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Abstract

In incident cohort studies, survival data often include subjects who have experienced an
initiate event but have not experienced a subsequent event at the calendar time of recruit-
ment. During the follow-up periods, subjects may undergo a series of successive events. Since
the second/third duration process becomes observable only if the first/second event has oc-
curred, the data is subject to left-truncation and dependent censoring. In this article, using
the inverse-probability-weighted (IPW) approach, we propose nonparametric estimators for
the estimation of the joint survival function of three successive duration times. The asymp-
totic properties of the proposed estimators are established. The simple bootstrap methods
are used to estimate standard deviations and construct interval estimators. A simulation
study is conducted to investigate the finite sample properties of the proposed estimators.

Key Words: Truncation; Dependent censoring; Inverse-probability-weighted.
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Chapter 1

Introduction

In natural history studies of diseases, each subject can experience a series of successive
events. In many applications, the investigators are interested in the duration times between
successive events. Suppose that a disease process consists of three successive events occurring
in a chronological order. Let E0, E1, E2 and E3 respectively represent the calendar times of
the initiation, first, second and third events for a subject. Define T ∗1 = E1−E0, T

∗
2 = E2−E1

and T ∗3 = E3 − E2 as the first duration time between E0 and E1, the second duration time
between E1 and E2, and the third duration time between E2 and E3 respectively. One
may be interested in estimating the joint survival function of T ∗1 , T ∗2 and T ∗3 , denoted by
S(t1, t2, t3) = P (T ∗1 > t1, T

∗
2 > t2, T

∗
3 > t3). In cohort studies, survival data often include

subjects who have experienced the initiate event E0 at the calendar time of recruitment
(denoted by τ0) and have not experienced a subsequent event, e.g. the first/second event.
For example, there are four stages in AIDS (acquired immunodeficiency syndrome) studies:
E0: acute HIV infection; E1 : clinical latency, E2: the development of AIDS and E3: death.
A prevalent cohort is defined as a sample of subjects who have been infected with HIV (the
initiating event E0) and have not developed clinical latency (or AIDS) at τ0. Suppose that
the infection time E0 can be accurately determined. Let V ∗ = τ −E0 if E0 < τ and V ∗ = 0
if E0 ≥ τ . Let D∗ denote the time from τ0 to the right censoring, i.e. the residual censoring
time. Note that D∗ can be written as D∗ = min(D∗1, D

∗
2), where D∗1 = τ0 − τ1 denotes the

time from onset of disease to the end of study τ1, and D∗2 denotes the time from onset of
disease to drop-out or death due to other causes. Figure 1 highlights all the different times for
left-truncated successive event data described in Example. In such HIV-prevalent cohort,
the time T ∗1 (or T ∗1 + T ∗2 ), i.e. the time from infection of HIV to development of clinical
latency (or to the development of AIDS) is left-truncated by V ∗ and possibly right-censored.
Since the second duration time T ∗2 becomes observable only if the first event has occurred,
i.e. T ∗1 ≤ C∗ = V ∗ + D∗, the length of T ∗1 affects the probability of T ∗2 being censored.
Similarly, both lengths of T ∗1 and T ∗2 affect the probability of T ∗3 being censored. Dependent
censoring arises if T ∗1 , T ∗2 and T ∗3 are correlated, which is often the case. Hence, the data
is subject to left truncation and dependent censoring. For this type of data, one observes
nothing if T ∗1 < V ∗ (or T ∗1 +T ∗2 < V ∗) and observe (X∗1 , X

∗
2 , X

∗
3 , V

∗, C∗, δ∗1, δ
∗
2, δ
∗
3) if T ∗1 ≥ V ∗

(or T ∗1 + T ∗2 > V ∗), where X∗1 = min(T ∗1 , C
∗), δ∗1 = I[T ∗

1≤C∗], X
∗
2 = δ∗1 min(T ∗2 , C

∗ − T ∗1 ),
δ∗2 = δ∗1I[T ∗

2≤C∗−T ∗
1 ]

, X∗3 = δ∗2 min(T ∗3 , C
∗ − T ∗1 − T ∗2 ), and δ∗3 = δ∗2I[T ∗

3≤C∗−T ∗
1−T ∗

2 ]
.
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Figure 1. Schematic depiction of left-truncated successive event data

Note that since C∗ = V ∗ + D∗, the condition V ∗ ≤ C∗ is always satisfied. We assume
that (T ∗1 , T

∗
2 , T

∗
3 , V

∗, C∗) is continuous and (V ∗, C∗) is independent of (T ∗1 , T
∗
2 , T

∗
3 ).

When there is no truncation, several nonparametric methods for estimating the joint
distribution function of successive duration times have been developed (see Visser (1996),
Wang and Wells (1998), and Lin et al. (1999)). In particular, both nonparametric estimators
considered by Wang and Wells (1998) and Lin et al. (1999) used the inverse probability of
censoring as weighted function to adjust the bias of induced informative censoring. Wang
and Wells (1988) presented an estimator for the cumulative conditional hazard of T2 given
T1 > t1 following Nelson-Aalen’s construction of the cumulative hazard estimator with each
observation weighted based on the information on the first duration to unbias the effect
of dependent censoring. Lin et al. (1999) provided a simple nonparametric estimator for
the multivariate distribution function of the gap times between successive events when the
follow-up time is subject to right censoring. The estimator is consistent and converges weakly
to a zero-mean Gaussian process with an easily estimated covariance function.

