

私立東海大學

資訊工程與科學研究所

碩士論文

指導教授：楊朝棟 博士

在多重網格計算環境上具監控服務的資源經

紀人之實作

Design and Implementation of a Resource

Broker with Monitoring Service on Multiple

Computational Grid Environments

研 究 生：胡文仁

中華民國九十八年六月

 ii

摘要

網格計算被廣泛的應用，透過不同的虛擬組織整合了許多分散式的資源來達到高

效能的計算，有別以往的單一網格環境，所可利用的資源受限於其虛擬組織的規

膜大小而有限，在本論文當中，我們提出一個多重的網格新架構，於本研究當中

於多重網格環境之上層，建置一個資源代理人的平台，整合了來自於不同虛擬組

織的單一網格環境，形成一個更寵大的計算資源，打破不同虛擬組織之間的限制，

讓所屬於不同網格當中的計算資源可以被更有效的利用，避免不必要的資源浪費。

另外，提出一個跨網格環境的資源配置策略，讓資源代理人在分配工作置整個多

重網格環境時，達到較佳的資源分配，避免受到網路壅塞的關係而降低效能。

關鍵字: 網格計算、多重網格、資源代理人、跨網格資源配置

 iii

Abstract

Grid computing is now in widespread use, which integrates geographical computing

resources across multiple virtual organizations to achieve high performance

computing. A single grid often not provide a huge resource, because virtual

organizations have no the adequate of computing resources restriction on the scale of

organizations. In this thesis, we present a new grid architecture, which integrates

multiple computational grids, named Multi-Grid, from different virtual organizations.

We build a resource broker on multiple grid environments, which integrates a number

of single grids from different virtual organizations without the limited of organizations.

We can efficiently use the multiple grid resource avoid waste of resource. In addition,

we proposed a Multi Grid Resource Selection Strategy for the resource broker to

select the better allocation of resource before submitting job avoid network congestion

caused of decrease of performance.

Keywords: Grid computing、Multi-Grid、Resource Broker、MGRSS

 iv

Acknowledgements

I have been indebted in the preparation of this thesis to my supervisor, Dr. Chao-Tung

Yang of Tunghai University, whose patience and kindness, as well as his academic

experience, have been invaluable to me. No matter the capability in the open

discussions, or the preciseness in thesis writing, Professor Yang gave me a deep

influence and inspiration. I would also like to thank Professor Yueh-Min Huang,

Professor Win-Tsung Lo, Professor Wen-Chung Shih and Professor Fang-Rong Hsu

for their valuable comments and advice given while serving on my reading

committee.

I am indebted to my many classmates of lab for providing a stimulating and fun

environment in which to learn and grow. They gave me opportunities to gain more

knowledge and shared their knowledge with me. My research would not have been

completed without the help from them.

Last, I must be grateful beyond place to my parents, who at an early age instilled a

love of learning and through the years gave me all of their support and encouragement

to pursue it.

 v

Table of Contents

摘要 .. ii

Abstract .. iii

Table of Contents .. iv

List of Tables .. vii

List of Figures .. viii

Chapter 1 Introduction ... 1

1.1 Motivation .. 1

1.2 Contributions ... 2

1.3 Thesis Organization ... 3

Chapter 2 Background Review .. 4

2.1 Grid Computing and Middleware .. 4

2.1.1 Globus .. 4

2.1.2 EGEE ... 6

2.1.3 CrossGrid ... 6

2.2 System Development Tools ... 7

2.2.1 Java CoG Kit .. 7

2.2.2 Parallel Application Development Tool ... 8

2.2.3 Machine Information Provider ... 9

2.2.4 Network Information Provider ... 9

2.2.5 Performance Benchmarking ... 10

2.2.6 JRobin .. 10

2.2.7 JFreeChart .. 10

2.3 Related Works .. 11

Chapter 3 System Design and Implementation 13

3.1 Resource Broker .. 13

3.2 Software Stack Diagram .. 15

3.3 Cross Grid Authentication Service .. 16

3.4 Cross Grid Information Service ... 18

3.5 Web Portal .. 19

Chapter 4 Multi-Grid Resource Selection Strategy....................... 31

4.1 Parameters and MGRSS Algorithm ... 31

 vi

4.2 MGRSS Flowchart .. 33

Chapter 5 Experimental Environment and Results 35

5.1 Experimental Environment .. 35

5.2 Tested Programs ... 36

5.3 Experimental Results ... 37

Conclusion and Future Work .. 43

 vii

List of Tables
Table 5-1. The machine information of test-bed ... 35

 viii

List of Figures
Figure 3-1. Resource Broker system architecture ... 14

Figure 3-2. The software stack of all nodes .. 16

Figure 3-3. The software stack of all sites and the service ... 16

Figure 3-4. Multi-Grid Manager Center.. 17

Figure 3-5. Information Describing Language. ... 18

Figure 3-6. Cross Grid Information Service architecture .. 19

Figure 3-7. Registration page of Multi-Grid Resource Broker 20

Figure 3-8. Hosts Info ... 21

Figure 3-9. Daemon Status .. 21

Figure 3-10. Ganglia ... 22

Figure 3-11. NWS Information ... 26

Figure 3-12. Help Page ... 27

Figure 3-13. Job Monitor .. 27

Figure 3-14. Resource Selection ... 28

Figure 3-15. Job Monitor .. 29

Figure 3-16. Login Information .. 29

Figure 3-17. Utilization of Resources ... 30

Figure 4-1. Multi-Grid resource selection strategy flowchart 34

Figure 5-1. Result for Bucketsort_MPI in different parameters sequence 38

Figure 5-2. Result for Bucketsort_MPI in different strategies sequence 38

Figure 5-3. Result for Mmd_MPI in different parameters sequence 39

Figure 5-4. Result for Mmd _MPI in different strategies sequence 39

Figure 5-5. Result for Cfd_MPI in different parameters sequence 40

Figure 5-6. Result for Cfd _MPI in different strategies sequence 40

Figure 5-7. Result for all mpi programs .. 41

Figure 5-8. Result for variety of mpi programs .. 42

 1

Chapter 1

Introduction

1.1 Motivation

Grid technology plays a major role in tackling large-scale problems by integrating

distributed resources to provide users with a supercomputer liked capacity for data

sharing and computation [5, 20, 25]. Participating sites may be physically distributed,

heterogeneous, and governed by different administrative domains. Many grid related

studies and projects has been proposed for solving large scale scientific problems such

as earthquake simulation, atmosphere and ocean simulation, high energy and nuclear

physics [47-48], astronomy [48], bioinformatics [29, 46], and medical image

processing [28]. There are more and more proposed grid projects such as Globus,

Condor, LEGION, Grid PP, EGEE, P-Grid, DutchGrid, ESnet, and Grid Bus [32-40].

Even though Grid computing encounters a conceptual framework, the Globus

Toolkit® (GT) that enables Grid computing was realized. The GT, is an open source

project developed by the Globus Alliance® for building Grids, not only provides

users with an implementation of the necessary services of a middleware to build Grid

infrastructures, but also able to be employed to implement immense applications on

Grid infrastructures. However, the GT lacks some features, such as a queuing system,

a friendly interface, and a proper resource broking manager to respectively process,

accept and broke jobs or workloads submitted by users. In addition, a monitoring

mechanism that can monitor the status of user jobs is also expected.

