
東海大學統計研究所

碩士論文

指導教授:沈葆聖博士

在在在雙雙雙截截截資資資料料料下下下

Cox 模模模型型型的的的擬擬擬最最最大大大概概概似似似估估估計計計

Pseudo maximum likelihood estimation for Cox Model

with Doubly Truncated Data

研究生:卓穎蓁

中華民國一百零五年六月

User
印章





謝誌 
    轉眼間兩年的研究所生涯即將邁入尾聲，心中滿滿不捨，感謝讓我有

所蛻變的一切。首先感謝我的指導教授-沈葆聖博士，在論文撰寫期間給

予的教導與督促，並且從中學習到對於研究的執著與態度。在研究所求學

的這兩年，旁聽了沈老師大學部的課，老師教會我的不只是專業的知識，

從老師的身上我也看到了他對工作教學上的熱忱與負責，我想我要學的還

很多，在往後的人生裡只要我遇到困難時，我仍會想起老師那份堅強的意

志力，絕不輕言放棄，並且用更積極的態度去面對解決事情。真的很榮幸

能夠遇見老師，並在老師的薰陶下成長，不管是在課業上、求職上，老師

都很願意給予意見與幫助，在此由衷的感謝您。 

 

    再來要感謝的是戴政博士和張玉媚博士百忙之中抽空來擔任我的論

文口試委員，過程中提出的問題給了我許多啟發，使我受益良多，也給了

一些寶貴的建議，讓我可以使論文能夠更加完善。 

 

    此外論文的完成承蒙許多人的支持以及鼓勵，讓我在曾經想要放棄之

時卻又見到一絲曙光。感謝研究室的同學們，在我研究所生涯中添增了豐

富的色彩，總是能帶給我無窮盡的鼓勵，給予我心靈上的滋潤並且洗滌疲

憊的身心。 

 

    最後，感謝默默支持、關心、鼓勵與包容我的家人，讓我在求學過程

當中無後顧之憂，忙碌之餘總是為我加油打氣。尤其是我的父親，辛苦的

工作為了就是讓我有好的資源、在好的環境下沒有任何煩惱的學習。感謝

有個偉大的爸爸，永遠當我的後盾，讓我可以一步一步的往前邁進，內心

的所有感謝無法用言語一一表達，只能再一次地謝謝，有您真好! 

 

 



Abstract

The partial likelihood (PL) function has been mainly used for proportional hazards mod-

els with censored data. The PL approach can also be used for analyzing left-truncated or

left-truncated and right-censored data. However, when data is subject to double truncation,

the PL approach no longer works due to the complexities of risk sets. In this article, we pro-

pose pseudo maximum likelihood approach for estimating regression coefficients and baseline

hazard function for the Cox model with doubly truncated data. We propose expectation-

maximization algorithms for obtaining the pseudo maximum likelihood estimators (PMLE).

The consistency property of the PMLE is established. Simulations are performed to evaluate

the finite-sample performance of the PMLE. The proposed method is illustrated using an

AIDS data set.

Key Words: EM algorithm; Pseduo-likelihood; Double truncation; Inverse-Probability-Weighted.
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1. Introduction

Doubly truncated failure-time arises if an individual is potentially observed only

if its failure-time lies within a certain interval, unique to that individual. Efron and

Petrosian (1999) motivated double-truncation issue using data on quasars, which are

only detected when their luminosity falls between two observational limits (Lynden-

Bell (1971)). Doubly truncated data also play an important role in the statistical

analysis of survival times. Bilker and Wang (1996) indicated that induction times

in AIDS are doubly truncated. Consider the following example:

Example: CDC AIDS Blood Transfusion Data

The AIDS Blood Transfusion Data are collected by the Centers for Disease

Control (CDC), which is from a registry database, a common resource of medical

data. The data consist of the time in month and only cases having either one

transfusion or multiple transfusions in the same calendar month were used. The

cases either diagnosed or reported after July 1, 1986 (τ2) were not included to avoid

inconsistent data and bias resulting from reporting delay. Thus, the observed data

is subject to right truncation. Moreover, cases having the AIDS prior to January 1,

1982 (τ1) were not included because HIV was unknown prior to 1982, any cases of

transfusion-related AIDS before this time would not have been properly classified

and thus would have been missed. Hence, in addition to right truncation, the

observed data are also truncated from the left. Let TB denote the calendar time (in

years) of the initiating events (HIV infection), and TD be the calendar time (in years)

of AIDS onset. Let T = 12(TD−TB) (in month) be the induction or incubation time

from HIV infection to AIDS. Let U = 12(τ1−TB) and V = U+d0 = 12(τ2−TB) (in

month), where d0 = 12(τ2 − τ1) = 54. Define a population as the individuals who

were infected with HIV before τ1 and develop AIDS prior to τ2. Thus, the CDC

AIDS Blood Transfusion Data can be viewed as being doubly truncated since the

incubation times T ’s are observable only when τ1 ≤ TD ≤ τ2 (i.e. U ≤ T ≤ V ).

