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Abstract

A multi-state model (MSM) is a model for a continuous time stochastic process allowing
individuals to transit among a finite number of states. When there are covariate effects to
be considered, Cox Markov regression model has been widely used for modelling transition
intensities between the states. The Cox model, however, may not be suitable for describing
transition rates. Semiparametric transformation models, which includes Cox’s model as a
special case, has been widely used in the analysis of survival data. The purpose of this arti-
cle is to study semiparametric transformation model in a general finite-stat Markov process
setting. Based on the product integral and the functional delta method, we present an esti-
mator of the transition probability matrix and derive its large-sample theory. The proposed
method is illustrated with bone marrow transplant data.

Keywords: Semiparametric Transformation Model; Markov regression model; Multi-state
model; Cox proportional model; Transition Probability.
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1. Introduction

Multi-state models (MSM) are models for stochastic processes which occupy one of a
set of discrete states at any time. The MSM are well adapted for modeling complex event
histories. They are useful in describing a process in which an individual moves through a
series of states in continuous time and can provide a better understanding of the process of the
failure, i.e. a better knowledge of the evolution of the disease/depressed over time. Based on
MSM, one may estimate progression rates, assess the effects of risk factors and survival rates.
In clinical and epidemiological follow-up studies, continuous-time MSM are widely used to
describe disease processes in situations in which an individual is going through varying stages
over time. The complexity of MSM depend on the number of states defined, as well as the
transitions allowed among these states. A commonly-used model is the illness-death model,
with three states representing health, illness and death. Transitions are permitted from
health to illness, illness to death and health to death. Recovery from illness to health is
sometimes also considered. A wide range of medical situations have been modelled using
MSM, for example, a patient recovering from a bone marrow transplant (BMT) for leukaemia
may fail therapy due to one of several terminal events, such as death in remission or relapse.
As patients recover from their transplant, they may experience several intermediate events,
which have influences on their eventual prognosis, such as the return of the platelets to
a “normal” level, the development of various types of infections, the occurrence of acute
or chronic graft-versus-host disease (GVHD), etc. This complex process can be described
by using a multi-state model. Figure 1 shows a simplified diagram of the recovery process,
where four events are taken into consideration, namely, acute GVHD (A), chronic GVHD (C),
death in remission (D) and relapse (R). Since patients who relapse are typically considered
as failures of the treatment, relapse is treated as an absorbing state. Thus, these four events
can be modeled by a six-state model with two absorbing states, “5: D” and “6: R”, and four
transient states, “1: Tx (stands for transplantation)”, “2: A”, “3: C” and “4: AC (stands
for both A and C)”. Figure 1 shows a simplified diagram of the recovery process, where the
arrows show which transitions are possible between states.

The inference in MSM is traditionally performed under a Markov assumption for which
past and future are independent given its present state, i.e. the transition rates depend only
on the current state of the patient and not on the patient’s history. When there is no covari-
ate, Aalen and Johansen (1978) demonstrated how counting process methods can be used
to estimate transition probabilities. When there are covariates which may influence the rate
of transition from one state to the next, it is necessary to accommodate covariates influence
through the use of regression models, which leads to the so-called “Markov regression model”.
In literature, many Markov models have been proposed. For example, parametric models for
the transition intensities have been considered by (see Begg and Larson (1982), Kalbfleisch
and Lawless (1985), Marshall and Jones (1995), Alioum and Commenges (2001), Peŕeź-Ocon
et al. (2001)). Andersen (1988) developed a semiparametric Markov regression model for
multistate survival experiments where the intensity rate for each of the transitions among
the states was modeled by a separate Cox (1972) proportional hazards regression model,
i.e. the so-called “AG-Cox Markov model”. Under AG-Cox Markov model, Andersen et al.



2

Figure 1. Schematic depiction of six-state model for BMT

(1991) (see also Andersen et al.(1993)) proposed estimators for transition probabilities and
derived their large sample properties. Klein et al (1993) suggested an alternative approach
to multistate modeling by fitting a Cox model to each of the events with time dependent
covariates used to model the timing of the intermediate events that precede the event of
interest. Shu and Klein (2005) studied two alternatives to Cox’s, Aalen’s (1989) nonpara-
metric additive hazards model and Lin and Ying’s (1994) semiparametric additive hazards
model.