When both left-truncation and dependent censoring are present, Chang and Tzeng (2006)
provided an inverse-probability-weighted (IPW) approach for estimating the joint probability
function of two successive duration times. Shen and Yan (2008) proposed an alternative
estimator of the joint distribution function of T ∗1 and T ∗2 . Shen (2010) proposed two IPW
estimators of the joint survival function of T ∗1 and T ∗2 . The first IPW estimator is based
on the approach of Chang and Tzeng and the other is the extension of the nonparametric
estimator proposed by Wang and Wells (1998). Simulation results indicate that the first
IPW estimator outperforms the other estimators. However, as pointed out in Remark 1, the
IPW estimator proposed by Shen (2010) can have outlying values.

In this article, we consider the estimation of the joint survival function of three succes-
sive duration times when the first (or second) event time is left-truncated. In Section 2,
using the IPW approach, we propose nonparametric estimators of the joint survival function
S(t1, t2, t3). The proposed IPW estimator does not have the problem of outlying values. The
asymptotic properties of the proposed estimators are established. Furthermore, the simple
bootstrap methods are used to estimate standard deviations and construct interval estima-
tors. In Section 3, a simulation study is conducted to investigate finite sample performance
of the proposed estimators.
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Chapter 2

The Proposed Estimators

2.1 When the first event time is left-truncated

Let aFk and bFk denote the left and right endpoints of T ∗k (k = 1, 2, 3). Similarly, define
(aG, bG) and (aQ, bQ) for V ∗ and C∗, respectively. For identifiablities of S(t1, t2, t3), we
assume that

aG = aFk = 0, bG ≤ bFk ≤ bQ.

Let (X1i, X2i, X3i, Vi, Ci, δ1i, δ2i, δ3i) (i = 1, . . . , n) denote the truncated sample. Let p =
P (V ∗ ≤ T ∗1 ) denote the untruncated probability. Define the indicator

Ii(t1, t2, t3) = I[X1i>t1,X2i>t2,X3i>t3,δ2i=1]

and the function K(x, y) = P (V ∗ < x,C∗ > y). Notice that

P (X1i > t1, X2i > t2, X3i > t3, δ2i = 1)

= p−1P (V ∗ < T ∗1 , T
∗
1 > t1, T

∗
2 > t2, T

∗
3 > t3, C

∗ − T ∗1 − T ∗2 > t3).

Let F (u1, u2, u3) denote the joint distribution function of T ∗1 , T ∗2 and T ∗3 . Let Y2i = X1i+X2i.
Then the expected value of Ii(t1, t2, t3)/K(X1i, Y2i + t3) is

E[Ii(t1, t2, t3)/K(X1i, Y2i + t3)]

=

∫ ∞
t3

∫ ∞
t2

∫ ∞
t3

p−1P (V ∗ < u1, C
∗ > u1 + u2 + t3)

K(u1, u1 + u2 + t3)
F (du1, du2, du3) = p−1S(t1, t2, t3)

Thus, given p and K(x, y), we can estimate S(t1, t2, t3) by

Ŝn(t1, t2, t3; p,K) = n−1p
n∑
i=1

I[X1i>t1,X2i>t2,X3i>t3,δ2i=1]

K(X1i, Y2i + t3)
.

First, we consider the estimation ofK(x, y). Notice that for x < y, K(x, y) = K(x, x)P (C∗ ≥
y|C∗ ≥ x). Let S1(x) = P (T ∗1 > x). Then Ge(x) = P (Vi ≤ x) = p−1

∫ x
0
S1(v)G(dv) and

G(x) = p
∫ x
0

1
S1(v)

Ge(dv). Hence, given p, G(x) can be estimated by

Ĝ(x; p) = n−1p

[
n∑
i=1

I[Vi≤x]

Ŝ1(Vi)

]
,
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where Ŝ1 denote the product-limit estimator based on the univariate data (X1i, Vi, δ1i) (i =
1, . . . , n), i.e.

Ŝ1(u) =
∏
x≤u

(
1− Λ̂1(du)

)
,

where Λ̂1(u) = N1(u)/R1(u), N1(u) =
∑n

i=1N1i(u), R1(x) =
∑n

i=1R1i(u), R1i(x) = I[Vi≤x≤X1i]

and N1i(x) = I[X1i≤x,δ1i=1].

Next, let Q(x) = P (C∗ ≤ x) denote the distribution function of C∗. Then Qe(x) =
P (X1i ≤ x, δ1i = 0) = p−1P (C∗ ≤ x,C∗ ≤ T ∗1 ) = p−1

∫ x
0
S1(v)Q(dv) andQ(x) = p

∫ x
0

1
S1(c)

Qe(dc).

