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Abstract

The partial likelihood (PL) function has been mainly used for proportional hazards mod-
els with censored data. The PL approach can also be used for analyzing left-truncated or
left-truncated and right-censored data. However, when data is subject to double truncation,
the PL approach no longer works due to the complexities of risk sets. In this article, we pro-
pose pseudo maximum likelihood approach for estimating regression coefficients and baseline
hazard function for the Cox model with doubly truncated data. We propose expectation-
maximization algorithms for obtaining the pseudo maximum likelihood estimators (PMLE).
The consistency property of the PMLE is established. Simulations are performed to evaluate
the finite-sample performance of the PMLE. The proposed method is illustrated using an
AIDS data set.

Key Words: EM algorithm; Pseduo-likelihood; Double truncation; Inverse-Probability-Weighted.
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1. Introduction

Doubly truncated failure-time arises if an individual is potentially observed only
if its failure-time lies within a certain interval, unique to that individual. Efron and
Petrosian (1999) motivated double-truncation issue using data on quasars, which are
only detected when their luminosity falls between two observational limits (Lynden-
Bell (1971)). Doubly truncated data also play an important role in the statistical
analysis of survival times. Bilker and Wang (1996) indicated that induction times

in AIDS are doubly truncated. Consider the following example:
Example: CDC AIDS Blood Transfusion Data

The AIDS Blood Transfusion Data are collected by the Centers for Disease
Control (CDC), which is from a registry database, a common resource of medical
data. The data consist of the time in month and only cases having either one
transfusion or multiple transfusions in the same calendar month were used. The
cases either diagnosed or reported after July 1, 1986 (72) were not included to avoid
inconsistent data and bias resulting from reporting delay. Thus, the observed data
is subject to right truncation. Moreover, cases having the AIDS prior to January 1,
1982 (71) were not included because HIV was unknown prior to 1982, any cases of
transfusion-related AIDS before this time would not have been properly classified
and thus would have been missed. Hence, in addition to right truncation, the
observed data are also truncated from the left. Let Tz denote the calendar time (in
years) of the initiating events (HIV infection), and T)p be the calendar time (in years)
of AIDS onset. Let T'= 12(Tp—Tg) (in month) be the induction or incubation time
from HIV infection to AIDS. Let U = 12(7y —Tp) and V = U +dy = 12(1o — 1) (in
month), where dy = 12(m5 — 1) = 54. Define a population as the individuals who
were infected with HIV before 7 and develop AIDS prior to . Thus, the CDC
AIDS Blood Transfusion Data can be viewed as being doubly truncated since the
incubation times T’s are observable only when 71 < Tp < 1 (ie. U < T < V).
Assume for the un-truncated individual, a px 1 vector of covariates Z = [z, ..., 2"
is available. Figure 1 highlights all the different times for doubly truncated data

described in Example.

For doubly truncated data, the nonparametric maximum likelihood estimator
(NPMLE) of the distribution function of 7" was first studied by Efron and Pet-
rosian (1999)). Shen (2010a) added the NPMLE for the truncation distributions
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Figure 1. Schematic depiction of doubly truncated data

and established the consistency and weak convergence of the NPMLE. Although a
closed-form variance estimation was not established then, this issue was solved for
the event-time distribution by Emura et al.(2015a). Moreira and de Utia-Alvarez
(2010a) demonstrated that the simple bootstrap method can be used to approx-
imate the sampling distribution of the NPMLE. Zhang (2015) derived a variance
estimation for both NPMLEs under the assumption that the lower and upper trun-
cation variables are independent. Moreira, de Ufia-Alvarez and Crujeiras (2010)
presented the R package DTDA for analyzing truncated data, which contains three
different algorithms for the approximation of the NPMLE under double truncation
as well as bootstrap confidence bands. Moreira and Keilegom (2013) considered
several bandwidth selection procedures for kernel density estimation of a random

variable that is sampled under random double truncation.

