fr dFcp 1 L

REATHERRBRY 7 5 7L ERIIRIE
The Implementation of Air Pollution Monitoring Service

Using Hybrid Database Converter

REREFRLTEMRXERELE

RBREEMNIELEEL FFRAT

IRAE TRt FARZW

RAMER B R ERANE AT BRE

BREEREL HEBE2MBRE -

ZmAEREE € fﬁ gy@ ?7

A ';ﬁé A

= N 3 Av

TERR 105 %= 6 B 27 A

R

"FELFTLD FORRE > SLABREC SR LT I AMOREE > A PRESE
MEFFFTHERSMETFIHT ST T B b a o d 307 ¥
L A ERERETH THEGOT R EARRAEL > B MBS T
@a@ﬁ%aﬂ@%%+aﬁﬂ,;n%ﬁgﬁﬁmﬁ,wﬁw%%gg@m

fﬁ%**“m’ ZEAE S BT BAFER bR T L

i o FHAHERT o doie X IO TR TR B A G
AL ~@w$€£miF FORRLPIHRAPFZFSAER RS
Hadoop ¥ & #1573 cnF R EFTAES I A A THEL Y § 6 o B 7 L 1
E‘—'.#F ﬁi&‘?ﬁg\#}f ﬁ—ﬂ‘i FR%Z‘E’{—JF%’%?O 'ETT}——%T}:J.}E&_ _,EIS %ﬁ’—g%‘rj—,ﬂv

PERRBTRTEF > AN A NP RART RS P ETIE o 5iF
Boid iV HE AR R 9 60% gk 0 X2 B TRELFEE paTRER
‘fF SIPRFET 1 A 758 T E e MapReduce 07 38 PRAET 4Rk ehE AT4C
:&w’4+m4@@LJmﬁw—@w%ﬂ%ﬂ/a4q+%w§gwha,@
IME TR RBRAI A HE R By > E AP A E - B A aRE o

‘?‘“

MarF: NoSQL> BB T ZAFY EFEFHE REFTHERE s

Abstract

As air pollution becomes more and more serious, pollution hurts human health,
people start to pay attention on real time value of air pollution factors monitoring
and recording analysis. Because our system need to get data from air pollution
monitoring stations usually. Among of data is growing faster, RDB (Relational
database) is hard to process huge data. In order to maintain smooth monitoring,
we must remove the historical data is not consolidated. But when we analysis
air pollution data, historical data is an important target. So, how to dump data
to NoSQL without change RDB system become an important things. In order to
achieve our goal, this paper proposed an air pollution monitoring system combines
Hadoop cluster to dump data from RDB to NoSQL and backup. This will not
only reduce the loading of RDB and also keep the service performance. Dump
data to NoSQL need to processing without affecting the real time monitoring on
air pollution monitoring system. In this part we focus on without interruption
web service. Improve 60% efficiency up, through optimization of dump method
and data backup service let service quickly restart by MapReduce and distributed
databases when RDB impaired. And through three different types of conversion
mode get the best data conversion to be our system. At last, air pollution monitor-
ing service provide message about air pollution factors variation, as an important
basis of environment detection and analysis, let people live in a more comfortable

environment.

Keywords: NoSQL, Sensors, Cloud Computing, Big Data, Hybrid database

system

II

&I

B A i hd

ﬁ

SR o JEP A ETO S PR FIERFE AR AT > & M 4o 3F

SR gk o 4 EEF LR A DR o F AR I iy EREF D RE L
WA LFIA & P fﬁ%ﬁ%rw».wﬁJ&%@,ﬁﬂZH%%ﬁﬁ%ﬁ
AT F U RA o B EREA P FA
F ¥ i o BEHIE IR HE S EANBWLAEITDER > HE A DRI o
PR« 63 ARSER e A 0 Y ande, 202 4 Y
?4¢§ﬁ%%& TR AT R e F O AR R AR R F S AL

LA RET S R A e RA TR LT L R

-

H 7
%

2

|4
it b S § e R R
ik e

FRREHT FL AL P i TOHRR S FFRRBEAXE 5 RREs
B WHmrFMEAdpr gk B2 BEA IR R { R L

fe P %3 ;;}e:c’?b%»](ﬁ §f4—s"l.b‘§‘,u}‘§)\.?ﬁ_o

A RIEHARE R R E BRI AP IR A A
RiBEA £k > § A G TS E - 5 R Fb R B T AR
%wmﬁ@»—ﬁﬂiﬁ,@ﬁﬁéﬁﬁ&&ﬂﬂ’ﬂéﬁ*?ﬁ%ﬁiﬂp
TR TR AT R E T R A
LR o

N
-

>

P

IR

B RFRREHANDEA o AREDERD 3¢ 0 RAT UERCE A F T
0 B HADH e ARG L S EER S RS G AL
AEFIFERFART 0 AFNRBFES RRBDE - A FUFRE o RE
P B A e ks R RT E LSS o

LA BFMLEE f Bon B AT S G 105 & 07 7

I1I

Table of Contents

&
Abstract

e & =2

Table of Contents
List of Figures
List of Tables

1 Introduction

1.1 Motivation.
1.2 Contributions
1.3 Thesis Organization

2 Background and Related Work

2.1 Cloud Computing and Big Data
2.1.1 Cloud Computing
212 BigData 00
21.3 NoSQL

2.2 Internet of Things and Wireless Sensor Network

2.2.1 Internet of Things (IoT)
2.3 Hadoop Ecosystem
23.1 Hadoop
232 HDFS
233 HBase
234 Hive
235 SQOOP .+ v . e
24 Related Work

3 System Design and Implementation

3.1 The Proposed System Architecture
3.2 Design Detail of Hybrid Database Converter
3.2.1 Database Controller

11

I11

IV

VI

TABLE OF CONTENTS AY
3.2.2 Data Dumping 0oL 24

3.3 Hybrid Database Converter Implementation 27
3.3.1 Cluster Deployment 28

3.3.2 Data Convter 30

3.3.3 Data Convter 31

4 Experimental Results 33
4.1 Experimental Environment 33
4.1.1 Compare massive storage methods 35

4.2 Data Dumping Experiment 35
421 Firstdump 37

422 Batchof Dump 38

4.2.3 Database Disaster Recovery 38

4.2.4 'The Three Models Compare 39

4.3 Platform Implementation. 40

5 Conclusions and Future Work 46
5.1 Concluding Remarks 47
5.2 Future Work 47
References 48
Appendix 52
A Hadoop Installation 52
B HBase Installation 56
C Hive Installation 58
D Sqoop Installation 61

List of Figures

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8
2.9
2.10

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15
4.16

Service Mode 4
Bigdata 4Vo 6
Compare with NoSQL and RDBMS 8
Three classes of IoT 9
Apache Hadoop Ecosystem 11
HDFS Architecture 13
HBase Service Architecture 14
Data Model of HBase 15
Hive Architecture 17
Sqoop basic workflowo 19
Air pollution monitoring system data accesss 22
Join hybrid database converter 23
Hybrid Database Converter 24
Transformation types between RDB and NoSQL databases 25
Three kinds of data conversion model 26
Hadoop NameNode information 28
Hadoop cluser information 29
Air pollution monitoring platform architecture 32
Spark and Hadoop Computing cluster 34
Data Transform Time 35
Variation of Three Kinds of Data 36
Data Growth of Three Kind of Data 36
First Dump Timeo 37
Batch of Dump Time 38
DB Disaster Recoveryo oL 39
Experiment Results 000 40
Air Quality 41
Daily Stats 41
Daily Values Record 42
Monthly Values Record 42
Annual Values Record 43
Regional Numerical Comparison 43
Value Record of Each Years 44
Numerical Comparison of Each Years 44

VI

LIST OF FIGURES VII

4.17 DB Controller 45

List of Tables

3.1 Software Specification

4.1 Experimental environmento
4.2 Dump Data Set

VIII

Chapter 1

Introduction

Big data application become increasingly important, cloud computing and cloud
computing also become more popular. Many existing systems will face growing
data. Big data analysis system and cloud computing can solve the problems on
big data analysis and storage However, not all systems have adequate resources to
build system on a new big data analysis system. So, many systems based on RDB
which cannot support huge data store and data processing. How to integrate RDB
and distributed apply on data analysis and system service is an important issue.

This section describes the motivation and contribution of the proposed system.

1.1 Motivation

In recent years, the rise of Big Data transform database model to NoSQL. But not
all institution have resource to change database immediately. Therefore, most of
the existing systems are still store data by RDB. With the growing data volumes,
distribute for analysis or want to get faster access on big data. Thus, governments
and enterprises start to research how to add NoSQL on the exist systems, and try
to dump data to NoSQL without affecting the quality of service. RDB system
advantage is real time analysis database data, when application query database

can using SQL function receive data.

Chapter 1 Introduction 2

1.2 Contributions

Air pollution monitoring system is a good experiment example. In recent years,
air quality of Taiwan getting worse. In order to provide the users to view the
real-time air quality data. Air pollution monitoring system must continually store
the air data from local stations and return information to database. However,
growing data let the services of air pollution monitoring system worse. So, we
propose a hybrid database converter mechanism to do transforming and processing
data without effected system services. Reduce data size of RDB and upgrade
service quality, also analyzing huge pollution factor data result on NoSQL by
using MapReduce then dump the result to RDB. We propose a hybrid database
converter mechanism to integrate RDB and NoSQL on air pollution monitoring

system.

1.3 Thesis Organization

The rest of the thesis is organized as follows. In Section 2, we review background
and related work. In Section 3, we introduce the proposed system design and
implementation. Section 4 shows our experiments and results. In Section 5, con-

clusions and future work are given.

Chapter 2

Background and Related Work

2.1 Cloud Computing and Big Data

In this chapter, we present background information relevant to our work. First,
we discuss the Cloud Computing, OpenStack and Internet of Things. Then we
discuss Big Data, NoSQL and Hadoop about Big data analysis and processing
applications. Third, we discuss HDFS, HBase Hive and Sqoop about Big data
storage and conversion tools on Hadoop . Finally, we also survey related work and

point out their relationship to our work.