In the Grid environment, applications make use of shared Grid resources to improve

performance. The target function usually depends on many parameters, e.g., the

scheduling strategies, the configurations of machines and links, the workloads in a Grid,

 2

the degree of data replication, etc. In this work, we examine how those parameters may

affect performance. We choose an application’s overall response time as an object

function and focus on dynamically scheduling independent tasks. We define the job,

scheduler, and performance model of a Grid site and conduct experiments on Tiger

Grid platform. We use the Ganglia [21, 22, 30] and NWS [23, 45] tools to monitor

resource status and network-related information [18], respectively. Understanding

influence of each parameter is not only crucial for an application to achieve good

performance, but would also help to develop effective schedule heuristics and design

high quality Grids.

In Taiwan, some research institutes has devoted to build grid platforms for

academic research use such as Tiger Grid [27] and Medical Grid [28] that integrate

available computing resources in some universities and high schools. They respective

use their grid resource, but some of virtual organizations have no the adequate of

computing resources restriction on the scale of organizations. For this reason, we

construct a multi-grid resource broker [26] integrate those single grid environment as

a multiple grid environment so that resources can be used more effectively.

1.2 Contributions

In this thesis, we propose a multi-grid architecture to solve the above problem. When a

new grid joins in the multi-grid environment by the proposed system, the user can use

the entire multi-grid resources, and get the more computing resource. This approach

could help these virtual organizations to possess more computing resources without any

extra overhead.

We also provide a user-friendly web portal which integrates with the resource

broker [7, 11, 14], the cross grid service, the monitoring service, and the multi-grid

resource selection strategy, called “Multi-Grid Resource Broker.” The main function of

 3

the resource broker is to match the available resources to the user’s requirement. The

resource broker helps users to select suitable resources according to user preferences

and job characteristics. In our architecture, we chose the Globus Toolkit to be the

middleware of grids. Although Globus provides a monitor tool, called MDS, which is

not capable of providing the rich set of all the requisite information. Thus we used

another monitor tool “Ganglia” [21, 22, 30] on the multi-grid system. Ganglia is a

scalable open source distributed system for monitoring status of nodes in wide-area

systems based on clusters.

We also propose a multi-grid resource selection strategy, called “MGRSS”. The

strategy helps user select the better performance of machine in order to shorten the

execution time of programs, and furthermore we adjusted each grid user has quota of

resource. The experimental result shows that MGRSS exhibits a better performance

than other strategies

Overall, we construct a multi-grid platform, which integrates three grid systems

including the Tiger Grid, the Medical Grid, the Bio Grid, and GCA Grid, and

furthermore, design and implement a Multi-Grid Resource Broker with multi-grid

resource selection strategy.

1.3 Thesis Organization

The rest of this thesis is as follows. Chapter 2 describes a background review of Grid

computing, middleware, the related techniques used, and the related work. Chapter 3

shows the system design and implement, includes Resource Broker, Software Stack

Diagram Cross Grid Information Server, and Cross Grid Authentication Service, Cross

Grid Information Service, and Web portal. Chapter 4 shows the flowchart and

algorithm of multi-grid resource selection strategy. Chapter 5 presents experimental

 4

results of comparing the performance of different strategies. Finally, conclusions and

future works are discussed in Chapter 6.

Chapter 2

Background Review

2.1 Grid Computing and Middleware

Grid computing encounters distributed heterogeneous resources, including different

platforms, hardware/software, computer architecture, and computer languages, which

are geographically distributed and governed by different Administrative Domains over

a network using open standards to solve large-scale computational problems. As more

Grids are deployed worldwide, the number of multi-institutional collaborations is

rapidly growing. However, to realize Grid computing is full potential, it is expected that

Grid participants are able to use one another’s resources.

Functionally, Grids can be classified as computational Grid and data Grid. The

computational Grid is the beacon to scientists for solving large-scale problems like

gene comparison, high-energy physics, earthquake simulation, and weather prediction,

etc. The subject of this work is the resource management and allocation for a Grid

system that is primarily intended to support computationally expensive tasks like

simulations and optimizations on a Grid.

2.1.1 Globus

The Globus Toolkit (GT) [1, 32], is an open source project developed by the Globus

Alliance for building Grids, not only provides users with an implementation of the

necessary services of a middleware to build Grid infrastructures, but also able to be

employed to implement immense applications on Grid infrastructures. It is important to

 5

note, that the GT, however, offers only the fundamental software and technologies

necessary for setting up a Grid.

The GT contains five broad areas includes below:

 Security: Grid Security Infrastructure (GSI) and Community Authorization

Service (CAS)

 Execution Management: Web Service Grid Resource Allocation and

Management (WS GRAM)

 Data Management: GridFTP and Global Access to Secondary Storage

(GASS)

 Information Services: Monitoring and Discovery System (MDS)

 Common Runtime: eXtensible IO (XIO)

WS GRAM is a set of Web services designed to handle requesting and using remote

system resources by providing a single common protocol and API, and it also supports

a uniform and flexible interface to local job scheduling systems. The Grid Security

Infrastructure (GSI) provides mutual authentication of both user and remote resources

using GSI (Grid-wide) PKI-based identities. WS GRAM provides a simple

authorization mechanism based on GSI identities and a mechanism to map GSI

identities to local user accounts.

GridFTP is a high-performance, secure, reliable data transfer protocol based upon

the FTP protocol and optimized for high-bandwidth wide-area networks. The current

GridFTP uses GSI security on both control (command) and data channels. Other

features include striping, third-party transfers between two servers, partial file transfers,

reliability/restart, large file support, reusable data channels, parallel transfers, TCP

buffer size control, and command pipelining.

 6

2.1.2 EGEE

The EGEE project [36] aims to provide researchers in academia and industry with

access to major computing resources, independent of their geographic location. The

EGEE project will also focus on attracting a wide range of new users to the Grid.

The project will primarily concentrate on three core areas:

 The first area is to build a consistent, robust and secure Grid network that

will attract additional computing resources.

 The second area is to continuously improve and maintain the middleware

in order to deliver a reliable service to users.

 The third area is to attract new users from industry as well as science and

ensure they receive the high standard of training and support they need.

The EGEE Grid will be built on the EU Research Network GÉANT and exploit

Grid expertise generated by many EU, national and international Grid projects to date.

Funded by the European Commission, the EGEE project community has been

divided into 12 partner federations, consisting of over 70 contractors and over 30

non-contacting participants covering a wide-range of both scientific and industrial

applications.

2.1.3 CrossGrid

The CrossGrid project [52] is divided into four work packages which deal with the

technical aspects of the project, and one work package dealing with management,

dissemination, and exploitation:

 WP1 CrossGrid Application Development,

 WP2 Grid Application Programming Environments develops, integrates

and tests tools that facilitate the development and tuning of parallel distributed,

interactive applications on the Grid.

 7

 WP3 New Grid Services and Tools develops the new, generic CG services

and software infrastructure to support the Grid users, applications and tools as

defined in the work packages WP1 and WP2.