Assume for the un-truncated individual, a p×1 vector of covariates Z = [z1, . . . , zp]
T

is available. Figure 1 highlights all the different times for doubly truncated data

described in Example.

For doubly truncated data, the nonparametric maximum likelihood estimator

(NPMLE) of the distribution function of T was first studied by Efron and Pet-

rosian (1999)). Shen (2010a) added the NPMLE for the truncation distributions
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Figure 1. Schematic depiction of doubly truncated data

and established the consistency and weak convergence of the NPMLE. Although a

closed-form variance estimation was not established then, this issue was solved for

the event-time distribution by Emura et al.(2015a). Moreira and de Uña-Álvarez

(2010a) demonstrated that the simple bootstrap method can be used to approx-

imate the sampling distribution of the NPMLE. Zhang (2015) derived a variance

estimation for both NPMLEs under the assumption that the lower and upper trun-

cation variables are independent. Moreira, de Uña-Álvarez and Crujeiras (2010)

presented the R package DTDA for analyzing truncated data, which contains three

different algorithms for the approximation of the NPMLE under double truncation

as well as bootstrap confidence bands. Moreira and Keilegom (2013) considered

several bandwidth selection procedures for kernel density estimation of a random

variable that is sampled under random double truncation.

Parametric procedures for doubly truncated have been also studied in the lit-

erature. Efron and Petrosian (1999) proposed the maximum likelihood estimator

(MLE) under a parametric family, called the special exponential family (SEF). Hu

and Emura (2015) developed the randomized Newton-Raphson algorithms to obtain

the MLE. Emura et al. (2015b) pointed out that the classical asymptotic theory

for the i.i.d. data is not suitable for studying the MLE under double-truncation.

Alternatively, they formalized the asymptotic results under the independent but

not identically distributed data that take into account for the between-sample het-
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erogeneity of truncation variables.

Compared to the nonparametric or parametric analyses, research is much scarcer

on analyses of doubly truncated data in the presence of covariates. When Z is

discrete, under linear transformation models, Shen (2013) extended Zhang et al’s

(2005) approach to doubly-truncated and interval-censored data. However, the pro-

posed approach requires the estimation of survival functions for each level of covari-

ates. Shen (2016) analyzed doubly truncated data using semiparametric transfor-

mation models. He demonstrated that the extended estimating equations of Cheng

et al. (1995) can be used to analyze doubly truncated data. However, his approach

only considered the estimation of regression coefficients. In this article, we consider

the estimation of regression coefficients and baseline hazard function for Cox model

with doubly truncated data.

The partial likelihood (PL) function has been mainly used for proportional haz-

ards models with censored data (Cox 1972, 1975). The PL approach can also be

used for analyzing right-truncated (RT) or left-truncated and right censored (LTRC)

data (Kalbfleisch and Lawless (1991); Wang, Brookmeyer, and Jewell (1993)). For

LT/LTRC data, the PL function has an expression similar to that of the PL for

right-censored data except for the definition of the risk sets. However, when data is

subject to double truncation, the PL approach no longer works due to the complex-

ities of risk sets. In Section 2, we propose pseudo maximum likelihood approach for

estimating regression coefficients and baseline hazard function for the Cox model

with doubly truncated data. Expectation-maximization algorithms are proposed

for obtaining the pseudo maximum likelihood estimators (PMLE). We consider two

cases: the case when the distribution of the truncation time is unspecified and the

case when it is known up to a finite-dimensional parameter vector. The consistency

property of the PMLE is established. In Section 3, simulations are performed to

evaluate the finite-sample performance of the PMLE. In Section 4, the proposed

estimator is illustrated using an AIDS data set.
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2. The Proposed Estimator

2.1 When G is unspecified

Let F (t|Z) = P (T ≤ t|Z) denote the cumulative distribution function of T

given Z. Let G(t) = P (U ≤ t) denote the cumulative distribution function of U .

