
東海大學

資訊工程研究所

碩士論文

指導教授: 楊朝棟博士

在異質儲存雲上實作出支援檔案均勻分佈的軟體定義

儲存服務

The Implementation of Supporting Uniform Data

Distribution with Software-Defined Storage Service on

Heterogeneous Cloud Storage

研究生: 鄭暐勳

中華民國一零五年六月

1

摘 要

近年來，資訊產業的發展趨勢逐漸邁向雲端，各種相關的技術與應用與日俱增。

隨著產業的普及，企業需求與個人使用的數量也將快速提升。與此同時，雲端

產業發展過程中所需的建置成本與使用效能將成為如何在大環境中脫穎而出的

關鍵。雲端服務主要的三大部份分別為網路、運算及儲存。其中以雲端儲存的

部分為目前使用者普及率較高的服務。如何提供低成本高效率的儲存服務將成

為我們所關心的議題。虛擬化技術為目前在此議題上的解決方案之一，透過虛

擬化技術建置軟體定義儲存﹝Software-Defined Storage, SDS﹞，將儲存資源透過

軟體集中化，整合異質環境，提升設備可用度，給予使用者客製化的使用方案，

是 SDS 技術發展中所追求的共同目標。本論文首先將針對現有的普及化 SDS

服務作使用上的效能測試，透過架設 OpenStack 作為雲端環境，於其上整合

HDFS、Ceph、Swift 等不同的儲存系統，模擬各系統於不同規模時所表現出的

效能反映。接著透過架設監控節點，獲取各個儲存節點上的資源使用率，最後

由控制節點根據所獲取的各節點資源使用率資訊，實現一套機制使檔案能夠自

動分配至適當的儲存系統，避免系統資源使用上的不均，造成叢集效能上的浪

費。

關鍵字: 雲端服務，儲存服務，軟體定義儲存，檔案分佈，異質儲存

I

Abstract

In order to improve accessibility and efficiency of a cloud system, this work pro-

posed a mechanism to integrate HDFS and Swift based on the OpenStack. We

first build a heterogeneous storage environment including HDFS and Swift based

on the open source OpenStack and then measure their performances. To integrate

storage services of HDFS and Swift, we propose a proportion-based file distribu-

tion mechanism. The proportion for file partition is dependent on the remaining

storage capacity so that we can distribute those sub files to different storage. This

mechanism also enhances the file security. In addition, a high usability user inter-

face is provided so as to make the proposed system more friendly. Experimental

results show the efficiency of our system.

Keywords: Cloud service, Storage Service, Software-Defined Storage, Data distri-

bution, Heterogeneous storage

II

致謝詞

能夠完成這篇論文，首先我要特別感謝我的指導教授楊朝棟老師，謝謝老師兩

年來的指導，帶領我學習在資訊領域上的種種知識。老師以身傳教，教導我研

究的方法和做事的態度，並指點我在學習過程中的正確方向，讓我能夠在磨練

中成長。若沒有這些經歷，我想我便無法順利完成這篇論文。

感謝特地抽空前來參加的口試委員們: 伍朝欽教授、呂芳懌教授、劉榮春教

授以及時文中教授，對於各位教授所給予的寶貴建議，因為有你們的幫助，才

能令我能將這篇論文撰寫的更加完善。

論文的完成也需要感謝實驗室的各學長學弟、同學們的協助，在碩士兩年的

生活中，幫助我解決各種問題，無論是技術上的瓶頸，或是生活上的困難，讓

我能順利完成這兩年的學業。

感謝我的父母對我從小的栽培與包容，因為有你們各方面的支持，才能讓我

無後顧之憂的在資訊領域完成碩士學業。

最後，感謝所有一路上幫助我和陪伴我的人，因為有你們的付出才能成就今

天的我，謝謝你們。

東海大學 資訊工程學系 高效能計算實驗室 鄭暐勳 105 年 07 月

III

Table of Contents

摘要 I

Abstract II

致謝詞 III

Table of Contents IV

List of Figures VI

List of Tables VII

1 Introduction 1
1.1 Motivation . 2
1.2 Thesis Goal and Contributions . 2
1.3 Thesis Organization . 3

2 Background Review and Related Work 4
2.1 Background Review . 4

2.1.1 Virtualization . 4
2.1.2 Software-Defined Storage 5
2.1.3 Swift . 6
2.1.4 Ceph . 7
2.1.5 HDFS . 10
2.1.6 OpenStack . 11
2.1.7 COSBench . 14
2.1.8 Cubic Spline . 15

2.2 Related works . 16

3 System Design and Implementation 18
3.1 System Design Architecture . 18
3.2 System Implementation . 20

3.2.1 Storage service deployment 20
3.2.2 File distribution mechanism 23
3.2.3 User services . 25

IV

TABLE OF CONTENTS V

4 Experimental Results 29
4.1 Experimental Environment . 29
4.2 Performance . 30
4.3 User Interface . 35

5 Conclusions and Future Work 40
5.1 Concluding Remark . 40
5.2 Future Works . 41

References 42

Appendix 46

A OpenStack Installation 46

B Ceph Installation 53

C Hadoop Installation 55

D Swift Installation 59

List of Figures

2.1 Swift architecture . 6
2.2 Ceph architecture . 8
2.3 HDFS architecture . 11
2.4 Openstack Kilo arch . 12
2.5 COSBench Architecture . 15
2.6 Cubic Spline Schematic Diagram 16

3.1 System Architecture . 19
3.2 Controller Architecture . 19
3.3 OpenStack Overview . 20
3.4 VM Instances . 21
3.5 Ceph environment . 21
3.6 Ceph instances . 22
3.7 Swift environment . 22
3.8 Swift instances . 22
3.9 HDFS environment . 23
3.10 HDFS instances . 23
3.11 Data distribution method flow chart 25
3.12 Responsive Web Design . 27
3.13 Web Language Architecture . 28

4.1 Measure the upload speed . 31
4.2 Network infrastructure speed . 32
4.3 Storage capacity convergence speed when γ = 0.3 32
4.4 Storage capacity convergence speed when γ = 0.5 33
4.5 Storage capacity convergence speed when γ = 0.9 33
4.6 Similar capacity distribution with γ = 0.9 34
4.7 Expand a storage space with γ = 0.5 34
4.8 Upload time comparison . 35
4.9 User interface overview . 36
4.10 Overview page . 37
4.11 Trash can page . 38
4.12 Account page . 38
4.13 Admin page . 39
4.14 Admin functions . 39

VI

List of Tables

3.1 Software & language Specification 26

4.1 Hardware Specification . 30
4.2 Virtual Machine Specification . 30
4.3 Software Specification . 30

VII

Chapter 1

Introduction

In recent years, the rapid development of the information focus on the techniques

for Cloud services [1,2] which is a concept that users can upload their requirement

via internet to Cloud environment and then receive a response by post-processing,

for example Cloud computation [3,4] and Cloud storage [5]. Most studies about the

Cloud storage focus on data pretreatment method on client side [6] or data storage

method on server side [7]. For example, cloud storage service user may concern

their data security and storage availability, they may used some data encryption

technology to improve their data security and used multiple cloud storage systems

to address the important storage availability issue in the Cloud.

Software-defined storage (SDS) [8–10] is a kind of virtualization technology for

cloud storage. It uses the software to integrate different resources. The software

enabling SDS environments can provide policy management for feature options

such as deduplication, replication, thin provisioning, snapshots and backup so as

to improve accessibility and usability. Thus, SDS is a better choice for users to

build their cloud. With out of generality, the cost and security are two important

issues.

1

Chapter 1 Introduction 2

1.1 Motivation

Cloud storage services have more convenience and provide data redundancy [11,

12]. It is an important indicators when the user selects this kind of service. How-

ever, due to the data shall be placed on the third-party storage platforms. Data

Security in the cloud storage do not easily trust by user. To solve this issue,

most of research used encrypt algorithm or erasure-code technology to improve

data security [13, 14]. In this way, they might need to have more then one cloud

storage services to distribute data. Therefore, we hope that through a variety of

open-source software to implement private heterogeneous cloud storage service.

Simulate the complex environment of cloud storage service and evaluating their

effectiveness. Next, we will propose a method so that data can be assigned to dif-

ferent storage space in the process of uploading. Finally, we will provide a graph

user interface which supports file sharing. User and administrator can operate

our storage service through the web interface, achieve cloud services any time,

anywhere access to any network device properties.

1.2 Thesis Goal and Contributions

This work will implement an integration cloud services with Software-defined stor-

age technology. In the system architecture, we will use some open-source software,

making it a better compatibility. And implement a method. The method can be

automatically assigned files to an appropriate storage system when the user upload

files. In this process, the files will be split as some small data. These data will be

store in each storage service and enhanced security. Finally, we provide a graph

user interface to manage our system.

Chapter 1 Introduction 3

1.3 Thesis Organization

Chapter 2 will describe some background information, including Virtualization,

Software-Defined storage, OpenStack, Swift, Ceph ,HDFS, COSBench and Cubic

Spline. Chapter 3 will introduce our experimental environment and methods, and

the overall architecture. Chapter 4 presents and analyses experimental results.

Finally, Chapter 5 summarizes this work by pointing out its major contributions

and directions for future work.

Chapter 2

Background Review and Related

Work

In this section, we review some background knowledges for later use of system

design and implementation.