 WP4 International Tested Organization collects all of the developments

from the work packages WP1-3 and integrates them into successive software

releases. It also gathers and transmits all feedback from the end-to-end

application experiments back to the developers, thereby linking development,

testing, and user experience.

 WP5 Project Management ensures the professional management of the

project and active dissemination and exploitation of its results.

The local WP web sites deliver not only the general descriptions of their tasks but

also the current status of all tasks within the given WP.

All the technical tasks are coupled and they form one logical structure, with

applications at one end and the infrastructure at the other, and with intermediate

programming environment and software tools in-between. The whole project is

factorized into a number of individual tasks, each of which has one or a few institutions

attached. The technical and managerial responsibilities for the four work packages lie

primarily with their leaders, who are the top experts in their fields, and who originate

from the principal contractors of the Consortium. It is up to these managers to prepare

the work plan for these work packages and to report periodically on the progress

(deliverables). All these tasks have to be synchronized by the central management.

2.2 System Development Tools

2.2.1 Java CoG Kit

The Java CoG (Commodity of Grid) Kit [2, 31] provides access to Grid services

through the Java higher-level framework. Components providing client and limited

 8

server side capabilities are included. The Java CoG Kit provides a framework for

utilizing the many Globus services as part of the Globus metacomputing toolkit. Many

of the classes are provided as pure Java implementations. Thus, writing client-side

applets without installing the Globus toolkit is possible.

Java CoG (Commodity of Grid) Kit combines Java technology with Grid

Computing to develop advanced Grid Services and accessibility to basic Globus

resources. It allows easier and more rapid application development by encouraging

collaborative code reuse and avoiding duplication of effort among problem-solving

environments, science portals, Grid middleware, and collaborative pilots.

The Java-based Application uses the Java CoG kit to connect to the Grid system.

Key characteristics include: GridProxyInit, a Java class for submitting pass phrases to

Grid to extend certificate expiration dates, GridConfigureDialog, which uses the

UITool in the CoG Kit to enable users to configure process numbers and host names of

Grid servers, and GridJob, which creates GramJob instances. This class represents a

simple gram job and allows for submitting jobs to a gatekeeper, canceling them,

sending signal commands, and registering and unregistering from callbacks. GetRSL,

RSL (Resource Specification Language) provides a common interchange language to

describe resources.

2.2.2 Parallel Application Development Tool

MPI [4] is a library specification for message-passing, proposed as a standard by a

broadly based committee of vendors, implementers, and users. MPICH [42-43] is a

freely available, portable implementation of MPI. MPICH-G2 [44] is a Grid-enabled

implementation of the MPI v1.1 standard. That is, it uses services provided by the

Globus Toolkit (e.g., job startup, security). MPICH-G2 enables coupling of multiple

machines, potentially with different architectures, to run MPI applications. MPICH-G2

 9

automatically converts data in messages sent between machines of different

architectures, and supports multi-protocol communication by automatically selecting

TCP for inter-machine messaging and, where available, vendor-supplied MPI for

intra-machine messaging. Existing parallel programs written for MPI can be executed

over the Globus infrastructure after just recompilation.

2.2.3 Machine Information Provider

The Ganglia [21, 22, 30] is an open source project grew out of the University of

California, Berkeley’s Millennium initiative. The Ganglia is a scalable distributed

system for monitoring status of nodes (processor collections) in wide-area systems

based on Grid or clusters. It adopts a hierarchical; tree-like communication structure

among its components in order to accommodate information from large arbitrary

collections of multiple Grid or clusters. The information collected by the Ganglia

monitor includes hardware and system information, such as processor type, CPU load,

memory usage, disk usage, operating system information, and other static/dynamic

scheduler-specific details.

2.2.4 Network Information Provider

The NWS (Network Weather Service) [12, 45] is a distributed system that detects

network status by periodically monitoring and dynamically forecasting over a given

time interval. The service operates a distributed set of performance sensors (network

monitors, CPU monitors, etc.) from which it gathers system condition information. It

then uses numerical models to generate forecasts of what the conditions will be for a

given time period. The system includes sensors for end-to-end TCP/IP performance

(bandwidth and latency), available CPU percentage, and available non-paged memory.

The sensor interface, however, allows new internal sensors to be configured into the

system.

 10

2.2.5 Performance Benchmarking

The HPL [51] is a software package of solving a dense linear system in double

precision arithmetic, it can be thought of a portable implementation of the High

Performance Computing Linpack Benchmark for distributed-memory computers. The

HPL provides timing and testing programs to quantify the precision of the acquired

solution and the time it starts computation. The best performance reachable by this

software depends on a large variation of factors. Nonetheless, with some restriction

from the interconnection network, the algorithm and its attached scalable

implementation in the sense that their parallel efficiency is maintained constant relate to

the memory usage of each processor.

2.2.6 JRobin

JRobin [49] is a 100% pure java implementation of RRDTool's functionality. It follows

the same logic and uses the same data sources, archive types and definitions as

RRDTool does. JRobin supports all standard operations on Round Robin Database

(RRD) files: CREATE, UPDATE, FETCH, LAST, DUMP, XPORT and GRAPH.

JRobin's API is made for those who are familiar with RRDTool's concepts and logic,

but prefer to work with pure java. If you provide the same data to RRDTool and JRobin,

you will get exactly the same results and graphs. JRobin is made from the scratch and it

uses very limited portions of RRDTool's original source code. JRobin does not use

native functions and libraries, has no Runtime.exec() calls and does not require

RRDTool to be present. JRobin is distributed as a software library (jar files) and comes

with full java source code

2.2.7 JFreeChart

JFreeChart [50] is a free 100% Java chart library that makes it easy for developers to

display professional quality charts in their applications. JFreeChart's extensive feature

 11

set includes: a consistent and well-documented API, supporting a wide range of chart

types; a flexible design that is easy to extend, and targets both server-side and

client-side applications; support for many output types, including Swing components,

image files (including PNG and JPEG), and vector graphics file formats (including

PDF, EPS and SVG); JFreeChart is "open source" or, more specifically, free software.

It is distributed under the terms of the GNU Lesser General Public Licence (LGPL),

which permits use in proprietary applications.

2.3 Related Works

In [24], authors present an integrated Grid information system [3] which is designed

and implemented using existing information systems. As a result, the proposed system

is able to monitor the basic information on each computer, the network state, computing

state of a cluster, the nodes and queues of a cluster, and more using a Globus toolkit,

NWS, Condor, and LSF. In addition, since the integrated Grid information system

allows for the discovery and monitoring of all Grid resources, the usability of the

system can be proliferated.

In [19], authors propose our enhanced multi-site resource selection

algorithm—CGRS algorithm, based on the distributed computational grid model and

the grid scheduling model. The CGRS algorithm integrates a new density-based grid

resource-clustering algorithm into the decoupled scheduling approach of the GrADS

and decreases its time complexity. Also, we establish a performance model and

mapping strategy for the synchronous iterative applications and demonstrate the

correctness and effectiveness of CGRS algorithm in our simulation

In [36], authors present a tool able to check if a given grid service works as expected

for a given user or set of users on the different resources available on a grid. Our

solution deals with the grid services as single components that should produce an

 12

expected output to a pre-defined input, what is quite similar to unit testing. Our tool,

called Service Availability Monitoring or SAM, is being currently used to monitor

some of the largest (maybe the largest) production grids available today.

