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Estimation of the joint survival function for
successive duration times under

left truncation and dependent censoring
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Abstract

In incident cohort studies, survival data often include subjects who have experienced an
initiate event but have not experienced a subsequent event at the calendar time of recruit-
ment. During the follow-up periods, subjects may undergo a series of successive events. Since
the second/third duration process becomes observable only if the first /second event has oc-
curred, the data is subject to left-truncation and dependent censoring. In this article, using
the inverse-probability-weighted (IPW) approach, we propose nonparametric estimators for
the estimation of the joint survival function of three successive duration times. The asymp-
totic properties of the proposed estimators are established. The simple bootstrap methods
are used to estimate standard deviations and construct interval estimators. A simulation
study is conducted to investigate the finite sample properties of the proposed estimators.

Key Words: Truncation; Dependent censoring; Inverse-probability-weighted.
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Chapter 1

Introduction

In natural history studies of diseases, each subject can experience a series of successive
events. In many applications, the investigators are interested in the duration times between
successive events. Suppose that a disease process consists of three successive events occurring
in a chronological order. Let Fy, E, E5 and Ej3 respectively represent the calendar times of
the initiation, first, second and third events for a subject. Define 17 = Fy — Ey, Ty = Ey— E)
and T3 = E3 — L as the first duration time between £ and £, the second duration time
between F; and F5, and the third duration time between E5 and FEj3 respectively. One
may be interested in estimating the joint survival function of 77, 75 and 7%, denoted by
S(ty,ta,ts) = P(TY > t1, Ty > t3, T3 > t3). In cohort studies, survival data often include
subjects who have experienced the initiate event Fy at the calendar time of recruitment
(denoted by 79) and have not experienced a subsequent event, e.g. the first/second event.
For example, there are four stages in AIDS (acquired immunodeficiency syndrome) studies:
Ey: acute HIV infection; E : clinical latency, Es: the development of AIDS and Fj5: death.
A prevalent cohort is defined as a sample of subjects who have been infected with HIV (the
initiating event Fy) and have not developed clinical latency (or AIDS) at 9. Suppose that
the infection time Ej can be accurately determined. Let V* =7 — Fy if By <7 and V* =0
if Fg > 7. Let D* denote the time from 7y to the right censoring, i.e. the residual censoring
time. Note that D* can be written as D* = min(D7, D), where Dj = 75 — 7 denotes the
time from onset of disease to the end of study 7, and Dj denotes the time from onset of
disease to drop-out or death due to other causes. Figure 1 highlights all the different times for
left-truncated successive event data described in Example. In such HIV-prevalent cohort,
the time 77 (or T} + T5), i.e. the time from infection of HIV to development of clinical
latency (or to the development of AIDS) is left-truncated by V* and possibly right-censored.
Since the second duration time 73 becomes observable only if the first event has occurred,
ie. TY < C* = V* + D*, the length of T} affects the probability of T being censored.
Similarly, both lengths of 77 and 7% affect the probability of T3 being censored. Dependent
censoring arises if 17, T3 and T3 are correlated, which is often the case. Hence, the data
is subject to left truncation and dependent censoring. For this type of data, one observes
nothing if 77 < V* (or T} + T < V*) and observe (X7, X5, X5, V* C*,07,05,05) it T} > V*
(or TY + T3 > V*), where X} = min(T},C"), 07 = Iirr<c, X5 = 6y min(Ty, C* — TY),
05 = 01 iy <c—1y), X3 = 05 min(T3, C* — T{ — T5), and 65 = 85I i1y <o -1 15
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Figure 1. Schematic depiction of left-truncated successive event data

Note that since C* = V* + D*, the condition V* < C* is always satisfied. We assume
that (17, Ty, T, V*,C*) is continuous and (V*, C*) is independent of (17, T3, T5).

When there is no truncation, several nonparametric methods for estimating the joint
distribution function of successive duration times have been developed (see Visser (1996),
Wang and Wells (1998), and Lin et al. (1999)). In particular, both nonparametric estimators
considered by Wang and Wells (1998) and Lin et al. (1999) used the inverse probability of
censoring as weighted function to adjust the bias of induced informative censoring. Wang
and Wells (1988) presented an estimator for the cumulative conditional hazard of T, given
T, > t; following Nelson-Aalen’s construction of the cumulative hazard estimator with each
observation weighted based on the information on the first duration to unbias the effect
of dependent censoring. Lin et al. (1999) provided a simple nonparametric estimator for
the multivariate distribution function of the gap times between successive events when the
follow-up time is subject to right censoring. The estimator is consistent and converges weakly
to a zero-mean Gaussian process with an easily estimated covariance function.

