BRFREFZ R TN BNEFET A H ORI

3 PRI
The Implementation of Supporting Uniform Data
Distribution with Software-Defined Storage Service on

Heterogeneous Cloud Storage

REBEARLRELEMBIFRELTZ

REBREEMNIRZLE R

B B & ARIHRX

EREMEE R XBEEN Y o1

b SR B8 T R 8 17 R A

BAZBRGFEL HORALT2MHBAZE -

2REREE @ &Zz gj/& (377\ k

2 & A ®F

=

% g % %%%/ |
kA
05 X A

X
R % (2. S

FERE 105 % 6 A 27 =8

HE L TRALOE BARRE bl 2580 L fEARM fTE oy B p 8K
EFAENE 2 FEFREB A PR MRS LR T
AEFBEEARY TT oz E A AB R oo B LA ASTRET Bﬁ%ga 4 i
Bt o ZHHPRIFA B hZ A AN L RE - FE 2 G o B NE G

\ 2

poan i * Jz%{ 2R EE PIRIE o Aoir 3 R A B rn kK ik 5 IR
BT R BRE M HEMTE DT AN R R k2 - > BER
FiC P B oM T A& 5 ([Software-Defined Storage, SDS) > #-5% 3% 7 ihi5 i
ﬁ%%ﬂ“’ﬁéi?%ﬁ’ﬁﬂa%v%a’¢ﬂ@?i%ﬁwm@w~w,
E_SDS His B ¥ #Tif ke b PR o A F A ML HILG ch 2 i SDS
PRFR1E 16 * F evkan B3R 0 B8 % K OpenStack T35 2%k > >t H P F L

T\4
Py
&

ETIAS

HDFS ~ Ceph ~ Swift % 7 %75 5 50 B3R & A 5303 2R AT & D
P E o FREFRELGE B BRETEE DOTREY I B
03 d] S BT BB L SR TR Y ST PR B AL RN 5 A
BRI R PR A WL ART IR Y L 7 0 3 A E B ki et

ﬂ’ o

P

pul

At ZEhPRI 0 BRI B TR A G BTG

Abstract

In order to improve accessibility and efficiency of a cloud system, this work pro-
posed a mechanism to integrate HDFS and Swift based on the OpenStack. We
first build a heterogeneous storage environment including HDFS and Swift based
on the open source OpenStack and then measure their performances. To integrate
storage services of HDFS and Swift, we propose a proportion-based file distribu-
tion mechanism. The proportion for file partition is dependent on the remaining
storage capacity so that we can distribute those sub files to different storage. This
mechanism also enhances the file security. In addition, a high usability user inter-
face is provided so as to make the proposed system more friendly. Experimental

results show the efficiency of our system.

Keywords: Cloud service, Storage Service, Software-Defined Storage, Data distri-

bution, Heterogeneous storage

II

3R

F 4R IR By B IR T A
Ekend o FAHAEY ATNAR Y fifiiogt o XLl kEAR
B ii%]f!ﬁ:-,i\ ﬁ_%‘f 3 @ﬁ&_c‘ HIl FET B o éﬁ«‘\? o 5@ ﬁ_},@'éﬁ

EHFE I ke 2L AP LPHaRE E5HEE-HETK
Perr 2 pEe ¢ it MO E RKETLS FF AR FIE T R afies s

A RN BEE BT ER N L o

Hr A AL FRAMAHRZNEFLES R F P LA E D
BE Y o fTE AR AT R A RS & A2 A hWlEE o

e R VAR LI ok -

RPN R RG] s 8 g

BUMHZ BT ZIRALEE -

'
Wi

VR A Sl N E S =R A

Boil o EHTF - R FIE el B L FIL G R DA s

S A = AL

LisA8 FRIAES L BaiE9%3 #Me 105 & 07

I1I

Table of Contents

PFE& I
Abstract 11
IR B 111
Table of Contents v
List of Figures VI
List of Tables VII
1 Introduction 1
1.1 R MotiFatTon N A —————— g % . W . R 2
1.2 Thesis Goal and Contributions 2

1.3 Thesis Organization 3

2 Background Review and Related Work 4
2.1 Background Review oo 4
BB Virtualizatign, . ™. 5. . e . . N 4

2.1.2 Software-Defined Storage 5

PRI o T — —— 6

214 Ceph. 7

2.1.5 HDFS 10

2.1.6 OpenStack 11

2.1.7 COSBench 14

2.1.8 Cubic Spline 15

2.2 Related works 16

3 System Design and Implementation 18
3.1 System Design Architecture 18
3.2 System Implementation 20
3.2.1 Storage service deployment 20

3.2.2 File distribution mechanism 23

3.2.3 Userservices e 25

IV

TABLE OF CONTENTS \Y
4 Experimental Results 29
4.1 Experimental Environmento 29
4.2 Performance 30
4.3 User Interface 35
5 Conclusions and Future Work 40
5.1 Concluding Remark 40
5.2 BEEITUre Works®. . sl e - W, 41
References 42
Appendix 46
A OpenStack Installation 46
B Ceph Installation 53
C Hadoop Installation 55
D Swift Installation 59

List of Figures

sl
2
2.3
24
2.5
2.6

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14

Swifi#arghibectlite .«#. Tagl A%W%aNh 6
CephlarchifeCiniic <IN | o S N | O | 8
FDFS atchiteciisei® "aame. FERLET % . . T 11
Openstack Kiloarch 12
COSBench Architecture 15
Cubic Spline Schematic Diagram 16
System Architecture 19
Controller Architecture 19
OpenStack Overview 20
VMaglin SEAliCES s s .00 4. . . . 8. . . B 21
Ceph environment L. 21
Cephinstances 22
Swift environment 22
Spyitteinsfances W gl gme B Y RN 22
HDFS environment 23
HDFSginstomees . . . g s a3 L9 N 5 .. & . .. 23
Data distribution method flow chart 25
Responsive Web Design L. 27
Web Language Architecture 28
Measure the upload speed 31
Network infrastructure speed L. 32
Storage capacity convergence speed when v =0.3 32
Storage capacity convergence speed when v =05 33
Storage capacity convergence speed when v =09 33
Similar capacity distribution with v =09 34
Expand a storage space with v =05 34
Upload time comparison 35
User interface overview 36
Overview page 37
Trash can page Lo 38
Account page 38
Admin page 39
Admin functions 39

VI

List of Tables

3.1

4.1
4.2
4.3

Software & language Specification 26
HardwapesSpeclicanom. - e R AN % . 30
Virtual Machine Specification 30
Software Specification L. 30

VII

Chapter 1

Introduction

In recent years, the rapid development of the information focus on the techniques
for Cloud services [1,2] which is a concept that users can upload their requirement
via internet to Cloud environment and then receive a response by post-processing,
for example Cloud computation [3,4] and Cloud storage [5]. Most studies about the
Cloud storage focus on data pretreatment method on client side [6] or data storage
method on server side [7]. For example, cloud storage service user may concern
their data security and storage availability, they may used some data encryption
technology to improve their data security and used multiple cloud storage systems

to address the important storage availability issue in the Cloud.

Software-defined storage (SDS) [8-10] is a kind of virtualization technology for
cloud storage. It uses the software to integrate different resources. The software
enabling SDS environments can provide policy management for feature options
such as deduplication, replication, thin provisioning, snapshots and backup so as
to improve accessibility and usability. Thus, SDS is a better choice for users to
build their cloud. With out of generality, the cost and security are two important

issues.

Chapter 1 Introduction 2

1.1 Motivation

Cloud storage services have more convenience and provide data redundancy [11,
12]. Tt is an important indicators when the user selects this kind of service. How-
ever, due to the data shall be placed on the third-party storage platforms. Data
Security in the cloud storage do not easily trust by user. To solve this issue,
most of research used encrypt algorithm or erasure-code technology to improve
data security [13,14]. In this way, they might need to have more then one cloud
storage services to distribute data. Therefore, we hope that through a variety of
open-source software to implement private heterogeneous cloud storage service.
Simulate the complex environment of cloud storage service and evaluating their
effectiveness. Next, we will propose a method so that data can be assigned to dif-
ferent storage space in the process of uploading. Finally, we will provide a graph
user interface which supports file sharing. User and administrator can operate
our storage service through the web interface, achieve cloud services any time,

anywhere access to any network device properties.

1.2 Thesis Goal and Contributions

This work will implement an integration cloud services with Software-defined stor-
age technology. In the system architecture, we will use some open-source software,
making it a better compatibility. And implement a method. The method can be
automatically assigned files to an appropriate storage system when the user upload
files. In this process, the files will be split as some small data. These data will be
store in each storage service and enhanced security. Finally, we provide a graph

user interface to manage our system.

Chapter 1 Introduction 3

1.3 Thesis Organization

Chapter 2 will describe some background information, including Virtualization,
Software-Defined storage, OpenStack, Swift, Ceph JHDFS, COSBench and Cubic
Spline. Chapter 3 will introduce our experimental environment and methods, and
the overall architecture. Chapter 4 presents and analyses experimental results.
Finally, Chapter 5 summarizes this work by pointing out its major contributions

and directions for future work.

Chapter 2

Background Review and Related
Work

In this section, we review some background knowledges for later use of system

design and implementation.

2.1 Background Review

2.1.1 Virtualization

With virtualization, the computer’s physical resources, such as servers, network,
memory, and storage, are abstractly presented after conversion, so that users can

apply those resources in a better way than the original configuration [15, 16].

Virtualization is commonly referred to virtualized resources including comput-
ing power and data storage [17]; in this paper virtualization is specifically referred
to server virtualization. Server virtualization software technology refers to the use
of one or more of the host hardware settings. It has the flexibility to configure
the virtual hardware platform and operating system, like real hardware. In this
way, a variety of different operating environments (for example, Windows, Linux,
etc.) can operate simultaneously on the same physical host, and be independent

4

Chapter 2 Background Review and Related Work)

as being operating in different physical hosts. Virtualization solutions can be
broadly divided into three categories: full virtualization, para-virtualization, and

hardware-assisted virtualization.

2.1.2 Software-Defined Storage

Software-Defined Storage (SDS) [8-10] is a term for the computer data storage
technology which separates storage hardware from the software that manages the
storage infrastructure. The software enabling SDS environments can provide pol-
icy management for feature options such as deduplication, replication, thin provi-
sioning, snapshots and backup. Characteristics of SDS could include any or all of

the following features:

o Abstraction of logical storage services and capabilities from the underlying
physical storage systems, and in some cases, pooling across multiple different
implementations. Since data movement is relatively expensive and slow com-
pared to compute and services (the ”data gravity” problem in infonomics),
pooling approaches sometimes suggest leaving it in place and creating a

mapping layer to it that spans arrays.

o Automation with policy-driven storage provisioning with service-level agree-
ments replacing technology details. This requires management interfaces
that span traditional storage array products, as a particular definition of
separating the "control plane” from "data plane”, in the spirit of OpenFlow.
Prior industry standards efforts include the Storage Management Initiative

-Specification (SMI-S) which began in 2000.

o Commodity hardware with storage logic abstracted into a software layer.