In [52], the CrossGrid project addresses realistic problems in medicine,

environmental protection, flood prediction, and physics analysis and is oriented

towards specific end-users: Medical doctors, who could obtain new tools to help them

to obtain correct diagnoses and to guide them during operations; industries, that could

be advised on the best timing for some critical operations involving risk of pollution;

flood crisis teams, that could predict the risk of a flood on the basis of historical records

and actual hydrological and meteorological data; physicists, who could optimize the

analysis of massive volumes of data distributed across countries and continents.

Corresponding applications will be based on Grid technology and could be complex

and difficult to use: the CrossGrid project aims at developing several tools that will

make the Grid more friendly for average users. Portals for specific applications will be

designed, that should allow for easy connection to the Grid, create a customized work

environment, and provide users with all necessary information to get their job done.

 13

Chapter 3

System Design and Implementation

3.1 Resource Broker

This study implements a resource broker with the cross grid information service and

cross grid authentication service on the multi-grid computational environment. The

resource broker discovers and evaluates multi-grid resources, and makes the decision of

job submission depending on the job requirement. The system architecture of the

resource broker is shown in Figure 3-1. Users could easily make use of our resource

broker through a common Grid portal [6, 7, 13-17]. The primary task of Resource

Broker is to compare requests of users and resource information provided by

Information Service. After choosing the appropriate job assignment scheme, Grid

resources are assigned and the Scheduler is responsible to submit the job. The results

are collected and returned to Resource Broker. Then, Resource Broker records results

of execution in the database of Information Center through the Agent of Information

Service. The user can query the results from Grid portal.

Our resource broker architecture include the four layers, web portal, resource

brokering subsystem, multi-grid manager center, and multi-grid resource. The

multi-grid resource consists of many single grid environments. When a new single

grid joins our multi-grid environment, the grid administrator should register at the web

portal and provide the personal file and the related information of the grid, such as the

CA package, the grid-mapfile of Globus, and the machine lists. The multi-grid system

deploys the environment according to the registered information, and then assigns a

resource broker account to a single grid user. This account could access the resource

supported by the resource broker on the multi-grid environment, Figure 3-1 shows the

concept. The multi-grid manager center has cross grid authentication service and cross

 14

grid information service, that is important part on entire multi-grid environment,

which control the access of grid and the information gather, the detail described in

following section.

Figure 3-1. Resource Broker system architecture

 15

3.2 Software Stack Diagram

The system software stack includes three layers constructed using a bottom-up

methodology. The layers are described below:

 Bottom Layer: principally consists of Nodes, as shown in Figure 3-2. The

layer contains two main blocks, the Information Provider, which uses

Ganglia to gather machine information on Nodes, such as number of

processors/cores, processor loading, total/free memory, and disk usage, and

NWS, which gathers essential network information such as bandwidth and

latency. The second block contains Grid Middleware, used to join Grid

Nodes together, and the MPICH-G2 required for running parallel

applications on the Grid.

 Middle Layer: contains grids as shown in Figure 3-3. Each grid consists of

several nodes located in the same place or connected to the same switch/hub.

All nodes in a site are connected to each other and to the Internet. Moreover,

grids are usually built as clusters with each node having a real IP.

 Top Layer: contains the Resource Broker, the Monitoring Service, and the

multi-grid manager, as shown in Figure 3-3. The Resource Broker

coordinates Grid resources, dispatches jobs to resources, and monitors job

statuses. One contribution of this work is proposing a resource allocation

scheme that can handle user jobs requiring more Grid resources than one

dedicated cluster can supply. To make strategic decisions in dispatching

jobs the Re-source Broker needs fresh information on the Grid from the

Monitoring Service, which also provides a web front-end for users to

observe job progress. Monitoring Service, which also provides a web

front-end for users to observe job progress. The task of multi-grid manager

 16

is integrating the grids into the multi-grid environment, which include the

cross grid authentication service and cross grid information service.

Figure 3-2. The software stack of all nodes

Figure 3-3. The software stack of all sites and the service

3.3 Cross Grid Authentication Service

The Globus Toolkit authentication is issued by the certificate of GSI. Each user and

service is certificated to identify and authenticate the trust between users or services

[32]. If two parties have the certificate and both of them trust the CAs, then these two

parties could trust each other. This is known as the mutual authentication. A subject

name, which identifies the person or object that the certificate represents. The cross

 17

grid authentication service manages the several certificates and the subject of grid,

and we know these messages from the registered information via web portal. All of

nodes on multi-grid environment should setup the cross grid service tool, which

written in the shell script program, show in

Figure 3-4. The cross grid service tool contain some procedure to regular automatic

update with multi-grid manager center, such as the IP and domain of host list, the

certificates, and the subject. Any single grid user on our multi-grid environment

makes use of the multi-grid resource through the tool to update with multi-grid

manager center. The primary task of cross grid information is to gather the IDL file,

which contains the several attribute of host on grid, the detail describe in next section.

Figure 3-4. Multi-Grid Manager Center

 18

3.4 Cross Grid Information Service

The monitor tool is the important component in a grid environment [8-12]. A monitor

tool could help grid administrator to manage and monitor the machines. On the other

hand, the middleware could gather the resource information to find the suitable

resource by the monitor tool. There are common monitor tools, such as MDS, Ganglia,

Cacti, and Condor [41, 43, 44]. On a multi-grid environment, grids use different

monitor tools with different information formats. Therefore, we define a new

information format to translate different formats. The proposed format is called IDL

(Information Describing Language), as shown in Figure 3-5. It is responsible to

exchange and translate resource information among grids, and to perform the

post-transfer filtering to ensure that only necessary information is passed to clients, end

users, and software components.

Figure 3-5. Information Describing Language.

The CGIS consists of three layers: the Core Service Layer, the Translator Layer,

and the Resource Layer, as shown in Figure 3-6. The Core Service Layer contains the

 19

Agent, Filter, Getter and Setter, and Gather. These components are installed in every

grid environment for information gathering and maintenance. The Translator Layer

supports a variety of format conversion monitor tool, such as Ganglia, Cacti, and MDS.

The information in different monitor tools is transformed into the IDL format. The

Resource Layer describes resource information from different grid environments. In

this study, it includes Tiger Grid, Medical Grid, and Bio Grid.

Figure 3-6. Cross Grid Information Service architecture

3.5 Web Portal

We provides a registration page let a new single grid join our multi-grid environment,

the register service will automatic send mail to the multi-grid administrator,

administrator adjustment and configuration the setting of multi-grid environment when

 20

receive the registration page. Later, notify the new single grid download the cross grid

service tool from multi-grid server achieve the step of registration, as shown in Figure

3-7.