When both left-truncation and dependent censoring are present, Chang and Tzeng (2006)
provided an inverse-probability-weighted (IPW) approach for estimating the joint probability
function of two successive duration times. Shen and Yan (2008) proposed an alternative
estimator of the joint distribution function of 77 and T5. Shen (2010) proposed two IPW
estimators of the joint survival function of 77 and 7. The first [IPW estimator is based
on the approach of Chang and Tzeng and the other is the extension of the nonparametric
estimator proposed by Wang and Wells (1998). Simulation results indicate that the first
IPW estimator outperforms the other estimators. However, as pointed out in Remark 1, the
[PW estimator proposed by Shen (2010) can have outlying values.

In this article, we consider the estimation of the joint survival function of three succes-
sive duration times when the first (or second) event time is left-truncated. In Section 2,
using the IPW approach, we propose nonparametric estimators of the joint survival function
S(ty,ta,t3). The proposed IPW estimator does not have the problem of outlying values. The
asymptotic properties of the proposed estimators are established. Furthermore, the simple
bootstrap methods are used to estimate standard deviations and construct interval estima-
tors. In Section 3, a simulation study is conducted to investigate finite sample performance
of the proposed estimators.



Chapter 2

The Proposed Estimators

2.1 When the first event time is left-truncated

Let ap, and b, denote the left and right endpoints of Tj (k = 1,2,3). Similarly, define
(ag,be) and (ag,bg) for V* and C*, respectively. For identifiablities of S(t1,1s,13), we
assume that

ag = GfF, = 0, bG S ka S bQ.

Let (Xi4, Xoi, X3i, Vi, Ci, 014,02, 03) (i = 1,...,n) denote the truncated sample. Let p =
P(V* <TY) denote the untruncated probability. Define the indicator
Li(t1, 2, t3) = I[X0i5 00, Xas>ta, Xai>ts,60=1]
and the function K(z,y) = P(V* < z,C* > y). Notice that
P(Xq; > t1, Xo; > to, X3, > t3,09; = 1)
=p 'P(V* < T} Ty > t1,Ty > ty, Ty > t3,C* —TF — Ty > t3).

Let F'(uy,us,us) denote the joint distribution function of 77, TQ* and Ty. Let Yo = X3+ Xo;.
Then the expected value of I;(ty,ts,t3)/ K (X1, Yo + t3) is

E[I;(t1, ta, t3)/ K(X1;, Yai + t3)]

PPV <, O > )
’ duy, dug, duz) = p~'S(ty, ta, t
/ / /tg ul,u1+u2+t3) ( 1 2 3) p (1 2 3)

Thus, given p and K(z,y), we can estimate S(t1,ts,t3) by

[[X17,>t1 Xo;i>to,X3;>t3, 521—1]
=n" p
Z Xlw }/21 + t3)

gn(tht% t3;p>
First, we consider the estimation of K (z,y). Notice that for x < y, K(z,y) = K(z,x)P(C* >
y|C* > z). Let Si(z) = P(Tf > z). Then Ge(z) = P(V; < z) = p~ ' [ S1(v)G(dv) and
G(x) = pfox #(U)Ge(dv). Hence, given p, G(z) can be estimated by

Zn: Iiv,<a)
i=1 SI(VD

G(z;p) =n""p




where S; denote the product-limit estimator based on the univariate data (X4, Vi, 014) (1=
1,...,n), ie.

z<u
where A, (u) = Ni(u)/Ry(u), Ni(u) = D70, Nii(u), Ri(x) = Y71, Rui(u), Rii(v) = Iv<ecx,y)
and NlZ(JJ) = I[Xuﬁm,51i:1]'

Next, let Q(x) = P(C* < z) denote the distribution function of C*. Then Q.(x) =
P(Xy; <01, =0)=p 'P(C*<a,C*<Ty)=p! fox S1(v)Q(dv) and Q(x) = pfox #@Qe(dc)'
Hence, given p, Q(x) can be estimated by

A _ "~ J1x, <a)(1—61)
Q(z;p) =nlp|y —=m—e )
; S1(X1)

Since Go(r) = p~! fow S1(v)G(dv), by letting x — oo, the truncation probability p can be

estimated by
-1

i=1 Sl(‘/;)
Hence, G and @) can be estimated, respectively, by

g —150 3 - I[vi<a) A 1478 - Iixy<a)(1-612)
izl Sl(‘/;) ; Si (Xli)

Since P(C* > V*) = 1, it follows that K(z,z) = P(V* <z < C*) = G(r) — Q(z) can be
estimated by G(z) — Q(x).