Parametric procedures for doubly truncated have been also studied in the lit-
erature. Efron and Petrosian (1999) proposed the maximum likelihood estimator
(MLE) under a parametric family, called the special exponential family (SEF). Hu
and Emura (2015) developed the randomized Newton-Raphson algorithms to obtain
the MLE. Emura et al. (2015b) pointed out that the classical asymptotic theory
for the i.i.d. data is not suitable for studying the MLE under double-truncation.
Alternatively, they formalized the asymptotic results under the independent but

not identically distributed data that take into account for the between-sample het-



erogeneity of truncation variables.

Compared to the nonparametric or parametric analyses, research is much scarcer
on analyses of doubly truncated data in the presence of covariates. When 7 is
discrete, under linear transformation models, Shen (2013) extended Zhang et al’s
(2005) approach to doubly-truncated and interval-censored data. However, the pro-
posed approach requires the estimation of survival functions for each level of covari-
ates. Shen (2016) analyzed doubly truncated data using semiparametric transfor-
mation models. He demonstrated that the extended estimating equations of Cheng
et al. (1995) can be used to analyze doubly truncated data. However, his approach
only considered the estimation of regression coefficients. In this article, we consider
the estimation of regression coefficients and baseline hazard function for Cox model

with doubly truncated data.

The partial likelihood (PL) function has been mainly used for proportional haz-
ards models with censored data (Cox 1972, 1975). The PL approach can also be
used for analyzing right-truncated (RT) or left-truncated and right censored (LTRC)
data (Kalbfleisch and Lawless (1991); Wang, Brookmeyer, and Jewell (1993)). For
LT/LTRC data, the PL function has an expression similar to that of the PL for
right-censored data except for the definition of the risk sets. However, when data is
subject to double truncation, the PL approach no longer works due to the complex-
ities of risk sets. In Section 2, we propose pseudo maximum likelihood approach for
estimating regression coefficients and baseline hazard function for the Cox model
with doubly truncated data. Expectation-maximization algorithms are proposed
for obtaining the pseudo maximum likelihood estimators (PMLE). We consider two
cases: the case when the distribution of the truncation time is unspecified and the
case when it is known up to a finite-dimensional parameter vector. The consistency
property of the PMLE is established. In Section 3, simulations are performed to
evaluate the finite-sample performance of the PMLE. In Section 4, the proposed

estimator is illustrated using an AIDS data set.



2. The Proposed Estimator
2.1 When G is unspecified

Let F(t|Z) = P(T < t|Z) denote the cumulative distribution function of T
given Z. Let G(t) = P(U < t) denote the cumulative distribution function of U.
Suppose that the support of 7" does not depend on Z. Let ar and br denote the
left and right endpoint of support of 7', and similarly, define (ag,bg) as the left
and right endpoint of support of U. Throughout this article, for identifiability of
F(t|Z), we assume that ag < ap < ag + dy,bg < bp < bg + dy. We also assume
that U is independent of (T, 7).

In Example, since ag = 0, ag < ar always holds. When ar =0, ar < ag + dy
always holds. Furthermore, when d is large enough, we have bp < bg + dj, this will
hold if follow-up is long enough such that b + dj is larger than the right endpoint
of T. In Example, U denotes the time interval between the date of HIV infection
and study start date and it is reasonable to assume that U is independent of (T, Z)
if the pattern of infection through blood transfusion is independent of covaraites Z

and incubation time 7.

The proportional hazards model (Cox (1972)) is commonly used in the analysis

of survival time and related data. The Cox model is given by
A(t|Z) = A(t) exp(8” 2),

where 3 is the regression parameter, A(¢|Z) is the conditional hazard function of T

given Z with A(¢) as an arbitrary baseline hazard function.

Let (T1,U1,Vi = Uy + do, Z1), ..., (T, Upn, Vi, = U, + do, Z,,) denote the dou-
bly truncated sample of (T,U,V,Z). As pointed out by Ren and Zhou (2011),
under Cox model (2.1), given Z, the variable T satisfies Lehmann family prop-
erties (Kalbfleisch and Prentice (2002), page 97) S(t|Z) = [S(t)]**" 2, where
S(t) = exp(—A(t)) is the baseline survival function and A(t) is the cumulative
baseline hazard function. This implies that f(¢t|Z) = exp(8TZ)\(t)S(t|Z), where
f(t|Z) is the density functions of S(¢|Z). Notice that the distribution of the trun-
cated vector (T3, U;, V;, Z;) differs from that of the untruncated vector (T,U,V, Z),
eg. P(T; <t|Z) =a(B,N,G; Z;)'P(T <t,U <T <V =U +do|Z = Z;), where
a(B,N,G;Z;) = P(U <T < U+ do|Z = Z;) is the untruncation probability given