Hence, given p, Q(x) can be estimated by

Q̂(x; p) = n−1p

[
n∑
i=1

I[X1i≤x](1−δ1i)

Ŝ1(X1i)

]
.

Since Ge(x) = p−1
∫ x
0
S1(v)G(dv), by letting x → ∞, the truncation probability p can be

estimated by

p̂(Ŝ1) = n

[
n∑
i=1

1

Ŝ1(Vi)

]−1
.

Hence, G and Q can be estimated, respectively, by

Ĝ(x) = n−1p̂(Ŝ1)

[
n∑
i=1

I[Vi≤x]

Ŝ1(Vi)

]
and Q̂(x) = n−1p̂(Ŝ1)

[
n∑
i=1

I[X1i≤x](1−δ1i)

Ŝ1(X1i)

]
.

Since P (C∗ > V ∗) = 1, it follows that K(x, x) = P (V ∗ ≤ x ≤ C∗) = G(x) − Q(x) can be
estimated by Ĝ(x)− Q̂(x).

Next, we consider the estimation of the conditional probability SC∗|V ∗(y− |x) = P (C∗ ≥
y|C∗ ≥ x). Let Y3i = X1i +X2i +X3i and Y ∗3 = T ∗1 + T ∗2 + T ∗3 . For x < y, define

D13(x, y) = P (Vi ≤ x ≤ X1i, Y3i ≥ y)

= p−1P (V ∗ ≤ x ≤ C∗, T ∗1 ≥ x, Y ∗3 ≥ y, C∗ ≥ y) = p−1K(x, y)S1Y ∗
3

(x−, y−), (2.1)

where S1Y ∗
3

(x−, y−) = P (T ∗1 ≥ x, Y ∗3 ≥ y).

Next, let
W13(x, y) = P (Vi ≤ x ≤ X1i, Y3i ≤ y, δ3i = 0)

= p−1P (V ∗ ≤ x ≤ C∗, T ∗1 ≥ x, Y ∗3 ≥ C∗, C∗ ≤ y).

Hence,
W13(x, dy) = p−1K(x, dy)S1Y ∗

3
(x−, y−). (2.2)

By (2.1) and (2.2), it follows that W13(x, dy)/D13(x, y) = K(x, dy)/K(x, y).



5

Thus, for x < y, SC∗|V ∗(y − |x) = P (C∗ ≥ y|V ∗ ≤ x ≤ C∗) can be estimated by

ŜC∗|V ∗(y − |x) =
∏
x≤c≤y

(
1− Λ̂C∗|V ∗(dc|x)

)
,

where Λ̂C∗|V ∗(c|x) = Ŵ13(x, c)/D̂13(x, c), D̂13(x, c) = n−1
∑n

i=1 D̂13i(x, c),

Ŵ13(x, c) = n−1
∑n

i=1 Ŵ13i(x, c), D̂13i(x, c) = I[Vi≤x≤X1i,Y3i≥c] and Ŵ13i = I[Vi≤x≤X1i,Y3i≤c,δ3i=0].

Hence, for x < y, K(x, y) can be estimated by K̂(x, y) = K̂(x, x)ŜC∗|V ∗(y−|x). Similarly,

since E[Ii(0, 0, 0)/K(X1i, Y2i)] = p, given K̂(x, y), p can be estimated by

p̂(K̂) = n

[
n∑
i=1

δ2i

K̂(X1i, Y2i)

]−1
.

Thus, we obtain an IPW estimator

Ŝn(t1, t2, t3) = n−1p̂(K̂)
n∑
i=1

I[X1i>t1,X2i>t2,X3i>t3,δ2i=1]

K̂(X1i, Y2i + t3)

=

[
n∑
i=1

δ2i

K̂(X1i, Y2i)

]−1 n∑
i=1

I[X1i>t1,X2i>t2,X3i>t3,δ2i=1]

K̂(X1i, Y2i + t3)
.

Remark 1: Notice that since p−1G(x) can be estimated by ÊG(x) = n−1
[∑n

i=1

I[Vi≤x]

Ŝ1(Vi)

]
and

p−1Q(x) can be estimated by ÊQ(x) = n−1
[∑n

i=1

I[X1i≤x](1−δ1i)

Ŝ1(X1i)

]
, an alternative estimator (see

Shen (2010)) is given by

S̃n(t1, t2, t3) = n−1
n∑
i=1

I[X1i>t1,X2i>t2,X3i>t3,δ2i=1]

ÊK(X1i, Y2i + t3)
,

where ÊK(x, y) = ÊK(x, x)ŜC∗|V ∗(y − |x), ÊK(x, x) = ÊG(x)− ÊQ(x). One disadvantage of

the estimator S̃n is S̃n(0, 0, 0) 6= 1 while Ŝn(0, 0, 0) = 1. Simulation study indicates that the
estimator S̃n can have outlying values.

In the following Theorem, we show the weak convergence of
√
n[Ŝn(t1, t2, t3)−S(t1, t2, t3)].