2.1 Background Review

2.1.1 Virtualization

With virtualization, the computer’s physical resources, such as servers, network,

memory, and storage, are abstractly presented after conversion, so that users can

apply those resources in a better way than the original configuration [15, 16].

Virtualization is commonly referred to virtualized resources including comput-

ing power and data storage [17]; in this paper virtualization is specifically referred

to server virtualization. Server virtualization software technology refers to the use

of one or more of the host hardware settings. It has the flexibility to configure

the virtual hardware platform and operating system, like real hardware. In this

way, a variety of different operating environments (for example, Windows, Linux,

etc.) can operate simultaneously on the same physical host, and be independent

4

Chapter 2 Background Review and Related Work 5

as being operating in different physical hosts. Virtualization solutions can be

broadly divided into three categories: full virtualization, para-virtualization, and

hardware-assisted virtualization.

2.1.2 Software-Defined Storage

Software-Defined Storage (SDS) [8–10] is a term for the computer data storage

technology which separates storage hardware from the software that manages the

storage infrastructure. The software enabling SDS environments can provide pol-

icy management for feature options such as deduplication, replication, thin provi-

sioning, snapshots and backup. Characteristics of SDS could include any or all of

the following features:

• Abstraction of logical storage services and capabilities from the underlying

physical storage systems, and in some cases, pooling across multiple different

implementations. Since data movement is relatively expensive and slow com-

pared to compute and services (the ”data gravity” problem in infonomics),

pooling approaches sometimes suggest leaving it in place and creating a

mapping layer to it that spans arrays.

• Automation with policy-driven storage provisioning with service-level agree-

ments replacing technology details. This requires management interfaces

that span traditional storage array products, as a particular definition of

separating the ”control plane” from ”data plane”, in the spirit of OpenFlow.

Prior industry standards efforts include the Storage Management Initiative

–Specification (SMI-S) which began in 2000.

• Commodity hardware with storage logic abstracted into a software layer.

This is also described as a clustered file system for converged storage.

• Scale-out storage architecture.

Chapter 2 Background Review and Related Work 6

2.1.3 Swift

Swift [18] is a scalable redundant storage system. It is part of OpenStack com-

ponent. Objects and files are written to multiple disk drives spread throughout

servers in the data center, with the OpenStack software responsible for ensuring

data replication and integrity across the cluster. Storage clusters scale horizontally

simply by adding new servers. Should a server or hard drive fail, OpenStack repli-

cates its content from other active nodes to new locations in the cluster. Because

OpenStack uses software logic to ensure data replication and distribution across

different devices, inexpensive commodity hard drives and servers can be used.

Figure 2.1: Swift architecture

As the figure 2.1 shows that the icons with colors are the main components

of this design. All of them is independent with the current object-replicator.

The origin logic of object-replicator was split into four parts with different colors.

the components with the color of cyan are in charge of calculating hash in real-

time; the components with the color of pink are in charge of indexing the hash

of suffix and partition directories, receiving and sending requests to compare the

hash of partition or suffix, generating jobs of replicating suffix directories to the

replication-queue; The partition-monitor is in charge of checking the partition

whether to move at interval; The suffix-transporter is in charge of monitoring the

replication-queue and invoking the rsync to sync suffix directories.

Chapter 2 Background Review and Related Work 7

• Proxy Server: It is responsible for tying together the rest of the Swift ar-

chitecture. For each request, it will look up the location of the account,

container, or object in the ring and route the request accordingly. For Era-

sure Code type policies, the Proxy Server is also responsible for encoding

and decoding object data.

• Object Server: It is a very simple storage server that can store, retrieve and

delete objects stored on local devices. Objects are stored as binary files on

the filesystem with metadata stored in the file’s extended attributes (xattrs).

This requires that the underlying filesystem choice for object servers support

xattrs on files. Some filesystems, like ext3, have xattrs turned off by default.

• Container Server: The Server’s primary job is to handle listings of objects.

It doesn’t know where those object’s are, just what objects are in a specific

container. The listings are stored as sqlite database files, and replicated

across the cluster similar to how objects are. Statistics are also tracked

that include the total number of objects, and total storage usage for that

container.

• Account Server: It is very similar to the Container Server, excepting that it

is responsible for listings of containers rather than objects.

2.1.4 Ceph

Ceph [19] is a software storage platform designed to present object, block, and

file storage from a single distributed computer cluster. Ceph is a distributed stor-

age designed to provide excellent performance, reliability and scalability. Ceph

was made possible by a global community of enthusiastic storage engineers and

researchers. It is open source and freely-available. Ceph software runs on commod-

ity hardware. The system is designed to be both self-healing and self-managing

and strives to cut both administrator and budget costs.

Chapter 2 Background Review and Related Work 8

Figure 2.2: Ceph architecture

• Object Storage: Ceph is a distributed object storage and file system designed

to provide excellent performance, reliability and scalability. Its software

libraries offer client applications with direct access to the reliable autonomic

distributed object store (RADOS) object-based storage system [20], and also

provide a basis for some of Ceph’s advanced features, including RADOS

Block Device (RBD), RADOS Gateway, and the Ceph File System.

The librados software libraries enable applications written in C, C++, Java,

Python and PHP. The RADOS Gateway also exposes the object store as a

RESTful interface which can present as both native Amazon S3 and Open-

Stack Swift APIs. The librados libraries provide advanced features, includ-

ing:

– Partial or complete reads and writes

– Snapshots

– Atomic transactions with features like append, truncate and clone range

– Object level key-value mappings

• Block Storage: Ceph’s object storage system allows users to mount Ceph

as a thinly provisioned block device. Ceph’s RADOS Block Device (RBD)

provides access to block device images that are striped and replicated across

Chapter 2 Background Review and Related Work 9

the entire storage cluster. When an application writes data to Ceph using a

block device, Ceph automatically stripes and replicates the data across the

cluster. Ceph’s RADOS Block Device (RBD) also integrates with KVMs,

bringing Ceph’s virtually unconstrained storage to KVMs running on user’s

Ceph clients.

Ceph RBD interfaces with the same Ceph object storage system that pro-

vides the librados interface and the CephFS file system, and it stores block

device images as objects. Since RBD is built on top of librados, RBD inherits

librados’s capabilities, including read-only snapshots and revert to snapshot.

Ceph’s object storage system is not bounded to native binding or RESTful

APIs. User can mount Ceph as a thinly provisioned block device. When

write data to Ceph using a block device, Ceph automatically stripes and

replicates the data across the cluster. By striping images across the cluster,

Ceph increases read access performance for large block device images.

• File System: Ceph’s file system (CephFS) runs on top of the same object stor-

age system that provides object storage and block device interfaces. Ceph

provides a POSIX-compliant network file system that aims for high perfor-

mance, large data storage, and maximum compatibility with legacy appli-

cations. Compared to many object storage systems available today Ceph’s

object storage system offers a significant feature: a traditional file system

interface with POSIX semantics. Object storage systems are a significant

innovation, but they supplement rather than replace traditional file systems.

The Ceph metadata server cluster provides a service that maps the direc-

tories and file names of the file system to objects stored within RADOS

clusters. The metadata server cluster can expand, contract, and dynami-

cally rebalance the file system to distribute data evenly among cluster hosts.

As storage requirements grow for legacy applications, organizations can con-

figure their legacy applications to use the Ceph file system. This means user

can run one storage cluster for object, block and file-based data storage.

This ensures high performance and prevents heavy loads on specific hosts

within the cluster.

Chapter 2 Background Review and Related Work 10

2.1.5 HDFS

The Hadoop Distributed File System (HDFS) [21,22] is an Apache Software Foun-

dation project and a subproject of the Apache Hadoop project. HDFS is a dis-

tributed file system designed to hold very large amounts of data (terabytes or even

petabytes), and to provide high-throughput access to this information. Files are

stored in a redundant fashion across multiple machines to ensure durability to fail-

ure and high availability to parallel applications. HDFS has many similarities with

other distributed file systems, but is different in several respects. One noticeable

difference is HDFS’s write-once-read-many model that relaxes concurrency con-

trol requirements, simplifies data coherency, and enables high-throughput access.

Another unique attribute of HDFS is the viewpoint that it is usually better to

locate processing logic near the data rather than moving the data to the applica-

tion space. HDFS rigorously restricts data write to one write at a time. Bytes are

always appended to the end of a stream, and byte streams are guaranteed to be

stored in the written order.

HDFS is comprised of interconnected clusters of nodes where files and direc-

tories reside. There are two type of nodes in HDFS. One is NameNode ,and the

other is DataNode. A HDFS cluster consists of a single NameNode, which man-

ages the file system namespace and regulates client access to files. In addition,

DataNodes store data as blocks within files and satisfy client I/O requests. Within

HDFS, a given name node manages file system namespace operations like opening,

closing, and renaming files and directories. A NameNode also maps data blocks

to data nodes that handle read and write requests from HDFS clients. DataNodes

also create, delete, and replicate data blocks according to instructions from the

governing NameNode. The architecture of HDFS is shown in Figure 2.3.

Chapter 2 Background Review and Related Work 11

Figure 2.3: HDFS architecture

2.1.6 OpenStack

OpenStack [23,24] is an IaaS cloud computing project for public and private clouds.