PS) = n[z 1

Next, we consider the estimation of the conditional probability Sc«v«(y — |z) = P(C* >
y|C* > x). Let Ys; = Xq; + Xo; + X3 and Y5 =Ty + Ty + T5. For o < y, define

Dis(z,y) = P(V; <z < Xy, Y5 > y)

=p PV <a <CNTY > a,Y) >y, 0" > y) =p ' K(2,9)Syy (e—y—),  (2.1)
where Siy;(v—,y—) = P(Iy > z,Y5 > y).
Next, let
Wis(z,y) = P(Vi <o < Xy, Y3 <y, 03 = 0)
=p 'P(V*<a<C*TF >,y >C*C*<y).

Hence,
W13(x7dy) :p_lK(xudy)SlY3*<I_7y_>‘ (2'2)

By (2.1) and (2.2), it follows that Wi3(z, dy)/D1s(z,y) = K(x,dy)/K(z,y).



Thus, for <y, Sc+v+(y — |x) = P(C* > y|V* < o < C¥) can be estimated by

Sew-tw—12) = T (1 Aoy (dela)).

z<c<y
where Agejy(clz) = Wig(x,¢)/Dis(z, ¢), Dis(x,¢) = n~ ' 30, Digi(x, ¢),
Wis(x,¢) = = 300 Wigi(@, ¢), Digi(, ¢) = Ivicos i va:2d and Wiss = Iivicocxy, yr<essizo)

Hence, for z < y, K(x,y) can be estimated by K(m, y) = k(ac, x)S'C*‘V* (y—|z). Similarly,
since E[I;(0,0,0)/K (X1, Y3:)] = p, given K (x,y), p can be estimated by

-1

. - 2
D K = -
p( ) ”[Z K(Xli,YQi)

i=1
Thus, we obtain an IPW estimator

n

S < X050, X510 Xai>ts.62=1]
Sn(ty, ta, t3) =n~'p(K) 1i>t1,X2i >t2, X3i >t3,02i
; K(Xq;, Y2 +t3)

—1 n

§ : ][X1i>t17X2i>t27X3i>t3152i:1]

~

K (X1, Yo + t3)

_ zn: 02i
= K( X1, Ya)

=1 =1

: : _ . ~ _ n i<
Remark 1: Notice that since p~'G(z) can be estimated by Eg(z) = n™! {211 %] and
p'Q(x) can be estimated by Eg(z) =n~! [Z?_l w} , an alternative estimator (see

S1(X14)
Shen (2010)) is given by

n
~ I _
-1 [X1i>t1,X2,>t2,X3;>t3,02,=1]
Sn(ti,ta,t3) =n E = - - —,

i1 Er (X, Yo +t3)

where Eg(z,y) = EK(:U,x)SC*W*(y —|z), Ex(z,z) = Eg(z) — Eg(x). One disadvantage of
the estimator S, is Sn(0,0,0) # 1 while S,(0,0,0) = 1. Simulation study indicates that the
estimator S,, can have outlying values.

In the following Theorem, we show the weak convergence of v/n[Sy, (1, ta, ts)—S(t1, ta, t3)).
Lemma 1:

Let (Dag,,br] X [ap,, bp,| X [ar,, br], ||+ || B) be the space of cadlag functions as defined in
Neuhaus (1971), i.e., real valued functions which are right-continuous with left-hand limits,

A

endowed with the supremum-norm and the Borel-sigma-algebra. Then /n[S,(t1,t2,t3) —



S(ty,ta,t3)] converges weakly to a mean-zero Gaussian process on D[(ag,br, ) X (ap,, bp,) X
(aF37 bFs)]

Proof: The proof is technical and not reported here.