In some situations, the Cox model, however, may not be suitable for describing transition
rates. The semiparametric transformation models have been proposed to allow various non-
proportional hazards structures, such as proportional odds (Bennett, 1983; Pettitt, 1984).
In Section 2, we study semiparametric transformation model in a general finite-stat Markov
process setting. Based on the product integral and the functional delta method, we present
an estimator of the transition probability matrix and derive its large-sample theory. In
Section 3, the proposed method is illustrated with bone marrow transplant data.

2. Multi-state models

2.1. Markov Processes and The Product Integral

For individual k, a multi-state process is a stochastic process Xk = {Xk(t), t ∈ [0, τ ]}
with a finite state space E = {1, 2, . . . ,M} and with right-continuous path: Xk(t+) =
Xk(t). For any t, the variable Xk(t) has values in E, i.e. M states. We will assume that
independent multi-state processes {Xk(t), 0 ≤ t ≤ min(τ, Ck); k = 1, . . . , n} are observed in
continuous time, where Ck is the independent right-censoring time for individual k. Thus,
the observations are subject to right censoring, i.e. we cannot observe the processes over
an infinite time period since the observation of the process Xk(t) is stopped at min(Ck, τ).
The data for individual k can then be represented as a multivariate counting process Nijk(t),
i, j ∈ E; i 6= j; t ≤ Ck, counting the number of direct i→ j transitions observed for subject
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k in [0, t] (where some i, j combinations may not be possible). Associated with Xk(t) is a
counting process Nijk(t), which denotes the number of direct transition from state i to j in
the interval [0, t], i.e. Nijk(t) = #{s ≤ t : Xk(s−) = i,Xk(s) = j}, i 6= j. The other process
is the indicator Yik(t) = I[Xk(t−)=i], which denotes whether the process is in state i just before
time t. Define the filtration or history process as

Ft = {Nijk(u), Yik(u), 0 ≤ u ≤ t, k = 1, . . . , n; i, j = 1, . . . ,M}.

Notice that the history Fs of the process can also be generated by {Xk(u), u ≤ s k =
1, . . . , n}, i.e. Fs is an element of a ’filtration’ and it can be understood intuitively as the
trajectory of the process until time s. The law of multi-state processes can be specified by
the transition probabilities

Pijk(s, t,Fs) = P (Xk(t) = j|Xk(s) = i,Fs−) (i = 1, . . . ,M ; j = 1, . . . ,M).

Under Markov model, given the state at time s, the whole history before s can be for-
gotten:

Pijk(s, t,Fs−) = P (Xk(t) = j|Xk(s) = i) = Pijk(s, t).

The state occupation probabilities are πjk(t) = P (Xk(t) = j), j ∈ E and, in particular,
the initial distribution is πjk(0) = P (Xk(0) = j), j ∈ E. We may then write πjk(t) =∑

i∈E πik(0)Pijk(0, t).

Next, we consider transition intensities. Under a Markov assumption, if a randomly
chosen individual k is in state i at time t−, the transition rate or intensity from i to j at
time t is given by

dΛijk(t) = P (Xk(t−+dt) = j|Xk(t−) = i) = P (Xk(t−+dt) = j|Xk(t−) = i),

which holds for all Xk(u), 0 ≤ u < t with Xk(t−) = i and i 6= j. For convenience, define
dΛiik(t) = −

∑
j 6=i Λijk(t) such that the row sums of the matrix dΛijk(t) = [dΛijk]M×M are

all equal to zero. For continuous case, we have dΛijk(t) = λijk(t)dt for all i 6= j, where

λijk(t) = lim
h→0

h−1P (Xk(t−+h) = j|Xk(t−) = i).

Hence, λijk(t) is the intensity function for i− to− j transition. Let Yik(u) = I[Xk(u−)=i]. For

i 6= j; i, j ∈ E, Mijk(t) = Nijk(t)−
∫ t

0
Yik(u)λijk(u)du, are zero mean local square-integrable

martingale with respect to Ft. A state h ∈ E is absorbing if for all t ∈ [0, τ ], j 6= h,
λhjk(t) = 0.

For homogenous population, Pijk(s, t) = Pij(s, t) and λijk(t) = λij(t) for all k. The
transition probabilities can be estimated via the Aalen-Johansen (1978) estimator, which
can be thought as the generalization of the Kaplan-Meier (1958) estimator for the simple
mortality model (with states “alive” and “dead” and only one possible transition).

