
東海大學

資訊工程研究所

碩士論文

指導教授: 楊朝棟博士

混合型資料庫轉換器應用於空氣汙染監測服務

The Implementation of Air Pollution Monitoring Service

Using Hybrid Database Converter

研究生: 孫培倫

中華民國一零五年六月

1

摘 要

隨著空氣污染日益的嚴重，污染程度已經開始為害到人體的健康，人們開始重

視空污因子的即時濃度變化量並著手對空污因子作監控與紀錄分析。由於不斷

的從空污監測站收集資料，資料庫儲存的資料量越來越大，舊有的關聯式資料

庫已經無法處理過於龐大的資料，為了保持監控的流暢，必須刪除未整理過的

歷史資料。然而，在作空污分析時，歷史資料是一個非常重要的指標。因此在

不變動原本資料庫架構的情況下，如何將大部分的資料庫資料轉存到分散式資

料庫變成一個相當重要的事情。為了實現此目標，我們空氣污染監測系統結合

Hadoop 叢集將舊有的資料庫資料轉移至分散式資料庫並且備份。這樣不但降低

舊有資料庫的負擔且提升了服務的品質。資料轉存必須在不影響空氣污染的即

時監控服務前提下進行，在這部分我們特別強調網頁服務不中斷的部分。透過

最佳化轉存的模型提高約 60% 的效能，並且舊有資料庫受損時備份的資料讓受

損的服務可以透過分散式資料庫和 MapReduce 的方式讓服務可以快速的重新啟

動。最後，空氣污染監測系統提供一個關於空氣中污染因子變化量的訊息，供

相關單位作為環境檢測和分析的重要依據，讓人們生活在一個更為舒適的環境。

關鍵字: NoSQL，環境監控，雲端運算，巨量資料，混合資料庫系統

I

Abstract

As air pollution becomes more and more serious, pollution hurts human health,

people start to pay attention on real time value of air pollution factors monitoring

and recording analysis. Because our system need to get data from air pollution

monitoring stations usually. Among of data is growing faster, RDB (Relational

database) is hard to process huge data. In order to maintain smooth monitoring,

we must remove the historical data is not consolidated. But when we analysis

air pollution data, historical data is an important target. So, how to dump data

to NoSQL without change RDB system become an important things. In order to

achieve our goal, this paper proposed an air pollution monitoring system combines

Hadoop cluster to dump data from RDB to NoSQL and backup. This will not

only reduce the loading of RDB and also keep the service performance. Dump

data to NoSQL need to processing without affecting the real time monitoring on

air pollution monitoring system. In this part we focus on without interruption

web service. Improve 60% efficiency up, through optimization of dump method

and data backup service let service quickly restart by MapReduce and distributed

databases when RDB impaired. And through three different types of conversion

mode get the best data conversion to be our system. At last, air pollution monitor-

ing service provide message about air pollution factors variation, as an important

basis of environment detection and analysis, let people live in a more comfortable

environment.