Figure 3-7. Registration page of Multi-Grid Resource Broker

We use IDL XML format to exchange the information of multi-grid resource. The

collected information not only utilized when submitting job, but also show the status of

grids. The Monitor Service could monitor the resources supported by the multi-grid

resource broker. We provide the interface to observe the status of HostInfo, Daemons,

and Ganglia. Hosts Info show the status include the number of CPU, CPU speed, the

average of load in one minute, the average of load in five minute, the size of free

memory, the size of free swap , as shown in Figure 3-8. Daemon Status is another

service to monitor the services status of machines by the NMAP, which parse the list of

host by IDL file and scan the fix port through the list, then get the status whether the

service to be on, as shown in Figure 3-9. Ganglia only collect the status of grid

resources. In this study, we rewrite the Ganglia codes and modify the setting to support

the multiple grids. Our Ganglia page has the multiple level architecture, that show

 21

Tiger Grid, Medical Grid, Bio Grid, and GCA Grid in the web portal, as shown in

Figure 3-10.

Figure 3-8. Hosts Info

Figure 3-9. Daemon Status

 22

Figure 3-10. Ganglia

The Tiger Grid have the network measure service, we use the NWS achieve the

point to point network bandwidth measure. But the NWS tool lacks the database to

conserve the statistics, so we stored the statistics into round-robin database every five

minutes, and then draw the graph through JRobin, as shown in Figure 3-11. JRobin is a

100% pure java implementation of RRDTool's functionality. RRD stands for Round

Robin Database, and it is what it sounds like. There are a fixed number of records in the

database and once the last record has been written in the database the next update goes

to the first record, and around and around it goes. In this way, your databases will never

grow out of control. The only downside to this is that, obviously, you've got to know

how much data you'll want to look at historically ahead of time so that when you

 23

generate your database you have enough data. You may want a day’s worth of info, or

even months. The main functions are listed in the following:

1. Define and create an initial round-robin database in the server, the database must

need setting the database name, start time, timestamp, data sources and one or more

round robin archives.

public void createRrd(String clusters[],String rrdFile,long startTime)

throws RrdException, IOException{

 /* Define RRD */

 RrdDef rrdDef = new RrdDef(+rrdFile+".rrd", startTime-1, 300);

 /* Define the data source */

 for (int i=0;i<clusters.length;i++)

 rrdDef.addDatasource(clusters[i], "GAUGE", 300, Double.NaN,

Double.NaN);

 /* Define the round robin archives */

 rrdDef.addArchive("AVERAGE", 0.5, 1, 288); //300 sec

 rrdDef.addArchive("AVERAGE", 0.5, 7, 288); //35 min

 rrdDef.addArchive("AVERAGE", 0.5, 30, 288); //2.5 hr

 rrdDef.addArchive("MAX", 0.5, 1, 288);

 rrdDef.addArchive("MAX", 0.5, 7, 288);

 rrdDef.addArchive("MAX", 0.5, 30, 288);

 /* Create a RRD file */

 RrdDb rrdDb = new RrdDb(rrdDef);

 rrdDb.close();

}

2. Measure the network bandwidth every five minutes; moreover store the statistics in

the round robin databases.

public void update(String[] args) throws IOException, RrdException{

 /* Open the data source */

 RrdDb rrdDb = new RrdDb(args[1]+".rrd");

 Sample sample = rrdDb.createSample();

 24

 try{

 sample.setTime(currentTime); /* update time */

 for (int i=2;i<args.length;i+=2)

 sample.setValue(args[i],Long.parseLong(args[i+1]));

 sample.update();

 rrdDb.close();

 }catch(Exception e){

 if (e.toString().contains("NumberFormat"))

 System.out.println("");

 else

 System.out.println("Exception: "+e);

 }

}

3. We want to get the network diagram, so draw the graph from the data source of

round robin database and appropriate setting the attribute of graph, such as diagram

name, the diagram size, and the comment.

public void drawer(String cluster,String clusters[],String timeType,long

startTime,long endTime) throws RrdException, IOException{

 String rrdFile=cluster+".rrd";

 String pngFile=timeType+"/"+cluster+".png";

 String dataformat="";

 /* define graph */

 RrdGraphDef gDef = new RrdGraphDef();

 gDef.setTimePeriod(startTime-600, endTime);

 gDef.setDefaultFont(new Font("Courier New", Font.PLAIN, 12));

 gDef.setTitleFont(new Font("Courier New", Font.BOLD, 16));

 gDef.setTitle("Network Flow: "+cluster+" last "+timeType);

 gDef.setVerticalLabel("Mbit per second");

 gDef.comment("\n Now Average Max\n");

 /* draw */

 for (int i=0;i<clusters.length;i++){

 gDef.datasource(clusters[i], rrdFile, clusters[i], "AVERAGE");

 String space1="",space2="";

 25

 for (int j=0;j<5-cluster.length();j++)

 space1+=" ";

 for (int j=0;j<5-clusters[i].length();j++)

 space2+=" ";

 String line=space1+cluster+" <--> "+space2+clusters[i];

 /* draw the lines */

 gDef.line(clusters[i], Color.decode(colors[i*2]), line);

 gDef.comment("\t");

 /* print the statistics */

 dataformat="@8.2 Mb"; /* Alignment */

 gDef.gprint(clusters[i], "LAST",dataformat);

 gDef.comment("\t");

 gDef.gprint(clusters[i], "AVERAGE",dataformat);

 gDef.comment("\t");

 gDef.gprint(clusters[i], "MAX",dataformat);

 gDef.comment("\n");

 }

 /* comment */

 gDef.comment("\nLatest Update: "+new SimpleDateFormat("yyyy/MM/dd

HH:mm").format(new Date(new Timestamp(endTime*1000).getTime()))+"@r");

 RrdGraph graph = new RrdGraph(gDef);

 graph.saveAsPNG(pngFile, 380, 100); /* diagram size */

 /* print the time of latest update */

 if (timeType.equals("hour")){

 try {

 BufferedWriter out = new BufferedWriter(new

FileWriter("networkinfo/bandwidth/draw_time"));

 out.write(String.valueOf(endTime));

 out.close();

 } catch (IOException e) {

 }

 }

}

 26

Figure 3-11. NWS Information

The function pages have a web page of help manual in our web portal, which

describe the capability of page and the function of hyperlinks, and we hope any user

can use the web page easily without too much trouble on multi-grid environment, as

shown in Figure 3-12.

 27

Figure 3-12. Help Page

The user could execute a parallel program via the resource broker and choose the

required for the execution of the host after the use submit the job, as shown in Figure

3-13 and Figure 3-14, and get the result form the Job Monitor Service, which show

the many detail messages in execute time, such as scheduling log, machine list, result

message, running log, debug message, and turnaround time, as shown in Figure 3-15.

Figure 3-13. Job Monitor

 28

Figure 3-14. Resource Selection

We enhance the graphical display of monitor function, uses JFreechart tool draw

more meaningful graphics, include Job Monitor, Login Info, and Utilization of

Resource, as shown in Figure 3-15, Figure 3-16 and Figure 3-17. JFreeChart is a free

100% Java chart library that makes it easy for developers to display professional quality

charts in their applications.

 29

Figure 3-15. Job Monitor

Figure 3-16. Login Information

 30

Figure 3-17. Utilization of Resources

 31

Chapter 4

Multi-Grid Resource Selection Strategy

4.1 Parameters and MGRSS Algorithm

In this section, the parameters used in the algorithm are listed and explained in the

following:

 jobi: The i
th

 job dequeued from the job queue, where i = 1~n. The job

contains some information such as job name, program name, program arguments,

input data, and number of processors to run on. The program is usually a parallel

program written by MPI library and compiled by MPICH-G2 that is a

Grid-enabled implementation of the MPI standard. The Resource Broker will

allocate resources according to the information provided by the job.