2.2 When the second event time is left-truncated

When the second event time is left-truncated, we have
P(X1i > t1, Xo; > tg, X3; > 3,09 = 1)
=py ' P(V* < T+ T3, TF > 1, Ty > to, Ty > t3,0* =Ty — Ty > t3),

where py = P(V* < T} +Ty). Let F(uy,us,us) denote the joint dlstr1but1on function of 17,
T35 and T3. Then the expected value of I;(t1,ts,t3)/K (Yo, Yo; + t3) is

E[I<t17 t27 t3)/K<Y217 )/21 + t3)]

—1 * %
y2) PV <U1+U2,C >U,1+U2+t3) o
F(duq, dus, dus) = S(ty,tg,t
/ / / K(uy + ug, uy + ug + t3) (dur, dug, dug) = py~S(t1, 12, 13)

Thus, given ps and K (z,y), we can estimate S(t1,1s,t3) by

n
G Tix ) 510, Xoi>ts, Xai>ts,62i=1]
Sn(t1, ta, t3;p2, K) =n"'py e
n( ) Z K(YQiaYQi‘f‘tg)

1=

First, we consider the estimation of K(x,y). Let Y;* = T} 4+ T. Similar to the approach
in Section 2.1, we have K (x,y) = p, K (x,2)P(C* > y|C* > x). Let Sy*( )= PS> x).
Then Ge(z) = P(V; < x) = p;" [ Sy; (0)G(dv) and G(z) = ps ) 5@ 5.5 Ce(dv).  Hence,

given py, G(z) can be estimated by

n

A _ Ty, <q]
G(x;p2) =n 'py —=1,
250

where Sy; denote the product-limit estimator based on the univariate data (Ys;, V;, d9;) (i =
1,...,n), ie.

Sy (w) = TT (1 = Az (aw)),

z<u

where AYQ* (u) = NY2 (u>/RY2 (u)? NY2 (u) = E?:l NY27,’ (u)7 RYz (l’) = Z?:l RY%(U), RY% (:L‘) =
[[Viéwﬁym} and NYQi (‘7;) = I[Y2i§$762i:1]’

NeXt? QY2<:C> = P<}/2’L S x752i - 0) = pglP(C* S CE,C* S Y* - p21f0 SY* Q(dv)
Hence, given py, Q(x) can be estimated by

A _ "~ Jjvyi<a](1—650)
Qz;po) =n 'py| Y =T
2 S0




Since Ge(x) = p;" [3 Sy; (v)G(dv), by letting 2 — oo, the truncation probability p, can be

estimated by
—1

. - 1
ﬁg(Sy*) =N [ =
2P Ewis
Hence, G and @) can be estimated, respectively, by
Cali) = il | L
’ =1 SYQ* (‘/Z)

n

A IY <z](1-6
and Qa(z) = n~'py( SY* [ T 21)
B i

Thus,K (2, z) can be estimated by K(x,z) = Go(z) — Qo(x).
Next, we consider the estimation of Sc«y«(y — |z). For # < y, define

=p, PV <2 <CNYy >,V >y, C* > y) = py K(x,y)S5(z—, y—), (2.3)
where Sk (r—,y—) = P(Yy > 2, Yy > y). Let
Was(z,y) = P(Vi < < Y, Ya <y, 03 =0)
=py, ' P(V* <2 <C*YS>a,Yy >C*C* <y).
Hence,
Was(z, dy) = py 'K (z, dy)Sas(z—, y—). (2.4)
By (2.3) and (2.4), it follows that Was(z, dy)/Das(z,y) = K(x,dy)/K(z,y).

Thus, for © <y, Sc+v+(y — |z) can be estimated by

Sty —12) = T (1= Akiyy-(dela)).

<c<y
where /A\g*w* (c|lz) = Was(, )/ Das(, ), Dag(w,¢) = n~t S0, Dagi(z, c),
Was(z,¢) = n™t 300y W i(w, ¢), Dasi(w, €) = Ivi<w<ya vi=d and Wasi = Iv,<a<vs, vyi<essi=0)-

Hence, for # < y, K(x,y) can be estimated by Ky(x,y) = Ky(z, m)gg*‘v (y — |x). Simi-

1arlY? since E[IZ(07 07 0)/K(}/2“ Y’21>] = P2, given [A(Q(xvy) = [ ( ) QQ( )] C*|V*( - ‘l’), P2
can be estimated by
~1
o - 02;
pQ(KQ) =N T —
[Z Ko (Yar, Vi)