It is free open source software released under the terms of the Apache License. The

project aims to deliver solutions for all types of clouds by being simple to imple-

ment, massively scalable, and features rich. The technology consists of a series

of interrelated projects delivering various components for a cloud infrastructure

solution. Founded by Rackspace Hosting and NASA, OpenStack has grown to

be a global software community of developers collaborating on a standard and

massively scalable open source cloud operating system. Its mission is to enable

any organization to create and offer cloud computing services running on standard

hardware.

The project is managed by the OpenStack Foundation, a non-profit corporate

entity established in September 2012 to promote, protect and empower OpenStack

software and its community.

OpenStack offers flexibility and choice through a highly engaged community of

over 6,000 individuals and over 190 companies including Rackspace, such as Intel,

AMD, Canonical, SUSE Linux, Inktank, Red Hat, Groupe Bull, Cisco, Dell, HP,

Chapter 2 Background Review and Related Work 12

IBM, NEC, VMware and Yahoo. It is portable software, but is mostly developed

and used on operating systems running Linux.

The technology consists of a series of interrelated projects that control large

pools of processing, storage, and networking resources through-out a datacenter,

all managed through a dashboard that gives administrators control while empow-

ering its users to provision resources through a web interface.

Figure 2.4: Openstack Kilo arch

In this work, we use version Kilo. The architecture is as shown in Figure 2.4.

• Identity Service (Keystone) Keystone controls all authentication in Open-

Stack. It provides a central directory of users mapped to the OpenStack

services they can access and also supports multiple forms of authentication

including standard username and password credentials, token-based systems

and AWS-style (i.e. Amazon Web Services) logins.

Chapter 2 Background Review and Related Work 13

• Image Service (Glance) Glance manage the OpenStack images. It provides

discovery, registration, and delivery services for disk and server images. It

can also be used to store and catalog an unlimited number of backups and

the stored images can be used as a template.

• Compute (Nova) Nova is virtual machine provisions. It is designed to manage

and automate pools of computer resources and can work with widely avail-

able virtualization technologies, as well as bare metal and high-performance

computing configurations. User can choose KVM, VMware, and Xen as their

hypervisor technology, together with Hyper-V and Linux container technol-

ogy such as LXC.

• Networking (Neutron) Neutron is used to manage networks and IP addresses.

It ensures the network is not a bottleneck or limiting factor in a cloud deploy-

ment, and gives users self-service ability, even over network configurations.

• Object Storage (Swift) Swift is a scalable redundant object storage system.

Data written to multiple disk drives spread throughout servers in the data

center, with the OpenStack software responsible for ensuring data replication

and integrity across the cluster.

• Block Storage (Cinder) Cinder provides volumes for virtual machines. It is

designed to allow the use of either a reference implementation to present

storage resources to end users that can be consumed by the OpenStack

Compute Project.

• Dashboard (Horizon) Horizon provides provides administrators and users a

graphical interface to access, provision, and automate cloud-based resources.

The sites built with django and also provide the API for developer to auto-

mate access or build tools to manage resources.

• Telemetry (Ceilometer) Ceilometer providing all the counters they need to

establish customer billing, across all current and future OpenStack compo-

nents.

Chapter 2 Background Review and Related Work 14

• Database (Trove) Trove is Database as a Service for OpenStack. It is de-

signed to run entirely on OpenStack, with the goal of letting users to quickly

and easily utilize the features of a relational or non-relational database with-

out the burden of handling complex administrative tasks.

• Orchestration (Heat) Heat is the main project in the OpenStack Orches-

tration program. It implements an orchestration engine to launch multiple

composite cloud applications based on templates in the form of text files

that can be treated like code.

We used Keystone, Keystone, Nova, Glance, Neutron, Cinder and Horizon in

our model.

2.1.7 COSBench

Cloud Object Storage Benchmark (COSBench) [25] is a benchmarking tool to

measure the performance of Cloud Object Storage services. COSBench has two

components, namely controller and driver, and can operate in two different modes,

either independent or managed.The architecture is as shown in Figure 2.5. In

independent mode, only driver is used. At runtime, it loads configurations and

spawns agent threads which stress the target service in a way consistent with

the user-defined usage pattern. Under managed mode, on the other hand, both

components are required in that the controller is added to supervise multiple

drivers so that they can work collaboratively in a distributed environment. In

this case, each driver will spawn an additional daemon thread for receiving and

responding controller commands.

Chapter 2 Background Review and Related Work 15

Figure 2.5: COSBench Architecture

2.1.8 Cubic Spline

In mathematics, a spline [26] is a numeric function that is piecewise-defined by

polynomial functions, and which possesses a sufficiently high degree of smoothness

at the places where the polynomial pieces connect.

In interpolating problems, spline interpolation is often preferred to polynomial

interpolation because it yields similar results to interpolating with higher degree

polynomials while avoiding instability due to Runge’s phenomenon. In computer

graphics, parametric curves whose coordinates are given by splines are popular

because of the simplicity of their construction, their ease and accuracy of evalua-

tion, and their capacity to approximate complex shapes through curve fitting and

interactive curve design.

Chapter 2 Background Review and Related Work 16

Figure 2.6: Cubic Spline Schematic Diagram

A cubic spline [27,28] is a spline constructed of piecewise third-order polynomials

which pass through a set of m control points. The second derivative of each poly-

nomial is commonly set to zero at the endpoints, since this provides a boundary

condition that completes the system of m-2 equations. This produces a so-called

”natural” cubic spline and leads to a simple tridiagonal system which can be solved

easily to give the coefficients of the polynomials. However, this choice is not the

only one possible, and other boundary conditions can be used instead.

2.2 Related works

Since VMware propose the concept of“Software-defined data center”, the research

of Software-Defined Storage development and cloud storage have become more

and more. Through the concept of virtualization, integrate hardware resource to

a system, make expansion of storage cluster easier. Through the release of every

kind of open source software, deploy a private storage cluster has become a choice

for some enterprise.

Software-Defined may be different concept. However, cloud computing is brew-

ing more possibilities. Hardware and software architecture has been gradually

Chapter 2 Background Review and Related Work 17

change. These will become the custom functions and automation of operations.

There are software-defined storage research papers and products released.

Against small organizations or personal user, there have many enterprise pro-

vide the service of cloud storage to suit every kind of requirement. Such as Win-

dows, amazon, and Google have provide different kind of service for different user

groups. How to choose the most suitable service for their self has become the

target of many research.

Chengzhang Penga and Zejun Jiangb proposed a cloud storage service system

[29], in which a solution is suggested to build a cloud storage service system based

on the open-source distributed database.

Josef Spillner propose detailed insight for life cycle of cloud service, and pro-

pose an integration platform to compatibility of every cloud storage service to

avoid single cloud service has some problems to bring about storage interrupted [6].

But the system is mainly for experience of user and link up for every kinds of cloud

platform, it’s less for processing files.

Suzhen Wu propose a method that store in different cloud service after sep-

aration of file, and propose a dissertation for copies requirement of file [30]. But

they did not talk about the method of file distribution.

Yu-Chuan Shen propose a method against different size of file upload to the

most suitable system [31]. But if user is conventional to use large or small file,

this method will bring a result that all file store in the same system.

Whether use the backend platform of private cloud or public cloud, use all

storage system in acceptable speed of I/O and security of user, is a target for

every cloud storage system. Therefore, this work will base on [31], to propose a

method of supporting file distribute average, make the system whenever expand

node, it’s can achieve to storage load balance.

Chapter 3

System Design and

Implementation

The main goal of our system is to build a cloud platform contains a variety of stor-

age technologies, and achieve a uniform distribution of data stored thereon. This

section describes our overall system design architecture with some applicatons of

open source softwares. The proposed heterogeneous storage system is implemented

based on this architecture and our proposed distribution mechanism. Moreover,

we provide a graphical user interface for users to enjoy the whole system.

3.1 System Design Architecture

In the proposed system architecture shown in Figure 3.1, OpenStack is adopted

as the basis in order to achieve storage virtualization and unified management.

Based on OpenStack, we can create a virtual machine to provide storage service,

control service and monitoring service. The storage service is the basis of the het-

erogeneous storage platforms, such as Swift, HDFS and Ceph. The control service

is built on the Controller to manage the storage services and the heterogeneous

storages. The monitor service is used to monitor the remaining capacity of each

18

Chapter 3 System Design and Implementation 19

heterogeneous storage platform. To allocate the files receieced from users, a distri-

bution mechanism is proposed for Controller. The mechanism can automatically

assign files to an appropriate storage after users upload files. The detail concept

of the Controller is shown in Figure 3.2. In addition, we also provide graphical

user interface on web browser so that users can enjoy the proposed cloud system

by web browser anytime and anywhere.

Figure 3.1: System Architecture

Figure 3.2: Controller Architecture

Chapter 3 System Design and Implementation 20

3.2 System Implementation

The implementation of the proposed system consists of three parts, the storage

service deployment, file distribution mechanism and user services.

3.2.1 Storage service deployment

By using Ubuntu OS to create virtual machines, open source software OpenStack

is applied to build and manage the proposed cloud system. The overview of the

system is shown in Figure 3.13 and Figure 3.4.

Figure 3.3: OpenStack Overview

Ceph deployment

Ceph, a free-software storage platform, implements distributed object storage and

file system, and provides interfaces for object-, block- and file-level storage. It

has excellent performance, reliability and scalability. To achieve the functions

above, Ceph has three kind of physical nodes: Object Storage Daemon (OSD),

Monitors (MON) and Metadata (MDS) service. Accroding to object storage deploy

Chapter 3 System Design and Implementation 21

Figure 3.4: VM Instances

requirements, as shown in Figure 2.2. We only need to install OSDs and MONs.