 NPmGrid : The total number of processors on the multiple grid

 NPlGrid : The total number of processors on the local grid

 NPmf : The total number of processors with idle status on the multiple grid

 NPlf : The total number of processors with idle status in the local grid

 NPmax : The maximum processors on the multiple grid

 NPvalid : The available processors on the multiple grid

 NPreq: The processors used for executing jobi, if the Resource Broker

dispatches the jobi successfully, the resources distributed over several Nodes or

Sites used for jobi will be locked for a while until the jobi finishes.

 Smax : The higher scores of the machines

 NPvalid : How many number of processor user can apply.

𝑁𝑃𝑣𝑎𝑖𝑙𝑑 = 𝛼 ∙
𝑁𝑃𝑚𝐺𝑟𝑖𝑑

𝑁𝑃max

∙ 𝑁𝑃𝑙𝐺𝑟𝑖𝑑 (1)

 32

 Loadi: It is a sum of the Load1min, Load5min, and Load15min of Nodei, the

expression of Loadi is shown as follows:

𝐿𝑜𝑎𝑑𝑖 =
𝑙𝑜𝑎𝑑1𝑚𝑖𝑛 × 3 + 𝑙𝑜𝑎𝑑5𝑚𝑖𝑛 × 2 + 𝑙𝑜𝑎𝑑15𝑚𝑖𝑛

6
 (2)

Where Load1min is the average of load in one minute, Load15min is the average of load

in five minute, and Load15min is the average of load in fifteen minute. For each

parameter has different proportion value, the time is closer, the value is higher.

 PEi : The computing performance efficiency of host, the expression is shown

as follows:

𝑃𝐸𝑖 = 𝐻𝑃𝐿𝑖 ×
100 − 𝐿𝑜𝑎𝑑𝑖

100
 (3)

Where HPLi is the benchmarking value of host obtained by the approach of

benchmarking.

 Flowi : The average network flow of host, the expression is shown as

follows:

𝐹𝑙𝑜𝑤𝑖 =
 𝐵𝑦𝑡𝑒_𝐼𝑛𝑘 + 𝐵𝑦𝑡𝑒_𝑂𝑢𝑡𝑘

𝑁
𝑘=1

𝑁 ∗ 10242
 (4)

Where Byte_in and Byte_out get from the IDL, estimated the network flow influence

through these two parameters. We also considered that same domain of other

machines will affect the flow of the entire site, where N is the number of nodes in

same domain. Therefore we use the average of all nodes in same domain. Finally, the

Flowi mean Megabyte per second after divided by square of 1024.

 TPi : Total performance power, the expression is shown as follows:

𝑇𝑃𝑖 = 𝑃𝐸𝑖 − 𝛽 ∙ 𝐹𝑙𝑜𝑤𝑖 (5)

Where β is the effect ratio used to regulate the percentage of PE and Flow.

 33

The main policy of MRGSS, a single grid select resource itself when that possesses

sufficient resources, otherwise selects the multiple grid resource. The number of

available resources is variation, which according to their own resources of local grid.

The procedure of MGRSS is listed as follows:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

MGRSS(jobi) {

NPmGrid = getNumFromIDL();

NPlGrid = getNumFromIDL();

NPmf = getFreeHostFromIDL();

NPlf = getFreeHostFromIDL();

NPmax = getMaxNumber(NPmGrid);

NPvalid = getValidNumberProcess();

if (NPreq,i < NPlGird) then /* Single Grid */

 if (NPreq,i < NPlf)

 Smax = getMaxRankCandidate(NPlf);

 submitJob(jobi, Smax);

 else

 enqueue (jobi);

else

if (NPreq,i < NPvalid) then /* Multi Grid */

if (NPreq,i < NPmf)

 Smax = getMaxRankCandidate(NPmf);

 submitJob(jobi, Smax);

 else

 enqueue (jobi);

else

discard jobi;

}

4.2 MGRSS Flowchart

Submit job is the most important part of Resource Broker. Among the many resources,

chooses the appropriate resource to do assignment is a very important topic, beacuse the

fine resource selection strategy can shorten the execution time of job, and upgrade the

 34

overall performance on Multi-Grid environment. For above purposes, we provide a

Multi-Grid Resource Selection Strategy, called MGRSS, as shown in Figure 4-1.

Figure 4-1. Multi-Grid resource selection strategy flowchart

First a job dequeued from the job queue for scheduling. Second, it gets the latest

information from an IDL file of multi-grid information server determining if the

number of processors of request is smaller than the total number of processors of

Multi-Grid. If false, discard job. If true, determining use the single grid or multi-grid

strategy by the processors of request. For single grid strategy, the processors of request

should be smaller than the free processors of local grid; otherwise, enqueue the job and

waiting for five minutes. When the waiting time is exceed the five minutes, resubmit

the job. If the processors of request still smaller than the free processors of local grid,

we adopt the multiple grid strategy. For multiple grid strategy, if the processors of

request larger than the valid processors of multiple grid, then discard job. Otherwise if

the processors of request smaller than free processors of multiple grid, then we adopt

the multiple grid strategy.

 35

Chapter 5

Experimental Environment and Results

5.1 Experimental Environment

In this work, the experiment was conducted and evaluated on the twenty two nodes

showed in Table 5-1 by number of CPU/core, speed(MHz), memory(MB), and

HPL(GFLOPA).

Table 5-1. The machine information of test-bed

Host Number of

CPU/Core

Speed

(MHz)

Memory

(MB)

HPL

(GFLOPA)

beta1 2 2,813 1,024 7.490

beta2 2 2,813 1,024 7.490

beta3 2 2,813 1,024 7.490

beta4 2 2,813 1,024 7.490

delta1 2 3,000 1,024 8.142

delta2 2 3,000 1,024 8.142

delta3 2 3,000 1,024 8.142

delta4 2 3,000 1,024 8.142

eta3 4 2,000 1,024 13.391

eta4 4 2,000 1,024 13.391

eta5 4 2,000 1,024 13.391

eta6 4 2,000 1,024 13.391

gamma2 2 2,806 1,024 7.125

gamma3 2 2,806 1,024 7.125

gamma4 2 2,806 1,024 7.125

medicare 4 1,793 2,048 12.652

medicare1 4 1,000 2,048 10.176

mu1 2 1,866 1,024 6.251

mu2 2 1,866 1,024 6.251

puthu01 1 1,991 1,024 4.058

puthu02 1 1,991 1,024 4.058

puthu03 1 1,991 1,024 4.058

 36

5.2 Tested Programs

This experimental used several parallel programs. The programs and explanation are

described in the following:

 bucketsort_mpi: This program sorts a list of evenly distributed numbers.