7 = Z;. Under the Cox model, the un-truncated probability a(Z;) can be written
as
a(B,N,G; Z;) = P(U LT <U+dy|Z = Z;)
=P(T>U|Z=2)—P(T>U+dy|Z = %;)

= /OOO[S(x|Zi) — S(z + do| Z;)|dG (x)
= / " [ep(-A@)} ) — (exp(~A(e + d)) " ] dG(z).

First, we consider the estimation of G(x). Let F'(t) = P(T < t) and f(t) denote
the unconditional cumulative distribution function and probability density functions
of T, ie. F(t) = [ P(T <t|Z = z)Pz(z)dz, where Pz(z) is the probability density
function of Z. The inverse-probability-weighted (IPW) estimators of G(t) and F'(t)
can be obtained (see Shen (2003), Shen (2010a)) by solving the following pairs of

simultaneous equations:

Iir,<
< Go(Th) — Go((T; — do) )

and

3
3

Lo 1 = vy

i=1 i=1

where F,(t) and G, (t) are the IPW estimators of F(t) and G(t), respectively. Notice
that this approach requires that the truncated sample is a simple random sample
from the truncated population, i.e. the observations with 7" > V. If the sampling

scheme depends on covariates, the IPW estimator Fn(t) is an inconsistent estimator
of F(t).

Next, we consider the estimation of § and A. Given Gn, the likelihood for F'is

proportional to

(11 [Tz
Ln(ﬁaAaGn) :H ( ‘A )
i=1 Oé(ﬁ, A7 Gn; Zz)
and the log-likelihood function of L, (3, A, é’n) can be expressed as

n

(B, A, Gp) =n"" Z{/OOO[BTZZ' +1og A(t) — A(t|Z;)]dN;(t) — log a3, A, G Zi)}7

=1



where Nz(t) = [[TiSt]~

Because the likelihood [,, includes the plug-in value of Gn, the likelihood is called
the pseudo-likelihood. The maximization of (53, A, Gn) leads to the same difficulty
as in estimating density function (no maximizer). A rout way route out of this
difficulty is to extend the parameter space so that the estimator of A is allowed to
be discrete. Thus, we relax A to be right-continuous and allow A(t) to have jumps
at the T;’s. For length-biased and right-censored data, Qin et al. (2011) proposed
expectation-maximization (EM) algorithms to obtain the maximum likelihood es-
timation of the nonparametric and Cox models. Motivated by the approach of Qin
et al. (2011), we propose an EM algorithm for obtaining the PMLE of (3, A) based
on I, (5, A, én) Let t; < ty < --- < t, be the ordered failure times for {7},...,7T,}.
We redefine A(-) as a step function with jumps only at the event times ¢;. For
i=1,...,n, given O; = (1}, Z;), let O = {(T},,U;),..., (T}, Uz, )} denote the
truncated latent data corresponding to covariate Z;. Given (G, the random integer

m; then follows a geometric distribution with parameter o(8, A, G; Z;) and

Oé(/B7 A7 G7 ZZ)

Elm;|0;] =

We develop the EM algorithm based on the discrete version of A(z) = th <2 Ny
where ); is the positive jump at time ¢; for j = 1, ..., n. For notational convenience,

E Step:

Let Ti,...,T, denote the doubly-truncated sample with U; < T; < U; + d,.
Hence, the log-likelihood based on the complete data is then

> Z{f [Ti=t;) Z Iirs—;] } log fi(t;)-
=1

=1 i=1

Conditional on the observed doubly truncated data O;,

L |:I (Ti=t;]

OZ} - I[Ti:tj]'

Furthermore,

Em{E[Z Irsyy) Oz} } = Em{z PT=4T<UorT>U+dy,Z = ZZ-)}
=1 =1



/P(T<UorT>U+d0\Z:Zi)}

= B {mii)1 = Gt + Glty — /[ - a(5.0,G: 21}

_ K1~ Glt) + Gty — do)

O-/(B; A7 G7 ZZ) ’
where ,
J
fl(tj) = eXp(ﬁTZi))\j eXp{ — Z )\l eXp(ﬁTZZ-) } .
=1
Hence,

—E{I[T 1) +ZIT*_t }

filt)[1 = G(ty) + Gt — do)]
a(B,\, G Z;) '

= Iip=t;) +

Thus, given @n, w;; can be estimated by

Filt)[L = Ga(ty) + Gt — do)]
O[(B,A, émZz) .