The overview of our Ceph architecture is shown in Figure 3.5 and Figure 3.6.

Figure 3.5: Ceph environment

Swift deployment

Swift is one of component in OpenStack. The overview of Swift architecture is

shown in Figure 2.1. Swift service includes proxy server, account server, container

server and object server. The proxy server relies on an authentication and au-

thorization mechanism such as the identity service, but proxy server also offers

Chapter 3 System Design and Implementation 22

Figure 3.6: Ceph instances

an internal mechanism that allows it to operate without any other OpenStack

services. According to Swift deploy requirements. We need install the following

components: identity service, proxy server, account server, container server and

object server. The Swift environment in our system is shown in Figure 3.7 and

Figure 3.8.

Figure 3.7: Swift environment

Figure 3.8: Swift instances

Chapter 3 System Design and Implementation 23

HDFS deployment

Hadoop has two kinds of nodes: master node and slave node. Master node uses Na-

meNode service to control DataNode service which is running on slave nodes. We

built a HDFS architecture consisting of one master node and two slave nodes, as

shown in Figure 3.9 and Figure 3.10. The NameNode executes file system names-

pace operations and also determines the mapping of blocks DataNodes. DataNodes

are responsible for serving read and write requests from clients of file system.

Figure 3.9: HDFS environment

Figure 3.10: HDFS instances

3.2.2 File distribution mechanism

The purpose of this section is to propose a mechanism for file distribution and

appropriate file allocation according to the environment and specification of the

heterogeneous storage platforms, Swift, HDFS and Ceph. In the step of the pro-

posed mechanism, we can observe remaining capacity information of each storage

Chapter 3 System Design and Implementation 24

platform through our monitor node. In the second step, we split each file into sev-

eral sub-files with the size similar to the proportion of the remaining capacity of

all storage platforms. Based on the above information, we allocate each sub-file to

a proper storage platform. The following mathematical equations show the detail

of the proposed mechanism..

X =
∑n

i=1 Si (3.1)

Si = X ∗Ri, i = 1 to n (3.2)

• X is the user-uploaded file size. We use it as file segmentation data.

• S is the result of the split file size. Also be uploaded to the storage system’s

actual size.

• R is the split ratio. We use it to find the value S.

• n is the number of storage system selection. In our case, we have three

storage system so that n is 3.

As above, we know that R is an important parameter which influences platform

capacity convergence speed. We show how to determine this value in the following:

Rj =
Cj − γ ∗min(C)∑n
i=1Ci − γ ∗min(C)

, j = 1 to n (3.3)

• C is the system storage capacity ratio which satisfied
∑n

i=1Ci = 1.

• γ is a filtering value satisfied 0 < γ ≤ 1.

As a result, we can get R by equation 3.3. After the process described above,

we start to split our file. Finally, all the split files will be uploaded to the specified

platform. The flow chart of the proposed file distribution mechanism is shown in

Figure 3.11.

Chapter 3 System Design and Implementation 25

Figure 3.11: Data distribution method flow chart

3.2.3 User services

In order to solve the platform compatibility issues, we designed a web site as our

user interface. Because the web service is compatible with a variety of platforms

such as PC, mobile and tablet. Our client and server adopt JQuery and PHP

Chapter 3 System Design and Implementation 26

language. Also, we used several techniques to help us build our interface, as

shown in 3.1.

Table 3.1: Software & language Specification

Software & language Version
PHP 5.5.9

JQuery 3.0.0
MariaDB 10.1.14
Bootstrap 3.3.6

D3.js 3.5.16
Python 2.7.6

Besides above, we used the Responsive Web Design (RWD) to design our web

interface. The RWD is an approach to web design. This feature provides users

with a best visual and interactive experience. There are some concept in the

responsice web design:

• Mobile first: Developer create a basic web site and enhance it for smart

phone, rather than make a complex and image-heavy site work on mobile.

• The fluid grid concept: This concept calls for all element size and position

to be relative units like percentages, rather than absolute units like pixels or

points.

• Flexible images: Images need to size in relative units, so as to prevent them

from displaying outside their containing element.

• Media queries: This is CSS3 module. It allow the page to use different CSS

style rules based on device.

In order to reduce the complexity of development. We use Bootstrap as our

website framework. Bootstrap is a powerful front-end framework for faster and

easier web development. It includes HTML and CSS based design templates for

common user interface components.

The personal computer screen shown in 3.12(a). The mobile screen shown

in 3.12(b). We can seen the different kind of web layout but in the same style.

Chapter 3 System Design and Implementation 27

Because there is only one html page on server. The web will show different layout

according to user’s screen.

(a) PC (b) Mobile

Figure 3.12: Responsive Web Design

The user experience is an important basis for the development of our Graphical

User Interface (GUI). Our web service using PHP as the backend language. After

the PHP is interpreted and executed, the web server sends resulting output to

its client. Also, the client need better interaction. We using JavaScript as the

front-end language. JavaScript is most commonly used as part of web browsers,

whose implementations allow client-side scripts to interact with the user, control

the browser, communicate asynchronously, and alter the document content that

is displayed. Server-side use the php and client-side use the JavaScript. These

makes the html page more dynamic. But some sql request and other contents

needed update by refresh the web page. This situation is not a good interaction

experience.

Therefore, we also use the Ajax and JQuery to solve this problem. There are

some benefits in Ajax:

• Callbacks: AJAX makes a quick process to and from the server to retrieve

and save data without posting the page back to the server.

Chapter 3 System Design and Implementation 28

Figure 3.13: Web Language Architecture

• Asynchronous: AJAX makes the web page asynchronous. The client browser

to avoid waiting for all data to arrive before allowing the user to act once

more.

• User friendly: Because update the web page contents is not using postback.

Ajax enabled applications will always be more responsive, faster and more

user friendly.

Asynchronous JavaScript and XML is a interrelated Web development tech-

nique used on the client-side to create asynchronous web applications. When client

sent a request to server, JavaScript will call PHP by Ajax. After process, PHP will

return a XML data to JavaScript. Then, JavaScript will refresh the designated

area. This methods will reduce duplication of data transmission on the client-side.

Chapter 4

Experimental Results

In this section, we present the experiments and system implementation results.

First, we measure speeds of each storage platform, and this measurement provides

the basis of the file distribution mechanism. Next, we measure spent time of file

split since it provides our system evaluation the extra time. Third, we compare

the time gap of file upload time. Finally, we show the user interface we designed

in the system.

4.1 Experimental Environment

We used OpenStack to build our cloud platform, which then was used to create

and manage the storage distribution. As a simple example, we integrated two

heterogeneous storage technologies. And we built the storage system by some

VMs, in which HDFS was constructed by three VMs with specifications of 4-core

CPU, 4 GB memory, and a total of 200 GB storage space. Table 4.1, 4.2, 4.3 are

our experimental environment specification.

29

Chapter 4 Experimental Results 30

Table 4.1: Hardware Specification

Host name CPU Memory Disk OS
Openstack Controller 12 cores 64GB 2TB Ubuntu 14.04.02
Openstack Network 24 cores 64GB 2TB Ubuntu 14.04.02

Openstack Compute01 64 cores 96GB 2TB Ubuntu 14.04.02
Openstack Compute02 64 cores 96GB 2TB Ubuntu 14.04.02

Openstack Block Storage 64 cores 48GB 8TB Ubuntu 14.04.02

Table 4.2: Virtual Machine Specification

Host name CPU Memory Disk OS
client 4 cores vCPU 4GB 20GB Ubuntu 14.04.02

Ceph mon 4 cores vCPU 4GB 20GB Ubuntu 14.04.02
Ceph OSD1 4 cores vCPU 4GB 20GB Ubuntu 14.04.02
Ceph OSD2 4 cores vCPU 4GB 20GB Ubuntu 14.04.02

Swift controller 4 cores vCPU 4GB 20GB Ubuntu 14.04.02
Swift node01 4 cores vCPU 4GB 20GB Ubuntu 14.04.02
Swift node02 4 cores vCPU 4GB 20GB Ubuntu 14.04.02
HDFS master 4 cores vCPU 4GB 20GB Ubuntu 14.04.02
HDFS node01 4 cores vCPU 4GB 20GB Ubuntu 14.04.02
HDFS node02 4 cores vCPU 4GB 20GB Ubuntu 14.04.02

Table 4.3: Software Specification

Software Version
OpenStack Kilo

Ceph 10.2.1 Jewel
Swift 2.1.0
Hdfs 2.7.1

4.2 Performance

Measure upload speed

The results of upload speeds are marked on the diagram, as shown in Figure 4.1.

The blue line is Ceph, red line is HDFS and gray line is Swift. We can see in our

configuration, Ceph and Swift has a poor upload performance in large file.

Chapter 4 Experimental Results 31

Figure 4.1: Measure the upload speed

Measure network infrastructure speed

Network throughput is a key factor affecting cluster performance. To determine

our network performance, we choose iperf which uses a client-server connection

to measure TCP and UDP bandwidth as our testing tool. The results shown in

Figure 4.2. In histogram, horizontal axis is the number of tests, and vertical axis

is a transmission bandwidth. Bandwidth of Ceph is almost about 560 Mbits/s.