Suppose that the support of T does not depend on Z. Let aF and bF denote the

left and right endpoint of support of T , and similarly, define (aG, bG) as the left

and right endpoint of support of U . Throughout this article, for identifiability of

F (t|Z), we assume that aG ≤ aF ≤ aG + d0, bG ≤ bF ≤ bG + d0. We also assume

that U is independent of (T, Z).

In Example, since aG = 0, aG ≤ aF always holds. When aF = 0, aF ≤ aG + d0

always holds. Furthermore, when d0 is large enough, we have bF ≤ bG+d0, this will

hold if follow-up is long enough such that bG + d0 is larger than the right endpoint

of T . In Example, U denotes the time interval between the date of HIV infection

and study start date and it is reasonable to assume that U is independent of (T, Z)

if the pattern of infection through blood transfusion is independent of covaraites Z

and incubation time T .

The proportional hazards model (Cox (1972)) is commonly used in the analysis

of survival time and related data. The Cox model is given by

λ(t|Z) = λ(t) exp(βTZ),

where β is the regression parameter, λ(t|Z) is the conditional hazard function of T

given Z with λ(t) as an arbitrary baseline hazard function.

Let (T1, U1, V1 = U1 + d0, Z1), . . . , (Tn, Un, Vn = Un + d0, Zn) denote the dou-

bly truncated sample of (T, U, V, Z). As pointed out by Ren and Zhou (2011),

under Cox model (2.1), given Z, the variable T satisfies Lehmann family prop-

erties (Kalbfleisch and Prentice (2002), page 97) S(t|Z) = [S(t)]exp(β
TZ), where

S(t) = exp(−Λ(t)) is the baseline survival function and Λ(t) is the cumulative

baseline hazard function. This implies that f(t|Z) = exp(βTZ)λ(t)S(t|Z), where

f(t|Z) is the density functions of S(t|Z). Notice that the distribution of the trun-

cated vector (Ti, Ui, Vi, Zi) differs from that of the untruncated vector (T, U, V, Z),

e.g. P (Ti ≤ t|Zi) = α(β,Λ, G;Zi)
−1P (T ≤ t, U ≤ T ≤ V = U + d0|Z = Zi), where

α(β,Λ, G;Zi) = P (U ≤ T ≤ U + d0|Z = Zi) is the untruncation probability given
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Z = Zi. Under the Cox model, the un-truncated probability α(Zi) can be written

as

α(β,Λ, G;Zi) = P (U ≤ T ≤ U + d0|Z = Zi)

= P (T > U |Z = Zi)− P (T > U + d0|Z = Zi)

= S(U |Z = Zi)− S(U + d0|Z = Zi)

=

∫ ∞
0

[S(x|Zi)− S(x+ d0|Zi)]dG(x)

=

∫ ∞
0

[
{exp(−Λ(x)}exp(βTZ) − {exp(−Λ(x+ d0))}exp(β

TZ)
]
dG(x).

First, we consider the estimation of G(x). Let F (t) = P (T ≤ t) and f(t) denote

the unconditional cumulative distribution function and probability density functions

of T , i.e. F (t) =
∫
P (T ≤ t|Z = z)PZ(z)dz, where PZ(z) is the probability density

function of Z. The inverse-probability-weighted (IPW) estimators of G(t) and F (t)

can be obtained (see Shen (2003), Shen (2010a)) by solving the following pairs of

simultaneous equations:

F̂n(t) =
[ n∑
i=1

1

Ĝn(Ti)− Ĝn((Ti − d0)−)

]−1 n∑
i=1

I[Ti≤t]

Ĝn(Ti)− Ĝn((Ti − d0)−)
,

and

Ĝn(t) =
[ n∑
i=1

1

F̂n(Ui + d0)− F̂n(Ui−)

]−1 n∑
i=1

I[Ui≤t]

F̂n(Ui + d0)− F̂n(Ui−)
,

where F̂n(t) and Ĝn(t) are the IPW estimators of F (t) and G(t), respectively. Notice

that this approach requires that the truncated sample is a simple random sample

from the truncated population, i.e. the observations with T ≥ V . If the sampling

scheme depends on covariates, the IPW estimator F̂n(t) is an inconsistent estimator

of F (t).