This is also described as a clustered file system for converged storage.

o Scale-out storage architecture.

Chapter 2 Background Review and Related Work 6

2.1.3 Swift

Swift [18] is a scalable redundant storage system. It is part of OpenStack com-
ponent. Objects and files are written to multiple disk drives spread throughout
servers in the data center, with the OpenStack software responsible for ensuring
data replication and integrity across the cluster. Storage clusters scale horizontally
simply by adding new servers. Should a server or hard drive fail, OpenStack repli-
cates its content from other active nodes to new locations in the cluster. Because
OpenStack uses software logic to ensure data replication and distribution across

different devices, inexpensive commodity hard drives and servers can be used.

Notations:

l daemon | (files (
<
—_—)

write operation

Storage Node

replication-server

object-server rsync server

object.log

update-menitor

(hash-update-queuef

A

.................. » read operation

————% invoke operatior

replication-queue

| partition-monitor I suffix-transporter

y

| rsync |

FIGURE 2.1: Swift architecture

hash-updater

As the figure 2.1 shows that the icons with colors are the main components
of this design. All of them is independent with the current object-replicator.
The origin logic of object-replicator was split into four parts with different colors.
the components with the color of cyan are in charge of calculating hash in real-
time; the components with the color of pink are in charge of indexing the hash
of suffix and partition directories, receiving and sending requests to compare the
hash of partition or suffix, generating jobs of replicating suffix directories to the
replication-queue; The partition-monitor is in charge of checking the partition
whether to move at interval; The suffix-transporter is in charge of monitoring the

replication-queue and invoking the rsync to sync suffix directories.

Chapter 2 Background Review and Related Work 7

o Proxy Server: It is responsible for tying together the rest of the Swift ar-
chitecture. For each request, it will look up the location of the account,
container, or object in the ring and route the request accordingly. For Era-
sure Code type policies, the Proxy Server is also responsible for encoding

and decoding object data.

e Object Server: It is a very simple storage server that can store, retrieve and
delete objects stored on local devices. Objects are stored as binary files on
the filesystem with metadata stored in the file’s extended attributes (xattrs).
This requires that the underlying filesystem choice for object servers support

xattrs on files. Some filesystems, like ext3, have xattrs turned off by default.

o Container Server: The Server’s primary job is to handle listings of objects.
It doesn’t know where those object’s are, just what objects are in a specific
container. The listings are stored as sqlite database files, and replicated
across the cluster similar to how objects are. Statistics are also tracked
that include the total number of objects, and total storage usage for that

container.

o Account Server: It is very similar to the Container Server, excepting that it

is responsible for listings of containers rather than objects.

2.1.4 Ceph

Ceph [19] is a software storage platform designed to present object, block, and
file storage from a single distributed computer cluster. Ceph is a distributed stor-
age designed to provide excellent performance, reliability and scalability. Ceph
was made possible by a global community of enthusiastic storage engineers and
researchers. It is open source and freely-available. Ceph software runs on commod-
ity hardware. The system is designed to be both self-healing and self-managing

and strives to cut both administrator and budget costs.

Chapter 2 Background Review and Related Work 8

Metadata operations

Metadata storage

Client

File I/O

0OSD node 0OSD node
> <>

(05 (01
Partition Partition

Ceph Server

F1GURE 2.2: Ceph architecture

» Object Storage: Ceph is a distributed object storage and file system designed
to provide excellent performance, reliability and scalability. Its software
libraries offer client applications with direct access to the reliable autonomic
distributed object store (RADOS) object-based storage system [20], and also
provide a basis for some of Ceph’s advanced features, including RADOS

Block Device (RBD), RADOS Gateway, and the Ceph File System.

The librados software libraries enable applications written in C, C++4, Java,
Python and PHP. The RADOS Gateway also exposes the object store as a
RESTful interface which can present as both native Amazon S3 and Open-
Stack Swift APIs. The librados libraries provide advanced features, includ-

ing:

Partial or complete reads and writes

Snapshots

Atomic transactions with features like append, truncate and clone range

Object level key-value mappings

e Block Storage: Ceph’s object storage system allows users to mount Ceph
as a thinly provisioned block device. Ceph’s RADOS Block Device (RBD)

provides access to block device images that are striped and replicated across

Chapter 2 Background Review and Related Work 9

the entire storage cluster. When an application writes data to Ceph using a
block device, Ceph automatically stripes and replicates the data across the
cluster. Ceph’s RADOS Block Device (RBD) also integrates with KVMs,
bringing Ceph’s virtually unconstrained storage to KVMs running on user’s

Ceph clients.

Ceph RBD interfaces with the same Ceph object storage system that pro-
vides the librados interface and the CephFS file system, and it stores block
device images as objects. Since RBD is built on top of librados, RBD inherits
librados’s capabilities, including read-only snapshots and revert to snapshot.
Ceph’s object storage system is not bounded to native binding or RESTful
APIs. User can mount Ceph as a thinly provisioned block device. When
write data to Ceph using a block device, Ceph automatically stripes and
replicates the data across the cluster. By striping images across the cluster,

Ceph increases read access performance for large block device images.

« File System: Ceph’s file system (CephFS) runs on top of the same object stor-
age system that provides object storage and block device interfaces. Ceph
provides a POSIX-compliant network file system that aims for high perfor-
mance, large data storage, and maximum compatibility with legacy appli-
cations. Compared to many object storage systems available today Ceph’s
object storage system offers a significant feature: a traditional file system
interface with POSIX semantics. Object storage systems are a significant
innovation, but they supplement rather than replace traditional file systems.
The Ceph metadata server cluster provides a service that maps the direc-
tories and file names of the file system to objects stored within RADOS
clusters. The metadata server cluster can expand, contract, and dynami-
cally rebalance the file system to distribute data evenly among cluster hosts.
As storage requirements grow for legacy applications, organizations can con-
figure their legacy applications to use the Ceph file system. This means user
can run one storage cluster for object, block and file-based data storage.
This ensures high performance and prevents heavy loads on specific hosts

within the cluster.

Chapter 2 Background Review and Related Work 10

2.1.5 HDFS

The Hadoop Distributed File System (HDFS) [21,22] is an Apache Software Foun-
dation project and a subproject of the Apache Hadoop project. HDFS is a dis-
tributed file system designed to hold very large amounts of data (terabytes or even
petabytes), and to provide high-throughput access to this information. Files are
stored in a redundant fashion across multiple machines to ensure durability to fail-
ure and high availability to parallel applications. HDF'S has many similarities with
other distributed file systems, but is different in several respects. One noticeable
difference is HDFS’s write-once-read-many model that relaxes concurrency con-
trol requirements, simplifies data coherency, and enables high-throughput access.
Another unique attribute of HDFS is the viewpoint that it is usually better to
locate processing logic near the data rather than moving the data to the applica-
tion space. HDFS rigorously restricts data write to one write at a time. Bytes are
always appended to the end of a stream, and byte streams are guaranteed to be

stored in the written order.

HDFS is comprised of interconnected clusters of nodes where files and direc-
tories reside. There are two type of nodes in HDFS. One is NameNode ,and the
other is DataNode. A HDFS cluster consists of a single NameNode, which man-
ages the file system namespace and regulates client access to files. In addition,
DataNodes store data as blocks within files and satisfy client 1/O requests. Within
HDFS, a given name node manages file system namespace operations like opening,
closing, and renaming files and directories. A NameNode also maps data blocks
to data nodes that handle read and write requests from HDFS clients. DataNodes
also create, delete, and replicate data blocks according to instructions from the

governing NameNode. The architecture of HDF'S is shown in Figure 2.3.

Chapter 2 Background Review and Related Work 11

. Meta data Ops

Write

Read
sdpoolg

FIGURE 2.3: HDFS architecture

2.1.6 OpenStack

OpenStack [23,24] is an [aaS cloud computing project for public and private clouds.
It is free open source software released under the terms of the Apache License. The
project aims to deliver solutions for all types of clouds by being simple to imple-
ment, massively scalable, and features rich. The technology consists of a series
of interrelated projects delivering various components for a cloud infrastructure
solution. Founded by Rackspace Hosting and NASA, OpenStack has grown to
be a global software community of developers collaborating on a standard and
massively scalable open source cloud operating system. Its mission is to enable
any organization to create and offer cloud computing services running on standard

hardware.

The project is managed by the OpenStack Foundation, a non-profit corporate
entity established in September 2012 to promote, protect and empower OpenStack

software and its community.

OpenStack offers flexibility and choice through a highly engaged community of
over 6,000 individuals and over 190 companies including Rackspace, such as Intel,

AMD, Canonical, SUSE Linux, Inktank, Red Hat, Groupe Bull, Cisco, Dell, HP,

Chapter 2 Background Review and Related Work 12

IBM, NEC, VMware and Yahoo. It is portable software, but is mostly developed

and used on operating systems running Linux.

The technology consists of a series of interrelated projects that control large
pools of processing, storage, and networking resources through-out a datacenter,
all managed through a dashboard that gives administrators control while empow-

ering its users to provision resources through a web interface.

Heat
Orchestrates
cloud

Provides

Horizon T
Provides natwork
connectivity for
Neutron
@ Provides images
Provides
wolumes for
b A Provisions b A
Stores
Cinder Nova Glance imeages in Swift
Monitors Ceilometer
Provides
D R —
Auth for Keystone

Backups volumes in

F1GURE 2.4: Openstack Kilo arch

In this work, we use version Kilo. The architecture is as shown in Figure 2.4.

o Identity Service (Keystone) Keystone controls all authentication in Open-
Stack. It provides a central directory of users mapped to the OpenStack
services they can access and also supports multiple forms of authentication
including standard username and password credentials, token-based systems

and AWS-style (i.e. Amazon Web Services) logins.

Chapter 2 Background Review and Related Work 13

« Image Service (Glance) Glance manage the OpenStack images. It provides
discovery, registration, and delivery services for disk and server images. It
can also be used to store and catalog an unlimited number of backups and

the stored images can be used as a template.

« Compute (Nova) Nova is virtual machine provisions. It is designed to manage
and automate pools of computer resources and can work with widely avail-
able virtualization technologies, as well as bare metal and high-performance
computing configurations. User can choose KVM, VMware, and Xen as their
hypervisor technology, together with Hyper-V and Linux container technol-
ogy such as LXC.