Keywords: NoSQL, Sensors, Cloud Computing, Big Data, Hybrid database

system

II

致謝詞

研究所兩年的生活，歷經許多挑戰，從中不斷的克服困難解決問題，也增加許

多寶貴的經驗，也獲得許多貴人的幫忙。首先要感謝我的指導教授楊朝棟博士，

於碩士班兩年內各項能力指導上所花費的精力與時間，讓我不只將學術中學到

的能力與知識妥善應用在這篇論文中，讓本論文得以完成，同時教導我們待人

處事方法。謝謝您孜孜不倦的教導，讓我接觸各項新的事務，擴展我的視野和

國際觀，也給予我很多鼓勵，使我有動力繼續往前邁進，至此之後，也會繼續

努力的遵循和實踐教授所給予的教誨。另外我還要謝謝劉榮春老師與陳碩聰博

士對我的研究提供了很多的建議、指導和鼓勵，讓我的論文研究可以更加完整。

特別感謝口試委員時文中教授、伍朝欽教授、呂芳懌教授與劉榮春教授特地

撥空於論文口試時給予指正與建議，在修正之後讓我的論文能更加嚴謹完善，

同時也給我許多啟發與收穫，學生於此衷心感謝。

我也要謝謝實驗室的學長姊、同學、學弟以及好朋友們，謝謝你們陪我一起

度過這兩年的時光，當我有困難的時候、需要幫忙的時候，彼此互相鼓勵打氣，

開心的時候，一起出去玩，經歷了各種的風風浪浪，因為有大家的陪伴在我研

究所生活，增添了許多快樂，讓我不只學會了需多技術，同時也增廣了各方面

的見聞。

最後要特別感謝我的家人，在求學的這段日子中，使我可以專心地在學術研

究中，因為你們對我的關心，讓我堅定自己的人生道路，也因為有你們，碩士

兩年不時回家充電，才得以充滿活力，在度過的每一天才得以不孤單，由衷感

謝一路陪伴的所有人。最後，僅將此論文與各位分享。

東海大學資訊工程學系 高效能實驗室 孫培倫 105 年 07 月

III

Table of Contents

摘要 I

Abstract II

致謝詞 III

Table of Contents IV

List of Figures VI

List of Tables VIII

1 Introduction 1
1.1 Motivation . 1
1.2 Contributions . 2
1.3 Thesis Organization . 2

2 Background and Related Work 3
2.1 Cloud Computing and Big Data . 3

2.1.1 Cloud Computing . 3
2.1.2 Big Data . 5
2.1.3 NoSQL . 7

2.2 Internet of Things and Wireless Sensor Network 8
2.2.1 Internet of Things (IoT) . 8

2.3 Hadoop Ecosystem . 10
2.3.1 Hadoop . 10
2.3.2 HDFS . 11
2.3.3 HBase . 13
2.3.4 Hive . 16
2.3.5 Sqoop . 18

2.4 Related Work . 19

3 System Design and Implementation 21
3.1 The Proposed System Architecture 21
3.2 Design Detail of Hybrid Database Converter 23

3.2.1 Database Controller . 23

IV

TABLE OF CONTENTS V

3.2.2 Data Dumping . 24
3.3 Hybrid Database Converter Implementation 27

3.3.1 Cluster Deployment . 28
3.3.2 Data Convter . 30
3.3.3 Data Convter . 31

4 Experimental Results 33
4.1 Experimental Environment . 33

4.1.1 Compare massive storage methods 35
4.2 Data Dumping Experiment . 35

4.2.1 First dump . 37
4.2.2 Batch of Dump . 38
4.2.3 Database Disaster Recovery 38
4.2.4 The Three Models Compare 39

4.3 Platform Implementation . 40

5 Conclusions and Future Work 46
5.1 Concluding Remarks . 47
5.2 Future Work . 47

References 48

Appendix 52

A Hadoop Installation 52

B HBase Installation 56

C Hive Installation 58

D Sqoop Installation 61

List of Figures

2.1 Service Mode . 4
2.2 Big data 4V . 6
2.3 Compare with NoSQL and RDBMS 8
2.4 Three classes of IoT . 9
2.5 Apache Hadoop Ecosystem . 11
2.6 HDFS Architecture . 13
2.7 HBase Service Architecture . 14
2.8 Data Model of HBase . 15
2.9 Hive Architecture . 17
2.10 Sqoop basic workflow . 19

3.1 Air pollution monitoring system data accesss 22
3.2 Join hybrid database converter . 23
3.3 Hybrid Database Converter . 24
3.4 Transformation types between RDB and NoSQL databases 25
3.5 Three kinds of data conversion model 26
3.6 Hadoop NameNode information . 28
3.7 Hadoop cluser information . 29
3.8 Air pollution monitoring platform architecture 32