2.1.1 Cloud Computing

Cloud computing [1-5]is an operation mode based on the Internet. In this way, the
resources of hardware and software can be provided to computers and other devices
on demand. Users no longer need to know the details of the cloud infrastructure,
or have the appropriate expertise and direct control. Cloud computing typically
involves with the Internet providing dynamic and easy to expand functionality,
and usually consists of virtualized resources. Cloud computing was first proposed
by Google, but this concept is not originated by it. Now, cloud computing is

well-known and it is gradually evolved by a series of technologies such as grid

Chapter 2 Background and Related Work 4

computing, utility computing and others. Due to the ever increasing capabilities
of computers and decreasing of prices of them in the recent years, more and more

companies step into this field.

The main features of cloud computing include on-demand self-service, rapid
redeployment of flexibility, shared resource pools to achieve economies of scale,
and the service can be calculated. Service providers integrate a large number of
resources to multiple users. Users can easily request or rent more resources and
adjust the use at any time and release unwanted resources to the whole structure.
Therefore, users do not need to purchase a lot of resources for short-term demand,
they just need to increase rent amount, and decrease it after completion of tasks.

As shown in 2.1, service models of cloud computing are introduced as follows.

Saas
Gl <o [

fIiCkr " NetApp-

Yaroo!, [HEs amazoncom. [openstack
% =
&

Google

B Microsoft*
| o
- ORACLE
force.com Q
redhat Py

“loudera windomaze
/

FIGURE 2.1: Service Mode

o Infrastructure as a Service (IaaS) [6]: Consumers use the underlying comput-
ing resources such as processing units, storage spaces, network elements or
intermediary software. Consumers can control the operating system, storage,
deployed applications and network elements (such as firewalls, and load bal-
ancers), but does not control the cloud infrastructure. For example: Cisco,

Hewlett-Packard (HP), EMC, VMware, Intel and IBM.

Chapter 2 Background and Related Work)

 Platform as a Service (PaaS) [7]: Consumers use the host to operate appli-
cations which just provide hardware-related environments. PaaS is mainly
hosted client application execution platforms. Programmers do not have to
install application development software, they only need to use the Inter-
net and complete program system development. Users control the operation
of the application environment, but do not control the network infrastruc-
ture, operating systems, hardware or its operations. The application plat-
form is usually infrastructure, for example: Google App Engine, Salesforce’s

Force.com and the like.

« Software as a Service (SaaS) [8,9]: Consumer use applications, but not con-
trol the operating system, network infrastructure, hardware or its operations.
SaaS is the basis of a service concept and is usually combined with commer-
cial software. It is generally regarded as enterprises to obtain the same low
cost commercial license. This concept is not only different from the tradi-
tional software packaging, deployment, and license, but also it changes the
development framework and charging methods, and maintenance mode of
software. Its concept is leasing customer service, rather than selling it. A
common pattern is to provide a set of account passwords. Examples of SaaS

include Microsoft CRM and Salesforce.com.

2.1.2 Big Data

Big data [10-12] refers to data in such a huge scale that, within a reasonable
time, cannot be manually captured, managed, processed, and organized to become
information comprehensible by human. Compared with the individual analysis of
small independent data sets with the same total amount of data, after combining
the various small data sets as a big data set, additional information and data

relevance can be retrieved and used to detect trends, determine product quality

Chapter 2 Background and Related Work 6

and real-time messages, etc. Such use is the major reason for the prevalence of big

data.

IDC defines big data as a new generation of technologies and architectures
designed to economically extract value from very large volumes of a wide variety of
data by enabling high velocity capture, discovery and analysis. Big data definitions

are summarized into four “V”, as show in Figure 2.2.

Volume | Velocity

Variety | Veracity

@
O

FIGURE 2.2: Big data 4V

That combination of greater capacity (volume), higher diversity (variety),
faster formation rate (velocity), and the first three “V” promoted the fourth one

- the value (value) as described below:

o Volume: A large amount of data generated, processed, and stored, and it’s

the literal meaning of big data with massive amount of information.

o Velocity: For example: market forecasting is aging fast and a prediction will

be meaningless if not made in time; so timeliness of big data is very critical.

o Variety: It refers to the form of information, including text, audio, video,

web, and streaming data that are structural or non-structural.

Chapter 2 Background and Related Work 7

o Veracity: If the information is from diverse sources, we need to discuss the
reliability and quality of the information. If the data have problem, the

results of analysis cannot be trusted.

Nowadays the big data processing and analysis application is becoming a new
merging point of information technology applications. The mobile Internet net-
working, social networking, digital home, IoT, and e-commerce comprise the next
generation I'T applications, and these applications will continue to generate a huge

amount of data.

2.1.3 NoSQL

NoSQL [13-15] appeared in 1998. It is developed by Carlo Strozzi as a lightweight,
open source, relationship database without SQL function. In 2009, Eric Evans
from Rackspace’s put forward the concept of NoSQL once again. In this time,
NoSQL mainly refers to non-relational, distributed, and not provide ACID . [16]
repository model. The slogan of NoSQL East conference held in Atlanta is “se-
lect fun, profit from real world where relational= false.” Therefore, the most com-
mon explanation is “non-associated type”, which emphasizes the advantages of
key-value stores and document repository, rather than simply opposes Relational
Database Management System (RDBMS). The full name of NoSQL is Not Only
SQL. It is different from relational database management system design, as shown

in Figure 2.3.

Chapter 2 Background and Related Work 8

Writes are fully parallel Replication, locking and
And is not blocked by Consistency check during
Node communication. Two phase commit.
L
0.‘ "’0
o o,
0’. "0
". ’.’
0” “’
b

. Write 20 : Write 20
1 Read Entity 1 Entities 1 Read Entity 1 -

Client 2 1 ‘ Client 1 }

F1GURE 2.3: Compare with NoSQL and RDBMS

Implementation of NoSQL can use either hard disk or RAM for storage. Re-
lational database are not very efficient for mechanisms with frequent reading and
writing or mechanisms of writing few but huge data. NoSQL structures usually
provide weak consistency guarantees, such as eventual consistency or transactions
limited to single data items. It use decentralized structure with data redundantly
stored in multiple servers. It often uses a distributed hash table; in this way, the
system can be easily scaled to add more servers and to implement fault tolerance
for servers. The famous applications of NoSQL include BigTable, which is inde-
pendently developed by Google, and Dynamo by Amazon; besides, in the open

source projects, there are HBase and Apache Cassandra.

2.2 Internet of Things and Wireless Sensor Net-

work

2.2.1 Internet of Things (IoT)

The IoT [17,18] is based on the Internet, traditional telecommunication network
and other information carriers to enable all ordinary physical objects, which can

be independently addressed, achieve interoperability of networks. IoT is machine

Chapter 2 Background and Related Work 9

to machine (MTM) with the Internet. It covers everything in the world by using
RFID and wireless data communication technology. IoT generally uses a wireless
network; since the number of devices around everyone can reach 1000 to 5000,
so IoT might include more than 500 Trillion objects. BY the IoT, everyone can
use electronic tags to find real objects on the Internet and find out their specific
locations. Users can use a central computer to manage and control machines,
equipment and personnel; they can even remote control house devices and cars,
and search locations to prevent goods from stealing. By [oT, systems with GPS
can communicate with each other and share information. Figure 2.4 shows three

classes of IoT.

Environment Intelligent Intelligent Food
Monitor Traffic House
Application layer
Cloud Computing Service
Open Platform H Platform J Platform

0T Data Center 0T Management

Network Center
layer
2G/3G Wi-Fi WiMAX ZigBee
RFID WSN
Perception
layer
Sensor Reader IP Cam MEMS

FIGURE 2.4: Three classes of IoT

IoT can be divided into three classes:

o Perception layer: Perception and monitoring carried out for different scenar-

ios; it has sensing, identification, and communication capabilities.

o Network layer: It transmits the data collected from the perception layer to

the Internet.

o Application layer: According to different requirement, experts of IoT and
industry work together to develop the appropriate integral application soft-

ware.

Chapter 2 Background and Related Work 10

Currently, many governments have already announced that the IoT will be
raised from general business practices to national strategic industry. In China,
people are optimistic about the potential of IoT development, and it has been listed
as a key project of the 12th five-year plan. Meanwhile, Japan and South Korea and
other countries also actively commit to the development of IoT: US intelligence
Earth program, Europe’s i2010 policy, Japan’s I-japan plan, the new network in
South Korea, and Perception mainland in China, all of them are trajectory toward
[oT. The business sector also develops new products for this trend. So IoT will
have a revolutionary impact on the future of human life. Among them, industries

relevant with the safety of people are facing with a major revolution.

2.3 Hadoop Ecosystem

2.3.1 Hadoop

Hadoop [19,20] is an open source project under the Apache Software Foundation.
The initial prototype of Hadoop-Nutch was developed for web searching by Doug
Cutting and Mike Cafarella. In 2006, Doug Cutting joined Yahoo and set up a pro-
fessional team to continue research and development of this technology, officially
named as Hadoop. Hadoop is written in java; it can provide a distributed com-
puting environment for huge data. The concept of Hadoop architecture is based
on the BigTable and Google File System papers published by Google. Currently,
Yahoo! and other companies have teams for Hadoop development; and more and
more companies and organizations publicly express the intention to use Hadoop

as cloud computing platform.

Hadoop includes a number of sub-projects. Hadoop MapReduce provides a
distributed computing environment; Hadoop Distributed File System provides a
lot of storage space; and HBase provides a BigTable-like distributed database.

There are other parts that can be used to link together these three main parts,

Chapter 2 Background and Related Work 11

providing easy integration of cloud services, as shown in Figure 2.5. The following

section will introduce Hadoop Distributed File System (HDFS) and HBase.