Next, we briefly describe nonparametric approach as follows. Let I be the identity ma-
trix and Λ a matrix-valued function with element Λij(s) =

∫ s
0
λij(u)du, where dΛii(t) =
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−
∑

j 6=i dΛij(t). In the discrete case, there exists a set of times {tk : k = 1, 2, . . . }, at which
transition can occur and Pk = I + dΛ(tk) is the usual one-step probability transition matrix
of a nonhomogeneous Markov chain with element P (X(tk) = j|X(tk−) = i). Let P(r) denote
the r-step transition probability with element P (X(tr) = j|X(0) = i), r = 1, 2, . . . ,. It is
well known that

P(r) =
r∏
i=1

Pi = P1P2...Pr,

where an empty product is interpreted as I. Notice that the order of the multiplication
matters here since in general Pk matrices does not commute.

In the continuous case, dΛij(t) = λij(t)dt for all i, j, where λij(t) is the intensity function
for i− to− j transition and λii(t) = −

∑
j 6=i λij(t). Similar to discrete case, we can write

P(s, t) =
∏

(s,t]

(
I + Λ(du)

)
,

where
∏

(s,t] is the product integral over the interval (s, t] and can be defined as the limit of

a product, refining the partition s < s1 < · · · < sp+1 = t of (s, t]:

lim
max |sl−sl−1|→0

∏
l

(
I + Λ(sl−)−Λ(sl−1)

)
.

The transition probability matrix P can, for a Markov process, be recovered from the
Kolmogorov forward equations:

P(s, s) = I and
∂

∂t
P(s, t) = P(s, t)λ(t).

This can also be written as follows:

P(s, t) = P(s, s) +

∫
u∈(s,t]

∂

∂u
P(s, u)du = I +

∫
u∈(s,t]

∂

∂u
P(s, u)du.

Since λ(u)du = Λ(du), it follows from Volterra’s equation that the unique solution to the
above equation is P(s, t). The Aalen-Johansen estimator of P(s, t) is obtained by plugging
the matrix of Nelson-Aalen estimated matrix, i.e.

P̂(s, t) =
∏

(s,t]

(
I + Λ̂(du)

)
,

where Λ̂ is the Nelson-Aalen matrix with element Λ̂ij(t) =
∑

s≤t Λ̂ij(ds), where

Λ̂ij(t) =

∫ t

0

I[Yi(u)>0]
dNij(u)

Yi(u)
=
∑
tl≤t

dNij(tl)

Yi(tl)
,

where Nij(t) =
∑

kNijk(t), Yi(t) =
∑

k Yik(t). tl’s are the observed times.
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1.Healthy 2.Diseased 

3.Dead 

Figure 2. Schematic depiction of three-state model

A common model is the progressive three-state model (i.e. illness-death model) as shown
in Figure 2.

Only three of them need to be estimated since the two other transition probabilities can
be obtained from the following relations: p11(s, t) + p12(s, t) + p13(s, t) = 1 and p22(s, t) +
p23(s, t) = 1. Explicit formulae of the Aalen-Johansen estimator for the illness-death model
are as follows:

p̂11(s, t) =
∏

s<t(k)≤t

(
1− d12k + d13k

n1k

)
, p̂22(s, t) =

∏
s<t(k)≤t

(
1− d23k

n2k

)
,

p̂12(s, t) =
∑

s≤t(k)≤t

p̂11(s, t(k−1))
d12k

n1k

p̂22(t(k), t),

where t(1) < t(2) < · · · < t(d) are the event times for transitions (e.g. disease/death) arranged
in increased order, n1k and n2k denote the number of subjects at states 1 and 2, respectively,
just prior to the event time t(k), and dijk is the number of transition i→ j at time t(k). Notice
that the estimator p̂12(s, t) is a plug-in estimator obtained from the following expression:

p12(s, t) =

∫ t

s

p11(s, u)λ12(u)p22(u, t)dt,

by replacing p11(s, u) = p11(s, u−) by p̂11(s, u), p22(u, t) by p̂22(u, t) and λ12(u) by dΛ̂12(u)
the increment of the Nelson-Aalen estimator Λ̂12(u) =

∑
t(k)≤u d12k/n1k of the cumulative

disease intensity Λ12(t) =
∫ t

0
λ12(u)du.
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2.2. Cox Markov Models (CMM)

Next, we consider heterogeneous population and for individual k there is a p×1 vector of
possibly time-dependent covariates Zk = [Z1k, . . . , Zpk]

T . One important goal in multi-state
modeling is to relate the individual characteristics to the intensity rates through a covariate
vector Zk. Several models have been used in literature. A common strategy is to decouple
the whole process into various survival models, by fitting separate intensities to all permitted
transitions based on some models while making appropriate adjustments to the risk set if
necessary.