The numbers are randomly generated and are evenly distributed in the range

between 0 and 2n.

 pi_mpi: This program computes the value of PI by using numerical

integration, and it spends a large amount of computing power.

 prime_mpi: This program computes the largest prime of the argument, and

it spends a large amount of computing power.

 mmd_mpi: This program performs a square matrix multiplication and uses

up the memory gradually when the argument, matrix size, glows up

 jacobi_mpi: This program solves Laplace equation by executing T steps of

the smoothing part of the algorithm. It decomposes the matrix in strips that

are assigned to processors.

 cfd_mpi: This program performs computational fluid dynamics (CFD)

simulations. CFD is a computational technology that can use to simulate the

dynamics of flow. The CFD outputs a prediction of the fluid dynamics of a

computational model that represents a system or device by applying the

fluid flow physics to this virtual prototype.

 nqueen_mpi: This program solves the N-Queen problem, which is required

to place the N queens on the N by N chessboard such that no two queens

attack each other, i.e., no two queens can be placed on the same row, the

same column, and the same diagonal.

 37

 sat3_mpi: This program solves the Circuit-Satisfiability problem. Given a

Boolean combination circuit composed of AND, OR, and NOT gates,

whether there is an input that makes the circuit output True.

 sieve5_mpi: This program uses the Sieve of Eratosthenes method for

efficiently listing prime numbers. First, a list of integers beginning with 2

and ending with some number, say, N. Then remove all multiples of 2.

Move to the next number, which in this case is 3, and then remove all its

multiples. Continue in this fashion until there are no new numbers.

5.3 Experimental Results

In this section, we do the five experimental results. Among the first three experiment

respectively measurement the execute time for different specific program which use the

different metric in five strategy environment. In the fourth experiment, we execute the

entire parallel programs which as previous section mention. The last experiment

randomly selected twenty different types of parallel programs and uses the different

number of processors to execute. The above-mentioned results are all order to

compare the execution time between different resource selection strategies.

We calculates the value of performance and network for each machine, and

according the score to sort the machines list which represent the resource selection

priority, and previous chapter mention the MGRSS algorithm. We divided MGRSS

into three levels from level one to level three by different weighted value β . The

maximum weighted value of the network is MGRSS3（β =0.7）; the medium weighted

value（β =0.5）;the maximum weighted value of the performance is MGRSS1（β

=0.3）.

 38

First experiment show the result for bucketsort MPI programs total executes time

in ten times, and the program parameter size using the 512, 1024, 4096 respectively.

The bucketsort MPI program use a small number of resources. In this case, the rapid

transmission normally will decide the time of program execute. The MGRSS2 and

MGRSS3 have better strategies in this experiment, because that has more proportion

of network in three level of MGRSS algorithm. Experiment result show in Figure 5-1

and Figure 5-2.

Figure 5-1. Result for Bucketsort_MPI in different parameters sequence

Figure 5-2. Result for Bucketsort_MPI in different strategies sequence

0

1

2

3

4

5

6

7

8

9

512 1024 4096

Se
co

n
d

s

Problem Size

Bucksort_MPI

MGRSS1

MGRSS2

MGRSS3

Speed Only

Network Only

0

1

2

3

4

5

6

7

8

9

MGRSS1 MGRSS2 MGRSS3 Speed Only Network Only

Se
co

n
d

s

Strategy

Bucketsort_MPI

4096

1024

512

 39

Second experiment shows the result for matrix multiplication MPI programs total

execute time in ten times, and the program parameter size using the 256, 512, 1024

respectively. The matrix multiplication requires a large amount of computing power

and network, but the network flow is still more proportion. So the MGRSS3 spent the

less time executing the jobs. Experiment result show in Figure 5-3 and Figure 5-4.

Figure 5-3. Result for Mmd_MPI in different parameters sequence

Figure 5-4. Result for Mmd _MPI in different strategies sequence

0

20

40

60

80

100

120

140

256 512 1024

Se
co

n
d

s

Problem Size

Mmd_MPI

MGRSS1

MGRSS2

MGRSS3

Speed Only

Network Only

0

20

40

60

80

100

120

140

MGRSS1 MGRSS2 MGRSS3 Speed Only Network Only

Se
co

n
d

s

Strategy

Mmd_MPI

1024

512

256

 40

Third experiment shows the result for cfd problem MPI programs total execute time

in ten times, and the program parameter size using the 80, 100, 120 respectively. This

program uses a large of computing power and network flow, but compare with former

experiment the usage of computing power is still greater than network flow,

Experiment result show in Figure 5-5 and Figure 5-6.

Figure 5-5. Result for Cfd_MPI in different parameters sequence

Figure 5-6. Result for Cfd _MPI in different strategies sequence

0

20

40

60

80

100

120

140

160

180

200

80 100 120

Se
co

n
d

s

Problem Size

Cfd_MPI

MGRSS1

MGRSS2

MGRSS3

Speed Only

Network Only

0

20

40

60

80

100

120

140

160

180

200

MGRSS1 MGRSS2 MGRSS3 Speed Only Network Only

Se
co

n
d

s

Strategy

Cfd_MPI

120

100

80

 41

We execute the nine parallel programs which are describe in previous section.

Similarly, we compared the MGRSS and other differences strategy again. The different

characteristics of the program, so use the different strategies will produce different

results between these situations. Overall, three levels of MGRSS strategies still better

than other strategies. Experiment result show in Figure 5-7. The last experiment we

randomly selected twenty different types and parameter of parallel programs to

execute with the different strategies in twenty times, as shown in Figure 5-8. In some

care, the speed only and the network only is better than the MGRSS, but MGRSS is

better than other two strategies in the most of case.

Figure 5-7. Result for all mpi programs

118.21 111.92 102.36

175.21

267.92

0

50

100

150

200

250

300

Se
co

n
d

s

Strategy

All MPI

MGRSS1

MGRSS2

MGRSS3

Speed Only

Network Only

 42

Figure 5-8. Result for variety of mpi programs

0

10

20

30

40

50

60

70

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Se
co

n
d

s

Sequence

A variety of MPI_Job

Network Only Speed Only MGRSS

 43

Conclusion and Future Work

In this thesis, we construct a resource broker for multi-grid computational environment

which integrates the four single grids into our environment, and provide the cross grid

service. The resource broker enables users to submit job via web portal, and use the

multi-grid resource selection strategy algorithm to select better resource avoid network

congestion caused of decrease of performance.

The user execute the workflow achieve more high-performance computing by web

portal without comprehend complicated instructions, and that can monitor status of

multi-grid or grid itself. Our goal, more and more virtual organizations will join in the

multi-grid environment, a huge computing resource also progressively grow up.

In the future, we focus on efficiently integrate the different grid middleware, such

as Globus and GLite. Even though most of organization use the Globus as the grid

middleware in Taiwan, but the GLite has still a lot of users in international. We also

hope invite other school let their grid join our architecture, and allocate the account to

use resource broker. Final, we will continue to enhance and improve the function of

resource broker and multi-grid resource selection strategy.

 44

Bibliography

1. I. Foster and C. Kesselman, “Globus: A Metacomputing Infrastructure Toolkit,”

International Journal of Supercomputer Applications, 1997, vol. 11, pp.

115-128.

2. V. Laszewski, I. Foster, J. Gawor, and P. Lane, “A Java commodity grid kit,”

Concurrency and Computation: Practice and Experience, 2001, vol. 13, pp.

645-662.