Thus, we obtain an IPW estimator

n
I1x 1,540, X oy >ta, Xai>ts,00i=1]
S (tl,tg,t3 =n pQ 14 Al’ 2 ~>12,A37>13,024
Z Ko (Yas, Yoy + t3)



} : [X1i>t1,X2i>12,X3;>13,00;=1]

f(z(Yzz‘,Y%)

i=1 K2(§/2i) }/21>

Notice that S}{ (0,0,0) = 1. Let 6(2,) denote the concomitant of the largest observation
Xy;. By Lemma 3.3 of Shen (2005), when 6,y = 1, pa(I) = P2(Sy;) and SY(ty, 1y, t5) is
reduced to

=1

)

n
n—l § : [[X1i>tl7X2i>t2,X3i>t3762i:1]
i=1 EK(Y217 Y21)

A A

where B (z, ) = Bo(x)~EBo(r), Ea(r) = n™' TiLy 3555 and Bo(r) = n™! L, g=ses,

Lemma 2:

VI[SY (t1,ty, ts) — S(ty,ta,t3)] converges weakly to a mean-zero Gaussian process on
D[(aFN bFl) X (aFm bFz) X (ana ng)]

Proof: The proof is technical and not reported here.

Remark 2: Notice that since G.(z) = P(V; < z) = p;" [ Sy; (v)G(dv), p;'G(z) can be

estimated by He(z) = n™! [Zl 1 ;[V <‘i)] Similarly, p;*Q(z) can be estimated by Ho(z) =
Y*

n~t |:Z:’L:1 I[qu’%] Hence, Hg(z,7) = py 'K (z,2) = p; "P(V* < 2 < C*) can be esti-
Y i

mated by He(x) — Ho(z) and an alternative estimator is given by

n
Q [[X i>t1, X0 >t0, X3, >t3,00,=1]
Sy(t17t27t3) — n_l 17'A 1,424 212,43 >13,024 7
' 121 Hie(Yai, Yai + t3)

where Hy(z,y) = Hy(x, x)gg*|v*(y—|x). One disadvantage of the estimator S is SY (0, 0,0) #
1 while 5’:(0, 0,0) = 1. However, when the largest observations of Xo;’s is uncensored, S'}{ 18

equivalent to S}f The proof the above argument follows from Shen (2005). Let X 2,y denote
the largest observations of Xo;'s and d(ay) be the concomitant of X(any. By Lemma 3.3 of

Shen (2005), when d2n) = 1, ﬁQ(SYQ*) = ﬁg(f(g) and it follows that the two estimators are
equivalent to each other.

Since it is difficult to obtain an analytical expression of the estimated variance of S,
or g}f , we consider the bootstrap method for obtaining the precision estimation of the two
proposed estimators. For left-truncated and right-censored data, the bootstrap method was
investigated by Wang (1991), Gross and Lai (1996) and Bilker and Wang (1997). Gross and
Lai (1996) give an asymptotic justification of the simple bootstrap method for left-truncated
and right-censored data. For trivariate case, the simple bootstrap simply draws independent
vectors (X?;, 8%, X35, 05, X5, 05, VP, CP), i = 1,...,n, from the empirical distribution that

puts weight 1/n at each of the observations (Xy;, Xo;, X34, Vi, 014, 024,034, Vi, Cy), i =1,...,n



By repeating this whole process some large number B of times, we have independent esti-

mators S1. ..., SB. Then we can estimate the variance of S, by
AL 2
Sy [Sh(tr, ta, ts) — 3200 Si(t, b, t3)/ B]

VB(Sn(tl, to,t3)) =

(B-1)

Similarly, we can obtain the bootstrap variance estimate of S}f (t1,t2,t3). In Section 3, a
simulation study is conducted to investigate the performance of the simple bootstrap method.
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Chapter 3

