	taken at 2 3 S.Claikm ure of 172 th of Ca, vo 2 38 (mol.) Volume (CD Volume (CD Int. 2 2 2 35 <2 35 <2 35 <2 4 8 18 4 8 18 18 18 18 18 18 18	<pre>5 C. Sample was C. Sample was rej 5 C. Spectrograp Cr, Mg, Mn, Ni, ' e'', W used as : } 167.35. h k l 1 4 1 4 1 1 5 0 5 1 0 2 4 1 4 2 1 1 5 0 5 1 0 2 4 1 4 2 1 0 2 2 5 0 5 2 0 1 1 2 2 0 2 4 4 0</pre>	prepared fro peetadly grou bhic analysis fi and Zr. C internal stan 2-theta 70.991 71.576 71.903 72.647 73.901 74.191 74.580 75.555 76.836 77.182 78.311 78.331	m stoichi nd and he : 0.01 to hemical a dard. PS Int. " 4 3 13 6 12 2 2 2 2 2 2 2 2 2	<pre>ometric mixture ated up to 0.1% Fe, and 0 nalysis showed J C: oP15.75. Mwr h k 1 2 1 2 5 1 1 3 5 0 5 3 0 0 6 0 2 5 1 2 2 2 5 2 1 6 0 0 1 3 2 3 1 2 4 4 1 2 6 0</pre>	of .001 to Al203 t: 2-theta 84.493 87.002 88.569 89.090 93.817 98.446 98.958 99.868	49.468 50.812 53.462 53.883 54.093 57.561 58.412 1 1 4 5 4 4 4 4 4 8 1 4 1 5 4 1 1 4 5 5 4 1 1 4 5 4 1 5 4 5 5 4 5 5 5 5 5 5 5 5 5 5 5 5 5	10 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2	h k l 0 2 6 1 4 2 2 2 2 2 7 0 7 1 5 2 7 0 7 0	3 1 3 3 2 4 3 2 4 2 0 4 4 0	- 0 1 0 1 1 1	

Strong lines: 3.39/X 3.43/X 2.21/6 5.39/5 2.54/5 2.69/4 1.52/4 2.12/3

ALSIO	2-theta	Int.		h k 1	
2 5		+	+		-
	16.506	12		1 1	1
Atuminum Silicate	19.386	2		1 0 -	
Sillimenita	23.149	14		2 0	5
o a fair mainte	23.752	3		2 0 0	5
Rad Otka Lambda, 1 F4170	26.071	100		1 2 0	5
Cutoff: 17 7 Int. Diffractometron 1/1		Ì i			
Ref: Keller, L. Rask J. Buseck B. Discore Criteria	26.458	35	1	2 1 (j.
ICDD Grant-in-Aid. (1987)	27.893	1		2 1	
	30.388	1		1 2 1	
Sys: Orthorhombic S.G. Phnm (62)	30.731	1	2	2 1 1	
a: 7.486(1) b: 7.675(1) c: 5.7729(6) b: 0.0754 c: 5.7729	30.960	7	(0 2	
A: B: C: J.722(0) A: 0.9754 C: 0.7522					
Ref: Ibid.	33.407	16	2	2 2 0	
	35.278	20	3	. 1 2	
Dx: 3.24 Dm: 3.25 SS/FOM: F30=50(.016.38)	36.962	3	2	2 2 1	
	37.104	20	1	. 3 0	
ea: J.6575 nwB: 1.66 ev: 1.678 Sign: + 2V. 25 day	37.883	1	3	1 0	
Ref: Deer, W., Howie, R., Zussmann, J., Rock Forming Minerale 1 121 (1962)	70.000				
,, here coming minimars, i 121 (1962)	39.010	2	C	2 2	
	39.329	3	3 0	1, 2	0 2
Color: Colorless	40.358	1	1	. 3 1	
Specimen from Norwich, Connecticut, USA. Chemical analysis, average of seven	40.912	30	1	2 2	
(wt.%): SiO2 36.15, Al2O3 62.17, Fe2O3 0.90. Si used as internal	41.12/	2	3 1	1, 2	1 2
standard. PSC: oP32. To replace 10-369 and 22-18. Mwt: 162.05. Volume[CD].	12 790	10			
331,68,	43 210	12	2	3 0	
	45 701	1	3	2 0	
	46.151	1	2 2	3 1	0 0
	48.609	2	5 2	1, 2	2 2
	10.000	~	- 4	0 0	
	!				
2-theta Int. h k l 2-theta Int. h k l 2-theta	Int.				
	+				
48.825 1 1 0 3 65.686 4 2 5 0 80.570	11	2 3	4. 3 5	2	
49.019 1 1 4 0, 1 3 2 65.895 1 3 2 3 80.840	1	4 3	-, 	4	
49.698 2 3 1 3 7 7 7 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9			-,	*±	