« Networking (Neutron) Neutron is used to manage networks and IP addresses.
It ensures the network is not a bottleneck or limiting factor in a cloud deploy-

ment, and gives users self-service ability, even over network configurations.

« Object Storage (Swift) Swift is a scalable redundant object storage system.
Data written to multiple disk drives spread throughout servers in the data
center, with the OpenStack software responsible for ensuring data replication

and integrity across the cluster.

« Block Storage (Cinder) Cinder provides volumes for virtual machines. It is
designed to allow the use of either a reference implementation to present
storage resources to end users that can be consumed by the OpenStack

Compute Project.

« Dashboard (Horizon) Horizon provides provides administrators and users a
graphical interface to access, provision, and automate cloud-based resources.
The sites built with django and also provide the API for developer to auto-

mate access or build tools to manage resources.

o Telemetry (Ceilometer) Ceilometer providing all the counters they need to
establish customer billing, across all current and future OpenStack compo-

nents.

Chapter 2 Background Review and Related Work 14

« Database (Trove) Trove is Database as a Service for OpenStack. It is de-
signed to run entirely on OpenStack, with the goal of letting users to quickly
and easily utilize the features of a relational or non-relational database with-

out the burden of handling complex administrative tasks.

 Orchestration (Heat) Heat is the main project in the OpenStack Orches-
tration program. It implements an orchestration engine to launch multiple
composite cloud applications based on templates in the form of text files

that can be treated like code.

We used Keystone, Keystone, Nova, Glance, Neutron, Cinder and Horizon in

our model.

2.1.7 COSBench

Cloud Object Storage Benchmark (COSBench) [25] is a benchmarking tool to
measure the performance of Cloud Object Storage services. COSBench has two
components, namely controller and driver, and can operate in two different modes,
either independent or managed.The architecture is as shown in Figure 2.5. In
independent mode, only driver is used. At runtime, it loads configurations and
spawns agent threads which stress the target service in a way consistent with
the user-defined usage pattern. Under managed mode, on the other hand, both
components are required in that the controller is added to supervise multiple
drivers so that they can work collaboratively in a distributed environment. In
this case, each driver will spawn an additional daemon thread for receiving and

responding controller commands.

Chapter 2 Background Review and Related Work 15

4) COSBench
p Command-line)) export
- 7 controller —
S~ \
Automation Tool HTTP i
Archive
HTTP
drive drive drive drive
[N]

Files 1/O

Operating

Response time
throughput

Administrator Cloud Object Storage System

FIGURE 2.5: COSBench Architecture

2.1.8 Cubic Spline

In mathematics, a spline [26] is a numeric function that is piecewise-defined by
polynomial functions, and which possesses a sufficiently high degree of smoothness

at the places where the polynomial pieces connect.

In interpolating problems, spline interpolation is often preferred to polynomial
interpolation because it yields similar results to interpolating with higher degree
polynomials while avoiding instability due to Runge’s phenomenon. In computer
graphics, parametric curves whose coordinates are given by splines are popular
because of the simplicity of their construction, their ease and accuracy of evalua-
tion, and their capacity to approximate complex shapes through curve fitting and

interactive curve design.

Chapter 2 Background Review and Related Work 16

80 1

< Daten

60 1 —Spline

40 A

20 A

'80 T T T T T 1
0 2 4 6 8 10 12

F1GURE 2.6: Cubic Spline Schematic Diagram

A cubic spline [27,28] is a spline constructed of piecewise third-order polynomials
which pass through a set of m control points. The second derivative of each poly-
nomial is commonly set to zero at the endpoints, since this provides a boundary
condition that completes the system of m-2 equations. This produces a so-called
"natural” cubic spline and leads to a simple tridiagonal system which can be solved
easily to give the coefficients of the polynomials. However, this choice is not the

only one possible, and other boundary conditions can be used instead.

2.2 Related works

Since VMware propose the concept of “Software-defined data center” , the research
of Software-Defined Storage development and cloud storage have become more
and more. Through the concept of virtualization, integrate hardware resource to
a system, make expansion of storage cluster easier. Through the release of every
kind of open source software, deploy a private storage cluster has become a choice

for some enterprise.

Software-Defined may be different concept. However, cloud computing is brew-

ing more possibilities. Hardware and software architecture has been gradually

Chapter 2 Background Review and Related Work 17

change. These will become the custom functions and automation of operations.

There are software-defined storage research papers and products released.

Against small organizations or personal user, there have many enterprise pro-
vide the service of cloud storage to suit every kind of requirement. Such as Win-
dows, amazon, and Google have provide different kind of service for different user
groups. How to choose the most suitable service for their self has become the

target of many research.

Chengzhang Penga and Zejun Jiangb proposed a cloud storage service system
[29], in which a solution is suggested to build a cloud storage service system based

on the open-source distributed database.

Josef Spillner propose detailed insight for life cycle of cloud service, and pro-
pose an integration platform to compatibility of every cloud storage service to
avoid single cloud service has some problems to bring about storage interrupted [6].
But the system is mainly for experience of user and link up for every kinds of cloud

platform, it’s less for processing files.

Suzhen Wu propose a method that store in different cloud service after sep-
aration of file, and propose a dissertation for copies requirement of file [30]. But

they did not talk about the method of file distribution.

Yu-Chuan Shen propose a method against different size of file upload to the
most suitable system [31]. But if user is conventional to use large or small file,

this method will bring a result that all file store in the same system.

Whether use the backend platform of private cloud or public cloud, use all
storage system in acceptable speed of 1/O and security of user, is a target for
every cloud storage system. Therefore, this work will base on [31], to propose a
method of supporting file distribute average, make the system whenever expand

node, it’s can achieve to storage load balance.

Chapter 3

System Design and

Implementation

The main goal of our system is to build a cloud platform contains a variety of stor-
age technologies, and achieve a uniform distribution of data stored thereon. This
section describes our overall system design architecture with some applicatons of
open source softwares. The proposed heterogeneous storage system is implemented
based on this architecture and our proposed distribution mechanism. Moreover,

we provide a graphical user interface for users to enjoy the whole system.

3.1 System Design Architecture

In the proposed system architecture shown in Figure 3.1, OpenStack is adopted
as the basis in order to achieve storage virtualization and unified management.
Based on OpenStack, we can create a virtual machine to provide storage service,
control service and monitoring service. The storage service is the basis of the het-
erogeneous storage platforms, such as Swift, HDFS and Ceph. The control service
is built on the Controller to manage the storage services and the heterogeneous

storages. The monitor service is used to monitor the remaining capacity of each

18

Chapter 3 System Design and Implementation 19

heterogeneous storage platform. To allocate the files receieced from users, a distri-
bution mechanism is proposed for Controller. The mechanism can automatically
assign files to an appropriate storage after users upload files. The detail concept
of the Controller is shown in Figure 3.2. In addition, we also provide graphical
user interface on web browser so that users can enjoy the proposed cloud system

by web browser anytime and anywhere.

Dataflow controller
||

Nova (Compute)

Glance (Image)

OpenStack

FIGURE 3.1: System Architecture

[Dataflow controller]

FIGURE 3.2: Controller Architecture

Chapter 3 System Design and Implementation 20

3.2 System Implementation

The implementation of the proposed system consists of three parts, the storage

service deployment, file distribution mechanism and user services.

3.2.1 Storage service deployment

By using Ubuntu OS to create virtual machines, open source software OpenStack
is applied to build and manage the proposed cloud system. The overview of the

system is shown in Figure 3.13 and Figure 3.4.

- Overview

I _ Limit Summary

= >)) > .

Instances VCPUs RAM Floating IPs Security Groups.
Used 8 of 40 Used 32 of 60 Used 32GB of 60GB Allocated 7 of 50 Used 5 of 10

Acce: ity
Networl k ~ ‘ '

Volumes Volume Storage
Used 4 0f 20 Used 270GB of 3.9T8

Usage Summary

Select a period of time to query its usage:

Active Instances: 8 Active RAW: 32GB This Period’s VCPU-Hours: 17165.63 This Period's GB-Hours: 349651.73 This Period’s RAM-Hours: 17576666.11

be n YYY Yo format

vepus Disk RAM

4 10068 468

10068 4c8

10068 468

10068 1c8

2068 468

FiGURE 3.3: OpenStack Overview

Ceph deployment

Ceph, a free-software storage platform, implements distributed object storage and
file system, and provides interfaces for object-, block- and file-level storage. It
has excellent performance, reliability and scalability. To achieve the functions
above, Ceph has three kind of physical nodes: Object Storage Daemon (OSD),
Monitors (MON) and Metadata (MDS) service. Accroding to object storage deploy

Chapter 3 System Design and Implementation

=apEm E‘ w2
i
O ERBER P P ik i o i A 5 mERE
BES
B ceproso bt 206 100075 sbuntu 4420 domorkey ww compute0? ® Enw
B
s || B ceposot bt 206 100078 Jbunt 4.4 20 demorkey e compute0t ® e
FRELRERE eph-mor ubuntu-20G 100073 ubunty_4.4.20 demo-key BHD compute0 = EsiT
s
ubunu-206 10,0072 ubunty 4420 demo-key e compute0z P e
)
o ubuntu206 100071 ubunty 4420 demorkey e compute0z s e
10,0066
B svisenice ubuntu E P e demorkey e compute02 Y Enn
1401289841
10.0.0.62
spo1 - P monitor demo-key B compute0z s e
1401289845
10.0.0.59
web-seners ubunty-20G S8 P monitor demo-key EED compute02 = ErT
40.128.98.45
[DataFlow-contoler ubunt 10,0087 HeC demorkey B compute02 & e
[hadoopnoden ubuntu 100081 e demorkey e compute0z = e
B hadoopode0t ubunt 100050 e demorkey e compute0? = e
10,0049
B | hadoopmaster jurt TP e demorkey e compute0? w Ean
1012898 42

FiGURE 3.4: VM Instances

More Actions ~

Actions.

238,48

requirements, as shown in Figure 2.2. We only need to install OSDs and MONs.

The overview of our Ceph architecture is shown in Figure 3.5 and Figure 3.6.