Next, we consider the estimation of β and Λ. Given Ĝn, the likelihood for F is

proportional to

Ln(β,Λ, Ĝn) =
n∏
i=1

f(Ti|Zi)
α(β,Λ, Ĝn;Zi)

and the log-likelihood function of Ln(β,Λ, Ĝn) can be expressed as

ln(β,Λ, Ĝn) = n−1
n∑
i=1

{∫ ∞
0

[βTZi + log λ(t)− Λ(t|Zi)]dNi(t)− logα(β,Λ, Ĝn;Zi)

}
,
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where Ni(t) = I[Ti≤t].

Because the likelihood ln includes the plug-in value of Ĝn, the likelihood is called

the pseudo-likelihood. The maximization of ln(β,Λ, Ĝn) leads to the same difficulty

as in estimating density function (no maximizer). A rout way route out of this

difficulty is to extend the parameter space so that the estimator of Λ is allowed to

be discrete. Thus, we relax Λ to be right-continuous and allow Λ(t) to have jumps

at the Ti’s. For length-biased and right-censored data, Qin et al. (2011) proposed

expectation-maximization (EM) algorithms to obtain the maximum likelihood es-

timation of the nonparametric and Cox models. Motivated by the approach of Qin

et al. (2011), we propose an EM algorithm for obtaining the PMLE of (β,Λ) based

on ln(β,Λ, Ĝn). Let t1 < t2 < · · · < tn be the ordered failure times for {T1, . . . , Tn}.
We redefine Λ(·) as a step function with jumps only at the event times ti. For

i = 1, . . . , n, given Oi = (Ti, Zi), let O∗i = {(T ∗i1, U∗i1), . . . , (T ∗imi
, U∗imi

)} denote the

truncated latent data corresponding to covariate Zi. Given G, the random integer

mi then follows a geometric distribution with parameter α(β,Λ, G;Zi) and

E[mi|Oi] =
1− α(β,Λ, G;Zi)

α(β,Λ, G;Zi)
.

We develop the EM algorithm based on the discrete version of Λ(x) =
∑

tj≤x λj,

where λj is the positive jump at time tj for j = 1, . . . , n. For notational convenience,

let fi(t) = dF (t|Zi).

E Step:

Let T1, . . . , Tn denote the doubly-truncated sample with Ui < Ti < Ui + d0.

Hence, the log-likelihood based on the complete data is then

n∑
j=1

n∑
i=1

{
I[Ti=tj ] +

mi∑
l=1

I[T ∗
il=tj ]

}
log fi(tj).

Conditional on the observed doubly truncated data Oi,

E

[
I[Ti=tj ]

∣∣∣∣Oi

]
= I[Ti=tj ].

Furthermore,

Emi

{
E

[ mi∑
l=1

I[T ∗
il=tj ]

∣∣∣∣Oi

]}
= Emi

{ mi∑
l=1

P (T = tj|T < U or T > U + d0, Z = Zi)

}
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= Emi

{
miP (T = tj|Z = Zi)P (T < U or T > U + d0|T = tj, Z = Zi)

/P (T < U or T > U + d0|Z = Zi)

}
= Emi

{
mifi(tj)[1−G(tj) +G(tj − d0)]/[1− α(β,Λ, G;Zi)]

}
=
fi(tj)[1−G(tj) +G(tj − d0)]

α(β,Λ, G;Zi)
,

where

fi(tj) = exp(βTZi)λj exp

{
−

j∑
l=1

λl exp(βTZi)

}
.

Hence,

wij = E

[
I[Ti=tj ] +

mi∑
l=1

I[T ∗
ij=tj ]

∣∣∣∣Oi

]

= I[Ti=tj ] +
fi(tj)[1−G(tj) +G(tj − d0)]

α(β,Λ, G;Zi)
.

Thus, given Ĝn, wij can be estimated by

ŵij = I[Ti=tj ] +
fi(tj)[1− Ĝn(tj) + Ĝn(tj − d0)]

α(β,Λ, Ĝn;Zi)
. (2.1)

The expected complete-data log-likelihood function conditional on the observed

data Oi (i = 1, . . . , n) is as follows:

lE(β, λ, Ĝn) =
n∑
i=1

n∑
j=1

ŵij log fi(tj)

=
n∑
j=1

ŵ+j log λj +
n∑
i=1

ŵi+β
TZi −

n∑
l=1

n∑
j=l

n∑
i=1

ŵij exp(βTZi)λl,

where ŵ+j =
∑n

i=1 ŵij and ŵi+ =
∑k

j=1 ŵij.