Wij = Iipy=;) + (2.1)

The expected complete-data log-likelihood function conditional on the observed

data O; (i =1,...,n) is as follows:
lg(B, A, G Xn:i:wm log fi(t;
i=1 j=1
—Zwﬂlogx\ —{—ZwZJrﬁ Z; — ZZZw,]eXpB Z) A\,
=1 j=l i=1
where 1, ; = S y; and iy = S0 ;.

M Step:

In the M-step, we maximize lg(f, A, én) with respect to \; (7 =1,...,n),

~

AMp(BNGh) Uy == . .
= — E g wyexp(B' Z;) =
O, Aj =5




which leads to a closed form of A; as a function of 3, given by

Wy,
A:(B) = , :
i) 21 2ims Wi exp(ST Zi) 22)

Next, we maximize lE(B7 A, G’n) with respect to 3

=1 j=l =1
By inserting A;(3) of (2.2) into (2.3), 5 can be solved by the following equation:

S Y 5 Z?:lwz—jziexpwz»} L
7 7 l n n ~ — V.
i=1 " =1 ' Zi:l Zj:l Wij exp (87 Z;)

Hence, given Gn, one can update the expectation of the likelihood via w;; in
(2.1) and repeat M-step until the the estimators § and A; (j = 1,...,n) converge.
We denote the PMLE by (, = (fn, An) and let ¢y = (8o, Ag) be the true value.

We require the following conditions to derive the the asymptotic properties of
Bn and An:

(A1) Let [0, 7] € [0, 00] such that K (x) = G(x)—G((z—dy)—) > 6 > 0forz € [0, 7).
Moreover, assume that (a) [ G(dx)/W (x) < oo, where W (z) = F,(z+do) — F,()
and (b) F,(dz)/G(dz) is uniformly bounded on [0, 7]

(A2) The true value of the hazard function Ag(:) is continuously differentiable,
Ao(0) = 0 and Ay(7.) < 0.

(A3) The parameter [ is in a compact set B that contains fy.

(A4) Both E|[||Z||?] and E[|exp(8TZ)|] are bounded, where ||Z]| = (|z1|> + -+ +
|2%)'72.

(A5) The information matrix —82E|[L,,(8, A(-, 8), G] /%3 evaluated at true value

is positive definite for every n.
(A6) If P(b"Z = ¢) =1 for some constant ¢, then b = 0.

Assumption (A1) is required for the consistency of G,,. Assumptions (A2) and (A3)
are required for stochastic approximation. Assumptions (A4) and (A5) are condi-

tions for establishing asymptotic properties of the estimated coefficient under Cox



model (Andersen et al. (1993)). This implies that given G and A the information
matrix for 3 is positive definite. Assumption (A6) implies that there is no covariate

colinearity, which ensures the model identifiability.

Note that given G, the log-likelihood function lg(3, A, G’n) is strictly concave in
A. Hence, given Gn, for each  in a compact set B, we can find a unique maximizer
of ;\(~,B,@n) of the likelihood function Iz (53, A, Gn) The existence of the unique
PMLE for (5, \) follows by assumptions (A2) through (A5).

Theorem 1. Let {, = (Bn, An) and (o = (8y, Ag). Under assumptions (A1)-(A6),
the PMLE én is consistent: Bn converges to fy, and An(t) converges uniformly in ¢
for t € [0, 7.]. Furthermore, \/n[(, — (o] converges weakly to a mean zero Gaussian

process.