Bandwidth of HDFS is almost about 520 Mbits/s. Bandwidth of Swift is almost

about 545 Mbits/s. Evidently, the result is not much difference. The reason of

the result is our hosts have the same physical machine specifications.

Data distribution experiment

Our methods allow user set the γ value to control the storage capacity convergence

speed. To evaluate our distribution effectiveness in different γ value. We given

Ceph 2000 Gigabyte, HDFS 1000 Gigabyte, Swift 1500 Gigabyte capacity. Then

we have compare three case which γ value equal to 0.3, 0.5 and 0.9. The result is

shown in Figure 4.3, 4.4 and 4.5.

Chapter 4 Experimental Results 32

Figure 4.2: Network infrastructure speed

Figure 4.3: Storage capacity convergence speed when γ = 0.3

In these three experiments, we given 1000 random size file around 1 Mb to

4 Gb upload to our system. We can see the large γ value may caused the more

obvious convergence rate. That means if user set the large γ value, the upload file

will split more ratio to the large capacity storage system.

Also, we want to know if the storage system capacity is similar, our method

Chapter 4 Experimental Results 33

Figure 4.4: Storage capacity convergence speed when γ = 0.5

Figure 4.5: Storage capacity convergence speed when γ = 0.9

will show what kind of distribution. In next experiment, we given Ceph 1000

Gigabyte, HDFS 900 Gigabyte, Swift 800 Gigabyte capacity, γ = 0.9 and 1000

random size file around 1 Mb to 4 Gb upload to our system. The result is shown

in Figure 4.6.

As the result above, we can see that the storage platform’s capacity will become

Chapter 4 Experimental Results 34

Figure 4.6: Similar capacity distribution with γ = 0.9

the same. After that, the γ value will not important for the file split. That means

the split data will become an equal distribution.

In cloud storage system, add a new storage nodes are a frequently occurring

situation. We designed an case that expand our storage space during the experi-

ment. The result is shown in Figure 4.7.

Figure 4.7: Expand a storage space with γ = 0.5

Chapter 4 Experimental Results 35

As above experiment, we add a additional 500 Gigabyte storage space on

HDFS when its storage space close to the 400 Gigabyte. we can can be found that

when the storage space increase, its reduction ratio has been changed. It proves

that our system will be based on the current storage capacity of the system to

split upload files.

Finally, we have compare our system upload time with the single storage sys-

tem. The result is shown in Figure 4.8.

Figure 4.8: Upload time comparison

This diagram data is from the Figure 4.5. We sorting the data size and pick

50 piece of data with 20 piece of data gap. This experiment clearly showing that

the complex upload speed will be homogenized by sub-system’s upload speed.

4.3 User Interface

We provided an user interface in our system. The user interface overview is shown

in Figures 4.9. There are four part of methods in this interface: Admin, Account,

Chapter 4 Experimental Results 36

Overview and Trash can. Each parts a main page include several functions. First

of all, we provide a simple account verification for web login. After verification,

user will entering the Overview.

Figure 4.9: User interface overview

Overview

Overview is the major part in this system, as shown in Figures 4.10. It includes

following basic operations: upload, download, remove, and shared folder. Also,

we provide a file link for user to download file without login. We use the AJAX,

JQuery and Bootstrapt to implement upload. That means the web can get the

upload progress and show the percentage of the progress bar to user. It can

enhance the user experience when uploading the large file. The interface also

provided Multi-file upload feature.

Trash can

Trash can let user recovery deleted files, as shown in Figures 4.11. In this page,

user can delete files manually to free their storage space. If they did not delete

Chapter 4 Experimental Results 37

files. The system will automatically delete files after seven days.

Figure 4.10: Overview page

Account

Account shows the user information, in which the user can also edit the user

account, such as user name, password and E-mail, as shown in Figures 4.12.

Admin

Admin page is only for system administrator to visit. It provides three part of func-

tions: Storageusage, Storage pool statue and user list, as shown in Figures 4.13.

Storageusage let administrator know the total storage capacity, Storage pool statue

can see each storage nodes and their disks statue, as shown in Figures 4.14(a),

user list allow administrator to observed the user usage, as shown in Figures

4.14(b).

Chapter 4 Experimental Results 38

Figure 4.11: Trash can page

Figure 4.12: Account page

Chapter 4 Experimental Results 39

Figure 4.13: Admin page

(a) Storage pool statue (b) User list

Figure 4.14: Admin functions

Chapter 5

Conclusions and Future Work

This work has built a cloud system to integrate heterogeneous storage platforms

based on the concept of software-defined storage. For the file storage, we propose

a method which support uniform data distribution to achieve storage resources

load balance. Finally, we provide a web platform which support all type of storage

space. This platform provides a high usability user interface to let user use this

system more friendly.

5.1 Concluding Remark

We have established a heterogeneous storage system that integrates three different

kind of software-defined storage kit. In addition to evaluating each of the storage

kit, we can also stimulate the local system convergence heterogeneous public cloud

storage conditions by using this environment.

For the file storage mechanism, we proposed a method which supporting uni-

form data distribution. The gamma is an user-defined value which influences the

storage space convergence speed. The larger gamma value, the faster storage

space convergence speed. This method allow user using, adding different size of

storage space and the final storage resources can achieve storage load balancing.

40

Chapter 5 Conclusions and Future Work 41

We also provide a high usability user interface. This interface is designed as a

web application and based on RESTful architecture. Therefore, no matter which

kind of device, we can provide the user a good use of screen. To enhance the user

experience, we also optimizing the user interface by using asynchronous JavaScript

and XML technology. Thereby making the web application can update the content

without the redirect, reduce resource load by refresh all the page.

5.2 Future Works

In our system, due to the lack of hardware resources quantity. Our storage cluster

is building by virtualization technology. We hope to have the opportunity to use

more physical machine environment. Then we can build more large storage system

in the future.

The back-end storage system we currently using is limited to open source lit.

We have built a platform supporting most of storage system. Therefore, we hope

to develop our system including public and private cloud as a hybrid cloud storage

environment.

For the file storage function, we hope to use erasure code to improve security

and availability of our system and provide more useful features for file operations

in our user interface.

References

[1] Ian Foster, Yong Zhao, Ioan Raicu, and Shiyong Lu. Cloud computing and

grid computing 360-degree compared. In 2008 Grid Computing Environments

Workshop, pages 1–10. IEEE, 2008.

[2] Mark D. Ryan. Cloud computing security: The scientific challenge, and a

survey of solutions. In Journal of Systems and Software, pages 2263–2268,

2013.

[3] Alessio Botta, Walter de Donato, Valerio Persico, and Antonio Pescapé. In-

tegration of cloud computing and internet of things: A survey. Future Gen-

eration Computer Systems, 56:684–700, 2016.

[4] Michael Armbrust, Armando Fox, Rean Griffith, Anthony D Joseph, Randy

Katz, Andy Konwinski, Gunho Lee, David Patterson, Ariel Rabkin, Ion Sto-

ica, et al. A view of cloud computing. Communications of the ACM, 53(4):

50–58, 2010.

[5] Chengzhang Peng and Zejun Jiang. Building a cloud storage service system.

Procedia Environmental Sciences, 10, Part A(0):691–696, 2011.

[6] Josef Spillner, Johannes Müller, and Alexander Schill. Creating optimal cloud

storage systems. Future Generation Computer Systems, 29, Issue 4:1062–1072,

2013.

[7] Cong Wang, Qian Wang, Kui Ren, and Wenjing Lou. Privacy-preserving

public auditing for data storage security in cloud computing. In INFOCOM,

2010 Proceedings IEEE, pages 1–9. IEEE, 2010.

42

References 43

[8] Margaret Rouse. Software-defined storage. http://searchsdn.techtarget.

com/definition/software-defined-storage, 2013.

[9] Simon Robinson. Software-defined storage: The reality be-

neath the hype. http://www.computerweekly.com/opinion/

Software-defined-storage-The-reality-beneath-the-hype, 2013.

[10] Inc Coraid. The fundamentals of software-defined storage. http://san.

coraid.com/rs/coraid/images/SB-Coraid_SoftwareDefinedStorage.

pdf, 2013.

[11] Gauri Joshi, Emina Soljanin, and Gregory Wornell. Efficient redundancy

techniques for latency reduction in cloud systems. arXiv preprint arXiv:

1508.03599, 2015.

[12] Hong Xia Mao, Xiao Ling Shu, Kun Huang, and Li Zhang. Research of data

reliability technology based on erasure code redundancy technology in cloud

storage. In Advanced Materials Research, volume 912, pages 1345–1348. Trans

Tech Publ, 2014.

[13] Santosh Kumar Majhi and Sunil Kumar Dhal. Placement of security devices in

cloud data centre network: Analysis and implementation. Procedia Computer

Science, 78:33–39, 2015.

[14] Manish M. Potey, C.A. Dhote, and Deepak H. Sharma. Homomorphic en-

cryption for security of cloud data. Procedia Computer Science, 79:175–181,

2016.

[15] Stephen Soltesz, Herbert Pötzl, Marc E. Fiuczynski, Andy Bavier, and Larry

Peterson. Container-based operating system virtualization: a scalable, high-

performance alternative to hypervisors. In Proceedings of the 2nd ACM

SIGOPS/EuroSys European Conference on Computer Systems 2007, volume

41, Issue 3, pages 275–287, 2007.