Ceph

Ceph-mon Ceph-OSD1 Ceph-0OSD2

Client Storage Storage

Monitor osD osD

RGW

FiGURE 3.5: Ceph environment

Swift deployment

Swift is one of component in OpenStack. The overview of Swift architecture is

shown in Figure 2.1. Swift service includes proxy server, account server, container

server and object server. The proxy server relies on an authentication and au-

thorization mechanism such as the identity service, but proxy server also offers

Chapter 3 System Design and Implementation 22

O EEPEHE BT 1P Srht B =gt #k e HE EERE Se Actions

[| ceph-OSD2 ubuntu-20G 10.0.0.75 ubuntu_4.4.20 demo-key AT computel2 & IEFTSHTT 0 5 -
[| ceph-0SD1 ubuntu-20G 10.0.0.74 ubuntu_4.4.20 demo-key | fERD computel1 & EAEsT 8 5 -
[| ceph-mon ubuntu-20G 10.0.0.73 ubuntu_4.4.20 demo-key AT computel1 & IETEEh{T 17 & -

FIGURE 3.6: Ceph instances

an internal mechanism that allows it to operate without any other OpenStack
services. According to Swift deploy requirements. We need install the following
components: identity service, proxy server, account server, container server and

object server. The Swift environment in our system is shown in Figure 3.7 and

Figure 3.8.
Swift
swift-service swift-node01 swift-node02
Controller Storage Storage
Keystone Account service Account service
Proxy service Containerservice Containerservice
Object service Object service
FIGURE 3.7: Swift environment
O EEMEE RS PG aE TR RE WHES 5 EERE =8 Actions
[swift-noded2 ubuntu-20G 10.0.0.72 ubuntu_4.4.20 demo-key AT compute02 =3 IEFTEhT 22 5 -
[| swift-nodel ubuntu-20G 100071 ubuntu_ 4420 demo-key HHP computel2 Food IEFTENT 26 5 -
10.0.0.66
[| swif-senice ubuntu TEETIP HPC demo-key EAS$ computed?2 & FATsiT 2@ -
140 128 98 41

FIGURE 3.8: Swift instances

Chapter 3 System Design and Implementation 23

HDFS deployment

Hadoop has two kinds of nodes: master node and slave node. Master node uses Na-
meNode service to control DataNode service which is running on slave nodes. We
built a HDF'S architecture consisting of one master node and two slave nodes, as
shown in Figure 3.9 and Figure 3.10. The NameNode executes file system names-
pace operations and also determines the mapping of blocks DataNodes. DataNodes

are responsible for serving read and write requests from clients of file system.

HDFS
H-master H-node01 H-node02
Master Storage Storage
NameNode DataNode DataNode
Ficure 3.9: HDFS environment
O EEpl&E B8 P frht BE Eiag REE THER 5 EEIRE S Actions
[hadoop-node02 ubuntu 10.0.0.51 HPC demo-key AT computel2 & EfrstT 1H FTIEEREERE | ~
[[] hadoopnode01 ubuntu 10.0.0.50 HPC demo-key AP computel2 3 IETEETT 18 SEEIEEE | -
10.0.0.49
[[] | hadoop-master = ubuntu TEETIP HPC demo-key HHD computed2 i EirshiT 18 SR |~

140.125.98 42

FIGURE 3.10: HDF'S instances

3.2.2 File distribution mechanism

The purpose of this section is to propose a mechanism for file distribution and
appropriate file allocation according to the environment and specification of the
heterogeneous storage platforms, Swift, HDFS and Ceph. In the step of the pro-

posed mechanism, we can observe remaining capacity information of each storage

Chapter 3 System Design and Implementation 24

platform through our monitor node. In the second step, we split each file into sev-
eral sub-files with the size similar to the proportion of the remaining capacity of
all storage platforms. Based on the above information, we allocate each sub-file to
a proper storage platform. The following mathematical equations show the detail

of the proposed mechanism..

X=37,5, (3.)

S;=Xx*R;, i=1 to n (3.2)

o X is the user-uploaded file size. We use it as file segmentation data.

o S is the result of the split file size. Also be uploaded to the storage system’s

actual size.
e R is the split ratio. We use it to find the value S.

e n is the number of storage system selection. In our case, we have three

storage system so that n is 3.

As above, we know that R is an important parameter which influences platform

capacity convergence speed. We show how to determine this value in the following;:

C; — v xmin(C)

= S G =y s min(C)

j=1 to n (3.3)

« C is the system storage capacity ratio which satisfied > | C; = L.

e 7 is a filtering value satisfied 0 < v < 1.

As a result, we can get R by equation 3.3. After the process described above,
we start to split our file. Finally, all the split files will be uploaded to the specified
platform. The flow chart of the proposed file distribution mechanism is shown in

Figure 3.11.

Chapter 3 System Design and Implementation 25

Get upload file size X and file
store placement

If this file store
placement in system
and storage capacity
large than file size

Select next file store placement

Get this subsystem’s capacity C

If all file store
placement has check

Use C and y to find split ratio R
and use X and R to find split file size §

i

Upload split file to storage system

If all file upload is
complete

If upload success

Excluding this storage system and
reassign the value R and §

FIGURE 3.11: Data distribution method flow chart

3.2.3 User services

In order to solve the platform compatibility issues, we designed a web site as our
user interface. Because the web service is compatible with a variety of platforms

such as PC, mobile and tablet. Our client and server adopt JQuery and PHP

Chapter 3 System Design and Implementation 26

language. Also, we used several techniques to help us build our interface, as
shown in 3.1.

TABLE 3.1: Software & language Specification

Software & language Version
PHP 5.5.9
JQuery 3.0.0

MariaDB 10.1.14
Bootstrap 3.3.6

D3 js 3.5.16
Python 2.7.6

Besides above, we used the Responsive Web Design (RWD) to design our web
interface. The RWD is an approach to web design. This feature provides users
with a best visual and interactive experience. There are some concept in the

responsice web design:

o Mobile first: Developer create a basic web site and enhance it for smart

phone, rather than make a complex and image-heavy site work on mobile.

o The fluid grid concept: This concept calls for all element size and position
to be relative units like percentages, rather than absolute units like pixels or

points.

o Flexible images: Images need to size in relative units, so as to prevent them

from displaying outside their containing element.

o Media queries: This is CSS3 module. It allow the page to use different CSS

style rules based on device.

In order to reduce the complexity of development. We use Bootstrap as our
website framework. Bootstrap is a powerful front-end framework for faster and
easier web development. It includes HTML and CSS based design templates for

common user interface components.

The personal computer screen shown in 3.12(a). The mobile screen shown

in 3.12(b). We can seen the different kind of web layout but in the same style.

Chapter 3 System Design and Implementation 27

Because there is only one html page on server. The web will show different layout

according to user’s screen.

% 12 E8°.al 85% Mk T-43:25

HPC Software Defined admin ~

Storage
i
48O s ne - = o —
HPC Software Defined Storage LEE admin-
o rin}
& A
" * L e
[B mszEm
wam
@
. template. docx 2167k
®
B mmanpd 197.23
@ OpenStack-liberty-RDO-installation.txt 482 byt
K THUetjpg 350.4K
Biocity_demo.mpé 775MI
Y. P
(a) PC (b) Mobile

F1GURE 3.12: Responsive Web Design

The user experience is an important basis for the development of our Graphical
User Interface (GUI). Our web service using PHP as the backend language. After
the PHP is interpreted and executed, the web server sends resulting output to
its client. Also, the client need better interaction. We using JavaScript as the
front-end language. JavaScript is most commonly used as part of web browsers,
whose implementations allow client-side scripts to interact with the user, control
the browser, communicate asynchronously, and alter the document content that
is displayed. Server-side use the php and client-side use the JavaScript. These
makes the html page more dynamic. But some sql request and other contents
needed update by refresh the web page. This situation is not a good interaction

experience.

Therefore, we also use the Ajax and JQuery to solve this problem. There are

some benefits in Ajax:

o Callbacks: AJAX makes a quick process to and from the server to retrieve

and save data without posting the page back to the server.

Chapter 3 System Design and Implementation 28

\)

Browser

[@Jq.uery]

Js JavaScript

—

[n&x_Ajax]

mrws |
-

Storage cluster

F1GURE 3.13: Web Language Architecture

o Asynchronous: AJAX makes the web page asynchronous. The client browser
to avoid waiting for all data to arrive before allowing the user to act once

more.

o User friendly: Because update the web page contents is not using postback.
Ajax enabled applications will always be more responsive, faster and more

user friendly.

Asynchronous JavaScript and XML is a interrelated Web development tech-
nique used on the client-side to create asynchronous web applications. When client
sent a request to server, JavaScript will call PHP by Ajax. After process, PHP will
return a XML data to JavaScript. Then, JavaScript will refresh the designated

area. This methods will reduce duplication of data transmission on the client-side.

Chapter 4

Experimental Results

In this section, we present the experiments and system implementation results.
First, we measure speeds of each storage platform, and this measurement provides
the basis of the file distribution mechanism. Next, we measure spent time of file
split since it provides our system evaluation the extra time. Third, we compare
the time gap of file upload time. Finally, we show the user interface we designed

in the system.

4.1 Experimental Environment

We used OpenStack to build our cloud platform, which then was used to create
and manage the storage distribution. As a simple example, we integrated two
heterogeneous storage technologies. And we built the storage system by some
VMs, in which HDFS was constructed by three VMs with specifications of 4-core
CPU, 4 GB memory, and a total of 200 GB storage space. Table 4.1, 4.2, 4.3 are

our experimental environment specification.

29

Chapter 4 Experimental Results 30

TABLE 4.1: Hardware Specification

Host name CPU | Memory | Disk OS
Openstack Controller 12 cores | 64GB | 2TB | Ubuntu 14.04.02
Openstack Network 24 cores | 64GB | 2TB | Ubuntu 14.04.02
Openstack Compute0l | 64 cores | 96GB | 2TB | Ubuntu 14.04.02
Openstack Compute02 | 64 cores | 96GB | 2TB | Ubuntu 14.04.02
Openstack Block Storage | 64 cores | 48GB | 8TB | Ubuntu 14.04.02

TABLE 4.2: Virtual Machine Specification

Host name CPU Memory | Disk OS
client 4 cores vCPU 4GB 20GB | Ubuntu 14.04.02
Ceph mon 4 cores vCPU 4GB 20GB | Ubuntu 14.04.02
Ceph OSD1 4 cores vCPU 4GB 20GB | Ubuntu 14.04.02
Ceph OSD2 4 cores vCPU 4GB 20GB | Ubuntu 14.04.02
Swift controller | 4 cores vCPU 4GB 20GB | Ubuntu 14.04.02
Swift node01 4 cores vCPU 4GB 20GB | Ubuntu 14.04.02
Swift node02 4 cores vCPU 4GB 20GB | Ubuntu 14.04.02
HDFS master | 4 cores vCPU 4GB 20GB | Ubuntu 14.04.02
HDFS node01 | 4 cores vCPU 4GB 20GB | Ubuntu 14.04.02
HDEF'S node02 4 cores vCPU 4GB 20GB | Ubuntu 14.04.02

TABLE 4.3: Software Specification

Software Version
OpenStack Kilo
Ceph 10.2.1 Jewel
Swift 2.1.0
Hdfs 2.7.1

4.2 Performance

Measure upload speed

The results of upload speeds are marked on the diagram, as shown in Figure 4.1.
The blue line is Ceph, red line is HDF'S and gray line is Swift. We can see in our

configuration, Ceph and Swift has a poor upload performance in large file.