Simulation Study

3.1 When the first event is truncated

To investigate the performance of the proposed estimator S’n, we conduct simulations
under the recruiting criterion 77 > V*. The joint distribution of (77,75, T5)’s are gen-
erated using Clayton’s (1978) bivariate exponential survival function with association pa-
rameter 3; between 17 and 73, and association parameter (s between T3 and 77, i.e.
Sia(ti,ta) = P(Ty > t1, Ty > t) = [Si(t1)77 + Sa(te)' 71 — 1]Y175 and Sps(t, t3) =
P(Ty > t1, T > ty) = [S1(t1)' 752 + Sy(ta)' " — 1]/ with marginal survival functions
Si(t) = et (i = 1,2,3). The values of 8; and [ are chosen as 3; = 3, = 2 such that the
Kendall’s tau of (77, T5), (Ty,Ty%) and (T, T5) are equal to 0.5, 0.5 and 0.31, respectively.
The truncation time V* is exponentially distributed with mean 0.4 and 4 such that the pro-
portion of truncation (denoted by ¢) is equal to 0.29 and 0.67, respectively. The censoring
time C* = V* 4+ D* where D* is exponentially distributed with mean 4 and 1.5 such that
the censoring rates p.; = P(d1; = 0) pee = P(d2; = 0) and p;g = P(d3; = 0) are equal to
(Pe1, Pe2, Pes) = (0.20,0.38,0.50) and (0.40, 0.67,0.79), respectively. The values of t; and ¢, are
chosen as the grid points of t; = 0.2,0.6,1.6 and t, = 0.2,0.6, 1.6. The sample size is chosen
as n = 100,200 and the replication is 1000 times. Based on B = 500 bootstrap samples, we
also use the bootstrap methods to estimate the standard deviations of S,. An approximate
1 — o confidence interval is constructed using S, (t1, ta, t2) £ 2a/2(Va(Sn(t1, ta, t3))'/2. Tables
1 and 2 show the biases, standard deviations (std), bootstrap standard deviation (bstd) and
the empirical coverage (cov) of confidence intervals for the points (¢, t2,t3) = (0.2,0.2,0.2),
(0.2,0.8,0.8),(0.2,1.6,1.6),(0.8,0.2,0.2),(0.8,0.8,0.8),(0.8,1.6,1.6), (1.6,0.2,0.2) and (1.6,0.8,0.8)
with corresponding true values equal to 0.72, 0.32, 0.09, 0.43, 0.23, 0.07, 0.19 and 0.12, re-
spectively.

We also conduction simulation study for the estimator S, pointed out in Remark 1.
Simulation results indicate that the estimator S, has an outlying value about once per 100
replicates. When the outlying values are deleted from the simulated data, the results of S,
are similar to that of Sn, and not reported here.

3.2 When the second event is truncated
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The distribution of (T7,Ty,T5) are the same as those used in Section 3.1. The trun-
cation time V* is exponentially distributed with mean 1 and 3.5 such that the proportion
of truncation (denoted by ¢) is equal to 0.30 and 0.65, respectively. The censoring time
C* = V* 4+ D*, where D* is exponentially distributed with mean 4 and 1.5 such that the
censoring rates (pe1, Pe2, Pes) = (0.15,0.34,0.48) and (0.28,0.57,0.74), respectively. Tables 3
and 4 show the simulation results.

Based on the results of Tables 1 through 4, we conclude that:

(i) The biases of both S, and S’}{ are small except for the cases when truncation is se-
vere and censoring is heavy, i.e. (q,pe1,Pe2,Pe3) = (0.67,0.40,0.67,0.79) (Table 2) and
(¢, De1s Pe2s Pe3) = (0.62,0.28,0.57,0.74) (Table 4). Given ¢, the standard deviations of S,
and 5';/ increase as the proportion of censoring increases.

(i) When n = 100, the bootstrap estimators tend to underestimate standard deviations
of both estimators, which makes the coverage of 95% confidence intervals based on the
bootstrap method smaller than the nominal level. When n = 200, the underestimation is
improved and the coverage of 95% confidence intervals based on bootstrap method is close
to the nominal level for most of the cases considered.



Table 1. Simulation results for bias, std, bstd and cov (¢ = 0.29)

(pchcha pc3):(02,038705)

(Pet Pea, De3)=(0.4,0.67,0.79)