For individual k, let λijk denote the intensity function for i−to−j transition of individual
k. Parametric or semiparametric models for λijk can be specified, e.g. one may specify a
parametric model depending on a vector of unknown parameters γ. Alternatively, one may
consider the semiparametric model, e.g. Aalen’s model (1980, 1989)) or Cox model (1972).

Andersen et al. (1991) developed the general theory of the “Cox Markov model” (CMM)
where the intensities of the transitions from one state to the next are specified via Cox’s
(1972) proportional hazards regression models. Under CMM, the intensities depend only
on time as measured from the origin (e.g., study entry) and not on the duration in a given
state. Under CMM, given Zk(t), λijk is written as

λijk(t) = λij0(t) exp(ZT
k βij), (2.1)

for all i, j, k with i 6= j and t > 0, where λij0(t) is an unknown baseline intensity function
and βij is p×1 vector of regression parameters for i−to−j transition. The CMM readily fits
into the multiplicative intensity framework of Cox model. Consider a right-censored sample
of n individuals from model (2.1) and define the filtration or history process as

Ft = {Nijk(u), Zk, Yik(u), 0 ≤ u ≤ t, k = 1, . . . , n; i, j = 1, . . . ,M},

where Nijk(t) is the right continuous process that counts the number observed direct i−to−j
transition for individual k and Yik(t) is the corresponding at risk process, i.e. the indicator
of individual k being at risk in state i just before time t. Suppose that the censoring is
independent such that for all i 6= j, k, Ft− and t > 0,

P (dNijk(t) = 1|Ft−) = Yik(t)λijk(t),

where Yik(t) = I[Xk(t−)=i]. Let Mijk(t) = Nijk(t) −
∫ t

0
Yik(s)λij0(s) exp(Zk(s)

Tβij)ds. Then,
under model (2.1), E[dMijk(t)|Ft−] = 0 and for i 6= j; i, j ∈ E, Mijk(t) are zero mean local
square-integrable martingale with respect to Ft.

Model (2.1) can be analyzed using partial likelihood arguments based on conditional
probabilities of dNijk(x), k = 1, . . . , n given {Ft−, dNij(t), i, j ∈ [0, . . . ,M − 1], i 6= j; t > 0}.
Given a transition i− to− j occurs at some t ∈ [0, τ ], the contributing

P (dNijk(t) = 1|dNij.(t) = 1,Ft−) =
Yik(t) exp(ZT

k βij)∑n
l=1 Yil(t) exp(ZT

l βij)
.



7

The log partial likelihood is given by

∑
all i,j

{∫ τ

0

n∑
k=1

ZT
k βij − log

( n∑
l=1

Yil(x) exp(ZT
l βij)dNij.(t)

)}
. (2.2)

The parameters βij’s can be estimated by maximizing (2.2). Let β̂ij denote the estimator.
Since E[dMijk(t)|Ft−] = 0, we have E[dMij.(t)|Ft−] = 0, i.e.

E[dNij.(t)|Ft−] = λij0(t)
n∑
k=1

Yik(t) exp(ZT
k βij).

By letting dNij.(t)− λij0(t)
∑n

k=1 Yik(t) exp(ZT
k βij) = 0, we obtain

λij0(t) =
dNij.(t)∑n

k=1 Yik(t) exp(ZT
k βij)

.

Given β̂ij, the baseline cumulative incidence function Λij0(t) =
∫ t

0
λij0(u)du can be obtained

using the Breslow estimator (1972,1974) Λ̂ij0(β̂ij, x) =
∫ x

0
dΛ̂ij0(β̂ij, u), where

dΛ̂ij0(β̂ij, t) =
dNij.(t)∑n

k=1 Yik(t) exp(ZT
k (t)β̂ij)

,

dNij.(t) =
∑n

k=1 dNijk(t). Furthermore, Λij(t|Zk) can be estimated by

Λ̂ij(t|Zk) = Λ̂ij0(β̂ij, t) exp(ZT
k (t)β̂ij).

Given Zk, the transition probability matrix P can be estimated by

P̂(s, t|Zk) =
∏

(s,t]

(
I + Λ̂(du|Zk)

)
,

where Λ̂(u|Zk) is the estimated matrix with elements Λ̂ij(u|Zk).

The asymptotic properties of the estimators β̂ and Λ̂ was established by Shu et al. (2007).