Proof: The proof is technical and not shown here.
2.2. When G(z) = P(U < z) is parameterized as G(x;0)

In some cases, the distribution of left truncation times, denoted by G(z) =
P(U < z), can be parameterized as G(z;60), where § € ©, © is a known compact
set in R? and @ is a ¢g-dimensional vector. For prevalent data with fixed recruitment
time, the truncation distribution GG can be interpreted as the disease distribution.
For stable diseases, the disease-onset cases are approximately uniformly distributed
over the calendar time, i.e. length-biased data . For a new disease, however, one
might prefer to parameterize GG so that the parameterization reflects the growth
of the disease over time. When G(z) is parameterized as G(z;6), Moreira and de
Unia-Alvarez (2010b) and Shen (2010b) proposed a semiparametric estimator of F.
Both papers demonstrated that it may be more efficient than the NPMLE of F'.

Under Cox model and G(z) = G(x;0), we have
a(z) = a(3.0.0:2) = [ " H(2:0)f (x| Z,)d = / 1S(12)) - St + dolZ)]g(w; ) d.
0 0

where g(x;60) and the probability density function of U and H(x;0) = G(z;6) —
G(z — do; 6). The full likelihood function of (F,G) is given by

n

1(9,0.0) = [[{ar 1200t 0) /(5. 8.0:20 ).

i=1



The full likelihood can be written as

L(B, A, 0) = L (5, A, 0) x Lc(0),

where

7 H(T;;0)dF (T;| Z;) _ 179U 6)
n(B,0,0) =T] (3 A0 Z) and L.(0) =[] .

i=1 =1

Let én denote the MLE by maximizing L.(f). Given én, the pseudo-likelihood for

I is proportional to
B ﬁ (T Z;)
alB, A 0, Zi )

The log-likelihood function of L, (8, A, 6,) can be expressed as

n

(B, A, 6,) =n"" Z{

i=1

162+ 10g 0) +10g S(1Z01AN:(0) ~og (5. .6 z»}.
0

We can obtain the semiparametric PMLE of (5, A) using the EM algorithms
proposed in Section 2.1 with G,,(¢) replaced by G(t;0,). We denote the semipara-
metric MLE by (8,, A,,). When the parametric information is correct, it is expected
the semiparametric PMLE outperforms the PMLE, but may behave badly when
the assumed parametric model is far off. Moreira et al. (2014) proposed several
Kolmogorov-Smirnov and Cramér-von Mises type test statistics, by which we can

check if G can be parameterized as G(t;6).

To derive the asymptotic properties of 3n and A,,, we need the following condi-
tions (B1), (B2) and conditions (A3)-(A6) of Theorem 1:

(B1) G(z;0) is continuous in z € [0, 7] for each 6 € ©.
(B2) 6, — 0 implies that G(z;0,) — G(x;0) for each x € [0, 7).

Theorem 2. Let ¢, = (8,,A,). and ¢y = (B, Ap). Under assumptions (B1),(B2)
and (A3)-(A6), the PMLE (, is consistent: /3, converges to 3y, and A, (t) converges
uniformly in ¢ for ¢ € [0,7,]. Furthermore, /n[(, — (o] converges weakly to a mean

zero Gaussian process.

Proof: By Anderson (1970), under the usual regularity conditions, 0, converges

to 6 with probability one. Similar to Lemma 3.1 of Wang (1989), under conditions



(B1) and (B2), we have with probability one, sup,¢o ) |G(; 0,) — G(x;0)] — 0 as

n — 00. The rest of proof is similar to that of Theorem and is omitted.

3. Simulation Studies

In this section, we conduct simulation studies to evaluate the performance of the
proposed estimators. We generate T following the proportional hazards model with
Alt) =e' — 1 and 8 = (8 = —2, 3, = —3)T. The resulting T has the survivorship
function

P(T > t]zy, z5) = e~ De 7?7272

where z; is a bernoulli random variable with probability 0.5 and z, is an ordinal
variable with P(z] = i) = 0.25 for ¢ = 1,2,3,4. The U’s are i.i.d. exponentially
distributed with distribution function G(z;6) = 1 —e~%. The values of § is chosen
as 0 = 0.25. The V is generated from V = U + dy, with dy = 6,9, 12 such that
the proportions of truncation(gr) are equal to 0.58, 0.39 and 0.25, respectively. We
keep the sample if U < T < V and regenerate a sample if 7' < U or T' > V. The
estimators Bn = (Bln, Bgn)T and A,, are obtained using the IPW estimator G, and
EM algorithm in Section 2.1. Similarly, the estimators 3, = (Bin, f2n)7 and A,, are
obtained using the conditional maximum likelihood estimator G(z;6,,) and the EM
algorithm in Section 2.1 with G, (t) replaced by G(t;0,). The convergence criterion
is set as [[BY Y — B < 0.0001 (or ||BS — B < 0.0001).