Lemma 1:

Let (D[aF1 , bF1 ]× [aF2 , bF2 ]× [aF3 , bF3 ], || · ||∞,B) be the space of cadlag functions as defined in
Neuhaus (1971), i.e., real valued functions which are right-continuous with left-hand limits,
endowed with the supremum-norm and the Borel-sigma-algebra. Then

√
n[Ŝn(t1, t2, t3) −
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S(t1, t2, t3)] converges weakly to a mean-zero Gaussian process on D[(aF1 , bF1)× (aF2 , bF2)×
(aF3 , bF3)]

Proof: The proof is technical and not reported here.

2.2 When the second event time is left-truncated

When the second event time is left-truncated, we have

P (X1i > t1, X2i > t2, X3i > t3, δ2i = 1)

= p−12 P (V ∗ < T ∗1 + T ∗2 , T
∗
1 > t1, T

∗
2 > t2, T

∗
3 > t3, C

∗ − T ∗1 − T ∗2 > t3),

where p2 = P (V ∗ < T ∗1 + T ∗2 ). Let F (u1, u2, u3) denote the joint distribution function of T ∗1 ,
T ∗2 and T3. Then the expected value of Ii(t1, t2, t3)/K(Y2i, Y2i + t3) is

E[Ii(t1, t2, t3)/K(Y2i, Y2i + t3)]

=

∫ ∞
t3

∫ ∞
t2

∫ ∞
t3

p−12 P (V ∗ < u1 + u2, C
∗ > u1 + u2 + t3)

K(u1 + u2, u1 + u2 + t3)
F (du1, du2, du3) = p−12 S(t1, t2, t3)

Thus, given p2 and K(x, y), we can estimate S(t1, t2, t3) by

Ŝn(t1, t2, t3; p2, K) = n−1p2

n∑
i=1

I[X1i>t1,X2i>t2,X3i>t3,δ2i=1]

K(Y2i, Y2i + t3)
.

First, we consider the estimation of K(x, y). Let Y ∗2 = T ∗1 + T ∗2 . Similar to the approach
in Section 2.1, we have K(x, y) = p−12 K(x, x)P (C∗ ≥ y|C∗ ≥ x). Let SY ∗

2
(x) = P (Y ∗2 > x).

Then Ge(x) = P (Vi ≤ x) = p−12

∫ x
0
SY ∗

2
(v)G(dv) and G(x) = p2

∫ x
0

1
SY ∗

2
(v)
Ge(dv). Hence,

given p2, G(x) can be estimated by

Ĝ(x; p2) = n−1p2

[
n∑
i=1

I[Vi≤x]

ŜY ∗
2

(Vi)

]
,

where ŜY ∗
2

denote the product-limit estimator based on the univariate data (Y2i, Vi, δ2i) (i =
1, . . . , n), i.e.

ŜY ∗
2

(u) =
∏
x≤u

(
1− Λ̂Y ∗

2
(du)

)
,

where Λ̂Y ∗
2

(u) = NY2(u)/RY2(u), NY2(u) =
∑n

i=1NY2i(u), RY2(x) =
∑n

i=1RY2i(u), RY2i(x) =
I[Vi≤x≤Y2i] and NY2i(x) = I[Y2i≤x,δ2i=1].

Next, QY2(x) = P (Y2i ≤ x, δ2i = 0) = p−12 P (C∗ ≤ x,C∗ ≤ Y ∗2 ) = p−12

∫ x
0
SY ∗

2
(v)Q(dv).

Hence, given p2, Q(x) can be estimated by

Q̂(x; p2) = n−1p2

[
n∑
i=1

I[Y2i≤x](1−δ2i)

ŜY ∗
2

(Y2i)

]
.
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Since Ge(x) = p−12

∫ x
0
SY ∗

2
(v)G(dv), by letting x → ∞, the truncation probability p2 can be

estimated by

p̂2(ŜY ∗
2

) = n

[
n∑
i=1

1

ŜY ∗
2

(Vi)

]−1
.

Hence, G and Q can be estimated, respectively, by

Ĝ2(x) = n−1p̂2(ŜY ∗
2

)

[
n∑
i=1

I[Vi≤x]

ŜY ∗
2

(Vi)

]
and Q̂2(x) = n−1p̂2(ŜY ∗

2
)

[
n∑
i=1

I[Y2i≤x](1−δ2i)

ŜY ∗
2

(Y2i)

]
.

Thus,K(x, x) can be estimated by K̂2(x, x) = Ĝ2(x)− Q̂2(x).

Next, we consider the estimation of SC∗|V ∗(y − |x). For x < y, define

D23(x, y) = P (Vi ≤ x ≤ Y2i, Y3i ≥ y)

= p−12 P (V ∗ ≤ x ≤ C∗, Y ∗2 ≥ x, Y ∗3 ≥ y, C∗ ≥ y) = p−12 K(x, y)SY23(x−, y−), (2.3)

where SY23(x−, y−) = P (Y ∗2 ≥ x, Y ∗3 ≥ y). Let

W23(x, y) = P (Vi ≤ x ≤ Y2i, Y3i ≤ y, δ3i = 0)

= p−12 P (V ∗ ≤ x ≤ C∗, Y ∗2 ≥ x, Y ∗3 ≥ C∗, C∗ ≤ y).