Ambari
Provisioning, Managing and Monitoring Hadoop Cluster
. . R .
Sqoop Oozie Pig Mahqut Hive
Data Workflow || Scripting || Machine | Connector) "
Exchange orktiow PUNE || |earning || Statisties uery HBase
Columnar
Zookeeper Store
Coordination
YARN Map Reduce v2
Distributed Processing Framework
Flume
Log
collector HDFS
Hadoop Distributed File System
FIGURE 2.5: Apache Hadoop Ecosystem
2.3.2 HDFS

Hadoop is a cluster system, which is an integrated super computer expanded from
a single server to thousands of machines. In this cluster the information is stored
in HDFS, which integrates dispersed storage resources into a fault-tolerant, high
efficiency, large capacity, and remote backup storage environment. In Hadoop sys-
tems, the large amount of data and temporary files generated during computation

are stored on this distributed file system.

o NameNode: It is responsible for maintaining the HDFS File System Names-
pace. It records the mapping relations of a file and its blocks. It also records
blocks and data nodes in the blocks for Hadoop cluster configuration man-
agement and backup management of the file blocks. Metadata of NameNode

is stored in the memory without any paging operation of the virtual memory.

o DataNode: It is the server where file blocks are actually stored. It is used

for recording metadata of the blocks. The most important information it

Chapter 2 Background and Related Work 12

provides is the mapping relation for the location of data in the local file
system. It provides metadata to clients, and it will periodically transmit the

status of existing blocks to NameNode.

Through HDFS, Hadoop can store tera bytes (TB) or peta bytes (PB) of big
data. It does not need to worry about the size of a single file exceeding the size
of a disk sector, or data lost caused by damaged machines. HDFS has not been
integrated into the Linux kernel, and it only can operate files via dfs shell command
of Hadoop, or use FUSE to be treated as a file system under the user space. All
systems under Hadoop are integrated with HDFS as a data storage, backup, and
sharing medium. As mentioned earlier, when the system is assigning computing
tasks, MapReduce will assign computing task to the nodes stored with the data
for operation, thus reducing the time to transmit the large amount of data via

networks.

e HDFS Architecture
HDFS is master/slave architecture [21,22], composed of two roles, i.e., the
name node and data nodes.Name node is responsible for managing and stor-
ing permissions for each file attribute information (such as metadata and
namespace) in the file system. The data node usually consists of hundreds
of nodes. A file is divided as several smaller blocks and stored in different
data nodes; each block has several replicas of data stored in different nodes.
When one of the node is damaged, data stored the file system still can be in-
tact. The NameNode needs to record the locations for every file. When there
are needs to access files, it coordinates the DataNode for responses. When a
node is damaged, NameNode will automatically move and copy data. Figure

2.6 shows HDFS architecture.

Chapter 2 Background and Related Work 13

Metadata ODS‘__..v[Namenode i_‘mzt;c;jz;/NdaaTae,;eplicas,...):

-
——-—
-

Client
lock ops
Read / Datanodes Datanodes
!
@ = Ee4---—---- ~m @ (@ .l
Replication
B3 3 = b /’ [Blocks
N\ \ J
Y |
Rackl \Write Rack2
Client

FIGURE 2.6: HDFS Architecture

A file can be thought as a treasure map. Inside the machine a MasterNode
is used to manage other slave/worker nodes. In order to securely store the
treasure map, it is divided into several pieces (blocks), typically 128 MB a
piece; and each piece is copied into three copies (data replication) and these
pieces are distributed to slave nodes for storage. The slaves use “DatalN-
ode” program to store the treasure map, while the master uses “NameNode”
program to monitor the status of the treasure map store in slaves. If the
master’s program, NameNode, finds a piece of the treasure map in some
DataNode is missing or damaged, it will find the other piece of it on the
other DataNode and duplicate it to keep three replicas of every piece of the

treasure map in the whole system.

2.3.3 HBase

Apache HBase [23-25] is a project undertaken by Powerset to deal with the huge
amount of data generated by natural language searching. But now it is already
a top-level project of the Apache Foundation. HBase runs on HDFS and has

attracted widespread attention. Facebook chose HBase to implement its messaging

Chapter 2 Background and Related Work 14

platform in November 2010. HBase is distributed database on HDF'S architecture,
and is different from general relational database. It is modelled with reference
of Google’s BigTable, and is programmed in Java. It is fault-tolerant to store
massive sparse data. The table from HBase can be used as inputs and outputs
in MapReduce tasks. It can be accessed through the Java API, and it also can
be accessed by REST, Avro or the Thrift API. Today, it has been used in a
number of data-driven sites, including Facebook’s messaging platform. In order
to conveniently disperse data and operation work, the entire data table is divided
into many regions. One region is composed of one or more columns, which can be
stored in different hosts called as the region servers; master server is used to record
a region corresponding to each region server; besides, there is the master server to
record every region server corresponding to every region. The master server will
automatically reassign regions on the region server that cannot provide services to

another region server. The HBase service architecture is shown in Figure 2.7.

MemStore Store

StoreFile | | StoreFile

HRegion | |l W H |HFiIe| |HFiIe|

*H

: MemStore
|:> HRegion | | > StoreFile
Client o » |HFile |
: >
0 j.
I En : % IE> HRegion | [l W .> MemStore Store
-Put() : -b% » StoreFile | | StoreFile
-delete() Z |HFiIe | |HFiIe|
. KeyValue’s -
-incr() T v
Log synci)
Flusher "
og
Log B N AEBes N BN
lush HEl EEENE 'HEENEE
Flusher rollwriter()

FIGURE 2.7: HBase Service Architecture

e Data Model
HBase can provide MapReduce programs with data sources or storage space.
After HBase version 0.20, it provides TableMapper and TableReducer cat-
egories to allow inheritance of the Mapper and Reducer classes. And thus,

key and value in MapReuce can be more easily removed and stored in HBase.

Chapter 2 Background and Related Work 15

HBase uses row and column as index to access data values. It is more like
using map container when querying. Another feature of HBase is that each
piece of data has a timestamp, so that in a same field there are multiple sets
of data of different time. An HBase data table is composed of a number of
rows and columns families; each column has a row key as index. A column
family is a set of column label, which may have many groups of labels. These
labels can be added as needed any time without having to reset the entire
data table. When access data in data table, one usually uses a combina-
tion of (‘row key’, ‘family: label’) or (‘row key’, ‘family: label’, ‘timestamp’,
‘value’) to retrieve the required fields. Next, we will introduce the Data

Model in HBase, which is shown in Figure 2.8.

One column family can have variable no of columns

\

Multi-versioned

Rowkey Column Family 1: Column Qualifier 1 Timestamp Value
Rowkey Column Family 1: Column Qualifier 1 Timestamp Value
Rowkey Column Family 1: Column Qualifier 1 Timestamp Value

Call within a Column family are stored physically

FIGURE 2.8: Data Model of HBase

o Table: It is composed of a number of rows, which are decided at the first

time when the table is constructed.

e« Row: One row contains a row key and one or more columns; similar to

HDFS, rows are ordered in the alphabetical order.

e Column: One column contains a column family and a qualifier, and is sepa-

rated by “:".

Chapter 2 Background and Related Work 16

e Column Family: It is a set of columns and its corresponding values. Each
column family will have a bunch of property values associated with the store.
For example, whether the value needs to be stored in the cache, how the data
is compressed, how row keys are encoded. Each row has the same column

family, but it is possible that the family is empty.

o Column Qualifier: Column qualifier can be understood as the index to the
column family. The column family is determined when the table is created,
but the qualifier can be added when needed and thus each column quali-
fier can be very different. Because HBase does not provide meta table that
records information of columns, users must manage and remember informa-

tion of the used columns.

o Cell: A complete cell consists of row, column family, column qualifier, value

and timestamp.

o Timestamp: The timestamp is added when a value is written. It is unique

by default, but it can also be set artificially.

o Namespace: It can be understood as to manage table by groups. This is a
new concept for subsequent version with new features and prepared specifi-

cally for use in HBase Shell.

2.3.4 Hive

Apache Hive [26-28] is a data warehouse based on Hadoop open source tools for
storing and processing massive amounts of structured data. As show in Figure
2.9. MapReduce is the foundation of hive architecture. Hive architecture includes
the follow components: CLI (Command Line Interface) ~ JDBC/ODBC ~ Thrift
Server ~ WEB GUI ~ Metastore and Driver (Complier ~ Optimizer and Executor),
these components are divided into two categories: Service module and client mod-

ule.

Chapter 2 Background and Related Work 17

/ HIVE \

CLI JDBC/ Web

ODBC GUI
'

Thrift
Server -
i

Driver(Metastore
Compiler,

Optimizer
\ Executor) /

Job
Tracker

Data Node +
Task Tracker

FIGURE 2.9: Hive Architecture

e Service module:

1. Driver: This module contain compiler, optimizer and executor, this
module use HiveQL (like SQL) statements to parsing and optimization
compiler, execution task, then invoke MapReduce computing frame-

work.

2. Metastore: This module store hive metadata, hive store metadata in
RDB. Metadata is important to hive, so hive support independent
Metastore, install on a remote server cluster, Decouple Hive services

and service Metastore, to make sure hive operation robustness.

3. Thrift service: Thrift is a software framework developed by Facebook,

it used to developed scalable and cross-language services.

e Client module:

Chapter 2 Background and Related Work 18

1. CLI: Command Line Interface.

2. Thrift client: Many client interface of Hive architecture are built on

this module, consist of JDBC and ODBC interfaces.

3. WEBGUI: Hive client provides a way to get hive services by web in-
terface, this interface corresponds to the HWI (Hive Web Interface)

module.

2.3.5 Sqoop

Sqoop [29-31] is SQL to Hadoop, Sqoop is a convenient tool that migration data
between traditional relational database and NoSQL. Sqoop take advantage of
Hadoop MapReduce parallel feature that accelerate migration data by batch pro-
cessing.

Sqoop is a import tool that support data migrate from relation database to Hive -
HDFS and Hbase, also support full table import and incremental table import.
As show in Figure 2.10 is Sqoop basic workflow, when Sqoop import table data
from RDB, depend on different split-by value to split the data, next let segmented
blocks assigned in different map, each map will process block data. Finally, store

data in the Hadoop distributed storage system.

e Sqoop feature:
1. High efficiency control resources, task parallel processing to save pro-
gram execution time.

2. Data type mapping and transforming can be automatically, users can

also define their own.