Chapter 4 Experimental Results 31

Upload time experiment

B Ceph MWHDF5 W Swift

1,600

1,400
1,200
1,000

a800

600

400

200 L

. - L
1G 2G 4G 8G 166G

Seconds

128M 256M 512M

FIGURE 4.1: Measure the upload speed

Measure network infrastructure speed

Network throughput is a key factor affecting cluster performance. To determine
our network performance, we choose iperf which uses a client-server connection
to measure TCP and UDP bandwidth as our testing tool. The results shown in
Figure 4.2. In histogram, horizontal axis is the number of tests, and vertical axis
is a transmission bandwidth. Bandwidth of Ceph is almost about 560 Mbits/s.
Bandwidth of HDFS is almost about 520 Mbits/s. Bandwidth of Swift is almost
about 545 Mbits/s. Evidently, the result is not much difference. The reason of

the result is our hosts have the same physical machine specifications.

Data distribution experiment

Our methods allow user set the v value to control the storage capacity convergence
speed. To evaluate our distribution effectiveness in different v value. We given
Ceph 2000 Gigabyte, HDFS 1000 Gigabyte, Swift 1500 Gigabyte capacity. Then
we have compare three case which ~ value equal to 0.3, 0.5 and 0.9. The result is

shown in Figure 4.3, 4.4 and 4.5.

Chapter 4 Experimental Results 32

Network Infrastructure
m Ceph mHDFS mSwift
700
600
500
,'% 400
£
= 300
200
100
0
1 2 3 4 5 6 7 8 9 10
number of tests
FIGURE 4.2: Network infrastructure speed
Storage capacity convergence speed when y = 0.3
——Ceph ——HDFS ——Swift
2500
2000
=
c]
g
2 1500
@
7
5
o]
£ 1000
o —
500
0
0 250 500 750 1000

Number of files

FIGURE 4.3: Storage capacity convergence speed when v = 0.3

In these three experiments, we given 1000 random size file around 1 Mb to
4 Gb upload to our system. We can see the large v value may caused the more
obvious convergence rate. That means if user set the large v value, the upload file

will split more ratio to the large capacity storage system.

Also, we want to know if the storage system capacity is similar, our method

Chapter 4 Experimental Results 33

Storage capacity convergence speed when y = 0.5

m—(Ceph ==—=HDFS ==—Swift

2500

2000
P
9
8

2 1500
@
7
5
#

¥ 1000
=
m
£
a
o

500

o

0 250 500 750 1000
Number of files
FIGURE 4.4: Storage capacity convergence speed when v = 0.5
Storage capacity convergence speed when y = 0.9
=——Ceph =——HDFS =—Swift

2500

2000
o
o
8

2 1500
[h]
=
5
#

2 1000

E =—

@
o

500

0

0 250 500 750 1000

Number of files

FIGURE 4.5: Storage capacity convergence speed when v = 0.9

will show what kind of distribution. In next experiment, we given Ceph 1000
Gigabyte, HDFS 900 Gigabyte, Swift 800 Gigabyte capacity, v = 0.9 and 1000
random size file around 1 Mb to 4 Gb upload to our system. The result is shown

in Figure 4.6.

As the result above, we can see that the storage platform’s capacity will become

Chapter 4 Experimental Results 34

1200

1000

800

600

400

Remaining storage space (GB)

200

Similar capacity distribution when y = 0.9

=———Ceph ==——=HDFS =—Swift

250 500 750 1000
Number of files

FIGURE 4.6: Similar capacity distribution with v = 0.9

the same. After that, the v value will not important for the file split. That means

the split data will become an equal distribution.

In cloud storage system, add a new storage nodes are a frequently occurring

situation. We designed an case that expand our storage space during the experi-

ment. The result is shown in Figure 4.7.

1200

1000

800

600

400

Remaining storage space (GB)

200

Expand a storage space with y =0.5

=——Ceph =—=HDFS =——Swift

250 500 750 1000
Number of files

FIGURE 4.7: Expand a storage space with v = 0.5

Chapter 4 Experimental Results 35

As above experiment, we add a additional 500 Gigabyte storage space on
HDEF'S when its storage space close to the 400 Gigabyte. we can can be found that
when the storage space increase, its reduction ratio has been changed. It proves
that our system will be based on the current storage capacity of the system to

split upload files.

Finally, we have compare our system upload time with the single storage sys-

tem. The result is shown in Figure 4.8.

Upload time comparison

——Ceph =——HDF5 Swift Integration

350

300

[o*]
Ln
2

200

150

Upload speed (seconds)

100

50

0 3 10 15 20 23 30 35 40 45 50
Number of files

FiGURE 4.8: Upload time comparison

This diagram data is from the Figure 4.5. We sorting the data size and pick
50 piece of data with 20 piece of data gap. This experiment clearly showing that
the complex upload speed will be homogenized by sub-system’s upload speed.

4.3 User Interface

We provided an user interface in our system. The user interface overview is shown

in Figures 4.9. There are four part of methods in this interface: Admin, Account,

Chapter 4 Experimental Results 36

Overview and Trash can. Each parts a main page include several functions. First

of all, we provide a simple account verification for web login. After verification,

@

user will entering the Overview.

Website map Browser

Admin Account Overview Trash can
Storage usage Personal usage Upload Delete
Account list Edit Download Revert
Operating Remove
Shared

FIGURE 4.9: User interface overview

Overview

Overview is the major part in this system, as shown in Figures 4.10. It includes
following basic operations: upload, download, remove, and shared folder. Also,
we provide a file link for user to download file without login. We use the AJAX,
JQuery and Bootstrapt to implement upload. That means the web can get the
upload progress and show the percentage of the progress bar to user. It can
enhance the user experience when uploading the large file. The interface also

provided Multi-file upload feature.

Trash can

Trash can let user recovery deleted files, as shown in Figures 4.11. In this page,

user can delete files manually to free their storage space. If they did not delete

Chapter 4 Experimental Results

37

files. The system will automatically delete files after seven days.

THREE eassnll frifiE

HPC Software Defined Storage

R 25
5% ravi

B srzi

B =ume

template docx 4167 KB
B mummaEpdr 19723 KB
El OpenStack-liberty-RDO-installation_txt 482 bytes
K] THUD1jpg 359 4 KB
Biocity_demo.mp4 7.75 MB

©® HPC Lab. Dept. of CS, Tunghai University 2016

B

RS

2016-06-17 15:13:59

2016-06-17 15:14:45

2016-06-17 15:15:46

2016-06-17 15:16:11

2016-06-17 15:21:51

FIGURE 4.10: Overview page

Account

ENENENCENENERE

admin -

B0 @ A E

Account shows the user information, in which the user can also edit the user

account, such as user name, password and E-mail, as shown in Figures 4.12.

Admin

Admin page is only for system administrator to visit. It provides three part of func-

tions: Storageusage, Storage pool statue and user list, as shown in Figures 4.13.

Storageusage let administrator know the total storage capacity, Storage pool statue

can see each storage nodes and their disks statue, as shown in Figures 4.14(a),

user list allow administrator to observed the user usage, as shown in Figures

4.14(b).

Chapter 4 Experimental Results

HPC Software Defined Storage TEARE f#TFN admin ~
i A

EA Kb R HE W
R file.png 1.95 KB 2016-06-17 15:12:35 8
[archive.png 299 KB 2016-06-17 15:12:35 [}
@ MSexcel png 223 KB 2016-06-17 15:12:35 B
[audiopng 6.09 KB 20160617 15:12:35 [}
[mspotpng 367 KB 2016-06-17 15:12:35 8
@ image png 292 KB 2016-06-17 15:12:35 B
[Mswordpng 3KB 2016-06-17 151235 8

© HPC Lab. Dept. of CS, Tunghai University 2016

FIGURE 4.11: Trash can page

HPC Software Defined Storage BEEH
BAZE
YS ws
— AR
EASTEE
a8118fz@hotmail.com HETHE
BT E s 3]

T EEEEEE (10.81%)

n

:401GB

i

B c===:101411MB =

FIGURE 4.12: Account page

Chapter 4 Experimental Results

39

HPC Software Defined Storage wEE admin v
e Tm = sEE
EEEES
O FEEREAEE (335%)
B c==:669G8 =5 19321 GB
/£ iR
L FEsE
FIGURE 4.13: Admin page
£ R
2 R
Storage Node1 (172.23.2.71)
@ sdb1 (ga - 3.49%) @ sdc (RS- 2.32%) i BT il R
admin admin@emailcom 5122M8
BERA - 49.97 GB R - 49.97 GB wil will@email.com 116.75MB
EEZER] - 1.74 GB EFZER] - 1.16 GB Ghao-Tung Yang otyang @thu edu tw 0
RS2 - 4823GB Fep2ERy - 48.81GB Jerry jerry1526@yahoo.com tw 4515MB
E benjrevive @gmail.com 429.00MB
Storage Node2 (172.23.2.72) cvw bear2003115@yahoo.com.tw 515.42M8
@ sdb (e - 3.36%) © sdol - a2%) nE 25881028@gmail.com 552.93M8
zF harute0012@gmail.com 48.75MB
WEERA/D - 49.97 GB AN - 49.97 GB a8118fz @ hotmail com 1411 MB
BB - 1.68 GB %R <2168 =g minicp9523@ gmail com 100268 MB
FigR2ER - 48.20 GB FIER] - 47.87GB ws 154555496 @ gmail com 987.21MB

(a) Storage pool statue

(b) User list

FIGURE 4.14: Admin functions

Chapter 5

Conclusions and Future Work

This work has built a cloud system to integrate heterogeneous storage platforms
based on the concept of software-defined storage. For the file storage, we propose
a method which support uniform data distribution to achieve storage resources
load balance. Finally, we provide a web platform which support all type of storage
space. This platform provides a high usability user interface to let user use this

system more friendly.

5.1 Concluding Remark

We have established a heterogeneous storage system that integrates three different
kind of software-defined storage kit. In addition to evaluating each of the storage
kit, we can also stimulate the local system convergence heterogeneous public cloud

storage conditions by using this environment.

For the file storage mechanism, we proposed a method which supporting uni-
form data distribution. The gamma is an user-defined value which influences the
storage space convergence speed. The larger gamma value, the faster storage
space convergence speed. This method allow user using, adding different size of

storage space and the final storage resources can achieve storage load balancing.