[16] R. Uhlig, G. Neiger, D. Rodgers, and A. L. Santoni. Intel virtualization

technology. Computer, 38, Issue 5:48–56, 2005.

http://searchsdn.techtarget.com/definition/software-defined-storage
http://searchsdn.techtarget.com/definition/software-defined-storage
http://www.computerweekly.com/opinion/Software-defined-storage-The-reality-beneath-the-hype
http://www.computerweekly.com/opinion/Software-defined-storage-The-reality-beneath-the-hype
http://san.coraid.com/rs/coraid/images/SB-Coraid_SoftwareDefinedStorage.pdf
http://san.coraid.com/rs/coraid/images/SB-Coraid_SoftwareDefinedStorage.pdf
http://san.coraid.com/rs/coraid/images/SB-Coraid_SoftwareDefinedStorage.pdf

References 44

[17] Jyotiprakash Sahoo, Subasish Mohapatra, and Radha Lath. Virtualization:

A survey on concepts, taxonomy and associated security issues. Second Inter-

national Conference on Computer and Network Technology, pages 222–226,

2010.

[18] Joe Arnold. OpenStack Swift: Using, Administering, and Developing for Swift

Object Storage. O’Reilly Media, 2014.

[19] Sage A. Weil, Scott A. Brandt, Ethan L. Miller, Darrell D. E. Long, and

Carlos Maltzahn. Ceph: a scalable, high-performance distributed file sys-

tem. In Proceedings of the 7th symposium on Operating systems design and

implementation, pages 307–320. USENIX Association, 2006.

[20] Sage A. Weil, Andrew W. Leung, Scott A. Brandt, and Carlos Maltzahn.

Rados: a scalable, reliable storage service for petabyte-scale storage clusters.

Proceedings of the 2nd international workshop on Petascale data storage: held

in conjunction with Supercomputing, pages 35–44, 2007.

[21] Hadoop hdfs. https://hadoop.apache.org/docs/r1.2.1/hdfs_design.

html, 2016.

[22] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert Chansler.

The hadoop distributed file system. In 2010 IEEE 26th Symposium on Mass

Storage Systems and Technologies, 2010.

[23] Openstack. https://www.openstack.org/, 2016.

[24] Omar Sefraoui, Mohammed Aissaoui, and Mohsine Eleuldj. Openstack: To-

ward an open-source solution for cloud computing. International Journal of

Computer Applications, 55(3), 2012.

[25] Qing Zheng, Haopeng Chen, Yaguang Wang, Jian Zhang, and Jiangang Duan.

Cosbench: Cloud object storage benchmark. In 4th ACM/SPEC International

Conference on Performance Engineering (ICPE 2013). ACM, 2013.

https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html
https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html
https://www.openstack.org/

References 45

[26] Jianqing Fan and Qiwei Ya. Spline methods. In Nonlinear time series: non-

parametric and parametric methods. Springer Science and Business Media,

2005.

[27] Cubic spline. http://mathworld.wolfram.com/CubicSpline.html, 2016.

[28] RH Bartels, JC Beatty, and BA Barsky. Hermite and cubic spline interpola-

tion. An Introduction to Splines for Use in Computer Graphics and Geometric

Modelling, pages 9–17, 1998.

[29] Chengzhang Peng and Zejun Jiang. Building a cloud storage service system.

Procedia Environmental Sciences, 10:691–696, 2011.

[30] Suzhen Wu, Kuan-Ching Li, Bo Mao, and Minghong Liao. Dac: Improv-

ing storage availability with deduplication-assisted cloud-of-clouds. Future

Generation Computer Systems, 2016.

[31] Yu-Chuan Shen, Chao-Tung Yang, Shuo-Tsung Chen, and Wei-Hsun Cheng.

Implementation of software-defined storage service with heterogeneous object

storage technologies. In ASE BigData and SocialInformatics 2015, volume

29, Issue 4. ACM, 2015.

http://mathworld.wolfram.com/CubicSpline.html

Appendix A

OpenStack Installation

I. Network Time Protocol (NTP)

$ sudo apt-get install ntp

II. Database (Controller node setup)

$ sudo apt-get install python-mysqldb mysql-server

#===== MySQL configure =====

[mysqld]

...

bind-address = CONTROLLER_IP

[mysqld]

...

default-storage-engine = innodb

innodb_file_per_table

collation-server = utf8_general_ci

init-connect = 'SET NAMES utf8'

character-set-server = utf8

$ service mysql restart

$ mysql_secure_installation

Set root password? [Y/n] N

Remove anonymous users? [Y/n] Y

Disallow root login remotely? [Y/n] Y

Remove test database and access to it? [Y/n] Y

Reload privilege tables now? [Y/n] Y

46

Appendix 47

III. Database (Compute node setup)

$ apt-get install python-mysqldb

IV. MySQL Setting

$ mysql -u root -p

CREATE DATABASE keystone;

GRANT ALL PRIVILEGES ON keystone.* TO 'keystone'@'localhost' \

IDENTIFIED BY 'KEYSTONE_DBPASS ';

GRANT ALL PRIVILEGES ON keystone.* TO 'keystone'@'%' \

IDENTIFIED BY 'KEYSTONE_DBPASS ';

exit

$ mysql -u root -p

CREATE DATABASE glance;

GRANT ALL PRIVILEGES ON glance.* TO 'glance'@'localhost' \

IDENTIFIED BY 'GLANCE_DBPASS ';

GRANT ALL PRIVILEGES ON glance.* TO 'glance'@'%' \

IDENTIFIED BY 'GLANCE_DBPASS ';

exit

$ mysql -u root -p

CREATE DATABASE nova;

GRANT ALL PRIVILEGES ON nova.* TO 'nova'@'localhost' \

IDENTIFIED BY 'NOVA_DBPASS ';

GRANT ALL PRIVILEGES ON nova.* TO 'nova'@'%' \

IDENTIFIED BY 'NOVA_DBPASS ';

exit

V. Messaging Server

$ apt-get install rabbitmq-server

$ rabbitmqctl change_password guest YOUR_RABBIT_PASS

VI. Identity Service Install and Configure

$ apt-get install keystone

$ openssl rand -hex 10

#===== KeyStone configure =====

#Edit /etc/keystone/keystone.conf

[DEFAULT]

...

Appendix 48

admin_token = ADMIN_TOKEN

...

log_dir = /var/log/keystone

[database]

The SQLAlchemy connection string used to connect to the database

connection = mysql://keystone:KEYSTONE_DBPASS@CONTROLLER_IP/keystone

...

$ rm /var/lib/keystone/keystone.db

$ su -s /bin/sh -c "keystone-manage db_sync" keystone

$ service keystone restart

$ export OS_SERVICE_TOKEN=ADMIN_TOKEN

$ export OS_SERVICE_ENDPOINT=http://CONTROLLER_IP:35357/v2.0

$ keystone user-create --name=admin --pass=ADMIN_PASS

$ keystone role-create --name=admin

$ keystone tenant-create --name=admin --description="Admin Tenant"

$ keystone user-role-add --user=admin --tenant=admin --role=admin

$ keystone user-role-add --user=admin --role=_member_ --tenant=admin

$ keystone tenant-create --name=service --description="Service Tenant"

$ keystone service-create --name=keystone --type=identity \

--description="OpenStack Identity"

$ keystone endpoint-create \

--service-id=$(keystone service-list | awk '/ identity / {print $2}') \

--publicurl=http://CONTROLLER_IP:5000/v2.0 \

--internalurl=http://CONTROLLER_IP:5000/v2.0 \

--adminurl=http://CONTROLLER_IP:35357/v2.0

$ unset OS_SERVICE_TOKEN OS_SERVICE_ENDPOINT

$ keystone --os-tenant-name admin --os-username admin --os-password ADMIN_PASS \

--os-auth-url http://CONTROLLER_IP:35357/v2.0 token-get

$ keystone --os-tenant-name admin --os-username admin --os-password ADMIN_PASS \

--os-auth-url http://CONTROLLER_IP:35357/v2.0 tenant-list

$ keystone user-list

$ keystone user-role-list

#===== admin-openrc.sh =====

Create admin-openrc.sh file

export OS_USERNAME=admin

export OS_PASSWORD=ADMIN_PASS

export OS_TENANT_NAME=admin

export OS_AUTH_URL=http://CONTROLLER_IP:35357/v2.0

$ source admin-openrc.sh

$ keystone token-get

VII. Image Service Install and Configure

Appendix 49

$ apt-get install glance python-glanceclient

#===== Glance configure =====

#Edit /etc/glance/glance-api.conf and /etc/glance/glance-registry.conf

[database]

connection = mysql://glance:GLANCE_DBPASS@CONTROLLER_IP/glance

[keystone_authtoken]

auth_uri = http://CONTROLLER_IP:5000

auth_host = CONTROLLER_IP

auth_port = 35357

auth_protocol = http

admin_tenant_name = service

admin_user = glance

admin_password = GLANCE_PASS

[paste_deploy]

...

flavor = keystone

$ rm /var/lib/glance/glance.sqlite

$ su -s /bin/sh -c "glance-manage db_sync" glance

$ keystone user-create --name=glance --pass=GLANCE_PASS

$ keystone user-role-add --user=glance --tenant=service --role=admin

$ keystone service-create --name=glance --type=image \

--description="OpenStack Image Service"