3. Supports multiple relational databases, MySQL, Oracle, SQL Server,
DB2 etc.

Chapter 2 Background and Related Work 19

Sqoop
[— : 1
map() _} =
F;:;% — reduce0 E::? E;j;j [i—j
[:&7’] » Input Data p— S Output Data »E‘H%; 4 L */
ff - - o
E reduce()
map() _}

FIGURE 2.10: Sqoop basic workflow

2.4 Related Work

Our entire system is divided into several sections to study and find out what we
can optimize and reference information. With the data growing getting bigger and
increasingly complex, many research are focus on combine RDB and NoSQL. Ying-
Ti Liao et al. [32] proposed a data adapter, application can easily make access to
the database and dump all the data in RDB to NoSQL database by data adapter.
This paper does raise a very good mixed type library data dump modules can be
used for our reference. The experiment make we had some doubts, when a large
amount of data to a certain extent, all the data stored in two databases will not

affect the system service efficiency.

In the data access part, Fan Zhang et al. [33] proposed a task-level adaptive
MapReduce framework for real-time streaming data in healthcare applications.
Real-time data processing system estimate the cluster performance when process-
ing real-time data into the map on the first time, after the second, when the
real-time data entering, application will analysis of the amount of data size then
Determine whether to turn to the other map and testing the effectiveness of the
newly opened map at the same time. Thus improving real-time processing of mas-
sive data. This paper provide large real-time data processing architecture for our

reference. After evaluation and experiments, we found when data set is not much

Chapter 2 Background and Related Work 20

larger. Large real-time data processing architecture will spent to many time on

system sets up and cleans up the job, also not conducive to crawling data.

In the data dump part, IKrishna Karthik Gadiraju et al. [34] proposed a
Benchmarking performance for migrating a relational application to a parallel
implementation. They compare the performance of loading data and querying
for SQL and Hive Query Language (HiveQL) on a relational database installation
(MySQL) and on a Hive cluster, measure the speedup for query execution for
three dataset sizes resulting from the scale up. Hive loads the large datasets faster
than MySQL, while it is marginally slower than MySQL when loading the smaller

datasets. Query execution in Hive is also faster.

The last part is the air pollution monitoring system, Yun-Ting Wang proposed
the Implementation of Sensor Data Accessing on HBase for Intelligent Indoor En-
vironmental Monitoring Cloud Service. the proposed Intelligent Indoor Environ-
ment Monitoring System in Cloud (iDEMS) combined environmental sensors with
ZigBee wireless sensor network technology to store and process environmental data
in HBase. The environmental data collected by sensors will be stored and pro-
cessed cloudy in HBase which support large amounts of data to store in, free to
increase storage space easily. It also can compute through Hadoop MapReduce for
HBase database to do distributed computing or cloud computing to process envi-
ronments records. We refer part of the iDEMS Architecture to make our service

consummate.

Chapter 3

System Design and

Implementation

This section presents the proposed air pollution monitoring system with hybrid
database converter and its implementation. In sub-section 3.1, we intrroduce the
proposed system architecture. Next, we introduce the design detail of hybrid
database converter in sub-section 3.2. Finally, hybrid database converter imple-

mentation and three way to dump data in sub-section 3.3.

3.1 The Proposed System Architecture

The air pollution monitoring system is a system which can save and analysis the
concentration of air pollution factor by catching the real-time data of monitoring
station around to achieve real-time monitoring and provide the historical data for
experts and most people by graphical interface as shown in Figure 3.1. In terms
of data storage, air pollution monitoring system adopts RDB to store data after
catching data of air pollution factor from monitoring station and then requests
data from RDB through the application. However, this concept is not efficient for
big data today. So we propose a hybrid database converter architecture that can

save data quickly and conform to Big Data analysis system architecture without

21

Chapter 3 System Design and Implementation 22

affecting service. As show in Figure 3.2, air pollution factor transforms data be-
tween RDB and NoSQL through hybrid database converter to reduce the amount
of data of RDB and then avoid lower performance by the growing data. Moreover,
we use NoSQL to analysis big data quickly to achieve the combination of two

different database.

PM2.5 ~ CO2 ~ SOz...'

RDB

F1GURE 3.1: Air pollution monitoring system data accesss

In terms of database design, we will divide the data into two categories: the
original data that catch from monitoring station and the resulting data after anal-
ysis. For convenient analysis by users, the caught data are classified into day data,
month data, and year data. In order to prevent the original data used during an-
alyzing, we must arrange the data and show on application by graphical. Two

kinds of data is growing continuously, but the magnitude of growth varies greatly.

Chapter 3 System Design and Implementation 23

Application

Fi1Gure 3.2: Join hybrid database converter

3.2 Design Detail of Hybrid Database Converter

In this section, we first introduce the design detail of hybrid database converter
by two parts: first is database controller, and the other is data dumping. Finally,
hybrid database converter implementation, cluster deployment, and data converter

are present.

3.2.1 Database Controller

Database controller has four models, data collection, data processing, data calcu-

lation, and controller. They are shown in Figure 3.3

« Data Collection is mainly catch data and store into RDB, through api to
catch information of air pollution factor from monitoring station then store

into RDB and catch the record to send to controller.

Chapter 3 System Design and Implementation 24

T Ty g R

s 2 s Application
e e —=
==
a1 I

Hybrid DB Converter

Data Data Data
Collecting Processing Analyzing

Controller
== —_—
Dy S — ——
. RDB) - NoSQL)
~— Me~—~——
— —_—
M~ M~ N — e
“—-___—_____/ __—_____/

F1Gure 3.3: Hybrid Database Converter

« Data Processing is mainly to do first process before convert after data store
in RDB, to reduce the amount of data of RDB and data searching time, and

also provide graphical data pre-processing.

o Data Analyzing is mainly use NoSQL to analysis and process the big data,

then return result to the controller after analyzing and processing.

o Controller is mainly to execute dump data, also according dump requirement

to insert or delete tables data.

3.2.2 Data Dumping

The ways of dumping can be divide into two different directions: RDB to NoSQL
or NoSQL to RDB, and four types of dump: both of NoSQL and RDB have all
data, NoSQL has all data and RDB has part of data, NoSQL and RDB have part

Chapter 3 System Design and Implementation 25

of data that each other do not have and part of data that both have, and NoSQL

and RDB have part of data but do not have common data. As show in Figure 3.4.

RDB < Transformation > '

® © ® ©

A B C

FIGURE 3.4: Transformation types between RDB and NoSQL databases

We choose three different types of data store to compare and get the type that
most conform with our air pollution monitoring system. To compare the three dif-
ferent types of data dumping, we divide three classification of data: original data,
data after arranging, and others data; original data have the original information
that catch from all monitoring station, the data after arranging have day data,
month data, and year data from monitoring station after processing and calcu-
lating, others data have the record of user and information from each monitoring

station.

Synchronize:

This model will store all data into NoSQL and RDB, and the new data will be
stored in RDB first, then dump into NoSQL through controller in Non-access time,
so in the case of backup, when there has data loss, it can recover data through
the backup in resource pool. But when the data of data table reaches a certain
amount, the speed of store data into database from air pollution monitoring system

will be slowly.

All data in NoSQL and RDB has part of data:

Chapter 3 System Design and Implementation 26

This model will store all data into NoSQL, RDB only stored the data which
air pollution monitoring system needs. So we metastasis all the original data
into NoSQL, and clear the original data in RDB to reduce the amount of data in
database. It s not only can lengthen the usable time of database but also backup
data in the resource pool. Reducing load of database through metastasis data in
regular time for make sure that the service of air pollution monitoring system be

perfectly.
Only part of the same data:

This model will store data into RDB and NoSQL separately, in addition to the
information is the same, the data is owned by individually. RDB in this model is
mainly store the data and information from monitoring station which is usable for
air pollution monitoring system, and the original data and information that is not
often used is stored into NoSQL. It’ s can lengthen the usable time of database
and reduce load of database but when it do a backup, it may cause the original
system failure and loss data because the data is not completely..As show in Figure

3.5.

I : I] I : I : I - I]
o Raw data Information Other data Raw data Information Other data

I I I I I I
I I I I I I
e Raw data J Information J Other data J Raw data J Information J Other data J
\—//_- \—//_— \—//_- \—//_- _//_- \—//_-
I I I I I I
I I I I I I
o Raw data J Information J Other data J Raw data J Information J Other data J
/_ J_— _——/-__ _-—/-__ ‘_/—__ _——/-__

FIGURE 3.5: Three kinds of data conversion model

Chapter 3 System Design and Implementation 27

3.3 Hybrid Database Converter Implementation

In this work, we have established the cloud big data clusters through thirteen
physical machines, one node as master, twelve node as the computing node to set
up Apache Hadoop, Apache Spark, Apache Sqoop, Apache Hive, Apache HBase.

Table 3.1 shows the software specification.

TABLE 3.1: Software Specification

Version

Hadoop 2.6.0-cdhb.4.5
HDFS 2.6.0
YARN 2.6.0
Spark 1.3.0
Sqoop 1.4.5
Hive 1.2.1
HBase 1.0.0

Chapter 3 System Design and Implementation 28

3.3.1 Cluster Deployment

On the deployment, platform environment using one server as master, and com-
puting nodes using 1 Gigabit Ethernet, each node as DataNode, NodeManage,

and RegionServer, where three computing nodes as ZooKeeper.

Through the Thirteen hosts, i.e., the one NameNode and Twelve DataNodes,
the Hadoop HDFS NameNode Web Interface shows that the cluster provides 10.56
TB of big data storage space. This information also shows how many live DataN-

odes are functioning shown in Figure 3.6.

Summary

Security is off.

Safemode is off.

19 files and directories, 3 blocks = 22 total filesystem object(s).

Heap Memory used 54.5 MB of 704 MB Heap Memory. Max Heap Memory is 889 MB

Non Heap Memory used 48.28 MB of 49.81 MB Commited Non Heap Memory. Max Non Heap Memory is -1 B.