3. K. Czajkowski, S. Fitzgerald, I. Foster, and C. Kesselman, “Grid Information

Services for Distributed Resource Sharing,” Proceedings of the Tenth IEEE

International Symposium on High-Performance Distributed Computing, 2001,

pp.181-194.

4. I. Foster and N. Karonis, “A Grid-Enabled MPI: Message Passing in

Heterogeneous Distributed Computing Systems,” Proceedings of 1998

Supercomputing Conference, 1998, pp. 46- 46.

5. J. Tang, and M. Zhang, “An Agent-based Peer-to-Peer Grid Computing

Architecture,” Semantics, Knowledge and Grid, 2005, SKG ’05, First

International Conference on, 2005, pp.57-57.

6. G. Aloisio and M. Cafaro, “Web-based access to the Grid using the Grid

Resource Broker portal,” Concurrency Computation: Practice and Experience,

2002, vol. 14, pp. 1145-1160.

7. K. Krauter, R. Buyya, and M. Maheswaran, “A taxonomy and survey of grid

resource management systems for distributed computing,” Software Practice

and Experience, 2002, vol. 32, pp. 135-164.

8. L. Baduel and S. Matsuoka, “Peer-to-Peer Infrastructure for Autonomous Grid

Monitoring,” Proceedings of Parallel and Distributed Processing Symposium,

2007, vol. 35 , pp. 1-8..

9. D.H. Kim and K.W. Kang, “Design and Implementation of Integrated

Information System for Monitoring Resources in Grid Computing,” Computer

Supported Cooperative Work in Design, 2006, pp.1-6.

10. F.D. Sacerdoti, M.J. Katz, M.L. Massie, and D. E. A. C. D. E. Culler, “Wide

area cluster monitoring with Ganglia,” Cluster Computing, 2003. Proceedings

of 2003 IEEE International Conference on, 2003, pp. 289-298.

11. W.C. Chung, R.S. Chang, “A new mechanism for resource monitoring in grid

computing,” Future Generation Computer Systems, 2009, vol. 25, pp. .

12. C.T. Yang, T.T. Chen and S.Y. Chen, “Implementation of Monitoring and

Information Service Using Ganglia and NWS for Grid Resource Brokers,”

Proceedings of 2007 IEEE Asia-Pacific Services Computing Conference, 2007,

pp. 356-363.

13. C.T. Yang, C.L. Lai, P.C. Shih, and K.C. Li, “A Resource Broker for

Computing Nodes Selection in Grid Environments,” Proceedings of Grid and

Cooperative Computing - GCC 2004: 3rd International Conference. 2004, vol.

 45

3251, pp. 931-934.

14. C.T. Yang, P.C. Shih, and K.C. Li, “A high-performance computational

resource broker for grid computing environments,” Advanced Information

Networking and Applications, 2005. AINA 2005. 19th International Conference

on, 2005, vol.2, pp. 333-336.

15. C.T. Yang, K.C. Li, W.C. Chiang, and P.C. Shih, “Design and Implementation

of TIGER Grid: an Integrated Metropolitan-Scale Grid Environment,”

Proceedings of the 6th IEEE International Conference on PDCAT’05, 2005,

pp. 518-520.

16. C.T. Yang, C.F. Lin, and S.Y. Chen, “A Workflow-based Computational

Resource Broker with Information Monitoring in Grids,” Proceedings of Fifth

International Conference on Grid and Cooperative Computing (GCC'06), 2006,

pp. 199-206.

17. C.T. Yang, S.Y. Chen, and T.T. Chen, “A Grid Resource Broker with Network

Bandwidth-Aware Job Scheduling for Computational Grids,” Proceedings of

Grid and Pervasive Computing - Second International Conference. 2007, vol.

4459, pp. 1-12.

18. C.T. Yang, P.C. Shih, and S.Y. Chen, “A Domain-Based Model for Efficient

Measurement of Network Information on Grid Computing Environments,”

IEICE - Trans. Inf. Syst. 2006, vol. E89-D, pp. 738-742.

19. W. Zhang, B. Fang, H. He, H. Zhang, M. Hu, "Multisite resource selection and

scheduling algorithm on computational grid", Proceedings of Parallel and

Distributed Processing Symposium, 2004, pp. 105-115.

20. F. Ian and K. Carl, “Globus: A Metacomputing Infrastructure Toolkit,”

International Journal of Supercomputer Applications, 1997, vol. 11, pp.

115-128.

21. M.L. Massie, B.N. Chun, and D.E. Culler, “The Ganglia Distributed

Monitoring System: Design, Implementation, and Experience,” Parallel

Computing, 2004, vol. 30, pp. 817-840.

22. F.D. Sacerdoti, M.J. Katz, M.L. Massie, D.E. Culler, “Wide Area Cluster

Monitoring with Ganglia,” Proceedings of IEEE Cluster 2003 Conference,

2003, pp. 289-298.

23. R. Wolski, N. Spring, and J. Hayes, “The Network Weather Service: A

Distributed Resource Performance Forecasting Service for Metacomputing,”

Future Generation Computing Systems, 1999, vol. 15, pp. 757-768.

24. D.H. Kim, K.W. Kang, “Design and Implementation of Integrated Information

System for Monitoring Resources in Grid Computing,” Computer Supported

Cooperative Work in Design, 2006, pp. 1-6.

25. F. Ian and K. Carl, The Grid: Blueprint for a New Computing Infrastructure,

Morgan Kaufmann, 1st edition, 1999.

26. Multi Grid, http://gamma2.hpc.csie.thu.edu.tw/

 46

27. Tiger Grid, http://gamma2.hpc.csie.thu.edu.tw/ganglia/

28. Medical Grid, http://eta1.hpc.csie.thu.edu.tw/ganglia/

29. Bio Grid, http://140.128.98.25/ganglia/

30. Ganglia, http://ganglia.sourceforge.net/

31. Java CoG Kit, http://wiki.cogkit.org/

32. Globus, http://www.globus.org/

33. Condor, http://www.cs.wisc.edu/condor/

34. LEGION, http://www.cs.virginia.edu/~legion/

35. GridPP, http://www.gridpp.ac.uk/

36. EGEE, http://www.eu-egee.org/

37. P-Grid, http://www.p-grid.org/

38. DutchGrid, http://www.dutchgrid.nl/

39. ESnet, http://www.es.net/

40. GridBus, http://www.gridbus.org/

41. Cacti, http://www.cacti.net/

42. MPI, http://www-unix.mcs.anl.gov/mpi/.

43. MPICH, http://www-unix.mcs.anl.gov/mpi/.

44. MPICH-G2, http://www3.niu.edu/mpi/.

45. Network Weather Service, http://nws.cs.ucsb.edu/ewiki/.

46. Open Bioinformatics Grid, http://www.obigrid.org/.

47. The DataGrid Project, http://eu-datagrid.web.cern.ch/eu-datagrid/default.htm.

48. The Earth Simulator Center, http://www.es.jamstec.go.jp/index.en.html.

49. JRobin, http://oldwww.jrobin.org/

50. JFreeChart, http://www.jfree.org

51. HPL, http://www.netlib.org/benchmark/hpl/

52. CrossGrid, http://www.eu-crossgrid.org/