Remark 1:

For the bone marrow transplant example, let T denote the set of all possible transitions:
T = {12, 13, 15, 16, 24, 25, 26, 35, 36, 45, 46}. Then the 16 transition probability estimators
are

P̂hh(s, t|Zk) =
∏

s<u≤t

(
1−

∑
j>h,h,j∈E

dΛ̂hj(u|Zk)
)
, (h = 1, 2, 3, 4)

P̂hj(s, t|Zk) =

∫ t

s

P̂hh(s, u− |Zk)dΛ̂hj(u|Zk), (hj = 35, 36, 45, 46),
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P̂2j(s, t|Zk)
∫ t

s

[P̂22(s, u− |Zk)dΛ̂2j(u|Zk) + dΛ̂24(u|Zk)P4j(s, u− |Zk)], (j = 5, 6),

P̂hj(s, t|Zk) =

∫ t

s

P̂hh(s, u− |Zk)dΛ̂hj(u|Zk)Pjj(u, t|Zk), (hj = 12, 13, 24),

P̂14(s, t|Zk) =

∫ t

s

P̂11(s, u− |Zk)dΛ̂12(u|Zk)P24(u, t|Zk),

and

P̂1j(s, t|Zk)
∫ t

s

[P̂11(s, u− |Zk)dΛ̂1j(u|Zk) + dΛ̂12(u|Zk)P2j(s, u− |Zk)

+dΛ̂13(u|Zk)P3j(s, u− |Zk)], (j = 5, 6).

2.3. Semiparametric Transformation Markov Models
(STMM)

In some instances, the Cox model may not be suitable for describing transition rates.
Semiparametric transformation models, which includes Cox’s model as a special case, has
been widely used in the analysis of survival data. A semiparametric transformation model
(Zeng and Lin 2006) specifies the the cumulative hazard function for the survival time given
Zk takes the form

Λij(t|Zk) = G

{
Λij(t) exp(βTijZk)

}
, (2.3)

where Λij(t) is an arbitrary baseline cumulative hazard function and G is a prespecified trans-
formation function that is continuously differentiable and strictly increasing with G(0) = 0
and G(∞) =∞. Cox’s proportional hazards model and the proportional odds model are two
special cases, corresponding to the specifications G(t) = t and G(t) = log(1+t), respectively.

Note that model (2.3) is equivalent to the following model (Zeng et al. (2008)):

hij(Tijk) = −βTijZk + ε, (2.4)

where Tijk is a random variable describing a sojourn time of Xk(t) in state i before transition
to j, hij(·) = log Λij(t) is a completely unspecified strictly increasing function and the error
ε is distributed with cumulative distribution function P (ε ≤ t) = Fε(t) = 1 − Sε(t), where
Sε(t) = e−G(et) is a completely specified function with limt→−∞ Sε(t) = 1 and limt→∞ Sε(t) =
0. Note that when Sε(t) = exp{−exp(t)}, (2.4) gives the Cox proportional hazard model,
and when Sε(t) = (1 + et)−1, it corresponds to the proportional odds model.

The equivalence between (2.3) and (2.4) is demonstrated as follows:

P (Tijk > t) = P (hij(Tijk) > hij(t)) = P (−βTijZk + ε > hij(t))

= P (ε > hij(t) + βTijZk) = Sε(hij(t) + βTijZk) = e−G(e
hij(t)+β

T
ijZk ) = e−G(Λij(t) exp(βTijZk)).
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In literature, transformation models have received a lot of attention for right-censored data.
Cheng et al. (1995) proposed a class of rank-based estimating equations for estimating
regression parameter βij. Using martingale arguments, Chen et al. (2002) proposed an
estimation procedure for estimating regression parameter β and unknown function log Λij(·).
Zeng and Lin (2006) proposed efficient estimation of βij and hij(t) using the nonparametric
maximum likelihood method. Let

Mijk(t) = Nijk(t)−
∫ t

0

Yik(s)dG(Λij0(s) exp(ZT
k βij))

= Nijk(t)−
∫ t

0

Yik(s)dΛε(Z
T
k βij + hij(t)).