Configured Capacity: 10.56 TB

DFS Used: 848 KB

Non DFS Used: 590.13 GB

DFS Remaining: 99878

DFS Used%: 0%

DFS Remaining%: 94.54%

Block Pool Used: 848 KB

Block Pool Used%: 0%

DataNodes usages% (Min/Medi tdDev): 0.00% /0.00% /0.00% / 0.00%
Live Nodes 12 (Decommissioned: 0)
Dead Nodes 0 (Decommissioned: 0)
Decommissioning Nodes 0

Total Datanode Volume Failures 0(0B)

Number of Under-Replicated Blocks 0

Number of Blocks Pending Deletion 0

Block Deletion Start Time 2016/4/27 T412:21:43

FiGure 3.6: Hadoop NameNode information

Figure 3.7 shows thirteen nodes are currently in operation and the Applications

running status or history.

Chapter 3 System Design and Implementation

Logged in as: dr.who

@hadaap Nodes of the cluster

~ Cluster Cluster Metrics
About Apps Apps Apps Apps | Containers Memory Memory Memory VCores VCores VCores Active | Decommissioned Lost | Unhealthy —Rebooted
Nodes Submitted Pending Running Completed ~ Running Used Total Reserved U Total Reserved Nodes Nodes Nodes Nodes Nodes
1 [1 0 08 %G8 08 0 % 0 12 [} [0 [
NEW saving Show 40 v entries. Search:
SUBMITIED Node . Node Nod Node HTTP N . Containers Mem Mem VCores VCores S,
P Labels -~ "2K ° giate o Address ¢ Address ¢ Lesthealtupdate ¢ Health-report o S Used ¢ Aval ¢ Used ¢ Aval ¢ Versien @
FINISHED /default- RUNNING node03:8034 node03:8042 Wed Apr 27 14:27:59 0 o8 868 0 8 260
FAILED rack +0800 2016 cdh5.4.5
KILLED Idefault- RUNNING node08:8034 node08:8042 Wed Apr 27 14:27:58 0 0B 8GB 0 8 26.0-
Scheduler rack +0800 2016 cdh5.4.5
/default- RUNNING node12:8034 node12:8042 Wed Apr 27 14:28:00 0 0B 8cBe o 8 26.0-
» Tools rack +0800 2016 cdh5.4.5
/default- RUNNING node09:8034 node09:8042 Wed Apr 27 14:27:59 [08 8G8 0 8 260-
rack +0800 2016 cdh5.4.5
/default- RUNNING node10:8034 node10:8042 Wed Apr 27 14:28:00 0 08 8G8 0 8 26.0-
rack +0800 2016 cdh5.4.5
/default- RUNNING node06:8034 node06:8042 Wed Apr 27 14:16:55 0 08 8G8 0 8 26.0-
rack +0800 2016 cdh5.4.5
/default- RUNNING node02:8034 node02:8042 Wed Apr 27 14:27:59 0 08 8G8 0 8 26.0-
rack +0800 2016 cdh5.4.5
/default- RUNNING node11:8034 node11:8042 Wed Apr 27 14:28:01 [08 8G8 0 8 26.0-
rack +0800 2016 cdh5.4.5
/default- RUNNING node05:8034 node05:8042 Wed Apr 27 14:27:59 0 08 8G8 0 8 26.0-
rack +0800 2016 cdh5.4.5
/default- RUNNING node01:8034 node01:8042 Wed Apr 27 14:27:59 [08 868 0 8 60-
rack +0800 2016 cdh5.4.5
/default- RUNNING node04:8034 node04:8042 Wed Apr 27 14:27:59 0 08 8G8 0 8 26.0-
rack +0800 2016 cdh5.4.5
/default- RUNNING node07:8034 node07:8042 Wed Apr 27 14:28:00 [08 8G8 0 8 26.0-
rack +0800 2016 cdh5.4.5
Showing 1 to 12 of 12 entries. First Previous 1 Next

F1GURE 3.7: Hadoop cluser information

Chapter 3 System Design and Implementation 30

3.3.2 Data Convter

In data convter, we split dump data into three parts, first dump, batch of dump,
and time of disaster recovery. First dump is mainly to save data table in Hive
sequential through in accordance with different modules, batch of dump will dump
new data in a period of time, disaster recovery will revert RDB which has broken

data, and we will simulate by different size of data.
First Dump:

In this step, the system will dump all the data table to NoSQL directly, when
system is connetcted to the hybrid database converter system, hybrid database
will fetch all the data from RDB, and put the data to NoSQL by the Sqoop.If it
is not the first time connected to the hybrid database, the system will dumping

the data after it store the information to a certain extent.
Batch of Dump:

In this step, system will examine RDB tables in certain period of time, if
table has update data, system will dump the update data to the NoSQL. Show
as Algorithm 1. In order to achieve the batch dump, we when dump to time t,
we will check whether a table data T,, have updated information or not, if there
is updated information we will dumping 7; data to NoSQL. Because some data
table needs to be read and can’t be clear the data table, so T; must to determine
it’s necessary to clear the data or not. If it needed, it’'ll clean up the 7; data and

make the next batch dump time.
DB Disaster Recovery:

In this step, for our system can do DB disaster recovery in database, we use
two dump methods to store all data in NoSQL, and use algorithm to recover data
in RDB in the most short time and rebuild service. Show as Algorithm 1.In order
to reply the database, we check database whether destroyed or not, when the
database destroyed, check all tables T, in NoSQL, as different module, judge the

Chapter 3 System Design and Implementation 31

table T; whether need to back to RDB or not. If T; need reply, copy the T; data
to HDF'S list L, then put L to RDB.

Algorithm 1 Batch of Dump Algorithm

1: while (time equal to t) do
for (i=1;i<=n;i++) do
if (7} has the update data) then
Dump 7; data to T
end if
if (7} need to be clear) then
Clean the table
end if
9: end for
10: end while

Algorithm 2 DB Disaster Recovery Algorithm

1: while (Determine whether the need to reply) do
2 for (i=1;i<=n;i++) do

3 if (7; need to be reply to RDB) then
4 if (7} need to be processing) then
5: Processing T; data to L

6: else
7

8

9

Copy T; data to L
end if
end if
10: end for
11: Put the data L to the RDB
12: end while

3.3.3 Data Convter

We take an air pollution monitoring platform as an example, we implement a
service platform, mainly is used to monitor changes in air pollution factor, it
will fetch 76 monitoring stations and data will be stored in our hybrid database
system. Fach station can fetch an amount of about 1MB of data per day, so
every stations can fetch to the amount of data of about 76MB a day. Through
data collection and collation of air pollution in nearly seven years, the current

amount of data about 2GB. As shown in Figure 3.8, the system will fetch the

Chapter 3 System Design and Implementation 32

data back to the database then sent to the server through the wireless network
and the existing data dump into the cloud platform quickly. The cloud system is
based on 12 physical machine, using the features of Hadoop to link the physical
machine effectively, and then made a huge historical data through the MySQL
connect with the Hive, the results are presented in the monitoring system. When
each data dump to the cloud-based platform, the information will be placed in
distributed database systems, every fixed time, data will also be stored in the cloud.
After stored in cloud storage, data will be processed and operation. After the
data processing, users can handle the necessary information to do data dumping
through the management platform. Finally, the system will be presents in web
pages by using HTML 5, JavaScript and CSS 3, in order to achieve the dynamic
web pages, our paper through the implementation a Ul by jQuery, users can see
the information about air pollution and instant information via the user interface.
In this service, we focus on air pollution monitoring, the detection of air quality
by sensors and the data convert to the visual information displayed on the user
interface, and saved to the database at the same time. In the system interface,
we configured the data converter, providing periodic information dumping, the
managers can dumping data whatever they want, we also had automatic control
system, if the data in the RDBMS reaches a certain level, it will dump into the
cloud system, it mainly to maintain application performance when fetching data

in database, and warning to air pollution monitoring.

‘ Air Pollution Monitoring Service
SO B e Manager Interface
= = = = = =

High Performance Computing Framework ~ Distributed Database

-@‘hadam @ c
-@hadaap
HOES

Computing and Storage Resource Y ——

0

FIGURE 3.8: Air pollution monitoring platform architecture

Chapter 4

Experimental Results

This chapter introduces experiments in detail. First, both hardware and software
used in experimental environment are listed. Then, the experimental results are

shown and analyzed. Finally, discussions are made.

4.1 Experimental Environment

This subsection introduces our environmental environment including hardware and
software. To implement the proposed system, we use 12 physical servers connected
by Gigabit Ethernet to establish a cluster. In hardware, each physical server is
Intel Core i7 CPU with 16GB Memory and 1TB HD. In software, Ubuntu 14.04.2
is adopted as our operating systems. Also,Hadoop 2.6.0-cdh5.4.5 ~ Spark 1.3.0 ~
Sqoop 1.4.5 ~ Hive 1.2.1 ~ HBase 1.0.0 are installed, as shown in Table 4.1 and

Figure 4.1.

33

Chapter 4 Experimental Results

34

TABLE 4.1: Experimental environment

ID CPU RAM HDD NIC

1 Intel® Core™ i7-4770@3.40GHz 16GB DDR3 | 1TB | 1Gb Ethernet
2 Intel® Core™ i7-4770@3.40GHz 16GB DDR3 | 1TB | 1Gb Ethernet
3 Intel® Core™ i7-4770@3.40GHz 16GB DDR3 | 1TB | 1Gb Ethernet
4 Intel® Core™ i7-4770@3.40GHz 16GB DDR3 | 1TB | 1Gb Ethernet
5 Intel® Core"" i7-4770@3.40GHz 16GB DDR3 | 1TB | 1Gb Ethernet
6 Intel® Core™" i7-4770@3.40GHz 16GB DDR3 | 1TB | 1Gb Ethernet
7 Intel® Core™" i7-4770@3.40GHz 16GB DDR3 | 1TB | 1Gb Ethernet
8 Intel® Core i7-4770@3.40GHz 16GB DDR3 | 1TB | 1Gb Ethernet
9 Intel® Core™ i7-4790@3.60GHz 16GB DDR3 | 1TB | 1Gb Ethernet
10 Intel® Core™ i7-4790@3.60GHz 16GB DDR3 | 1TB | 1Gb Ethernet
11 Intel® Core™ i7-4790@3.60GHz 16GB DDR3 | 1TB | 1Gb Ethernet
12 Intel® Core™" i7-4790@3.60GHz 16GB DDR3 | 1TB | 1Gb Ethernet
13 | Intel® Xeon® E5-2630v3@2.40GHz*2 | 64GB DDR4 | 2TB | 1Gb Ethernet

FIGURE 4.1: Spark and Hadoop Computing cluster

Chapter 4 Experimental Results 35

4.1.1 Compare massive storage methods

In terms of data storage, we compare three different types of storage: HDF'S,
HBase, and Hive. Compare speed and performance of data dumping from RDB,
to find the best way of storage for NoSQL to improve the overall performance.
We split several different sizes data from the air pollution database to assess the

transmission speed impact of different storage methods.