For the estimation of 5, Tables 1 and 2 show the mean average biases (bias)
over all simulation runs, empirical standard deviations (std), respectively. Tables
1 and 2 also show the proportion of truncation 1 — P(U < T < V) (denoted by
gr). The sample sizes are chosen as 100, 200 and 400. The replication is 1000
times. We also consider the estimation of S(fo|1,1) = e~*~D¢™ where the values
of ty are chosen as such that S(t|1,1) = 0.2(tp = 5.48), S(to|1,1) = 0.5(¢y = 4.64)
and S(to|1,1) = 0.8(tp = 3.53). Tables 3 and 4 show the mean average biases
and empirical standard deviations (std) for S, (to|1,1) = exp{—A,(to)e® "%} and

Sn(to|1,1) = exp{—A,(to)e”n %0} respectively.
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Table 1. simulation results for bias and standard deviation of Bn

Bln 6271
dy n qr bias std  bias std

6 100 0.58 0.229 0.400  0.384 0.520
6 200 0.58 0.153 0.301  0.235 0.393
6 400 0.58 0.105 0.166  0.186 0.192
9
9

100 0.39 0.117 0.382  0.197 0.454

200 0.39 0.096 0.263 0.138 0.298

9 400 0.39 0.072 0.137  0.085 0.143
12100 0.25 0.070 0.323  0.069 0.447
12200 0.25 0.038 0.256  0.027 0.286
12400 0.25 0.015 0.132  0.010 0.150

Table 2. simulation results for bias and standard deviation of 3,

6271 6271

do n qr bias std bias std
6 100 0.58 0.197 0.327 0.285 0.354
6 200 0.58 0.104 0.214 0.175 0.227
6 400 0.58 0.078 0.153  0.154 0.159
9 100 0.39 0.111 0.313 0.131 0.321
9 200 0.39 0.057 0.209 0.093 0.192

9 400 0.39 0.051 0.128  0.047 0.137
12 100 0.25 0.056 0.298  0.017 0.297
12 200 0.25 0.029 0.200  0.011 0.185
12400 0.25 0.009 0.114 0.003 0.124

Table 3. simulation results for bias and standard deviation of S,,(¢[1, 1)

S,(5.481,1)  S8,(4.64|1,1)  S,(3.53[1,1)
dy n  qr bias  std bias  std bias  std
6 100 0.58  0.021 0.081 -0.008 0.099 -0.015 0.089
6 200 0.58  0.007 0.0564 -0.013 0.060 -0.017 0.065
6 400 0.58  0.007 0.038 -0.005 0.042 -0.013 0.037
9
9

100 0.39 0.029 0.079 0.009 0.100 -0.008 0.075
200 0.39 0.013 0.054 -0.002 0.073 -0.010 0.060
9 400 0.39 0.003 0.044 -0.004 0.051 -0.004 0.029
12 100 0.25 0.015 0.099 -0.004 0.121 -0.009 0.097
12200 0.25 0.006 0.057  0.009 0.093 -0.006 0.072
12400 0.25 0.003 0.048 -0.004 0.057  0.003 0.038




Table 4. simulation results for bias and standard deviation of S, (¢/1,1)

Sn(5.48]1,1)  S,(4.64]1,1)  S,(3.53|1,1)

do n qr bias  std bias  std bias  std
6 100 0.58 0.016 0.064 -0.006 0.076 0.014 0.069
6 200 0.58 0.006 0.041 -0.012 0.047 0.012 0.051
6 400 0.58 0.005 0.029 -0.004 0.033 0.009 0.028
9 100 0.39 0.020 0.062 0.008 0.079 0.011 0.061
9 200 0.39 0.011 0.043 -0.001 0.057 0.010 0.049