Hence,
W23(x, dy) = p−12 K(x, dy)SY23(x−, y−). (2.4)

By (2.3) and (2.4), it follows that W23(x, dy)/D23(x, y) = K(x, dy)/K(x, y).

Thus, for x < y, SC∗|V ∗(y − |x) can be estimated by

ŜYC∗|V ∗(y − |x) =
∏
x≤c≤y

(
1− Λ̂Y

C∗|V ∗(dc|x)
)
,

where Λ̂Y
C∗|V ∗(c|x) = Ŵ23(x, c)/D̂23(x, c), D̂23(x, c) = n−1

∑n
i=1 D̂23i(x, c),

Ŵ23(x, c) = n−1
∑n

i=1 Ŵ23,i(x, c), D̂23i(x, c) = I[Vi≤x≤Y2i,Y3i≥c] and Ŵ23i = I[Vi≤x≤Y2i,Y3i≤c,δ3i=0].

Hence, for x < y, K(x, y) can be estimated by K̂2(x, y) = K̂2(x, x)ŜYC∗|V ∗(y − |x). Simi-

larly, since E[Ii(0, 0, 0)/K(Y2i, Y2i)] = p2, given K̂2(x, y) = [Ĝ2(x)− Q̂2(x)]ŜYC∗|V ∗(y− |x), p2
can be estimated by

p̂2(K̂2) = n

[
n∑
i=1

δ2i

K̂2(Y2i, Y2i)

]−1
.

Thus, we obtain an IPW estimator

ŜYn (t1, t2, t3) = n−1p̂2(K̂2)
n∑
i=1

I[X1i>t1,X2i>t2,X3i>t3,δ2i=1]

K̂2(Y2i, Y2i + t3)
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=

[
n∑
i=1

δ2i

K̂2(Y2i, Y2i)

]−1 n∑
i=1

I[X1i>t1,X2i>t2,X3i>t3,δ2i=1]

K̂2(Y2i, Y2i)
.

Notice that ŜYn (0, 0, 0) = 1. Let δ(2n) denote the concomitant of the largest observation

X2i. By Lemma 3.3 of Shen (2005), when δ(2n) = 1, p̂2(K̂2) = p̂2(SY ∗
2

) and ŜYn (t1, t2, t3) is
reduced to

n−1
n∑
i=1

I[X1i>t1,X2i>t2,X3i>t3,δ2i=1]

ÊK(Y2i, Y2i)
,

where ÊK(x, x) = ÊG(x)−ÊQ(x), ÊG(x) = n−1
∑n

i=1

I[Vi≤x]

ŜY ∗
2
(Vi)

and ÊQ(x) = n−1
∑n

i=1

I[Y2i≤x](1−δ2i)

ŜY ∗
2
(Y2i)

.

Lemma 2:

√
n[ŜYn (t1, t2, t3) − S(t1, t2, t3)] converges weakly to a mean-zero Gaussian process on

D[(aF1 , bF1)× (aF2 , bF2)× (aF3 , bF3)]

Proof: The proof is technical and not reported here.

Remark 2: Notice that since Ge(x) = P (Vi ≤ x) = p−12

∫ x
0
SY ∗

2
(v)G(dv), p−12 G(x) can be

estimated by ĤG(x) = n−1
[∑n

i=1

I[Vi≤x]

ŜY ∗
2
(Vi)

]
. Similarly, p−12 Q(x) can be estimated by ĤQ(x) =

n−1
[∑n

i=1

I[Y2i≤x](1−δ2i)

ŜY ∗
2
(Y2i)

]
. Hence, HK(x, x) = p−12 K(x, x) = p−12 P (V ∗ ≤ x ≤ C∗) can be esti-

mated by ĤG(x)− ĤQ(x) and an alternative estimator is given by

S̃Yn (t1, t2, t3) = n−1
n∑
i=1

I[X1i>t1,X2i>t2,X3i>t3,δ2i=1]

ĤK(Y2i, Y2i + t3)
,

where ĤK(x, y) = ĤK(x, x)ŜYC∗|V ∗(y−|x). One disadvantage of the estimator S̃Yn is S̃Yn (0, 0, 0) 6=
1 while ŜYn (0, 0, 0) = 1. However, when the largest observations of X2i’s is uncensored, S̃

Y
n is

equivalent to ŜYn . The proof the above argument follows from Shen (2005). Let X(2n) denote
the largest observations of X2i’s and δ(2n) be the concomitant of X(2n). By Lemma 3.3 of

Shen (2005), when δ(2n) = 1, p̂2(ŜY ∗
2

) = p̂2(K̂2) and it follows that the two estimators are
equivalent to each other.