$ keystone endpoint-create \

--service-id=$(keystone service-list | awk '/ image / {print $2}') \

--publicurl=http://CONTROLLER_IP:9292 \

--internalurl=http://CONTROLLER_IP:9292 \

--adminurl=http://CONTROLLER_IP:9292

$ service glance-registry restart

$ service glance-api restart

$ mkdir /tmp/images

$ wget -P /tmp/images http://download.cirros-cloud.net/0.3.4/cirros-0.3.4-x86_64-disk.img

$ source admin-openrc.sh

$ glance image-create --name "cirros-0.3.4-x86_64" --disk-format qcow2 \

--container-format bare --is-public True --progress < cirros-0.3.4-x86_64-disk.img

VIII. Compute Service Install and Configure (Controller node setup)

$ apt-get install nova-api nova-cert nova-conductor nova-consoleauth \

nova-novncproxy nova-scheduler python-novaclient

#===== Nova configure =====

#Edit /etc/nova/nova.conf file

[DEFAULT]

...

rpc_backend = rabbit

Appendix 50

rabbit_host = CONTROLLER_IP

rabbit_password = RABBIT_PASS

...

my_ip = CONTROLLER_IP

vncserver_listen = CONTROLLER_IP

vncserver_proxyclient_address = CONTROLLER_IP

...

auth_strategy = keystone

[keystone_authtoken]

...

auth_uri = http://CONTROLLER_IP:5000

auth_host = CONTROLLER_IP

auth_port = 35357

auth_protocol = http

admin_tenant_name = service

admin_user = nova

admin_password = NOVA_PASS

[database]

connection = mysql://nova:NOVA_DBPASS@CONTROLLER_IP/nova

$ rm /var/lib/nova/nova.sqlite

$ su -s /bin/sh -c "nova-manage db sync" nova

$ keystone user-create --name=nova --pass=NOVA_PASS

$ keystone user-role-add --user=nova --tenant=service --role=admin

$ keystone service-create --name=nova --type=compute \

--description="OpenStack Compute"

$ keystone endpoint-create \

--service-id=$(keystone service-list | awk '/ compute / {print $2}') \

--publicurl=http://CONTROLLER_IP:8774/v2/%\(tenant_id\)s \

--internalurl=http://CONTROLLER_IP:8774/v2/%\(tenant_id\)s \

--adminurl=http://CONTROLLER_IP:8774/v2/%\(tenant_id\)s

$ service nova-api restart

$ service nova-cert restart

$ service nova-consoleauth restart

$ service nova-scheduler restart

$ service nova-conductor restart

$ service nova-novncproxy restart

IX. Compute Service Install and Configure (Compute node setup)

apt-get install nova-compute-kvm

#===== Nova configure =====

#Edit /etc/nova/nova.conf file

[DEFAULT]

...

auth_strategy = keystone

Appendix 51

...

rpc_backend = rabbit

rabbit_host = CONTROLLER_IP

rabbit_password = RABBIT_PASS

...

my_ip = COMPUTER_IP

vnc_enabled = True

vncserver_listen = 0.0.0.0

vncserver_proxyclient_address = COMPUTER_IP

novncproxy_base_url = http://CONTROLLER_IP:6080/vnc_auto.html

...

glance_host = CONTROLLER_IP

[database]

The SQLAlchemy connection string used to connect to the database

connection = mysql://nova:NOVA_DBPASS@CONTROLLER_IP/nova

[keystone_authtoken]

auth_uri = http://CONTROLLER_IP:5000

auth_host = CONTROLLER_IP

auth_port = 35357

auth_protocol = http

admin_tenant_name = service

admin_user = nova

admin_password = NOVA_PASS

$ rm /var/lib/nova/nova.sqlite

$ service nova-compute restart

X. Legacy Networking (nova-network) (Controller node setup)

#===== Network configure (Controller node) =====

#Edit /etc/nova/nova.conf file

[DEFAULT]

...

network_api_class = nova.network.api.API

security_group_api = nova

$ service nova-api restart

$ service nova-scheduler restart

$ service nova-conductor restart

#===== Network configure (Compute node) =====

$ apt-get install nova-network nova-api-metadata

#Edit /etc/nova/nova.conf file

[DEFAULT]

...

network_api_class = nova.network.api.API

Appendix 52

security_group_api = nova

firewall_driver = nova.virt.libvirt.firewall.IptablesFirewallDriver

network_manager = nova.network.manager.FlatDHCPManager

network_size = 254

allow_same_net_traffic = False

multi_host = True

send_arp_for_ha = True

share_dhcp_address = True

force_dhcp_release = True

flat_network_bridge = br100

flat_interface = INTERFACE_NAME

public_interface = INTERFACE_NAME

$ service nova-network restart

$ service nova-api-metadata restart

#===== Create initial network =====

$ source admin-openrc.sh

$ nova network-create demo-net --bridge br100 --multi-host T \

--fixed-range-v4 NETWORK_CIDR

XI. Dashboard Installation

$ apt-get install apache2 memcached libapache2-mod-wsgi openstack-dashboard

$ apt-get remove --purge openstack-dashboard-ubuntu-theme

XII. Launch an Instance

$ source demo-openrc.sh

$ ssh-keygen

$ nova keypair-add --pub-key ~/.ssh/id_rsa.pub demo-key

$ nova boot --flavor m1.tiny --image cirros-0.3.4-x86_64 --nic net-id=DEMO_NET_ID \

--security-group default --key-name demo-key demo-instance1

Permit ICMP (ping):

$ nova secgroup-add-rule default icmp -1 -1 0.0.0.0/0

Permit secure shell (SSH) access:

$ nova secgroup-add-rule default tcp 22 22 0.0.0.0/0

Appendix B

Ceph Installation

I. Create Ceph user
ssh user@ceph-mon

sudo useradd -d /home/ceph -m ceph

sudo passwd ceph

II. Add root competence for every Ceph cluster
#echo "ceph ALL = (root) NOPASSWD:ALL" | sudo tee /etc/sudoers.d/ceph

#sudo chmod 0440 /etc/sudoers.d/ceph

III. Set SSH no password login and copy to every node
ssh-keygen -t rsa -f ~/.ssh/id_rsa -P ""

cat ~/.ssh/id_rsa.pub >> ~/.ssh/authorized_keys

ssh-copy-id ceph@mon

ssh-copy-id ceph@osd1

ssh-copy-id ceph@osd2

IV. Install Ceph
$ wget -q -O- 'https://ceph.com/git/?p=ceph.git;a=blob_plain;f=keys/release.asc'

| sudo apt-key add -

$ echo deb http://ceph.com/debian-jewel/ $(lsb_release -sc) main

| sudo tee /etc/apt/sources.list.d/ceph.list

$ sudo apt-get update && sudo apt-get install -y ceph-deploy

V. Storage Cluster Quick Start

53

Appendix 54

$ mkdir ~/ceph && cd ~/ceph

$ ceph-deploy new {mon-nodes}

$ sed -i '$a osd pool default size = 2' ceph.conf

ceph-deploy install --release jewel {mon-node} {osd1-node} {osd2-node}

$ ceph-deploy mon create-initial

$ ssh {OSD-node1}

$ sudo mkdir /var/local/osd0

$ sudo chown ceph:ceph /var/local/osd0

$ exit

$ ssh {OSD-node2}

$ sudo mkdir /var/local/osd1

$ sudo chown ceph:ceph /var/local/osd1

$ exit

$ ceph-deploy osd prepare {OSD-node1}:/var/local/osd0 {OSD-node2}:/var/local/osd1

$ ceph-deploy osd activate {OSD-node1}:/var/local/osd0 {OSD-node2}:/var/local/osd1