(t1,t2,13) n bias std bstd cov bias std bstd cov
(0.2,0.2,0.2) 100  0.009 0.110 0.103 0.940 -0.022 0.139 0.127 0.937
(0.2,0.2,0.2) 200 -0.001 0.077 0.074 0.948 -0.003 0.096 0.092 0.947
(0.2,0.8,0.8) 100  0.028 0.079 0.073 0.938 0.063 0.135 0.124 0.934
(0.2,0.8,0.8) 200  0.019 0.053 0.049 0.947 0.034 0.104 0.098 0.945
(0.2,1.6,1.6) 100  0.034 0.056 0.052 0.938 0.052 0.094 0.085 0.932
(0.2,1.6,1.6) 200  0.017 0.039 0.036 0.945 0.039 0.078 0.073 0.944
(0.8,0.2,0.2) 100  0.002 0.078 0.072 0.938 -0.042 0.102 0.096 0.936
(0.8,0.2,0.2) 200 -0.008 0.060 0.056 0.947 -0.031 0.089 0.083 0.944
(0.8,0.8,0.8) 100  0.029 0.065 0.060 0.937 0.035 0.109 0.102 0.935
(0.8,0.8,0.8) 200  0.013 0.052 0.050 0.945 0.020 0.092 0.087 0.943
(0.8,1.6,1.6) 100  0.020 0.046 0.042 0.936 0.031 0.076 0.070 0.934
(0.8,1.6,1.6) 200  0.012 0.032 0.030 0.944 0.024 0.066 0.063 0.942
(1.6,0.2,0.2) 100 -0.015 0.051 0.046 0.936 -0.042 0.077 0.072 0.935
(1.6,0.2,0.2) 200 -0.002 0.038 0.036 0.942 -0.028 0.060 0.057 0.943
(1.6,0.8,0.8) 100  0.007 0.043 0.040 0.935 -0.018 0.074 0.068 0.933
(1.6,0.8,0.8) 200  0.008 0.036 0.034 0.942 -0.002 0.064 0.061 0.942

Table 2. Simulation results for bias, std, bstd and cov (¢ = 0.67)
(pcl,pcg,p03)=(0.2,0.38,0.5) (pcl,pcg,pcg):(0.4,0.67,0.79)

(t1,t0,13) n bias std bstd cov bias std bstd cov
(0.2,0.2,0.2) 100  0.028 0.111 0.104 0.939 0.011 0.164 0.154 0.937
(0.2,0.2,0.2) 200 0.012 0.089 0.084 0.946 0.008 0.132 0.126 0.946
(0.2,0.8,0.8) 100  0.047 0.091 0.085 0.937 0.078 0.150 0.139 0.935
(0.2,0.8,0.8) 200  0.029 0.079 0.074 0.944 0.054 0.109 0.103 0.942
(0.2,1.6,1.6) 100  0.036 0.055 0.051 0.935 0.058 0.114 0.106 0.935
(0.2,1.6,1.6) 200  0.022 0.035 0.032 0.942 0.041 0.076 0.072 0.942
(0.8,0.2,0.2) 100  0.010 0.088 0.081 0.937 -0.021 0.134 0.124 0.934
(0.8,0.2,0.2) 200 -0.003 0.072 0.068 0.946 -0.004 0.087 0.083 0.944
(0.8,0.8,0.8) 100  0.027 0.065 0.060 0.936 0.060 0.115 0.106 0.935
(0.8,0.8,0.8) 200  0.016 0.046 0.042 0.943 0.039 0.087 0.082 0.943
(0.8,1.6,1.6) 100  0.024 0.046 0.041 0.935 0.041 0.090 0.082 0.933
(0.8,1.6,1.6) 200  0.018 0.032 0.030 0.942 0.031 0.061 0.056 0.941
(1.6,0.2,0.2) 100 -0.003 0.055 0.051 0.939 -0.021 0.083 0.076 0.936
(1.6,0.2,0.2) 200 -0.001 0.038 0.036 0.943 -0.016 0.054 0.051 0.942
(1.6,0.8,0.8) 100  0.007 0.047 0.042 0.937 0.015 0.069 0.062 0.932
(1.6,0.8,0.8) 200 -0.001 0.033 0.030 0.942 0.008 0.052 0.047 0.941
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Table 3. Simulation results for bias, std, bstd and cov (¢ = 0.30)

(Pet, Peas Pe3)=(0.15,0.34,0.48)

(et Pez, Pe3)=(0.28,0.57,0.74)