9 400 0.39 -0.005 0.036 -0.002 0.041 -0.005 0.023
12 100 0.25 0.012 0.081  -0.003 0.103 0.007 0.081
12200 0.25 0.008 0.046 0.008 0.076 0.004 0.060
12400 0.25 -0.004 0.039 -0.002 0.047 0.002 0.032

Based on the results of Tables 1 through 4, we have the following conclusions:

(i) For the estimation of 3, the standard deviations of both Bm and Bm increase as
the proportion of truncation qr increases. Similarly, the biases of both estimators
tend to increase as the proportion of truncation qr increases. Specifically, when
n = 100 and truncation is severe (i.e. gr = 0.64) the biases of both Bm and Bm can
be large. Their biases are small when truncation is light (i.e. gr = 0.15) or sample

size is large (i.e. n = 400).

(ii) The biases of B,; and S‘n(to) are smaller than that of Bm- and S’n(to), respectively,
for most of the cases considered. The standard deviations of Bm and S’n(to) are
smaller than that of 3, and gn(t(]), respectively. The improvement in efficiency of

Bni and S, (tp) tend to increases as truncation proportion gr increases.

4. Applications

To illustrate the proposed estimator, we analyze the CDC AIDS Blood Trans-
fusion Data described in Example. Only cases having either one transfusion or
multiple transfusions in the same calendar month are used. The data set include
295 cases diagnosed prior to July 1, 1986 (see Table 1 of Kalbfleisch and Lawless
(1989)). The value of U; (in month) is time from HIV infection to January 1, 1982;
while V; is defined as time from HIV infection to the end of study (July 1, 1986).
Thus, the difference between V; and U; is always 54 (i.e. dy) months. Our goal
is to study the relationship between AIDS incubation time and age at infection.

We treated age as categorical variable with two levels of age: 0-4 and > 4 years.
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Figure 2. Plot of the Estimation for two survival function: ages 0-4 and > 4.

We fit Cox model with one covariate z; = 1 for individuals of age group 0-4 and
z1 = 0 otherwise. The estimated coefficient for z; is Bln = 0.842. Based on 500
bootstrap estimate, the corresponding bootstrap standard deviation estimator is
equal to 0.216, which results in p-values < 0.001. The 95% interval estimators for
p1 is equal to (0.419,1.265). Figure 2 indicates that the survival function for age
> 4 is above that for age 0-4.

5. Discussions

In this article, we have proposed estimators of regression coefficients and baseline
hazards function for Cox model with doubly truncated data. We consider the case
when the distribution of the truncation time is unspecified and the case when it is
known up to a finite-dimensional parameter vector. Our simulation studies indicate
that the proposed estimator performs adequately. The proposed method can be
extended to the case when V = U + D, where D is a random variable. In this case,
we can estimate the joint distribution function K (z,y) = P(U < u,V < v) using
the IPW estimator (Shen (2010)), say K, (z,y). The truncation probability can be

written as

(B, K Z:) = / N / "1S(2|2) - S 2K (dw, dy)

- /ooo / [{exp(—A(2)}P" D — fexp(—A(y))}**" D) K (dz, dy).
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The E-step can be modified as

_ filty)[1 = K(#;,00) + K(00, ;)]

= Emi{mifi(tj)[l—K(tj,oo)+K(oo,tj)]/[1—a(ﬁ,A,K; Zi)]} = 2B A K Z)

Thus, given K,, w;; can be estimated by

fi(tj)[l - Kn(tjw OO) + Kn(oo’ tj)]
a(ﬁ>A?kn7Z’L) .

Ww;j = Iir=;) +

The rest of algorithm is the same as the case when D is a constant. Similarly, the
semiparametric approach can also be extend to the case when the distribution of

K(x,y) can be parameterized as K (x,y;0).

In some cases, the Cox model may not fit adequately and other alternative mod-
els may provide more precise summarization of data. The semiparametric trans-
formation models (Cheng et al. (1995), Chen et al. (2002), Zeng and Lin (2006))
have been proposed to allow various nonproportional hazards structures, such as
proportional odds (Bennett (1983), Pettitt (1984)). Further research is required to

extend the proposed method to semiparametric transformation models.
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