40

Chapter 5 Conclusions and Future Work 41

We also provide a high usability user interface. This interface is designed as a
web application and based on RESTful architecture. Therefore, no matter which
kind of device, we can provide the user a good use of screen. To enhance the user
experience, we also optimizing the user interface by using asynchronous JavaScript
and XML technology. Thereby making the web application can update the content

without the redirect, reduce resource load by refresh all the page.

5.2 Future Works

In our system, due to the lack of hardware resources quantity. Our storage cluster
is building by virtualization technology. We hope to have the opportunity to use
more physical machine environment. Then we can build more large storage system

in the future.

The back-end storage system we currently using is limited to open source lit.
We have built a platform supporting most of storage system. Therefore, we hope
to develop our system including public and private cloud as a hybrid cloud storage

environment.

For the file storage function, we hope to use erasure code to improve security
and availability of our system and provide more useful features for file operations

in our user interface.

References

1]

lan Foster, Yong Zhao, Ioan Raicu, and Shiyong Lu. Cloud computing and
grid computing 360-degree compared. In 2008 Grid Computing Environments
Workshop, pages 1-10. IEEE, 2008.

Mark D. Ryan. Cloud computing security: The scientific challenge, and a
survey of solutions. In Journal of Systems and Software, pages 2263-2268,
2013.

Alessio Botta, Walter de Donato, Valerio Persico, and Antonio Pescapé. In-
tegration of cloud computing and internet of things: A survey. Future Gen-

eration Computer Systems, 56:684—700, 2016.

Michael Armbrust, Armando Fox, Rean Griffith, Anthony D Joseph, Randy
Katz, Andy Konwinski, Gunho Lee, David Patterson, Ariel Rabkin, Ion Sto-

ica, et al. A view of cloud computing. Communications of the ACM, 53(4):
50-58, 2010.

Chengzhang Peng and Zejun Jiang. Building a cloud storage service system.

Procedia Environmental Sciences, 10, Part A(0):691-696, 2011.

Josef Spillner, Johannes Miiller, and Alexander Schill. Creating optimal cloud
storage systems. Future Generation Computer Systems, 29, Issue 4:1062-1072,
2013.

Cong Wang, Qian Wang, Kui Ren, and Wenjing Lou. Privacy-preserving
public auditing for data storage security in cloud computing. In INFOCOM,
2010 Proceedings IFEFE, pages 1-9. IEEE, 2010.

42

References 43

8]

[10]

[11]

[13]

[15]

[16]

Margaret Rouse. Software-defined storage. http://searchsdn.techtarget.

com/definition/software-defined-storage, 2013.

Simon Robinson. Software-defined storage: The reality be-
neath the hype. http://www.computerweekly.com/opinion/

Software-defined-storage-The-reality-beneath-the-hype, 2013.

Inc Coraid. The fundamentals of software-defined storage. http://san.
coraid.com/rs/coraid/images/SB-Coraid_SoftwareDefinedStorage.

pdf, 2013.

Gauri Joshi, Emina Soljanin, and Gregory Wornell. FEfficient redundancy
techniques for latency reduction in cloud systems. arXiv preprint arXiv:

1508.03599, 2015.

Hong Xia Mao, Xiao Ling Shu, Kun Huang, and Li Zhang. Research of data
reliability technology based on erasure code redundancy technology in cloud
storage. In Advanced Materials Research, volume 912, pages 1345—-1348. Trans
Tech Publ, 2014.

Santosh Kumar Majhi and Sunil Kumar Dhal. Placement of security devices in
cloud data centre network: Analysis and implementation. Procedia Computer

Science, 78:33-39, 2015.

Manish M. Potey, C.A. Dhote, and Deepak H. Sharma. Homomorphic en-
cryption for security of cloud data. Procedia Computer Science, 79:175-181,
2016.

Stephen Soltesz, Herbert Potzl, Marc E. Fiuczynski, Andy Bavier, and Larry
Peterson. Container-based operating system virtualization: a scalable, high-
performance alternative to hypervisors. In Proceedings of the 2nd ACM
SIGOPS/EuroSys European Conference on Computer Systems 2007, volume
41, Issue 3, pages 275287, 2007.

R. Uhlig, G. Neiger, D. Rodgers, and A. L. Santoni. Intel virtualization
technology. Computer, 38, Issue 5:48-56, 2005.

http://searchsdn.techtarget.com/definition/software-defined-storage
http://searchsdn.techtarget.com/definition/software-defined-storage
http://www.computerweekly.com/opinion/Software-defined-storage-The-reality-beneath-the-hype
http://www.computerweekly.com/opinion/Software-defined-storage-The-reality-beneath-the-hype
http://san.coraid.com/rs/coraid/images/SB-Coraid_SoftwareDefinedStorage.pdf
http://san.coraid.com/rs/coraid/images/SB-Coraid_SoftwareDefinedStorage.pdf
http://san.coraid.com/rs/coraid/images/SB-Coraid_SoftwareDefinedStorage.pdf

References 44

[17]

[20]

[21]

[22]

[23]

[24]

[25]

Jyotiprakash Sahoo, Subasish Mohapatra, and Radha Lath. Virtualization:
A survey on concepts, taxonomy and associated security issues. Second Inter-
national Conference on Computer and Network Technology, pages 222-226,
2010.

Joe Arnold. OpenStack Swift: Using, Administering, and Developing for Swift
Object Storage. O’Reilly Media, 2014.

Sage A. Weil, Scott A. Brandt, Ethan L. Miller, Darrell D. E. Long, and
Carlos Maltzahn. Ceph: a scalable, high-performance distributed file sys-

tem. In Proceedings of the 7th symposium on Operating systems design and

implementation, pages 307-320. USENIX Association, 2006.

Sage A. Weil, Andrew W. Leung, Scott A. Brandt, and Carlos Maltzahn.
Rados: a scalable, reliable storage service for petabyte-scale storage clusters.
Proceedings of the 2nd international workshop on Petascale data storage: held

in conjunction with Supercomputing, pages 35—44, 2007.

Hadoop hdfs. https://hadoop.apache.org/docs/rl1.2.1/hdfs_design.
html, 2016.

Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert Chansler.
The hadoop distributed file system. In 2010 IEEE 26th Symposium on Mass
Storage Systems and Technologies, 2010.

Openstack. https://www.openstack.org/, 2016.

Omar Sefraoui, Mohammed Aissaoui, and Mohsine Eleuldj. Openstack: To-
ward an open-source solution for cloud computing. International Journal of

Computer Applications, 55(3), 2012.

Qing Zheng, Haopeng Chen, Yaguang Wang, Jian Zhang, and Jiangang Duan.
Cosbench: Cloud object storage benchmark. In 4th ACM/SPEC International
Conference on Performance Engineering (ICPE 2013). ACM, 2013.

https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html
https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html
https://www.openstack.org/

References 45

[26]

[27]

28]

[29]

[30]

Jianqging Fan and Qiwei Ya. Spline methods. In Nonlinear time series: non-
parametric and parametric methods. Springer Science and Business Media,

2005.
Cubic spline. http://mathworld.wolfram.com/CubicSpline.html, 2016.

RH Bartels, JC Beatty, and BA Barsky. Hermite and cubic spline interpola-
tion. An Introduction to Splines for Use in Computer Graphics and Geometric

Modelling, pages 9-17, 1998.

Chengzhang Peng and Zejun Jiang. Building a cloud storage service system.

Procedia Environmental Sciences, 10:691-696, 2011.

Suzhen Wu, Kuan-Ching Li, Bo Mao, and Minghong Liao. Dac: Improv-
ing storage availability with deduplication-assisted cloud-of-clouds. Future

Generation Computer Systems, 2016.

Yu-Chuan Shen, Chao-Tung Yang, Shuo-Tsung Chen, and Wei-Hsun Cheng.
Implementation of software-defined storage service with heterogeneous object
storage technologies. In ASE BigData and Sociallnformatics 2015, volume
29, Issue 4. ACM, 2015.

http://mathworld.wolfram.com/CubicSpline.html

Appendix A

OpenStack Installation

I. Network Time Protocol (NTP)

$ sudo apt-get install ntp

I1. Database (Controller node setup)

$ sudo apt-get install python-mysqldb mysql-server
#===== MySQL configure =====
[mysqld]

bind-address = CONTROLLER_IP

[mysqld]

default-storage-engine = innodb
innodb_file_per_table
collation-server = utf8_general_ci
init-connect = 'SET NAMES utf8'

character-set-server = utf8

$ service mysql restart

$ mysql_secure_installation

Set root password? [Y/n] N

Remove anonymous users? [Y/n] Y

Disallow root login remotely? [Y/mn] Y

Remove test database and access to it? [Y/n] Y

Reload privilege tables now? [Y/n] Y

46

Appendix

III. Database (Compute node setup)

$ apt-get install python-mysqldb

IV. MySQL Setting

$ mysql -u root -p

CREATE DATABASE keystone;

GRANT ALL PRIVILEGES ON keystone.* TO 'keystone'@'localhost' \
IDENTIFIED BY 'KEYSTONE_DBPASS';

GRANT ALL PRIVILEGES ON keystone.* TO 'keystone'@'7' \
IDENTIFIED BY 'KEYSTONE_DBPASS';

exit

$ mysql -u root -p

CREATE DATABASE glance;

GRANT ALL PRIVILEGES ON glance.* TO 'glance'@'localhost' \
IDENTIFIED BY 'GLANCE_DBPASS';

GRANT ALL PRIVILEGES ON glance.* TO 'glance'@'}' \
IDENTIFIED BY 'GLANCE_DBPASS';

exit

$ mysql -u root -p

CREATE DATABASE nova;

GRANT ALL PRIVILEGES ON nova.* TO 'mova'@'localhost' \
IDENTIFIED BY 'NOVA_DBPASS';

GRANT ALL PRIVILEGES ON nova.* TO 'mova'@'%' \
IDENTIFIED BY 'NOVA_DBPASS';

exit

V. Messaging Server

$ apt-get install rabbitmg-server

$ rabbitmgctl change_password guest YOUR_RABBIT_PASS

V1. Identity Service Install and Configure

$ apt-get install keystone

$ openssl rand -hex 10

#===== KeyStone configure =====
#Edit /etc/keystone/keystone.conf
[DEFAULT]

Appendix

48

admin_token = ADMIN_TOKEN

log_dir = /var/log/keystone
[database]
The SQLAlchemy connection string used to connect to the database

connection = mysql://keystone:KEYSTONE_DBPASS@CONTROLLER_IP/keystone

$ rm /var/lib/keystone/keystone.db

$ su -s /bin/sh -c "keystone-manage db_sync" keystone

$ service keystone restart

$ export OS_SERVICE_TOKEN=ADMIN_TOKEN

$ export 0S_SERVICE_ENDPOINT=http://CONTROLLER_IP:35357/v2.0

$ keystone user-create --name=admin --pass=ADMIN_PASS

$ keystone role-create --name=admin

$ keystone tenant-create --name=admin --description="Admin Tenant"