$ ceph-deploy admin {all nodes}

$ sudo chmod +r /etc/ceph/ceph.client.admin.keyring

$ ceph health

HEALTH_OK

Appendix C

Hadoop Installation

I. Modify hosts and hostname
sudo vim /etc/hosts

sudo vim /etc/hostname

II. Install Java JDK
sudo apt-get -y install openjdk-7-jdk

sudo ln -s /usr/lib/jvm/java-7-openjdk-amd64 /usr/lib/jvm/jdk

III. Add hadoop user
sudo addgroup hadoop

sudo adduser --ingroup hadoop hduser

sudo adduser hduser sudo

IV. Creat SSH authentication login
ssh-keygen -t rsa -f ~/.ssh/id_rsa -P ""

cat ~/.ssh/id_rsa.pub >> ~/.ssh/authorized_keys

V. Download hadoop
wget http://ftp.twaren.net/Unix/Web/apache/hadoop/common/hadoop -2.7.1/hadoop-

2.7.1.tar.gz

tar zxf hadoop -2.7.1.tar.gz

mv hadoop -2.7.1.tar.gz hadoop

VI. Add the environment variable

55

Appendix 56

vim .bashrc

export JAVA_HOME=/usr/lib/jvm/jdk/

export HADOOP_INSTALL=/home/hduser/hadoop

export PATH=$PATH:$HADOOP_INSTALL/bin

export PATH=$PATH:$HADOOP_INSTALL/sbin

export HADOOP_MAPRED_HOME=$HADOOP_INSTALL

export HADOOP_COMMON_HOME=$HADOOP_INSTALL

export HADOOP_HDFS_HOME=$HADOOP_INSTALL

export YARN_HOME=$HADOOP_INSTALL

VII. Set hadoop config

a. edit hadoop-env.sh
cd hadoop/etc/hadoop

vim hadoop-env.sh

export JAVA_HOME=/usr/lib/jvm/jdk/

b. edit core-site.xml
vim core-site.xml

<property>

<name>fs.default.name</name>

<value>hdfs://hadoop1-master:9000</value>

</property>

c. edit yarn-site.xml
vim yarn-site.xml

<property>

<name>yarn.nodemanager.aux-services</name>

<value>mapreduce_shuffle </value>

</property>

<property>

<name>yarn.resourcemanager.hostname</name>

<value>hadoop1</value>

</property>

d. edit mapred-site.xml
cp mapred-site.xml.template mapred-site.xml

vim mapred-site.xml

Appendix 57

<property>

<name>mapreduce.framework.name</name>

<value>yarn</value>

</property>

e. edit hdfs-site.xml
mkdir -p ~/mydata/hdfs/namenode

mkdir -p ~/mydata/hdfs/datanode

vim hdfs-site.xml

<property>

<name>dfs.replication </name>

<value>2</value>

</property>

<property>

<name>dfs.namenode.name.dir</name>

<value>/home/hduser/mydata/hdfs/namenode</value>

</property>

<property>

<name>dfs.datanode.data.dir</name>

<value>/home/hduser/mydata/hdfs/datanode</value>

</property>

f. edit slaves
vim slaves

hadoop1

hadoop2

hadoop3

VIII. Copy hadoop to all nodes
scp -r /home/hduser/hadoop hadoop1:/home/hduser

scp -r /home/hduser/hadoop hadoop2:/home/hduser

scp -r /home/hduser/hadoop hadoop3:/home/hduser

IX. Format HDFS
hdfs namenode -format

X. Start hadoop
start-all.sh

Appendix 58

XI. Use jps to see java running program
jps

XII. MapReduce JobTracker monitoring website
hadoop1:50030

Appendix D

Swift Installation

I. Install and configure the controller node
$ source admin-openrc.sh

$ openstack user create --password-prompt swift

$ openstack role add --project service --user swift admin

$ openstack service create --name swift \

--description "OpenStack Object Storage" object-store

$ openstack endpoint create \

--publicurl 'http://CONTROLLER_IP:8080/v1/AUTH_%(tenant_id)s' \

--internalurl 'http://CONTROLLER_IP:8080/v1/AUTH_%(tenant_id)s' \

--adminurl http://CONTROLLER_IP:8080 \

--region RegionOne \

object-store

II. To install and configure the controller node components
apt-get install swift swift-proxy python-swiftclient \

python-keystoneclient python-keystonemiddleware memcached

mkdir /etc/swift

curl -o /etc/swift/proxy-server.conf \

https://git.openstack.org/cgit/openstack/swift/plain/etc/proxy-server.conf-samp

le?h=stable/kilo

vim /etc/swift/proxy-server.conf

[DEFAULT]

bind_port = 8080

user = swift

swift_dir = /etc/swift

...

[pipeline:main]

pipeline = catch_errors gatekeeper healthcheck proxy-logging cache container_sync

59

Appendix 60

bulk ratelimit authtoken keystoneauth container-quotas account-quotas slo dlo

proxy-logging proxy-server

...

[app:proxy-server]

account_autocreate = true

...

[filter:keystoneauth]

use = egg:swift#keystoneauth

operator_roles = admin,user

...

[filter:authtoken]

paste.filter_factory = keystonemiddleware.auth_token:filter_factory

auth_uri = http://CONTROLLER_IP:5000

auth_url = http://CONTROLLER_IP:35357

auth_plugin = password

project_domain_id = default

user_domain_id = default

project_name = service

username = swift

password = SWIFT_PASS

delay_auth_decision = true

...

[filter:cache]

memcache_servers = 127.0.0.1:11211

III. Install and configure the storage nodes
apt-get install xfsprogs rsync

mkfs.xfs /dev/sdb1

mkfs.xfs /dev/sdc1

mkdir -p /srv/node/sdb1

mkdir -p /srv/node/sdc1

vim /etc/fstab

/dev/sdb1 /srv/node/sdb1 xfs noatime,nodiratime,nobarrier,logbufs=8 0 2

/dev/sdc1 /srv/node/sdc1 xfs noatime,nodiratime,nobarrier,logbufs=8 0 2

mount /srv/node/sdb1

mount /srv/node/sdc1

vim /etc/rsyncd.conf

uid = swift

gid = swift

log file = /var/log/rsyncd.log

pid file = /var/run/rsyncd.pid

address = MANAGEMENT_INTERFACE_IP_ADDRESS

[account]

Appendix 61

max connections = 2

path = /srv/node/

read only = false

lock file = /var/lock/account.lock

[container]

max connections = 2

path = /srv/node/

read only = false

lock file = /var/lock/container.lock

[object]

max connections = 2

path = /srv/node/

read only = false

lock file = /var/lock/object.lock

vim /etc/default/rsync

RSYNC_ENABLE=true

service rsync start

IV. Install and configure storage node components
apt-get install swift swift-account swift-container swift-object

curl -o /etc/swift/account-server.conf \

https://git.openstack.org/cgit/openstack/swift/plain/etc/account-server.conf-sa

mple?h=stable/kilo

curl -o /etc/swift/container-server.conf \

https://git.openstack.org/cgit/openstack/swift/plain/etc/container-server.conf-

sample?h=stable/kilo

curl -o /etc/swift/object-server.conf \

https://git.openstack.org/cgit/openstack/swift/plain/etc/object-server.conf-sam

ple?h=stable/kilo

curl -o /etc/swift/container-reconciler.conf \

https://git.openstack.org/cgit/openstack/swift/plain/etc/container-reconciler.c

onf-sample?h=stable/kilo

curl -o /etc/swift/object-expirer.conf \

https://git.openstack.org/cgit/openstack/swift/plain/etc/object-expirer.conf-sa

mple?h=stable/kilo

vim /etc/swift/account-server.conf

[DEFAULT]

bind_ip = CONTROLLER_IP

bind_port = 6002

user = swift

swift_dir = /etc/swift

devices = /srv/node

Appendix 62

...

[pipeline:main]

pipeline = healthcheck recon account-server

...

[filter:recon]

recon_cache_path = /var/cache/swift

vim /etc/swift/container-server.conf

[DEFAULT]

bind_ip = CONTROLLER_IP

bind_port = 6001

user = swift

swift_dir = /etc/swift

devices = /srv/node

...

[pipeline:main]

pipeline = healthcheck recon container-server

...

[filter:recon]

recon_cache_path = /var/cache/swift

vim /etc/swift/object-server.conf

[DEFAULT]

bind_ip = CONTROLLER_IP

bind_port = 6000

user = swift

swift_dir = /etc/swift

devices = /srv/node

...

[pipeline:main]

pipeline = healthcheck recon object-server

...

[filter:recon]

recon_cache_path = /var/cache/swift

recon_lock_path = /var/lock

chown -R swift:swift /srv/node

mkdir -p /var/cache/swift

chown -R swift:swift /var/cache/swift

V. Create initial rings
cd /etc/swift

swift-ring-builder account.builder create 10 3 1

swift-ring-builder account.builder \

add r1z1-CONTROLLER_IP:6002/DEVICE_NAME DEVICE_WEIGHT

swift-ring-builder account.builder rebalance

Appendix 63

swift-ring-builder container.builder create 10 3 1

swift-ring-builder container.builder \

add r1z1-CONTROLLER_IP:6001/DEVICE_NAME DEVICE_WEIGHT

swift-ring-builder container.builder rebalance

swift-ring-builder object.builder create 10 3 1

swift-ring-builder object.builder \

add r1z1-CONTROLLER_IP:6000/DEVICE_NAME DEVICE_WEIGHT

swift-ring-builder object.builder rebalance

(Copy the account.ring.gz, container.ring.gz, and object.ring.gz files to the /et

c/swift directory on each storage node.)

VI. Finalize installation
curl -o /etc/swift/swift.conf \

https://git.openstack.org/cgit/openstack/swift/plain/etc/swift.conf-sample?h=st

able/kilo

vim /etc/swift/swift.conf

[swift-hash]

swift_hash_path_suffix = HASH_PATH_SUFFIX

swift_hash_path_prefix = HASH_PATH_PREFIX

...

[storage-policy:0]

name = Policy-0

default = yes

(Copy the swift.conf file to the /etc/swift directory on each storage node)

chown -R swift:swift /etc/swift

service memcached restart

service swift-proxy restart

swift-init all start

	摘要
	Abstract
	致謝詞
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivation
	1.2 Thesis Goal and Contributions
	1.3 Thesis Organization

	2 Background Review and Related Work
	2.1 Background Review
	2.1.1 Virtualization
	2.1.2 Software-Defined Storage
	2.1.3 Swift
	2.1.4 Ceph
	2.1.5 HDFS
	2.1.6 OpenStack
	2.1.7 COSBench
	2.1.8 Cubic Spline

	2.2 Related works

	3 System Design and Implementation
	3.1 System Design Architecture
	3.2 System Implementation
	3.2.1 Storage service deployment
	3.2.2 File distribution mechanism
	3.2.3 User services

	4 Experimental Results
	4.1 Experimental Environment
	4.2 Performance
	4.3 User Interface

	5 Conclusions and Future Work
	5.1 Concluding Remark
	5.2 Future Works

	References
	Appendix
	A OpenStack Installation
	B Ceph Installation
	C Hadoop Installation
	D Swift Installation