M Step:

In the M-step, we maximize lE(β, λ, Ĝn) with respect to λj (j = 1, . . . , n),

∂lE(β, λ, Ĝn)

∂λj
=
ŵ+j

λj
−

n∑
l=j

n∑
i=1

ŵil exp(βTZi) = 0,
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which leads to a closed form of λj as a function of β, given by

λj(β) =
ŵ+j∑n

l=j

∑n
i=1 ŵil exp(βTZi)

. (2.2)

Next, we maximize lE(β, λ, Ĝn) with respect to β

∂lE(β, λ, Ĝn)

∂β
=

n∑
i=1

ŵi+Zi −
n∑
l=1

n∑
j=l

n∑
i=1

ŵijZi exp(βTZi)λl. (2.3)

By inserting λj(β) of (2.2) into (2.3), β can be solved by the following equation:

n∑
i=1

ŵi+Zi −
n∑
l=1

ŵ+l

{∑n
i=1

∑n
j=l ŵijZi exp(βTZi)∑n

i=1

∑n
j=l ŵij exp(βTZi)

}
= 0.

Hence, given Ĝn, one can update the expectation of the likelihood via ŵij in

(2.1) and repeat M-step until the the estimators β and λj (j = 1, . . . , n) converge.

We denote the PMLE by ζ̂n = (β̂n, Λ̂n) and let ζ0 = (β0,Λ0) be the true value.

We require the following conditions to derive the the asymptotic properties of

β̂n and Λ̂n:

(A1) Let [0, τc] ∈ [0,∞] such thatK(x) = G(x)−G((x−d0)−) > δ > 0 for x ∈ [0, τc].

Moreover, assume that (a)
∫ τc
0
G(dx)/W (x) <∞, where W (x) = Fu(x+d0)−Fu(x)

and (b) Fu(dx)/G(dx) is uniformly bounded on [0, τc]

(A2) The true value of the hazard function Λ0(·) is continuously differentiable,

Λ0(0) = 0 and Λ0(τc) <∞.

(A3) The parameter β is in a compact set B that contains β0.

(A4) Both E[||Z||2] and E[| exp(βTZ)|] are bounded, where ||Z|| = (|z1|2 + · · · +
|zp|2)1/2.

(A5) The information matrix −∂2E[ln(β, λ̂(·, β), G]/∂2β evaluated at true value β0

is positive definite for every n.

(A6) If P (bTZ = c) = 1 for some constant c, then b = 0.

Assumption (A1) is required for the consistency of Ĝn. Assumptions (A2) and (A3)

are required for stochastic approximation. Assumptions (A4) and (A5) are condi-

tions for establishing asymptotic properties of the estimated coefficient under Cox
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model (Andersen et al. (1993)). This implies that given G and λ the information

matrix for β is positive definite. Assumption (A6) implies that there is no covariate

colinearity, which ensures the model identifiability.

Note that given Ĝn the log-likelihood function lE(β, λ, Ĝn) is strictly concave in

λ. Hence, given Ĝn, for each β in a compact set B, we can find a unique maximizer

of λ̂(·, β, Ĝn) of the likelihood function lE(β, λ, Ĝn). The existence of the unique

PMLE for (β, λ) follows by assumptions (A2) through (A5).

Theorem 1. Let ζ̂n = (β̂n, Λ̂n) and ζ0 = (β0,Λ0). Under assumptions (A1)-(A6),

the PMLE ζ̂n is consistent: β̂n converges to β0, and Λ̂n(t) converges uniformly in t

for t ∈ [0, τc]. Furthermore,
√
n[ζn − ζ0] converges weakly to a mean zero Gaussian

process.

Proof: The proof is technical and not shown here.

2.2. When G(x) = P (U ≤ x) is parameterized as G(x; θ)

In some cases, the distribution of left truncation times, denoted by G(x) =

P (U ≤ x), can be parameterized as G(x; θ), where θ ∈ Θ, Θ is a known compact

set in Rq and θ is a q-dimensional vector. For prevalent data with fixed recruitment

time, the truncation distribution G can be interpreted as the disease distribution.

For stable diseases, the disease-onset cases are approximately uniformly distributed

over the calendar time, i.e. length-biased data . For a new disease, however, one

might prefer to parameterize G so that the parameterization reflects the growth

of the disease over time. When G(x) is parameterized as G(x; θ), Moreira and de

Uña-Álvarez (2010b) and Shen (2010b) proposed a semiparametric estimator of F .

Both papers demonstrated that it may be more efficient than the NPMLE of F .