Then, under model (2.3), E[dMijk(t)|Ft−] = 0 and for i 6= j; i, j ∈ E, Mijk(t) are zero
mean local square-integrable martingale with respect to Ft. Let hij(t) = log Λij(t) and
Λε(t) = G(et). Similar to the approach of Chen et al. (2002), we consider the following two
estimating equations for the estimation of βij and Λij(t):

U(βij, hij) =
n∑
k=1

∫ τ

−∞
Zk[dNijk(t)− Yik(t)dΛε(Z

T
k βij + hij(t))] = 0, (2.5)

and
n∑
k=1

[dNijk(t)− Yik(t)dΛε(Z
T
k β

T
ij + hij(t))] = 0. (2.6)

Let β̂ij and ĥij(t; β̂ij) denote the EE estimator by solving (2.5) and (2.6). Note that ĥij(t; β̂ij)
is a step function in t that rises at the distinct jump points of {dNijk(t) = 1 for k = 1, . . . , n}.

Equations (2.5) and (2.6) suggest the following iterative algorithms for computing β̃ and
ĥij(t; β̂ij):

Step 0: Choose an initial value of βij, denoted by β̂
(0)
ij .

Step 1: Let t1 < t2 < · · · < td < τ denote the distinct jump points of {dNijk(t) = 1 for k =

1, . . . , n}. Obtain ĥ
(0)
ij (t1; β̂

(0)
ij ) by solving

n∑
k=1

Yik(t1)Λε(Z
T
k βij + hij(t1)) = 1,

with βij = β̂
(0)
ij . Then, obtain ĥij(ts) for s = 2, . . . , nd, one-by-one by solving the equation

n∑
k=1

Yik(tj)Λε(Z
T
k βij + hij(ts)) = 1 +

n∑
k=1

Yik(ts)Λε(Z
T
k βij + hij(ts−)),

with βij = β̂
(0)
ij .
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Step 2: Obtain a new estimate of βij by solving (2.5) with hij(ts) = ĥ
(0)
ij (ts; β̂

(0)
ij ).

Step 3: Set β̂
(0)
ij to be the estimate obtained in Step 2 and repeat Steps 1 and 2 until

prescribed convergence criteria are met.

Based on β̂ij and ĥij(t; β̂ij), we can obtain the estimated cumulative hazard function

Λ̂G,ij(t|Zk) = G

{
Λ̂ij(t) exp(β̂TijZk)

}
,

where Λ̂ij(t) = eĥij(t;β̂ij). Based on Λ̂G,ij(t|Zk), we can obtain the estimated transition matrix

P̂G(s, t|Zk).
P̂G(s, t|Zk) =

∏
(s,t]

(
I + Λ̂G(du|Zk)

)
.

Next, we derive the asymptotic properties of P̂G(s, t|Zk). For any vector x, let x⊗2 =
xxT . Let βij0 and hij0(t) be the true values of βij and hij(t). Let H be the collection of
all nondecreasing step functions on [0, τc] with h(0) = −∞ and with jumps only at the
observed failure times. For any two nondecreasing functions h1 and h2 on [0, τ ] such that
h1(0) = h2(0) = −∞, define

d(h1, h2) = sup(|exp{h1(t)} − exp{h2(t)}| : t ∈ [0, τ ]).

Similar to proposition of Chen et al. (2002), we have the following Theorem:

Theorem 1: Under model (2.3) and regularity conditions (Fleming and Harrington, 1991),

we have (i) d(ĥij(t; β̂ij) − hij(t; β0)) converges almost surely to zero; (ii) n
1
2 (β̂ij − βij0) →

N(0,Σβ̂ij
) in distribution, as n→∞, where Σβ̂ij

= Σ−1
ij2Σij1(Σ−1

ij2)T

Σij1 = E

[∫ τ

0

[Z1 − µz(t; βij0)]⊗2λε(hij0(t) + βTij0)Yi1(t)]dhij0(t)

]
,

Σij2 = E

[∫ τ

0

[Z1 − µz(t; βij0)]ZT
1 λ̇ε(hij0(t) + βTij0)Yi1(t)]dhij0(t)

]
,

where λε(x) = dΛε(x)/dx,

µz(t) =
E[Z1λε(hij0(Xi1) + ZT

1 β
T
ij0)Yi1(t)Bij(t;Xi1)]

E[λε(hij0(t) + ZT
1 βij0)Yi1(t)]

and

Bij(t, s) = exp

(∫ t

s

E[λ̇ε(hij0(x) + ZT
1 βij0)Yi1(x)]

E[λε(hij0(x) + ZT
1 βij0Z1)Yi1(x)

dhij0(x)

)
,

where Xik = min(Tik, Ck), The Tik is sojourn time of individual k in state i.

Proof:
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The proof is technical and not reported here.