$ keystone user-role-add --user=admin --tenant=admin --role=admin

$ keystone user-role-add --user=admin --role=_member_ --tenant=admin

$ keystone tenant-create --name=service --description="Service Tenant"
$ keystone service-create --name=keystone --type=identity \

--description="0penStack Identity"

$ keystone endpoint-create \
--service-id=$(keystone service-list | awk '/ identity / {print $23}') \
--publicurl=http://CONTROLLER_IP:5000/v2.0 \
--internalurl=http://CONTROLLER_IP:5000/v2.0 \
--adminurl=http://CONTROLLER_IP:35357/v2.0

$ unset OS_SERVICE_TOKEN OS_SERVICE_ENDPOINT

$ keystone --os-tenant-name admin --os-username admin --os-password ADMIN_PASS \
--os-auth-url http://CONTROLLER_IP:35357/v2.0 token-get

$ keystone --os-tenant-name admin --os-username admin --os-password ADMIN_PASS \
--os-auth-url http://CONTROLLER_IP:35357/v2.0 tenant-list

$ keystone user-list

$ keystone user-role-list

#===== admin-openrc.sh =====

Create admin-openrc.sh file

export OS_USERNAME=admin

export 0S_PASSWORD=ADMIN_PASS

export OS_TENANT_NAME=admin

export OS_AUTH_URL=http://CONTROLLER_IP:35357/v2.0

$ source admin-openrc.sh

$ keystone token-get

VII. Image Service Install and Configure

Appendix 49

$ apt-get install glance python-glanceclient

#===== Glance configure =====

#Edit /etc/glance/glance-api.conf and /etc/glance/glance-registry.conf
[database]

connection = mysql://glance:GLANCE_DBPASSQ@CONTROLLER_IP/glance
[keystone_authtoken]

auth_uri = http://CONTROLLER_IP:5000

auth_host = CONTROLLER_IP

auth_port = 35357

auth_protocol = http

admin_tenant_name = service

admin_user = glance

admin_password = GLANCE_PASS

[paste_deploy]

flavor = keystone

$ rm /var/lib/glance/glance.sqlite

$ su -s /bin/sh -c "glance-manage db_sync" glance

$ keystone user-create --name=glance --pass=GLANCE_PASS

$ keystone user-role-add --user=glance --tenant=service --role=admin
$ keystone service-create --name=glance --type=image \

--description="0OpenStack Image Service"

$ keystone endpoint-create \
--service-id=$(keystone service-list | awk '/ image / {print $2}') \
--publicurl=http://CONTROLLER_IP:9292 \
--internalurl=http://CONTROLLER_IP:9292 \
--adminurl=http://CONTROLLER_IP:9292

$ service glance-registry restart

$ service glance-api restart

$ mkdir /tmp/images

$ wget -P /tmp/images http://download.cirros-cloud.net/0.3.4/cirros-0.3.4-x86_64-disk.in

$ source admin-openrc.sh

$ glance image-create --name "cirros-0.3.4-x86_64" --disk-format qcow2 \
--container-format bare --is-public True --progress < cirros-0.3.4-x86_64-disk.img

VIII. Compute Service Install and Configure (Controller node setup)

$ apt-get install nova-api nova-cert nova-conductor nova-consoleauth \
nova-novncproxy nova-scheduler python-novaclient

#===== Nova configure =====

#Edit /etc/nova/nova.conf file

[DEFAULT]

rpc_backend = rabbit

Appendix

50

rabbit_host = CONTROLLER_IP

rabbit_password = RABBIT_PASS

my_ip = CONTROLLER_IP
vncserver_listen = CONTROLLER_IP

vncserver_proxyclient_address = CONTROLLER_IP

auth_strategy = keystone

[keystone_authtoken]

auth_uri = http://CONTROLLER_IP:5000

auth_host = CONTROLLER_IP

auth_port = 35357

auth_protocol = http

admin_tenant_name = service

admin_user = nova

admin_password = NOVA_PASS

[database]

connection = mysql://nova:NOVA_DBPASS@CONTROLLER_IP/nova

rm /var/lib/nova/nova.sqlite
su -s /bin/sh -c "nova-manage db sync" nova
keystone user-create --name=nova --pass=NOVA_PASS

keystone user-role-add --user=nova --tenant=service --role=admin

©® B B L B

keystone service-create --name=nova --type=compute \
--description="0penStack Compute"

$ keystone endpoint-create \

--service-id=$(keystone service-list | awk '/ compute / {print $2}') \
--publicurl=http://CONTROLLER_IP:8774/v2/%\(tenant_id\)s \
--internalurl=http://CONTROLLER_IP:8774/v2/%\(tenant_id\)s \
--adminurl=http://CONTROLLER_IP:8774/v2/%\(tenant_id\)s
service nova-api restart

service nova-cert restart

service nova-consoleauth restart

service nova-scheduler restart

service nova-conductor restart

¥ H H B N B

service nova-novncproxy restart

IX. Compute Service Install and Configure (Compute node setup)

apt-get install nova-compute-kvm
#===== Nova configure =====
#Edit /etc/nova/nova.conf file

[DEFAULT]

auth_strategy = keystone

Appendix

o1

rpc_backend = rabbit
rabbit_host = CONTROLLER_IP
rabbit_password = RABBIT_PASS

my_ip = COMPUTER_IP

vnc_enabled = True

vncserver_listen = 0.0.0.0
vncserver_proxyclient_address = COMPUTER_IP

novncproxy_base_url = http://CONTROLLER_IP:6080/vnc_auto.html

glance_host = CONTROLLER_IP

[databasel

The SQLAlchemy connection string used to connect to the database

connection = mysql://nova:NOVA_DBPASS@CONTROLLER_IP/nova
[keystone_authtoken]

auth_uri = http://CONTROLLER_IP:5000

auth_host = CONTROLLER_IP

auth_port = 35357

auth_protocol = http

admin_tenant_name = service

admin_user = nova

admin_password = NOVA_PASS

$ rm /var/lib/nova/nova.sqlite

$ service nova-compute restart

X. Legacy Networking (nova-network) (Controller node setup)

#===== Network configure (Controller node) =====

#Edit /etc/nova/nova.conf file

[DEFAULT]
network_api_class = nova.network.api.API
security_group_api = nova

$ service nova-api restart
$ service nova-scheduler restart

$ service nova-conductor restart

#===== Network configure (Compute node) =====
$ apt-get install nova-network nova-api-metadata
#Edit /etc/nova/nova.conf file

[DEFAULT]

network_api_class = nova.network.api.API

Appendix

52

security_group_api = nova

firewall_driver = nova.virt.libvirt.firewall.IptablesFirewallDriver
network_manager = nova.network.manager.FlatDHCPManager
network_size = 254

allow_same_net_traffic = False

multi_host = True

send_arp_for_ha = True

share_dhcp_address = True

force_dhcp_release = True

flat_network_bridge = bri100

flat_interface = INTERFACE_NAME

public_interface = INTERFACE_NAME

$ service nova-network restart

$ service nova-api-metadata restart

#===== Create initial network =====
$ source admin-openrc.sh
$ nova network-create demo-net --bridge br100 --multi-host T \

--fixed-range-v4 NETWORK_CIDR

XI. Dashboard Installation

$ apt-get install apache2 memcached libapache2-mod-wsgi openstack-dashboard

$ apt-get remove --purge openstack-dashboard-ubuntu-theme

XII. Launch an Instance

source demo-openrc.sh
ssh-keygen
nova keypair-add --pub-key ~/.ssh/id_rsa.pub demo-key

©“ B N B

nova boot --flavor ml.tiny --image cirros-0.3.4-x86_64 --nic net-id=DEMO_NET_ID \
--security-group default --key-name demo-key demo-instancel

Permit ICMP (ping):

$ nova secgroup-add-rule default icmp -1 -1 0.0.0.0/0

Permit secure shell (SSH) access:

$ nova secgroup-add-rule default tcp 22 22 0.0.0.0/0

Appendix B

Ceph Installation

II.

I1I.

IV.

Create Ceph user

ssh user@ceph-mon
sudo useradd -d /home/ceph -m ceph
sudo passwd ceph

Add root competence for every Ceph cluster

#echo "ceph ALL = (root) NOPASSWD:ALL" | sudo tee /etc/sudoers.d/ceph
#sudo chmod 0440 /etc/sudoers.d/ceph

Set SSH no password login and copy to every node

ssh-keygen -t rsa -f ~/.ssh/id_rsa -P ""

cat ~/.ssh/id_rsa.pub >> ~/.ssh/authorized_keys

#
#
ssh-copy-id ceph@mon
ssh-copy-id ceph@osdil
#

ssh-copy-id ceph@osd2

Install Ceph

$ wget -q -0- 'https://ceph.com/git/?p=ceph.git;a=blob_plain;f=keys/release.asc'
| sudo apt-key add -

$ echo deb http://ceph.com/debian-jewel/ $(lsb_release -sc) main
| sudo tee /etc/apt/sources.list.d/ceph.list

$ sudo apt-get update && sudo apt-get install -y ceph-deploy

Storage Cluster Quick Start

53

Appendix 54

$
$
$

$

© B N B

©® B B B

$

mkdir ~/ceph && cd ~/ceph
ceph-deploy new {mon-nodes}

sed -i '$a osd pool default size = 2' ceph.conf

ceph-deploy install --release jewel {mon-node} {osdl-node} {osd2-node}

ceph-deploy mon create-initial

ssh {0SD-nodel}
sudo mkdir /var/local/osd0
sudo chown ceph:ceph /var/local/osdO

exit

ssh {0SD-node2}
sudo mkdir /var/local/osdl
sudo chown ceph:ceph /var/local/osdl

exit

ceph-deploy osd prepare {0SD-nodel}:/var/local/osd0 {0SD-node2}:/var/local/osd1l
ceph-deploy osd activate {0SD-nodel}:/var/local/osd0 {0SD-node2}:/var/local/osdl

ceph-deploy admin {all nodes}

sudo chmod +r /etc/ceph/ceph.client.admin.keyring

ceph health

HEALTH_OK

Appendix C

Hadoop Installation

[. Modify hosts and hostname

sudo vim /etc/hosts

sudo vim /etc/hostname

II. Install Java JDK

sudo apt-get -y install openjdk-7-jdk
sudo 1ln -s /usr/lib/jvm/java-7-openjdk-amd64 /usr/lib/jvm/jdk