As show in Figure 4.2. when the amount of data is growing bigger and bigger,
the transform time of HBase is much larger than the other two dump mode, Hive
and HDFS efficacy is almost the same. Therefore, in the data dump part Hbase

performance is lower than the other two.

10

9(:3 Data Transform Time
800
700
600
500
400
300
200

100
5G

20M 40M 100M 500M 1G 10G
H Hive 11.3426 12.6282 13.3909 19.47 26.6748 85.9523 171.7029
B HDFS 12.565 12.5674 13.6413 20.4006 26.4562 90.9039 169.5773
HBase 15.2784 16.2806 20.1355 51.4523 118.1592 487.1856 945.6925

Processing time(s)

FIGURE 4.2: Data Transform Time

4.2 Data Dumping Experiment

First we analyze the change of data of three categories. With the increase of time,
the amount of data also become more and more big. Therefore, we must observed

the change of original data, arranging data, and other data.

Chapter 4 Experimental Results 36

. . == Original data
Variation of three kinds of Data —e— arranging data

=== Other data
1800

1600
1400
1200
1000
800
600
400 = - —e
200

Data Size(MB)

Month

FIGURE 4.3: Variation of Three Kinds of Data

Show as Figure 4.3 and Figure 4.4, we can find the original data collect by
air pollution station growing very fast. Arranged data and other data cumulative

compare to original data is almost not change.

Three months Six months

19.4{ MB),2%
19(MB), 3% (MB), 2%
Arranging data

Arranging data
418.9(MB), 54% ® Other data u Other data
700(MB), 65% '

Nine months One year

19.3(MB), 6% 20.5(MB), 1%
375.3(MB), 27% I

1526.9(MB), 79%
1024(MB), 72%

334.5(MB), 43%

Original data Original data

394.5(MB), 20%

Original data Original data
Arranging data Arranging data
m Other data B Other data

FIGURE 4.4: Data Growth of Three Kind of Data

Chapter 4 Experimental Results 37

4.2.1 First dump

We arrange three different size of data, one year, six years, and twelve years of

data to put in our module to do data dumping experiment, as shown in Table 4.2.

TABLE 4.2: Dump Data Set

Original data | Arranging data | Other data
1 year | 1526.9(MB) 394.5(MB) 20.5(MB)
6 years | 9161.4(MB) 719.5(MB) 25.5(MB)

12 years | 18322.8(MB) 1174.5(MB) 31.5(MB)

We put three different size of data in three different modules, show as figure,
synchronize represent synchronize data, All in NoSQL & part in RDB represent
all data that NoSQL has, Part of same represent part of same data in database.
Show as Figure 4.5, we find that best performance of three modules in first dump
is Part of same module, almost fifty seconds faster average in each data sets, there

has one reason that the amount of dumping is smaller than other two modules.
m Synchronize

First dump time m Al in NoSQL & part in RDB

W Part of same

One year Six years Twelve years

s 8

3

S

Processing time(s)
[WH]
8

3

FIGURE 4.5: First Dump Time

Chapter 4 Experimental Results 38

4.2.2 Batch of Dump

In this experiment will process the data that increase every day in RDB and
dump in Hive. We will use three different phases’ data to do the experiment, to
experiment that the degree of data accumulation will affect the speed of dump on

module or not.

The speed of dumping in three modules, different years, and different size of
data is show as Figure 4.6. The process time of synchronize module and part of
same module is increase by time, but all in NoSQL & part in RDB module is not
decrease its’ dump time by time. It knows that the best module is all in NoSQL
& part in RDB module, although all in NoSQL & part in RDB module is slow
than third module in first dump, but the speed of batch of dump is faster than
other two modules.

. i Synichronize
Batch of Dump Time —e—anin NoSQL & part in RDB

160 Part of same
140
120
100

80

time(s)

60

40

20

One year Six years Twelve years

FI1GURE 4.6: Batch of Dump Time

4.2.3 Database Disaster Recovery

This experiment will assume RDB without any data to do experiment of data

recovering, to compare the time of three different data dump with three different

Chapter 4 Experimental Results 39

type of data. The experiment of data recovering in different module and different
size of data is shown as Figure 4.7. The recovery time of synchronize and all in
NoSQL & part in RDB module is nearly, but the part of same module need a lot
of time to recover database. During the part of same module recovering, it’ s
not only rewind data in RDB, but also process the original data to the data after

arrange to save in RDB to provide service save and take.

B One year
DB Disaster Recovery M Six years
200 B Twelve years
700
600

2

Processing time(m)
L I
8 8

S

3

Synchronize All'in NoSQL & partin RDB Part of same

=]

Ficure 4.7: DB Disaster Recovery

4.2.4 The Three Models Compare

Through the three experiment knows that the best module is all in NoSQL &
part in RDB module. The performance of the three modules in three different
experiment, the performance of second module is the best. Show as the Figure
4.8, we use 10 to 1 to rate the performance of three models experimental data
which is high or low. When the time was increased to six years, three experiments
are biased in favor of the all in NoSQL & part in RDB model. Therefore, we use
the all in NoSQL & part in RDB model for the entire hybrid library service.

Chapter 4 Experimental Results 40

e First dump time

One year
Synchronize s Batch of dump time
DB Disaster Recovery
8
n
2
0
Allin NoSQL & partin
Part of same
' RDB
S' e First dump time e First dump time I
IX ye,ars s Batch of dump time e Batch of dump time Twe ve vears
Synchronize Synchronize
10 DB Disaster Recovery DB Disaster Recovery 10
8 8
6 6
y 2

0

All in NoSQL & part Part of same All'in NoSQL & partin

Part of same in RDB RDB

FIGURE 4.8: Experiment Results

4.3 Platform Implementation

We implement an air pollution monitoring platform, collect data from 76 station
and store in our hybrid database system. Each station can collect 1IMB data a
day, we have 76 station, so we can collect 76MB data every day. Through collect
and arrange 7 years air pollution data, we have about 2GB data. On the web site,
we show our data by two part, one is real-time data and another is historical data.
In the case of real-time data, it will show the PSI and air quality of each station.
In the case of historical data, it" s will be more detail, every day, every month,
every year and each year air pollution data and it can compare change with air
pollution with other station. Show as Figure 4.9, we catch air pollution real-time
data from each station and show to user, to provide air quality and PSI value now
for user. In the system, we build a backstage service for user that can provide user
to watch the status of data in database, and it can dump by batch and recover

data.

Chapter 4 Experimental Results 41

FIGURE 4.9: Air Quality

Show as Figure 4.10, we show all data with a graphic from station, to provide

the change of air pollution factor for user.

55t

Py WEAN m
p— 2016-06-07 k(b

00:55 01:55 02:55 03:55 04:55 05:55 06:55 07:55 08:55 09:55 11:00 12:00 13:00 14:00 15:00 15120 17:40 19:00 20:20 20:40 22:00 23:00 23:40
Highcharts.com

FIGURE 4.10: Daily Stats

Show as Figure 4.11, Figure 4.12, and Figure 4.13, we show air pollution factor
form each station, and through observed value of every day, every month, every

year to achieve monitoring.

Chapter 4 Experimental Results 42

SRR

P WM -m
2016-06-14 #iEgt{k
SRREH
m ERUSHIRIRAPS] =
S 50
40
30
20
ooss | ouss | 0255 | 03:ss | 0ass 0555 06:5s 0755 | 085S 09:ss | 1100 1200 1300 1400 1500 1600 17:00 | 1800 19:00 20:00 2020
Bighchars.o
—HULHISO: =
4(ppb)
3(ppb)
2000
1(ppb)
00:55 O0L:55 02:55 03:55 04:55 05:55 06:55 07:55 08:55 0955 11:00 1200 13:00 14:00 1500 16:00 17:00 18:00 19:00 20:00 20:20
Highthare
— SO =
0.75(ppm)

FI1GURE 4.11: Daily Values Record

WEAW m
2016-06 giEEE1L

SaeH ZERUSRARAREPS|

& a#Et 50

4

00 o1 0z 03 04 os 06 o7 08 09 10 11 12 13

ZHALHSO2

.14

e = N W o ow

00 01 02 03 04 os 06 o7 08 09 10 1 12 13

—HILMCO

FIGURE 4.12: Monthly Values Record

Show as Figure 4.14, Figure 4.15and Figure 4.16. against data of every year
to monitoring further, to compare air pollution factor with different station, and
for more comprehensive to observed the change of air pollution factor, we add
the change of air pollution factor of every year, to provide more comprehensive

monitoring data.

Show as Figure 4.17, we make functions on the web site that can provide

user batch dump and disaster recovery in database. For make disaster recovery

Chapter 4 Experimental Results 43

s SIRAN m
BCTHE 2016 st

L —H{ERSO2

5 B et *

ko,

—HU{LRCO _

L1

1 2 3 4 B 6

SRR BT PM10

FIGURE 4.13: Annual Values Record

EERM 1R E m
BTN 2016 #imsEsL

—i{easo2 =
B Wit 4
3
- — /,’\/_‘ —_**——__
AR
w1
o
1 2 3 4 5 6
—HERKCO =
07
06
o5
e 04 \—//’\
— %8 03
AR
um 02
0.1
0

1 2 3 4 s 6

R P BT PM10

1]

FIGURE 4.14: Regional Numerical Comparison

experiment can more smoothly, we also provide to clear database that user can do

the function of disaster recovery.