Theorem 2. Let [s, v] ∈ [0, τ ] with s < v. Under regularity conditions, the process
n1/2(P̂G(s, ·|Zk)−PG(s, ·|Zk)) converges weakly on [s, τ ] to a zero-mean Gaussian process.

Proof:

The proof is technical and not reported here.

2.4 Model Checking

The classes of semiparametric transformation models as shown in (2.3) require specifi-
cation of the transformation function G. Misspecifying G can result in erroneous inference.
For right censored data, Chen et al. (2012) introduced time-dependent martingale residuals
for model (2.3) and used the cumulative sums of the residuals for model assessment. Similar
to Chen et al.’s approach, we can also define martingale residual Mijk(t; β̂ij; ĥij) as follows:

Mijk(t; β̂ij; ĥij) = Nijk(t) −
∫ t

0
Yik(s)dΛε(Z

T
k β̂ij + ĥij(s)). We can consider the cumulative

sums of residuals over the linear predictor and the argument of the transformation function:

R(x; β̂ij; ĥij) = n−1/2

n∑
k=1

∫ ∞
0

I[ZTk β̂ij≤x]dMijk(t; β̂ij; ĥij).

For right censored data, Chen et al. (2012) showed that R(x; β̂ij; ĥij) converges weakly
to a zero-mean Gaussian process and calculate the p-value of a supremum test by using
r(β̂ij; ĥij) = (supx |R(x; β̂ij; ĥij)| and the Monte Carlo procedure.

3. Real Data Analysis

To see a real data application of the model (2.3) presented in Section 2, we consider a bone
marrow transplantation (BMT) data set (Klein and Moeschberger (1997). A multicenter trial
of patients prepared for transplantation with a radiation-free conditioning regimen. A total
of 137 patients (99 with acute myeloctic leukemia (AML) and 38 with acute lymphoblastic
leukemia (ALL)) were treated at one of four hospitals. The study consists of transplants
conducted at these hospitals from March 1, 1984 to June 30, 1989. The maximum follow-up
was 7 years. There were 42 patients who relapsed and 41 who died (i.e. transition 1 − 5)
while in remission (i.e. transition 1 − 6). Twenty-six (26) patients had acute GVHD (i.e.
transition 1−2), Six-one (61) patients had chronic GVHD (i.e. transition 1−3) and For each
patient, several potential risk factors were measured at the time of transplantation. Table 1
lists all the risk factors considered. We consider four transitions: 1− to− 2, 1− to− 3 and
1 − to − 5. For 1 − to − 2 transition, there are 26 uncensored observations and 117 right-
censored observations. For 1− to−3 transition, there are 61 uncensored observations and 76
right-censored observations. For 1− to− 5 transition, there are 42 uncensored observations
and 95 right-censored observations.

We consider the logarithm transformation G(u) = log(1+ρu)/ρ, ρ ≥ 0. Notice that since
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limρ→0 d log(1 +ρu)/dρ = limρ→0 u/(1 +ρu) = u, limρ→0 log(1 +ρu)/ρ = u. Thus, ρ = 0 cor-
responds to the Cox model. Furthermore, when ρ = 1, Λij(t|Zk) = log(1 + Λij(t) exp(βTijZk))
and Sij(t|Zk) = [1 + Λij(t) exp(βTijZk)]

−1. Hence, ρ = 1 yields the proportional odds model.
We include variables Z1 − Z8 in the model and consider the models with different values of
ρ (ρ = 0, 0.5, 1, 1.5, 2.0). Tables 2 through 5 list the estimated coefficients for 1 − to − 2,
1− to− 3, 1− to− 5 and 1− to− 6, respectively. Tables 2 through 5 indicate that the best
choices for ρ are equal to 1.5, 2.0, 1.5 and 2.0, respectively for 1− to−2, 1− to−3, 1− to−5
and 1− to− 6.

Table 1. Description of data from 2009 patients who underwent bone marrow transplantation

Variable Names Description
T1 time (in days) to death or on study time
T2 disease-Free survival time (time to relapse, death or end of study)

delta1 death indicator; 1-Dead, 0-Alive
delta2 relapse indicator; 1-Relapsed, 0-Disease-Free
delta3 disease-Free survival indicator; 1-Dead or relapsed, 0-Alive disease-free

TA time (in days) to acute GVHD
deltaA acute GVHD indicator; 1-developed, 0-Never developed

TC time (in days) to chronic GVHD
deltaC chronic GVHD indicator; 1-Developed, 0-Never developed