(t1,ta,13) n bias std bstd cov bias std bstd cov
(0.2,0.2,0.2) 100 0.034 0.095 0.089 0.939 0.081 0.113 0.105 0.937
(0.2,0.2,0.2) 200 0.016 0.073 0.070 0.947 0.056 0.084 0.079 0.944
(0.2,0.8,0.8) 100 0.067 0.074 0.069 0.939 0.071 0.116 0.108 0.937
(0.2,0.8,0.8) 200 0.038 0.057 0.053 0.945 0.043 0.086 0.081 0.944
(0.2,1.6,1.6) 100 0.056 0.052 0.047 0.936 0.067 0.092 0.086 0.935
(0.2,1.6,1.6) 200 0.038 0.036 0.033 0.944 0.031 0.083 0.079 0.943
(0.8,0.2,0.2) 100 0.026 0.077 0.072 0.937 0.034 0.090 0.084 0.936
(0.8,0.2,0.2) 200 0.011 0.056 0.053 0.946 0.027 0.074 0.071 0.945
(0.8,0.8,0.8) 100 0.052 0.063 0.058 0.937 0.051 0.104 0.096 0.934
(0.8,0.8,0.8) 200 0.034 0.050 0.047 0.945 0.035 0.082 0.077 0.943
(0.8,1.6,1.6) 100 0.043 0.047 0.042 0.934 0.072 0.093 0.086 0.931
(0.8,1.6,1.6) 200 0.029 0.033 0.031 0.943 0.048 0.077 0.072 0.941
(1.6,0.2,0.2) 100 0.011 0.055 0.051 0.937 -0.004 0.080 0.073 0.937
(1.6,0.2,0.2) 200 0.004 0.038 0.035 0.945 0.001 0.060 0.056 0.944
(1.6,0.8,0.8) 100 0.021 0.049 0.044 0.935 0.031 0.085 0.079 0.932
(1.6,0.8,0.8) 200 0.016 0.037 0.034 0.943 0.023 0.067 0.063 0.942

Table 4. Simulation results for bias, std, bstd and cov (¢ = 0.62)

(Pet, Pes Pe3)=(0.15,0.34,0.48)

(et Pez, Pe3)=(0.28,0.57,0.74)

(t1,ta,13) n bias std bstd cov bias std bstd cov
(0.2,0.2,0.2) 100 0.038 0.115 0.106 0.938 0.097 0.129 0.120 0.935
(0.2,0.2,0.2) 200 0.026 0.093 0.089 0.947 0.067 0.094 0.088 0.944
(0.2,0.8,0.8) 100 0.075 0.084 0.078 0.936 0.081 0.127 0.116 0.936
(0.2,0.8,0.8) 200 0.046 0.066 0.062 0.945 0.067 0.091 0.086 0.944
(0.2,1.6,1.6) 100 0.061 0.051 0.047 0.935 0.075 0.120 0.112 0.934
(0.2,1.6,1.6) 200 0.038 0.037 0.034 0.944 0.059 0.083 0.078 0.942
(0.8,0.2,0.2) 100 0.048 0.077 0.071 0.937 0.056 0.113 0.105 0.936
(0.8,0.2,0.2) 200 0.019 0.068 0.064 0.945 0.041 0.074 0.069 0.943
(0.8,0.8,0.8) 100 0.056 0.070 0.064 0.935 0.078 0.113 0.105 0.937
(0.8,0.8,0.8) 200 0.030 0.054 0.051 0.944 0.063 0.075 0.071 0.942
(0.8,1.6,1.6) 100 0.040 0.043 0.039 0.934 0.082 0.088 0.080 0.932
(0.8,1.6,1.6) 200 0.027 0.032 0.029 0.943 0.065 0.066 0.061 0.941
(1.6,0.2,0.2) 100 0.025 0.051 0.047 0.937 0.024 0.070 0.065 0.936
(1.6,0.2,0.2) 200 0.008 0.041 0.039 0.944 0.020 0.051 0.047 0.942
(1.6,0.8,0.8) 100 0.030 0.045 0.041 0.936 0.053 0.074 0.066 0.932
(1.6,0.8,0.8) 200 0.021 0.034 0.031 0.941 0.029 0.056 0.052 0.940
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Chatper 4

Discussion

In this article, we have proposed inverse-probability weighted estimators for the estima-
tion of the joint survival function of three successive duration times when the first/second
event time is left-truncated. Simulation results indicate that the proposed estimators per-
form well. Our proposed approach can be extended to the case of more than three successive
duration times. In some cases, the calendar times of the initiation Fj; and the subsequent
events F4 and E5 are only known to fall within intervals. When the first event time is subject
to left truncation, 77 is subject to left-truncation and double censoring and 77 and 77 are
subject to dependent interval censoring. Further research is needed to extend our approach
to deal with such data.
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