Chapter 4 Experimental Results 44

ZHEaRSO2

4(ppb)

BE 3(ppb)

2(ppb)

1(ppb)

Otppb)
2010 2011 2012 2013 2014 2015 2016

—H{ERRCO

0.5(ppm)

0.4(ppm)

L

0.3(ppm)

0.2(ppm)

FIGURE 4.15: Value Record of Each Years

R AEISO: =
atooo
Bic
-1 3(ppb)
-
B4
xm
2(ppb)
-
O(ppb)
2010 2011 2012 2013 2014 2015 2016
—$LRCO =
0.7(ppm)
PP
.11
BOE oseem
]
x®

0.4(ppm)
0.3(ppm)
0.2(ppm)

FIGURE 4.16: Numerical Comparison of Each Years

Chapter 4 Experimental Results 45

HE® LAt A wEEm REANT
99_data 473143 8568 2016-06-20 &
sata 445682 4.6 VB 1406 &
101_data 446021 8.6 VB 2016-06-20 &
a 1 8 16-06- =
441614 44.6MB 2014:06:20 &
408 54.6 M 1 &
13030 185 M 2014:06-20 2
rqual 444 16-06 !

‘ Iﬂii‘ﬁijc@

FIGURE 4.17: DB Controller

Chapter 5

Conclusions and Future Work

In order to solve that the growing information cause the computing capacity of
system decrease, and affecting the overall performance of system services; so we
propose a hybrid database converter to achieve the integration of original system
and big data analysis platform. So that the original system has big data analysis
capability, and do data backup at the same time. Compare three different types
of converting data and get the most suitable converter for air pollution system,
to improve the data analysis capability of the original system. In the part of
converter, in the case of not effect service, we decrease 60% of time in batch
processing. User not only can observed real-time information of air pollution,
but also can observed every day, every month, every year, and all change of air
pollution factor through historical data. To provide user complete data search

service from slight to comprehensive air pollution data.

46

Chapter 5 Conclusions and Future Work 47

5.1 Concluding Remarks

In this study, we consider most of the existing systems do not have enough re-
sources to direct re-build the system on big data processing architecture. So, we
proposed hybrid database converter to solve the problem of resources insufficient.
It" s not only provide Big Data analyze, but also decrease the load of original
database, to prove the life of database. At the time, it s can keep database
complete through database disaster recovery. Solve the difficulties of big data

processing and storage for our system, provide a more flexible Big Data system.

5.2 Future Work

In this paper, we propose an efficient hybrid database converter. In the future,
we hope to further let hybrid database converter erected on Docker Container, by
Docker rapid deployment and the feature of virtual machines can be monitored,
Strengthen the capacity of data analysis, store and data backup on all cluster. n
the case of data collect, only the data of air pollution cannot analyze accurate,
therefore we will add the data of water, electricity, speed of wind, and even oil
liquefaction, to provide user can analyze more kinds of data. Finally we hope we
can add Big Data analysis and data mining, not only for data monitoring, but

also achieve decision making for service.

References

1]

Sunilkumar S. Manvi and Gopal Krishna Shyam. Resource management for
infrastructure as a service (iaas) in cloud computing: A survey. In Journal of

Network and Computer Applications, 41:424-440, May 2014.

Cloud computing, 2015. http://en.wikipedia.org/wiki/Cloud_

computing.

FarrukhShahzad. State-of-the-art survey on cloud computing security chal-

lenges. Procedia Computer Science, 37:357-362, 2014.

Nabil Sultan. Discovering the potential of cloud computing in accelerating
the search for curing serious illnesses. International Journal of Information

Management, 34:221-225, April 2014.

Jianghua Liu, Xinyi Huang, and Joseph K. Liu. Secure sharing of personal
health records in cloud computing: Ciphertext policy attribute based sign-
cryption. Future Generation Computer Systems, October 2014.

A. Meera and S. Swamynathan. Agent based resource monitoring system in

iaas cloud environment. Procedia Technology, 10:200-207, 2013.

Geetha Manjunath and Dinkar Sitaram. Moving To The Cloud - Chapter 3

-Platform as a Service. Syngress, 2012.

Ying-Dar Lin, Minh-Tuan Thai, Chih-Chiang Wang, and Yuan-Cheng Lai.
Two-tier project and job scheduling for saas cloud service providers. Journal

of Network and Computer Applications, 52:26-36, 2015.

48

http://en.wikipedia.org/wiki/Cloud_computing
http://en.wikipedia.org/wiki/Cloud_computing

References 49

[9]

[10]

[11]

[12]

[17]

[18]

[19]

Chandan Banerjee, AnirbanKundu, and RanaDattagupta. Saas oriented

generic cloud compiler. Procedia Technology, 10:253-261, 2013.

Hai Wang, Zeshui Xua, Hamido Fujita, and Shousheng Liud. Towards fe-
licitous decision making: An overview on challenges and trends of big data.

Information Sciences, 367-368:747-765, 2016.

David Gil and Il-Yeol Song. Modeling and management of big data: Chal-
lenges and opportunities. Future Generation Computer Systems, 63:96-99,

2016.

Jorge Merino, Ismael Caballero, Bibiano Rivas, Manuel Serrano, and Mario
Piattini. A data quality in use model for big data. Future Generation Com-

puter Systems, 63:123-130, 2016.

Grolinger. Data management in cloud environments: Nosql and newsql data

stores. Journal of Cloud Computing, pages 2—22, 2013.
R. Rees. No problem: An intro to nosql databases,. 2010.
E. Gallagher. Nosql benchmark study release. 2014.

Sarwar Kamal, Shamim Hasnat Ripon, Nilanjan Dey, Amira S. Ashour,
and V. Santhid. A mapreduce approach to diminish imbalance parameters
for big deoxyribonucleic acid dataset. Computer Methods and Programs in

Biomedicine, 131:191-206, 2016.

QaziMamoon Ashraf and Mohamed HadiHabaeb. Autonomic schemes for
threat mitigation in internet of things. Journal of Network and Computer

Applications, 49:112-127, March 2015.

Heiko Niedermayer, Ralph Holz, Marc-Oliver Pahl, and Georg Carle. On
using home networks and cloud computing for a future internet of things.

Future Internet, 6152:70-80, March 2009.

Nitesh Maheshwari, Radheshyam Nanduri, and Vasudeva Varma. Dynamic

energy efficient data placement and cluster reconfiguration algorithm for

References 50

[20]

[21]

[22]

[23]

[24]

[25]

[27]
28]
[29]

[30]

[31]

[32]

mapreduce framework. Future Generation Computer Systems, 28:119-127,

January 2012.
Apache hadoop, 2015. http://hadoop.apache.org/.

Hdfs architecture guide, 2015. https://hadoop.apache.org/docs/r1.2.1/

hdfs_design.html.

Yifeng Luo, Sigiang Luo, Jihong Guan, and Shuigeng Zhou. A ramcloud
storage system based on hdfs: Architecture implementation and evaluation.

Journal of Systems and Software, 86:744—750, March 2013.
Apache hbase, 2015. http://hbase.apache.org/.

Ho Lee, Bin Shao, and U. Kang. Fast graph mining with hbase. Information
Sciences, 315:56-66, September 2015.

C. Li. Transforming relational database into hbase: A case study. Inter-

national Conference on Software Engineering and Service Sciences, pages

683687, 2010.

Apache hive vs mysql-what are the key differences?, 2015. http://blog.
matthewrathbone.com/2015/12/08/hive-vs-mysql.html/.

Hive vs. rdbms, 2014. http://hadooptutorial.info/hive-vs-rdbms/.
Apache hive, 2014. http://hive.apache.org/.
Apache sqoop, 2016. http://sqoop.apache.org/.

Arushi Jain and Vishal Bhatnagar. Crime data analysis using pig with
hadoop. Procedia Computer Science, 78:571-578, 2015.

Sahithi Tummalapalli and Venkata rao Machavarapu. Managing mysql cluster

data using cloudera impala. Procedia Computer Science, 85:463-474, 2016.

Ying-Ti Liao, Jiazheng Zhou, Shih-Chang Chen, Ching-Hsien Hsu, Wenguang
Chen, Mon-Fong Jiang, and Yeh-Ching Chung. Data adapter for querying and

http://hadoop.apache.org/
https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html
https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html
 http://hbase.apache.org/
 http://blog.matthewrathbone.com/2015/12/08/hive-vs-mysql.html/
 http://blog.matthewrathbone.com/2015/12/08/hive-vs-mysql.html/
 http://hadooptutorial.info/hive-vs-rdbms/
 http://hive.apache.org/
 http://sqoop.apache.org/

References 51

[33]

[34]

transformation between sql and nosql database. Future Generation Computer

Systems, none:none, 2016.

Fan Zhang, Junwei Cao, Samee U.Khan, Keqin Li, and Kai Hwang. A task-
level adaptive mapreduce framework for real-time streaming data in health-

care application. Future Generation Computer Systems, 43:149-160, 2015.

Krishna Karthik Gadiraju, Manik Verma, Karen C. Davis, and Paul G. Ta-
laga. Benchmarking performance for migrating a relational application to a

parallel implementation. Future Generation Computer Systems, 2016.