Since it is difficult to obtain an analytical expression of the estimated variance of Ŝn
or ŜYn , we consider the bootstrap method for obtaining the precision estimation of the two
proposed estimators. For left-truncated and right-censored data, the bootstrap method was
investigated by Wang (1991), Gross and Lai (1996) and Bilker and Wang (1997). Gross and
Lai (1996) give an asymptotic justification of the simple bootstrap method for left-truncated
and right-censored data. For trivariate case, the simple bootstrap simply draws independent
vectors (Xb

1i, δ
b
1i, X

b
2i, δ

b
2i, X

b
3i, δ

b
3iV

b
i , C

b
i ), i = 1, . . . , n, from the empirical distribution that

puts weight 1/n at each of the observations (X1i, X2i, X3i, Vi, δ1i, δ2i, δ3i, Vi, Ci), i = 1, . . . , n.
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By repeating this whole process some large number B of times, we have independent esti-
mators Ŝ1

n, . . . , Ŝ
B
n . Then we can estimate the variance of Ŝn by

V̂B(Ŝn(t1, t2, t3)) =

∑B
b=1

[
Ŝbn(t1, t2, t3)−

∑B
j=1 Ŝ

j
n(t1, t2, t3)/B

]2
(B − 1)

.

Similarly, we can obtain the bootstrap variance estimate of ŜYn (t1, t2, t3). In Section 3, a
simulation study is conducted to investigate the performance of the simple bootstrap method.
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Chapter 3

Simulation Study

3.1 When the first event is truncated

To investigate the performance of the proposed estimator Ŝn, we conduct simulations
under the recruiting criterion T ∗1 ≥ V ∗. The joint distribution of (T ∗1 , T

∗
2 , T

∗
3 )’s are gen-

erated using Clayton’s (1978) bivariate exponential survival function with association pa-
rameter β1 between T ∗1 and T ∗2 , and association parameter β2 between T ∗2 and T ∗3 , i.e.
S12(t1, t2) = P (T ∗1 > t1, T

∗
2 > t2) = [S1(t1)

1−β1 + S2(t2)
1−β1 − 1]1/1−β1 and S23(t2, t3) =

P (T ∗2 > t1, T
∗
3 > t2) = [S1(t1)

1−β2 + S2(t2)
1−β2 − 1]1/1−β2 with marginal survival functions

Si(t) = e−t (i = 1, 2, 3). The values of β1 and β2 are chosen as β1 = β2 = 2 such that the
Kendall’s tau of (T ∗1 , T

∗
2 ), (T ∗2 , T

∗
3 ) and (T ∗2 , T

∗
3 ) are equal to 0.5, 0.5 and 0.31, respectively.

The truncation time V ∗ is exponentially distributed with mean 0.4 and 4 such that the pro-
portion of truncation (denoted by q) is equal to 0.29 and 0.67, respectively. The censoring
time C∗ = V ∗ + D∗, where D∗ is exponentially distributed with mean 4 and 1.5 such that
the censoring rates pc1 = P (δ1i = 0) pc2 = P (δ2i = 0) and pc3 = P (δ3i = 0) are equal to
(pc1, pc2, pc3) = (0.20, 0.38, 0.50) and (0.40, 0.67, 0.79), respectively. The values of t1 and t2 are
chosen as the grid points of t1 = 0.2, 0.6, 1.6 and t2 = 0.2, 0.6, 1.6. The sample size is chosen
as n = 100, 200 and the replication is 1000 times. Based on B = 500 bootstrap samples, we
also use the bootstrap methods to estimate the standard deviations of Ŝn. An approximate
1−α confidence interval is constructed using Ŝn(t1, t2, t2)± zα/2(V̂B(Ŝn(t1, t2, t3))

1/2. Tables
1 and 2 show the biases, standard deviations (std), bootstrap standard deviation (bstd) and
the empirical coverage (cov) of confidence intervals for the points (t1, t2, t3) = (0.2, 0.2, 0.2),
(0.2,0.8,0.8),(0.2,1.6,1.6),(0.8,0.2,0.2),(0.8,0.8,0.8),(0.8,1.6,1.6), (1.6,0.2,0.2) and (1.6,0.8,0.8)
with corresponding true values equal to 0.72, 0.32, 0.09, 0.43, 0.23, 0.07, 0.19 and 0.12, re-
spectively.

We also conduction simulation study for the estimator S̃n pointed out in Remark 1.
Simulation results indicate that the estimator S̃n has an outlying value about once per 100
replicates. When the outlying values are deleted from the simulated data, the results of S̃n
are similar to that of Ŝn, and not reported here.

3.2 When the second event is truncated
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The distribution of (T ∗1 , T
∗
2 , T

∗
3 ) are the same as those used in Section 3.1. The trun-

cation time V ∗ is exponentially distributed with mean 1 and 3.5 such that the proportion
of truncation (denoted by q) is equal to 0.30 and 0.65, respectively. The censoring time
C∗ = V ∗ + D∗, where D∗ is exponentially distributed with mean 4 and 1.5 such that the
censoring rates (pc1, pc2, pc3) = (0.15, 0.34, 0.48) and (0.28, 0.57, 0.74), respectively. Tables 3
and 4 show the simulation results.