TP time (in days) to return of platelets to normal levels
deltaP platelet recovery indicator; 1-returned to normal, 0-never returned to normal

Z1 disease group 1-ALL, 2-AML low-risk, 3-high-risk
Z2 patient age in years
Z3 donor age in years
Z4 patient sex; 1-Male, 2-Female
Z5 donor sex; 1-Male, 2-Female
Z6 patient CMV status; 1-CMV positive, 0-CMV negative
Z7 donor CMV status; 1-CMV positive, 0-CMV negative
Z8 FAB; 1-FAB Grade 4 or 5 and AML, 0-Otherwise
Z9 MTX used as a graft-versus-host-prophylactic; 1-Yes, 0-No



13

Table 2. The estimated coefficients for transition 1− to− 2

Z1 Z2 Z3 Z4 Z5 Z6 Z7 Z8 Z9 r(β̂ij; ĥij)
ρ = 0.0 -0.712 0.051 0.026 0.008 -0.375 -0.286 0.692 0.492 -0.524 17.85
ρ = 0.5 -0.756 0.057 0.031 0.013 -0.405 -0.325 0.779 0.521 -0.646 15.67
ρ = 1.0 -0.813 0.063 0.032 0.012 -0.428 -0.344 0.823 0.559 -0.697 13.52
ρ = 1.5 -0.877 0.068 0.033 0.010 -0.457 -0.366 0.869 0.601 -0.751 11.36
ρ = 2.0 -0.950 0.074 0.035 0.009 -0.490 -0.390 0.923 0.649 -0.815 12.08

Table 3. The estimated coefficients for transition 1− to− 3

Z1 Z2 Z3 Z4 Z5 Z6 Z7 Z8 Z9 r(β̂ij; ĥij)
ρ = 0.0 -0.079 -0.027 0.037 -0.038 -0.342 0.476 -0.271 -0.192 -0.013 11.56
ρ = 0.5 -0.171 -0.033 0.039 -0.125 -0.449 0.577 -0.345 -0.233 -0.075 9.15
ρ = 1.0 -0.199 -0.038 0.046 -0.156 -0.528 0.681 -0.406 -0.275 -0.096 8.52
ρ = 1.5 -0.230 -0.045 0.053 -0.190 -0.615 0.792 -0.470 -0.320 -0.119 7.21
ρ = 2.0 -0.264 -0.052 0.060 -0.228 -0.709 0.916 -0.541 -0.368 -0.146 6.86

Table 4. The estimated coefficients for transition 1− to− 5

Z1 Z2 Z3 Z4 Z5 Z6 Z7 Z8 Z9 r(β̂ij; ĥij)
ρ = 0.0 0.179 -0.017 0.035 -0.050 0.009 -0.015 0.046 0.569 0.453 27.21
ρ = 0.5 0.145 -0.021 0.038 -0.127 -0.032 -0.016 0.033 0.706 0.523 23.59
ρ = 1.0 0.162 -0.024 0.045 -0.162 -0.038 -0.029 0.035 0.854 0.630 20.34
ρ = 1.5 0.179 -0.027 0.052 -0.200 -0.045 -0.043 0.038 1.014 0.746 16.65
ρ = 2.0 0.197 -0.031 0.059 -0.241 -0.054 -0.057 0.043 1.190 0.872 18.51

Table 5. The estimated coefficients for transition 1− to− 6

Z1 Z2 Z3 Z4 Z5 Z6 Z7 Z8 Z9 r(β̂ij; ĥij)
ρ = 0 0.326 0.005 0.009 -0.146 0.411 0.193 0.097 0.908 0.497 24.72

ρ = 0.5 0.219 -0.011 0.007 -0.280 0.315 0.251 0.067 1.021 0.512 19.03
ρ = 1.0 0.237 -0.012 0.008 -0.313 0.344 0.277 0.071 1.149 0.579 17.62
ρ = 1.5 0.255 -0.013 0.009 -0.349 0.375 0.306 0.073 1.288 0.649 15.91
ρ = 2.0 0.274 -0.014 0.010 -0.388 0.411 0.338 0.077 1.445 0.728 14.59

4. Conclusions

In this article, we have pointed out that when there are covariate effects to be considered,
Cox Markov regression model may not be suitable for describing transition rates. Instead,
semiparametric transformation models, which includes Cox’s model as a special case, can be
used in the analysis of survival data. In some cases, failure times may be subject to interval
censoring/truncation. Further research is required to extend semiparametric transformation
Markov model to interval censored/truncated data.
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