III. Add hadoop user

sudo addgroup hadoop
sudo adduser --ingroup hadoop hduser

sudo adduser hduser sudo

IV. Creat SSH authentication login

ssh-keygen -t rsa -f ~/.ssh/id_rsa -P ""

cat ~/.ssh/id_rsa.pub >> ~/.ssh/authorized_keys

V. Download hadoop

wget http://ftp.twaren.net/Unix/Web/apache/hadoop/common/hadoop-2.7.1/hadoop-
2.7.1.tar.gz
tar zxf hadoop-2.7.1.tar.gz

mv hadoop-2.7.1.tar.gz hadoop

VI. Add the environment variable

%)

Appendix

o6

VIL

vim .bashrc

export JAVA_HOME=/usr/1lib/jvm/jdk/

export HADOOP_INSTALL=/home/hduser/hadoop
export PATH=$PATH:$HADOOP_INSTALL/bin
export PATH=$PATH: $HADOOP_INSTALL/sbin
export HADOOP_MAPRED_HOME=$HADOOP_INSTALL
export HADOOP_COMMON_HOME=$HADOOP_INSTALL
export HADOOP_HDFS_HOME=$HADOOP_INSTALL
export YARN_HOME=$HADOOP_INSTALL

Set hadoop config

a. edit hadoop-env.sh

cd hadoop/etc/hadoop

vim hadoop-env.sh

export JAVA_HOME=/usr/lib/jvm/jdk/

b. edit core-site.xml

vim core-site.zxml

<property>
<name>fs.default.name</name>
<value>hdfs://hadoopl-master:9000</value>

</property>

c. edit yarn-site.xml

vim yarn-site.xml

<property>
<name>yarn.nodemanager .aux-services</name>
<value>mapreduce_shuffle</value>

</property>

<property>
<name>yarn.resourcemanager.hostname</name>
<value>hadoopl</value>

</property>

d. edit mapred-site.xml

cp mapred-site.xml.template mapred-site.xml

vim mapred-site.zxml

Appendix

57

VIII.

IX.

<property>
<name>mapreduce . framework.name</name>
<value>yarn</value>

</property>

e. edit hdfs-site.xml

mkdir -p ~/mydata/hdfs/namenode
mkdir -p ~/mydata/hdfs/datanode

vim hdfs-site.zxml

<property>

<name>dfs.replication</name>
<value>2</value>

</property>

<property>
<name>dfs.namenode.name.dir</name>
<value>/home/hduser/mydata/hdfs/namenode</value>

</property>

<property>
<name>dfs.datanode.data.dir</name>
<value>/home/hduser/mydata/hdfs/datanode</value>

</property>

f. edit slaves

vim slaves

hadoop1l
hadoop?2
hadoop3

Copy hadoop to all nodes

scp -r /home/hduser/hadoop hadoopl:/home/hduser
scp -r /home/hduser/hadoop hadoop2:/home/hduser
scp -r /home/hduser/hadoop hadoop3:/home/hduser

Format HDFS

hdfs namenode -format

Start hadoop

start-all.sh

Appendix

o8

XI. Use jps to see java running program

jps

XII. MapReduce JobTracker monitoring website

hadoop1:50030

Appendix D

Swift Installation

II.

Install and configure the controller node

$ source admin-openrc.sh

$ openstack user create --password-prompt swift

$ openstack role add --project service --user swift admin

$ openstack service create --name swift \
--description "OpenStack Object Storage" object-store

$ openstack endpoint create \
--publicurl 'http://CONTROLLER_IP:8080/v1/AUTH_%(tenant_id)s' \
--internalurl 'http://CONTROLLER_IP:8080/v1/AUTH_%(tenant_id)s' \
--adminurl http://CONTROLLER_IP:8080 \
--region RegionOne \

object-store

To install and configure the controller node components

apt-get install swift swift-proxy python-swiftclient \
python-keystoneclient python-keystonemiddleware memcached
mkdir /etc/swift
curl -o /etc/swift/proxy-server.conf \
https://git.openstack.org/cgit/openstack/swift/plain/etc/proxy-server.conf-samp
le?h=stable/kilo

vim /etc/swift/proxy-server.conf
[DEFAULT]

bind_port = 8080

user = swift

swift_dir = /etc/swift

[pipeline:main]

pipeline = catch_errors gatekeeper healthcheck proxy-logging cache container_sync

59

Appendix

60

I1I.

bulk ratelimit authtoken keystoneauth container-quotas account-quotas slo dlo

proxy-logging proxy-server

[app:proxy-server]

account_autocreate = true

[filter:keystoneauth]
use = egg:swift#keystoneauth

operator_roles = admin,user

[filter:authtoken]

paste.filter_factory = keystonemiddleware.auth_token:filter_factory
auth_uri = http://CONTROLLER_IP:5000

auth_url = http://CONTROLLER_IP:35357

auth_plugin = password

project_domain_id = default

user_domain_id = default

project_name = service

username = swift

password = SWIFT_PASS

delay_auth_decision = true

[filter:cache]

memcache_servers = 127.0.0.1:11211

Install and configure the storage nodes

apt-get install xfsprogs rsync
mkfs.xfs /dev/sdbl

#

#

mkfs.xfs /dev/sdcl

mkdir -p /srv/node/sdbil
#

mkdir -p /srv/node/sdcl

vim /etc/fstab
/dev/sdbl /srv/node/sdbl xfs noatime,nodiratime,nobarrier,logbufs=8 0 2

/dev/sdcl /srv/node/sdcl xfs noatime,nodiratime,nobarrier,logbufs=8 0 2

mount /srv/node/sdbl

mount /srv/node/sdcl

vim /etc/rsyncd.conf
uid = swift

gid = swift

log file = /var/log/rsyncd.log

pid file /var/run/rsyncd.pid

address = MANAGEMENT_INTERFACE_IP_ADDRESS

[account]

Appendix 61

IV.

max connections = 2
path = /srv/node/
read only = false

lock file = /var/lock/account.lock

[container]
max connections = 2

path = /srv/node/

read only = false

lock file = /var/lock/container.lock
[object]

max connections = 2

path = /srv/node/
read only = false

lock file = /var/lock/object.lock

vim /etc/default/rsync
RSYNC_ENABLE=true

service rsync start

Install and configure storage node components

apt-get install swift swift-account swift-container swift-object

curl -o /etc/swift/account-server.conf \
https://git.openstack.org/cgit/openstack/swift/plain/etc/account-server.conf-sa

mple?h=stable/kilo

curl -o /etc/swift/container-server.conf \
https://git.openstack.org/cgit/openstack/swift/plain/etc/container-server.conf-

sample?h=stable/kilo

curl -o /etc/swift/object-server.conf \
https://git.openstack.org/cgit/openstack/swift/plain/etc/object-server.conf-sam

ple?h=stable/kilo

curl -o /etc/swift/container-reconciler.conf \
https://git.openstack.org/cgit/openstack/swift/plain/etc/container-reconciler.c

onf-sample?h=stable/kilo

curl -o /etc/swift/object-expirer.conf \
https://git.openstack.org/cgit/openstack/swift/plain/etc/object-expirer.conf-sa

mple?h=stable/kilo

vim /etc/swift/account-server.conf
[DEFAULT]

bind_ip = CONTROLLER_IP

bind_port = 6002

user = swift

swift_dir = /etc/swift

devices = /srv/node

Appendix

62

[pipeline:main]

pipeline = healthcheck recon account-server

[filter:recon]

recon_cache_path = /var/cache/swift

vim /etc/swift/container-server.conf
[DEFAULT]

bind_ip = CONTROLLER_IP

bind_port = 6001

user = swift

swift_dir = /etc/swift

devices = /srv/node

[pipeline:main]

pipeline = healthcheck recon container-server

[filter:recon]

recon_cache_path = /var/cache/swift

vim /etc/swift/object-server.conf
[DEFAULT]

bind_ip = CONTROLLER_IP

bind_port = 6000

user = swift

swift_dir = /etc/swift

devices = /srv/node

[pipeline:main]

pipeline = healthcheck recon object-server

[filter:recon]
recon_cache_path = /var/cache/swift

recon_lock_path = /var/lock

chown -R swift:swift /srv/node
mkdir -p /var/cache/swift

chown -R swift:swift /var/cache/swift

V. Create initial rings

cd /etc/swift

swift-ring-builder account.builder create 10 3 1
swift-ring-builder account.builder \

add r1z1-CONTROLLER_IP:6002/DEVICE_NAME DEVICE_WEIGHT

swift-ring-builder account.builder rebalance

Appendix 63

VL

swift-ring-builder container.builder create 10 3 1
swift-ring-builder container.builder \
add r1z1-CONTROLLER_IP:6001/DEVICE_NAME DEVICE_WEIGHT

swift-ring-builder container.builder rebalance

swift-ring-builder object.builder create 10 3 1
swift-ring-builder object.builder \
add r1z1-CONTROLLER_IP:6000/DEVICE_NAME DEVICE_WEIGHT

swift-ring-builder object.builder rebalance

(Copy the account.ring.gz, container.ring.gz, and object.ring.gz files to the /et

c/swift directory on each storage node.)

Finalize installation

curl -o /etc/swift/swift.conf \
https://git.openstack.org/cgit/openstack/swift/plain/etc/swift.conf-sample?h=st

able/kilo

vim /etc/swift/swift.conf

[swift-hash]

swift_hash_path_suffix = HASH_PATH_SUFFIX

swift_hash_path_prefix = HASH_PATH_PREFIX

[storage-policy:0]
name = Policy-0

default = yes

(Copy the swift.conf file to the /etc/swift directory on each storage node)

chown -R swift:swift /etc/swift

service memcached restart

service swift-proxy restart

*+ #H

swift-init all start

	摘要
	Abstract
	致謝詞
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivation
	1.2 Thesis Goal and Contributions
	1.3 Thesis Organization

	2 Background Review and Related Work
	2.1 Background Review
	2.1.1 Virtualization
	2.1.2 Software-Defined Storage
	2.1.3 Swift
	2.1.4 Ceph
	2.1.5 HDFS
	2.1.6 OpenStack
	2.1.7 COSBench
	2.1.8 Cubic Spline

	2.2 Related works

	3 System Design and Implementation
	3.1 System Design Architecture
	3.2 System Implementation
	3.2.1 Storage service deployment
	3.2.2 File distribution mechanism
	3.2.3 User services

	4 Experimental Results
	4.1 Experimental Environment
	4.2 Performance
	4.3 User Interface

	5 Conclusions and Future Work
	5.1 Concluding Remark
	5.2 Future Works

	References
	Appendix
	A OpenStack Installation
	B Ceph Installation
	C Hadoop Installation
	D Swift Installation