Based on the results of Tables 1 through 4, we conclude that:

(i) The biases of both Ŝn and ŜYn are small except for the cases when truncation is se-
vere and censoring is heavy, i.e. (q, pc1, pc2, pc3) = (0.67, 0.40, 0.67, 0.79) (Table 2) and
(q, pc1, pc2, pc3) = (0.62, 0.28, 0.57, 0.74) (Table 4). Given q, the standard deviations of Ŝn
and ŜYn increase as the proportion of censoring increases.

(ii) When n = 100, the bootstrap estimators tend to underestimate standard deviations
of both estimators, which makes the coverage of 95% confidence intervals based on the
bootstrap method smaller than the nominal level. When n = 200, the underestimation is
improved and the coverage of 95% confidence intervals based on bootstrap method is close
to the nominal level for most of the cases considered.
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Table 1. Simulation results for bias, std, bstd and cov (q = 0.29)

(pc1, pc2, pc3)=(0.2,0.38,0.5) (pc1, pc2, pc3)=(0.4,0.67,0.79)
(t1, t2, t3) n bias std bstd cov bias std bstd cov

(0.2,0.2,0.2) 100 0.009 0.110 0.103 0.940 -0.022 0.139 0.127 0.937
(0.2,0.2,0.2) 200 -0.001 0.077 0.074 0.948 -0.003 0.096 0.092 0.947
(0.2,0.8,0.8) 100 0.028 0.079 0.073 0.938 0.063 0.135 0.124 0.934
(0.2,0.8,0.8) 200 0.019 0.053 0.049 0.947 0.034 0.104 0.098 0.945
(0.2,1.6,1.6) 100 0.034 0.056 0.052 0.938 0.052 0.094 0.085 0.932
(0.2,1.6,1.6) 200 0.017 0.039 0.036 0.945 0.039 0.078 0.073 0.944
(0.8,0.2,0.2) 100 0.002 0.078 0.072 0.938 -0.042 0.102 0.096 0.936
(0.8,0.2,0.2) 200 -0.008 0.060 0.056 0.947 -0.031 0.089 0.083 0.944
(0.8,0.8,0.8) 100 0.029 0.065 0.060 0.937 0.035 0.109 0.102 0.935
(0.8,0.8,0.8) 200 0.013 0.052 0.050 0.945 0.020 0.092 0.087 0.943
(0.8,1.6,1.6) 100 0.020 0.046 0.042 0.936 0.031 0.076 0.070 0.934
(0.8,1.6,1.6) 200 0.012 0.032 0.030 0.944 0.024 0.066 0.063 0.942
(1.6,0.2,0.2) 100 -0.015 0.051 0.046 0.936 -0.042 0.077 0.072 0.935
(1.6,0.2,0.2) 200 -0.002 0.038 0.036 0.942 -0.028 0.060 0.057 0.943
(1.6,0.8,0.8) 100 0.007 0.043 0.040 0.935 -0.018 0.074 0.068 0.933
(1.6,0.8,0.8) 200 0.008 0.036 0.034 0.942 -0.002 0.064 0.061 0.942

Table 2. Simulation results for bias, std, bstd and cov (q = 0.67)

(pc1, pc2, pc3)=(0.2,0.38,0.5) (pc1, pc2, pc3)=(0.4,0.67,0.79)
(t1, t2, t3) n bias std bstd cov bias std bstd cov

(0.2,0.2,0.2) 100 0.028 0.111 0.104 0.939 0.011 0.164 0.154 0.937
(0.2,0.2,0.2) 200 0.012 0.089 0.084 0.946 0.008 0.132 0.126 0.946
(0.2,0.8,0.8) 100 0.047 0.091 0.085 0.937 0.078 0.150 0.139 0.935
(0.2,0.8,0.8) 200 0.029 0.079 0.074 0.944 0.054 0.109 0.103 0.942
(0.2,1.6,1.6) 100 0.036 0.055 0.051 0.935 0.058 0.114 0.106 0.935
(0.2,1.6,1.6) 200 0.022 0.035 0.032 0.942 0.041 0.076 0.072 0.942
(0.8,0.2,0.2) 100 0.010 0.088 0.081 0.937 -0.021 0.134 0.124 0.934
(0.8,0.2,0.2) 200 -0.003 0.072 0.068 0.946 -0.004 0.087 0.083 0.944
(0.8,0.8,0.8) 100 0.027 0.065 0.060 0.936 0.060 0.115 0.106 0.935
(0.8,0.8,0.8) 200 0.016 0.046 0.042 0.943 0.039 0.087 0.082 0.943
(0.8,1.6,1.6) 100 0.024 0.046 0.041 0.935 0.041 0.090 0.082 0.933
(0.8,1.6,1.6) 200 0.018 0.032 0.030 0.942 0.031 0.061 0.056 0.941
(1.6,0.2,0.2) 100 -0.003 0.055 0.051 0.939 -0.021 0.083 0.076 0.936
(1.6,0.2,0.2) 200 -0.001 0.038 0.036 0.943 -0.016 0.054 0.051 0.942
(1.6,0.8,0.8) 100 0.007 0.047 0.042 0.937 0.015 0.069 0.062 0.932
(1.6,0.8,0.8) 200 -0.001 0.033 0.030 0.942 0.008 0.052 0.047 0.941
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Table 3. Simulation results for bias, std, bstd and cov (q = 0.30)