10.040	1 1 1			1 0	3			05.686	4		2 !	5 0			80 570	1 1	1 2	- 12			100	100	
49.019	1	1	- 4	0,	1	3	2	65.895	1 1		3	2 3			80 840	-		0	4	<i>'</i>	5	5	- 1
49.698	2			3 1	2			67.076	2	5	2 0.	1	1	4	81 104		4	5		·	3	2	- 6
50.092	[1]	0	4	1,	4	1	0	67.910	1 1		2,	5 1	1	-	01.104	1 1	1 1	5	د	,	2	6	
51.089	2			3 3	0			69.528	1 1		0 5	2			01.311	1 2	5	4	0	r.,	5	3	- 1
	1 1							1			• •				02.393	1	1		0	6	2		
51.616				1 4	1			70.242	2	4	4 0	4	3	2	02 000								
53.648	7	2	4	Ο,	3	3	1	70.363	2		1 2	, a	5	2	1 84 530	1 1	ł		0	4	4		
E1 100	1 2 1			2 2	2			70,569	9		1 5				04.530	1			6	0	2		
54.507	3			4 2	0			70.819	5		1 5				04.758	1	4	0	4	,	2	5	
54.704	1 1			1 2	3			71 010	31		2 1				05.024	2			1	4	4		
	1							1			~ J	4			87.236	1	3	6	1,	ć	2	6	1
54.921	1 1			2 1	3			72.069		5	1 2	2	2	2	00 670								
57.628	12			0 4	2			72.190	1	5	2 6	0	5	2	88.671	1	ļ		2	4	4		
58.751	1 1			4 0	2			72 343			4 4				88.946	1			4	4	3		
59.057	3	2	2	3.	1	4	2	74 049	30			1			89.141	3	4	5	2		6	2	1
60.729	1			3 0	3			74 348	8	2	E 1	2	-	~	89.378	1			4	2	4		
	I I							1		5	ο τ,	2	5	4	89.690	1	5	4	2,		2	1	1
60.897	14	3	4	0,	3	3	2	74.635	2		2 7												
61.321	1			4 3	0		-	74 918	1		4 2	- 4											
61.628	1			1 5	0			75 302	2	c	2 2		~										
62.040	11			3 1	3			75 661	2	0	, , , ,	1	6	0									
63.221	1 1	2	4	2.	5	1	0	76 204	1	0	5 4	4	0				1						
				- 1			0		-	U	ο I,	ь	Ū	0	1								
63.622	1			4 3	1			76.836	1		1 2												
63.965	1	1	5	1.	4	2	2	77 316	1		2 2	4											
64.212	1			5 0	1			77 420		1	<pre></pre>	4											
64.506	5			0 0	4			78 672		T	о <u>г</u> ,	0	T	0									
65.530 I	1	5	1	1.	2	3	3	79 039	1 1		4 4	2											

51) en linde 1 30/V 3 77/8 2.20/3 1.28/3 2.54/2 2.42/2 2.68/2 3.84/1