Appendix A

Hadoop Installation

I. Modify hosts

sudo vim /etc/hosts

IT. Modify hostname

sudo vim /etc/hostname

sudo service hostname start

III. Install Java JDK

sudo apt-get -y install openjdk-7-jdk
sudo 1ln -s /usr/lib/jvm/java-7-openjdk-amd64 /usr/lib/jvm/jdk

IV. Add hadoop user

sudo addgroup hadoop
sudo adduser --ingroup hadoop hduser

sudo adduser hduser sudo

V. Creat SSH authentication login

52

93

ssh-keygen -t rsa -f \~{}/.ssh/id_{}rsa -P ""
cp \~{}/.ssh/id_{}rsa.pub ~/.ssh/authorized_{}keys

scp -r ~/.ssh hduser:~/

VI. Download hadoop

cd ~

wget http://ftp.twaren.net/Unix/Web/apache/hadoop/common \\
/hadoop-2.6.0/hadoop-2.6.0.tar.gz

tar zxf hadoop-2.6.0.tar.gz

mv hadoop-2.6.0.tar.gz hadoop

VII. Add the environment variable

vim .bashrc

export JAVA_HOME=/usr/1lib/jvm/jdk/

export HADOOP_INSTALL=/home/hduser/hadoop
export PATH=$PATH:$HADOOP_INSTALL/bin
export PATH=$PATH:$HADOOP_INSTALL/sbin
export HADOOP_MAPRED_HOME=$HADOOP_INSTALL
export HADOOP_COMMON_HOME=$HADOOP_INSTALL
export HADOOP_HDFS_HOME=$HADOOP_INSTALL
export YARN_HOME=$HADOOP_INSTALL

VIII. Set hadoop config

cd hadoop/etc/hadoop

vim hadoop-env.sh
export JAVA_HOME=/usr/1lib/jvm/jdk/
vim core-site.xml
<property>
<name>fs.default.name</name>
<value>hdfs://hduser-master:9000</value>
</property>

vim yarn-site.xml

<property>

<name>yarn.nodemanager.aux-services</name>
<value>mapreduce_shuffle</value>
</property>
<property>
<name>yarn.resourcemanager .hostname</name>
<value>hduser</value>

</property>

cp mapred-site.xml.template mapred-site.xml

vim mapred-site.zxml

<property>
<name>mapreduce.framework.name</name>
<value>yarn</value>

</property>

mkdir -p ~/mydata/hdfs/namenode
mkdir -p ~/mydata/hdfs/datanode

vim hdfs-site.xml

<property>

<name>dfs.replication</name>
<value>2</value>

</property>

<property>
<name>dfs.namenode.name.dir</name>
<value>/home/hduser/mydata/hdfs/namenode</value>

</property>

<property>
<name>dfs.datanode.data.dir</name>
<value>/home/hduser/mydata/hdfs/datanode</value>

</property>

vim slaves

hduser

hduser-02
hduser-03
hduser-04

IX. Copy hadoop to all nodes

scp -r /home/hduser/hadoop hduser:/home/hduser
scp -r /home/hduser/hadoop hduser-02:/home/hduser
scp -r /home/hduser/hadoop hduser-03:/home/hduser

#*= O OH O H #®

scp -r /home/hduser/hadoop hduser-04:/home/hduser

%)

X. Format HDFS

hdfs namenode -format

XI. Start hadoop

start-all.sh

XII. Use jps to see java running program

jps

XIII. MapReduce JobTracker monitoring website

hduser :50030

Appendix B

HBase Installation

1. Download HBase

cd ~
wget http://ftp.twaren.net/Unix/Web/apache/hbase\\
/hbase-1.0.0/hbase-1.0.0-hadoop2-bin.tar.gz

I1. Unzip hbase-1.0.0-hadoop2-bin.tar.gz

tar zxf hbase-1.0.0-hadoop2-bin.tar.gz

III. Move the File of HBase

mv hbase-1.0.0-hadoop2 hbase

IV. Set HBase config

cd hbase

vim conf/hbase-env.sh

export JAVA_HOME=/usr/lib/jvm/jdk
export HBASE_HOME=/home/hduser/hbase

hadoop fs -mkdir /hbase

vim conf/hbase-site.xml

56

57

<property>
<name>hbase.rootdir</name>
<value>hdfs://hduser:9000/hbase</value>

</property>

<property>
<name>hbase.cluster.distributed</name>
<value>true</value>

</property>

<property>
<name>hbase.zookeeper.quorum</name>
<value>Test-master</value>

</property>

vim conf/regionservers

hduser hduser-02
hduser-03 hduser-04

III. Copy jar to hbase/lib

rm lib/hadoop-*
cd /home/hduser/hadoop/share/hadoop
cp *.jar /home/hduser/hbase/lib/

IV. Copy hbase to all nodes

scp -r hbase/hadoop hduser:/home/hduser

scp -r hbase/hadoop hduser-02:/home/hduser
scp -r hbase/hadoop hduser-03:/home/hduser
scp -r hbase/hadoop hduser-04:/home/hduser

#+= OH O H O OH

bin/start-hbase.sh

V. HBase monitoring website

hduser:60010

Appendix C

Hive Installation

I. Download Apache Hive

sudo wget http://apache.stu.edu.tw/hive/hive-1.2.1/apache-hive-1.2.1-bin.tar.gz

II. Unzip hive-1.2.1.bin.tar.gz

tar -zxvf apache-hive-1.2.1-bin.tar.gz

mv apache-hive-1.2.1-bin/ hive

III. Setting .bashrc

vim .bashrc
export HIVE_HOME=/home/hduser/hive
export PATH=$HIVE_HOME/bin:$HIVE_HOME/conf :$PATH

*= O

source .bashrc

IV. Create Hive file on HDF'S

hadoop fs -mkdir /tmp
hadoop fs -mkdir /user/warehouse
hadoop fs -chmod 777 /tmp

hadoop fs -chown 777 /user/warehouse

58

29

V. Installation libmysql-java

sudo apt-get install libmysql-java

sudo cp /usr/share/java/mysql-connector-java-5.1.28.jar ~/hive/lib

VI. Create a hive user on MySQL

mysql -u root -p

mysql > create database hive;

mysql> grant all on *.* to'hive'@'’' identified by 'hive';
mysql> flush privileges;

mysql> exit;

sudo vim /etc/mysql/my.cnf

*+ O # O H# O #H O

Annotate bind-address = 127.0.0.1

VII. Create a file in hive file

mkdir -p /home/hduser/hive/iotmp
chmod 777 /home/hduser/hive/iotmp

cp hive-default.xml.template hive-site.xml

#*= O H O H #®

vim hive-site.xml

<configuration>

<property>
<name>javax.jdo.option.ConnectionURL</name>
<value>jdbc:mysql://master:3306/hive?createDatabaseIfNotExist=true</value>

</property>

<property>
<name>javax.jdo.option.ConnectionDriverName</name>
<value>com.mysql. jdbc.Driver</value>

</property>

<property>
<name>javax.jdo.option.ConnectionUserName</name>
<value>hive</value>

</property>

<property>
<name>javax.jdo.option.ConnectionPassword</name>
<value>hive</value>

</property>

<property>
<name>hive.metastore.uris</name>
<value>thrift://master:9083</value>

</property>

60

<property>
<name>hive.exec.local.scratchdir</name>
<value>/home/hduser/hive/iotmp</value>
<description>Local scratch space for Hive jobs</description>
</property>
<property>
<name>hive.downloaded.resources.dir</name>
<value>/home/hduser/hive/iotmp</value>
<description>Temporary local directory for added resources in the remote
file system.</description>
</property>
<property>
<name>hive.querylog.location</name>
<value>/home/hduser/hive/iotmp</value>
<description>Location of Hive run time structured log file</description>
</property>
<property>
<name>hive.server2.logging.operation.log.location</name>
<value>/home/hduser/hive/iotmp</value>
<description>Top level directory where operation logs are stored if logging
functionality is enabled</description>

</property>

</configuration>

cp hive-env.sh.template hive-env.sh
sudo vim hive-env.sh
export HADOOP_HEAPSIZE=1024
export HADOOP_HOME=/home/hduser/hadoop
export HIVE_CONF_DIR=/home/hduser/hive/conf
export HIVE_AUX_JARS_PATH=/home/hduser/hive/lib

Appendix D

Sqoop Installation

I. Download Apache Sqoop

sudo wget http://apache.stu.edu.tw/sqoop/1.4.6/sqoop-1.4.6.tar.gz

I1. Unzip sqoop-1.4.6.tar.gz

tar -zxvf sqoop-1.4.6.tar.gz

mv sqoop-1.4.6/ sqoop

III. Setting .bashrc

sudo vim ~/.bashrc

export SQO0P_HOME=/home/hduser/sqoop
export SQOOP_CONF_DIR="$SQO0OP_HOME/conf"
export SQOOP_CLASSPATH="$SQO0P_CONF_DIR"
export PATH=$PATH:$SQO0P_HOME/bin

source ~/.bashrc

IV. Create empty accumulo directory

sudo mkdir accumulo

sudo chown hadoop:hduser accumulo

61

62

V. Create and edit sqoop-env.sh

sudo
sudo
export
export
export
export
export

export

cp sqoop/conf/sqoop-env-template.sh sqoop/conf/sqoop-env.sh
vim sqoop/conf/sqoop-env.sh
HADOOP_COMMON_HOME=/home/hduser/hadoop
HADOOP_MAPRED_HOME=/home/hduser/hadoop
HCAT_HOME=/home/hduser/hive/hcatalog
HBASE_HOME=/home/hduser/hbase

HIVE_HOME=/home/hduser/hive
ACCUMULO_HOME=/home/hduser/accumulo

VI. Download MySql connector

wget http://dev.mysql.com/get/Downloads/Connector-J/mysql-connector-java-5.1.36.zip

sudo

mv mysql-connector-java-5.1.36-bin.jar sqoop/lib

	摘要
	Abstract
	致謝詞
	Table of Contents
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivation
	1.2 Contributions
	1.3 Thesis Organization

	2 Background and Related Work
	2.1 Cloud Computing and Big Data
	2.1.1 Cloud Computing
	2.1.2 Big Data
	2.1.3 NoSQL

	2.2 Internet of Things and Wireless Sensor Network
	2.2.1 Internet of Things (IoT)

	2.3 Hadoop Ecosystem
	2.3.1 Hadoop
	2.3.2 HDFS
	2.3.3 HBase
	2.3.4 Hive
	2.3.5 Sqoop

	2.4 Related Work

	3 System Design and Implementation
	3.1 The Proposed System Architecture
	3.2 Design Detail of Hybrid Database Converter
	3.2.1 Database Controller
	3.2.2 Data Dumping

	3.3 Hybrid Database Converter Implementation
	3.3.1 Cluster Deployment
	3.3.2 Data Convter
	3.3.3 Data Convter

	4 Experimental Results
	4.1 Experimental Environment
	4.1.1 Compare massive storage methods

	4.2 Data Dumping Experiment
	4.2.1 First dump
	4.2.2 Batch of Dump
	4.2.3 Database Disaster Recovery
	4.2.4 The Three Models Compare

	4.3 Platform Implementation

	5 Conclusions and Future Work
	5.1 Concluding Remarks
	5.2 Future Work

	References
	Appendix
	Appendix
	Appendix
	A Hadoop Installation
	B HBase Installation
	C Hive Installation
	D Sqoop Installation