Under Cox model and G(x) = G(x; θ), we have

α(Zi) = α(β,Λ, θ;Zi) =

∫ ∞
0

H(x; θ)f(x|Zi)dx =

∫ ∞
0

[S(x|Zi)− S(x+ d0|Zi)]g(x; θ)dx,

where g(x; θ) and the probability density function of U and H(x; θ) = G(x; θ) −
G(x− d0; θ). The full likelihood function of (F,G) is given by

L(β,Λ, θ) =
n∏
i=1

{
dF (Ti|Zi)g(Ui; θ)/α(β,Λ, θ;Zi)

}
.
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The full likelihood can be written as

L(β,Λ, θ) = Lm(β,Λ, θ)× Lc(θ),

where

Lm(β,Λ, θ) =
n∏
i=1

H(Ti; θ)dF (Ti|Zi)
α(β,Λ, θ;Zi)

and Lc(θ) =
n∏
i=1

g(Ui; θ)

H(Ti; θ)
.

Let θ̂n denote the MLE by maximizing Lc(θ). Given θ̂n, the pseudo-likelihood for

F is proportional to

Ln(β,Λ, θ̂n) =
n∏
i=1

f(Ti|Zi)
α(β,Λ, θ̂n;Zi)

.

The log-likelihood function of Ln(β,Λ, θ̂n) can be expressed as

ln(β,Λ, θ̂n) = n−1
n∑
i=1

{∫ ∞
0

[βTZi + log λ(t) + logS(t|Zi)]dNi(t)− logα(β,Λ, θ̂n;Zi)

}
.

We can obtain the semiparametric PMLE of (β,Λ) using the EM algorithms

proposed in Section 2.1 with Ĝn(t) replaced by G(t; θ̂n). We denote the semipara-

metric MLE by (β̃n, Λ̃n). When the parametric information is correct, it is expected

the semiparametric PMLE outperforms the PMLE, but may behave badly when

the assumed parametric model is far off. Moreira et al. (2014) proposed several

Kolmogorov-Smirnov and Cramér-von Mises type test statistics, by which we can

check if G can be parameterized as G(t; θ).

To derive the asymptotic properties of β̃n and Λ̃n, we need the following condi-

tions (B1), (B2) and conditions (A3)-(A6) of Theorem 1:

(B1) G(x; θ) is continuous in x ∈ [0, τc] for each θ ∈ Θ.

(B2) θ̂n → θ implies that G(x; θ̂n)→ G(x; θ) for each x ∈ [0, τc].

Theorem 2. Let ζ̃n = (β̃n, Λ̃n). and ζ0 = (β0,Λ0). Under assumptions (B1),(B2)

and (A3)-(A6), the PMLE ζ̃n is consistent: β̃n converges to β0, and Λ̃n(t) converges

uniformly in t for t ∈ [0, τc]. Furthermore,
√
n[ζ̃n − ζ0] converges weakly to a mean

zero Gaussian process.

Proof: By Anderson (1970), under the usual regularity conditions, θ̂n converges

to θ with probability one. Similar to Lemma 3.1 of Wang (1989), under conditions
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(B1) and (B2), we have with probability one, supx∈[0,τ ] |G(x; θ̂n) − G(x; θ)| → 0 as

n→∞. The rest of proof is similar to that of Theorem and is omitted.

3. Simulation Studies

In this section, we conduct simulation studies to evaluate the performance of the

proposed estimators. We generate T following the proportional hazards model with

Λ(t) = et − 1 and β = (β1 = −2, β2 = −3)T . The resulting T has the survivorship

function

P (T > t|z1, z2) = e−(e
t−1)e−2z1−3z2 ,

where z1 is a bernoulli random variable with probability 0.5 and z2 is an ordinal

variable with P (z∗1 = i) = 0.25 for i = 1, 2, 3, 4. The U ’s are i.i.d. exponentially

distributed with distribution function G(x; θ) = 1− e−θx. The values of θ is chosen

as θ = 0.25. The V is generated from V = U + d0, with d0 = 6, 9, 12 such that

the proportions of truncation(qT ) are equal to 0.58, 0.39 and 0.25, respectively. We

keep the sample if U ≤ T ≤ V and regenerate a sample if T < U or T > V . The

estimators β̂n = (β̂1n, β̂2n)T and Λ̂n are obtained using the IPW estimator Ĝn and

EM algorithm in Section 2.1. Similarly, the estimators β̃n = (β̃1n, β̃2n)T and Λ̃n are

obtained using the conditional maximum likelihood estimator G(x; θ̂n) and the EM

algorithm in Section 2.1 with Ĝn(t) replaced by G(t; θ̂n). The convergence criterion

is set as ||β̂(r+1)
n − β̂(r)

n || < 0.0001 (or ||β̂(r+1)
n − β̂(r)

n || < 0.0001).