(pc1, pc2, pc3)=(0.15,0.34,0.48) (pc1, pc2, pc3)=(0.28,0.57,0.74)
(t1, t2, t3) n bias std bstd cov bias std bstd cov

(0.2,0.2,0.2) 100 0.034 0.095 0.089 0.939 0.081 0.113 0.105 0.937
(0.2,0.2,0.2) 200 0.016 0.073 0.070 0.947 0.056 0.084 0.079 0.944
(0.2,0.8,0.8) 100 0.067 0.074 0.069 0.939 0.071 0.116 0.108 0.937
(0.2,0.8,0.8) 200 0.038 0.057 0.053 0.945 0.043 0.086 0.081 0.944
(0.2,1.6,1.6) 100 0.056 0.052 0.047 0.936 0.067 0.092 0.086 0.935
(0.2,1.6,1.6) 200 0.038 0.036 0.033 0.944 0.031 0.083 0.079 0.943
(0.8,0.2,0.2) 100 0.026 0.077 0.072 0.937 0.034 0.090 0.084 0.936
(0.8,0.2,0.2) 200 0.011 0.056 0.053 0.946 0.027 0.074 0.071 0.945
(0.8,0.8,0.8) 100 0.052 0.063 0.058 0.937 0.051 0.104 0.096 0.934
(0.8,0.8,0.8) 200 0.034 0.050 0.047 0.945 0.035 0.082 0.077 0.943
(0.8,1.6,1.6) 100 0.043 0.047 0.042 0.934 0.072 0.093 0.086 0.931
(0.8,1.6,1.6) 200 0.029 0.033 0.031 0.943 0.048 0.077 0.072 0.941
(1.6,0.2,0.2) 100 0.011 0.055 0.051 0.937 -0.004 0.080 0.073 0.937
(1.6,0.2,0.2) 200 0.004 0.038 0.035 0.945 0.001 0.060 0.056 0.944
(1.6,0.8,0.8) 100 0.021 0.049 0.044 0.935 0.031 0.085 0.079 0.932
(1.6,0.8,0.8) 200 0.016 0.037 0.034 0.943 0.023 0.067 0.063 0.942

Table 4. Simulation results for bias, std, bstd and cov (q = 0.62)

(pc1, pc2, pc3)=(0.15,0.34,0.48) (pc1, pc2, pc3)=(0.28,0.57,0.74)
(t1, t2, t3) n bias std bstd cov bias std bstd cov

(0.2,0.2,0.2) 100 0.038 0.115 0.106 0.938 0.097 0.129 0.120 0.935
(0.2,0.2,0.2) 200 0.026 0.093 0.089 0.947 0.067 0.094 0.088 0.944
(0.2,0.8,0.8) 100 0.075 0.084 0.078 0.936 0.081 0.127 0.116 0.936
(0.2,0.8,0.8) 200 0.046 0.066 0.062 0.945 0.067 0.091 0.086 0.944
(0.2,1.6,1.6) 100 0.061 0.051 0.047 0.935 0.075 0.120 0.112 0.934
(0.2,1.6,1.6) 200 0.038 0.037 0.034 0.944 0.059 0.083 0.078 0.942
(0.8,0.2,0.2) 100 0.048 0.077 0.071 0.937 0.056 0.113 0.105 0.936
(0.8,0.2,0.2) 200 0.019 0.068 0.064 0.945 0.041 0.074 0.069 0.943
(0.8,0.8,0.8) 100 0.056 0.070 0.064 0.935 0.078 0.113 0.105 0.937
(0.8,0.8,0.8) 200 0.030 0.054 0.051 0.944 0.063 0.075 0.071 0.942
(0.8,1.6,1.6) 100 0.040 0.043 0.039 0.934 0.082 0.088 0.080 0.932
(0.8,1.6,1.6) 200 0.027 0.032 0.029 0.943 0.065 0.066 0.061 0.941
(1.6,0.2,0.2) 100 0.025 0.051 0.047 0.937 0.024 0.070 0.065 0.936
(1.6,0.2,0.2) 200 0.008 0.041 0.039 0.944 0.020 0.051 0.047 0.942
(1.6,0.8,0.8) 100 0.030 0.045 0.041 0.936 0.053 0.074 0.066 0.932
(1.6,0.8,0.8) 200 0.021 0.034 0.031 0.941 0.029 0.056 0.052 0.940
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Chatper 4

Discussion

In this article, we have proposed inverse-probability weighted estimators for the estima-
tion of the joint survival function of three successive duration times when the first/second
event time is left-truncated. Simulation results indicate that the proposed estimators per-
form well. Our proposed approach can be extended to the case of more than three successive
duration times. In some cases, the calendar times of the initiation E0 and the subsequent
events E1 and E2 are only known to fall within intervals. When the first event time is subject
to left truncation, T ∗1 is subject to left-truncation and double censoring and T ∗2 and T ∗3 are
subject to dependent interval censoring. Further research is needed to extend our approach
to deal with such data.
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