For the estimation of β, Tables 1 and 2 show the mean average biases (bias)

over all simulation runs, empirical standard deviations (std), respectively. Tables

1 and 2 also show the proportion of truncation 1 − P (U ≤ T ≤ V ) (denoted by

qT ). The sample sizes are chosen as 100, 200 and 400. The replication is 1000

times. We also consider the estimation of S(t0|1, 1) = e−(e
t0−1)e−5

, where the values

of t0 are chosen as such that S(t0|1, 1) = 0.2(t0 = 5.48), S(t0|1, 1) = 0.5(t0 = 4.64)

and S(t0|1, 1) = 0.8(t0 = 3.53). Tables 3 and 4 show the mean average biases

and empirical standard deviations (std) for Ŝn(t0|1, 1) = exp{−Λ̂n(t0)e
β̂1n+β̂2n} and

S̃n(t0|1, 1) = exp{−Λ̃n(t0)e
β̃1n+β̃2n}, respectively.
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Table 1. simulation results for bias and standard deviation of β̂n

β̂1n β̂2n
d0 n qT bias std bias std
6 100 0.58 0.229 0.400 0.384 0.520
6 200 0.58 0.153 0.301 0.235 0.393
6 400 0.58 0.105 0.166 0.186 0.192
9 100 0.39 0.117 0.382 0.197 0.454
9 200 0.39 0.096 0.263 0.138 0.298
9 400 0.39 0.072 0.137 0.085 0.143

12 100 0.25 0.070 0.323 0.069 0.447
12 200 0.25 0.038 0.256 0.027 0.286
12 400 0.25 0.015 0.132 0.010 0.150

Table 2. simulation results for bias and standard deviation of β̃n

β̃2n β̃2n
d0 n qT bias std bias std
6 100 0.58 0.197 0.327 0.285 0.354
6 200 0.58 0.104 0.214 0.175 0.227
6 400 0.58 0.078 0.153 0.154 0.159
9 100 0.39 0.111 0.313 0.131 0.321
9 200 0.39 0.057 0.209 0.093 0.192
9 400 0.39 0.051 0.128 0.047 0.137

12 100 0.25 0.056 0.298 0.017 0.297
12 200 0.25 0.029 0.200 0.011 0.185
12 400 0.25 0.009 0.114 0.003 0.124

Table 3. simulation results for bias and standard deviation of Ŝn(t|1, 1)

Ŝn(5.48|1, 1) Ŝn(4.64|1, 1) Ŝn(3.53|1, 1)
d0 n qT bias std bias std bias std
6 100 0.58 0.021 0.081 -0.008 0.099 -0.015 0.089
6 200 0.58 0.007 0.054 -0.013 0.060 -0.017 0.065
6 400 0.58 0.007 0.038 -0.005 0.042 -0.013 0.037
9 100 0.39 0.029 0.079 0.009 0.100 -0.008 0.075
9 200 0.39 0.013 0.054 -0.002 0.073 -0.010 0.060
9 400 0.39 0.003 0.044 -0.004 0.051 -0.004 0.029

12 100 0.25 0.015 0.099 -0.004 0.121 -0.009 0.097
12 200 0.25 0.006 0.057 0.009 0.093 -0.006 0.072
12 400 0.25 0.003 0.048 -0.004 0.057 0.003 0.038



13

Table 4. simulation results for bias and standard deviation of S̃n(t|1, 1)

S̃n(5.48|1, 1) S̃n(4.64|1, 1) Ŝn(3.53|1, 1)
d0 n qT bias std bias std bias std
6 100 0.58 0.016 0.064 -0.006 0.076 0.014 0.069
6 200 0.58 0.006 0.041 -0.012 0.047 0.012 0.051
6 400 0.58 0.005 0.029 -0.004 0.033 0.009 0.028
9 100 0.39 0.020 0.062 0.008 0.079 0.011 0.061
9 200 0.39 0.011 0.043 -0.001 0.057 0.010 0.049
9 400 0.39 -0.005 0.036 -0.002 0.041 -0.005 0.023

12 100 0.25 0.012 0.081 -0.003 0.103 0.007 0.081
12 200 0.25 0.008 0.046 0.008 0.076 0.004 0.060
12 400 0.25 -0.004 0.039 -0.002 0.047 0.002 0.032

Based on the results of Tables 1 through 4, we have the following conclusions:

(i) For the estimation of β, the standard deviations of both β̂in and β̃in increase as

the proportion of truncation qT increases. Similarly, the biases of both estimators

tend to increase as the proportion of truncation qT increases. Specifically, when

n = 100 and truncation is severe (i.e. qT = 0.64) the biases of both β̂in and β̃in can

be large. Their biases are small when truncation is light (i.e. qT = 0.15) or sample

size is large (i.e. n = 400).

(ii) The biases of β̃ni and S̃n(t0) are smaller than that of β̂ni and Ŝn(t0), respectively,

for most of the cases considered. The standard deviations of β̃ni and S̃n(t0) are

smaller than that of β̂ni and Ŝn(t0), respectively. The improvement in efficiency of

β̃ni and S̃n(t0) tend to increases as truncation proportion qT increases.

4. Applications

To illustrate the proposed estimator, we analyze the CDC AIDS Blood Trans-

fusion Data described in Example. Only cases having either one transfusion or

multiple transfusions in the same calendar month are used. The data set include

295 cases diagnosed prior to July 1, 1986 (see Table 1 of Kalbfleisch and Lawless

(1989)). The value of Ui (in month) is time from HIV infection to January 1, 1982;

while Vi is defined as time from HIV infection to the end of study (July 1, 1986).

Thus, the difference between Vi and Ui is always 54 (i.e. d0) months. Our goal

is to study the relationship between AIDS incubation time and age at infection.

We treated age as categorical variable with two levels of age: 0-4 and > 4 years.
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Figure 2. Plot of the Estimation for two survival function: ages 0-4 and > 4.

We fit Cox model with one covariate z1 = 1 for individuals of age group 0-4 and

z1 = 0 otherwise. The estimated coefficient for z1 is β̂1n = 0.842. Based on 500

bootstrap estimate, the corresponding bootstrap standard deviation estimator is

equal to 0.216, which results in p-values < 0.001. The 95% interval estimators for

β1 is equal to (0.419, 1.265). Figure 2 indicates that the survival function for age

> 4 is above that for age 0-4.

5. Discussions

In this article, we have proposed estimators of regression coefficients and baseline

hazards function for Cox model with doubly truncated data. We consider the case

when the distribution of the truncation time is unspecified and the case when it is

known up to a finite-dimensional parameter vector. Our simulation studies indicate

that the proposed estimator performs adequately. The proposed method can be

extended to the case when V = U +D, where D is a random variable. In this case,

we can estimate the joint distribution function K(x, y) = P (U ≤ u, V ≤ v) using

the IPW estimator (Shen (2010)), say K̂n(x, y). The truncation probability can be

written as

α(β,Λ, K;Zi) =

∫ ∞
0

∫ y

0

[S(x|Zi)− S(y|Zi)]K(dx, dy)

=

∫ ∞
0

∫ y

0

[
{exp(−Λ(x)}exp(βTZ) − {exp(−Λ(y))}exp(βTZ)

]
K(dx, dy).
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The E-step can be modified as

Emi

{
E

[ mi∑
l=1

I[T ∗
il=tj ]

∣∣∣∣Oi

]}

= Emi

{
mifi(tj)[1−K(tj,∞)+K(∞, tj)]/[1−α(β,Λ, K;Zi)]

}
=
fi(tj)[1−K(tj,∞) +K(∞, tj)]

α(β,Λ, K;Zi)
.

Thus, given K̂n, wij can be estimated by

ŵij = I[Ti=tj ] +
fi(tj)[1− K̂n(tj,∞) + K̂n(∞, tj)]

α(β,Λ, K̂n;Zi)
.

The rest of algorithm is the same as the case when D is a constant. Similarly, the

semiparametric approach can also be extend to the case when the distribution of

K(x, y) can be parameterized as K(x, y; θ).

In some cases, the Cox model may not fit adequately and other alternative mod-

els may provide more precise summarization of data. The semiparametric trans-

formation models (Cheng et al. (1995), Chen et al. (2002), Zeng and Lin (2006))

have been proposed to allow various nonproportional hazards structures, such as

proportional odds (Bennett (1983), Pettitt (1984)). Further research is required to

extend the proposed method to semiparametric transformation models.
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