4.1 Spark and Hadoop Computing cluster 34
4.2 Data Transform Time . 35
4.3 Variation of Three Kinds of Data 36
4.4 Data Growth of Three Kind of Data 36
4.5 First Dump Time . 37
4.6 Batch of Dump Time . 38
4.7 DB Disaster Recovery . 39
4.8 Experiment Results . 40
4.9 Air Quality . 41
4.10 Daily Stats . 41
4.11 Daily Values Record . 42
4.12 Monthly Values Record . 42
4.13 Annual Values Record . 43
4.14 Regional Numerical Comparison . 43
4.15 Value Record of Each Years . 44
4.16 Numerical Comparison of Each Years 44

VI

LIST OF FIGURES VII

4.17 DB Controller . 45

List of Tables

3.1 Software Specification . 27

4.1 Experimental environment . 34
4.2 Dump Data Set . 37

VIII

Chapter 1

Introduction

Big data application become increasingly important, cloud computing and cloud

computing also become more popular. Many existing systems will face growing

data. Big data analysis system and cloud computing can solve the problems on

big data analysis and storage However, not all systems have adequate resources to

build system on a new big data analysis system. So, many systems based on RDB

which cannot support huge data store and data processing. How to integrate RDB

and distributed apply on data analysis and system service is an important issue.

This section describes the motivation and contribution of the proposed system.

1.1 Motivation

In recent years, the rise of Big Data transform database model to NoSQL. But not

all institution have resource to change database immediately. Therefore, most of

the existing systems are still store data by RDB. With the growing data volumes,

distribute for analysis or want to get faster access on big data. Thus, governments

and enterprises start to research how to add NoSQL on the exist systems, and try

to dump data to NoSQL without affecting the quality of service. RDB system

advantage is real time analysis database data, when application query database

can using SQL function receive data.

1

Chapter 1 Introduction 2

1.2 Contributions

Air pollution monitoring system is a good experiment example. In recent years,

air quality of Taiwan getting worse. In order to provide the users to view the

real-time air quality data. Air pollution monitoring system must continually store

the air data from local stations and return information to database. However,

growing data let the services of air pollution monitoring system worse. So, we

propose a hybrid database converter mechanism to do transforming and processing

data without effected system services. Reduce data size of RDB and upgrade

service quality, also analyzing huge pollution factor data result on NoSQL by

using MapReduce then dump the result to RDB. We propose a hybrid database

converter mechanism to integrate RDB and NoSQL on air pollution monitoring

system.

1.3 Thesis Organization

The rest of the thesis is organized as follows. In Section 2, we review background

and related work. In Section 3, we introduce the proposed system design and

implementation. Section 4 shows our experiments and results. In Section 5, con-

clusions and future work are given.

Chapter 2

Background and Related Work

2.1 Cloud Computing and Big Data

In this chapter, we present background information relevant to our work. First,

we discuss the Cloud Computing, OpenStack and Internet of Things. Then we

discuss Big Data, NoSQL and Hadoop about Big data analysis and processing

applications. Third, we discuss HDFS, HBase Hive and Sqoop about Big data

storage and conversion tools on Hadoop . Finally, we also survey related work and

point out their relationship to our work.

2.1.1 Cloud Computing

Cloud computing [1–5]is an operation mode based on the Internet. In this way, the

resources of hardware and software can be provided to computers and other devices

on demand. Users no longer need to know the details of the cloud infrastructure,

or have the appropriate expertise and direct control. Cloud computing typically

involves with the Internet providing dynamic and easy to expand functionality,

and usually consists of virtualized resources. Cloud computing was first proposed

by Google, but this concept is not originated by it. Now, cloud computing is

well-known and it is gradually evolved by a series of technologies such as grid

3

Chapter 2 Background and Related Work 4

computing, utility computing and others. Due to the ever increasing capabilities

of computers and decreasing of prices of them in the recent years, more and more

companies step into this field.

The main features of cloud computing include on-demand self-service, rapid

redeployment of flexibility, shared resource pools to achieve economies of scale,

and the service can be calculated. Service providers integrate a large number of

resources to multiple users. Users can easily request or rent more resources and

adjust the use at any time and release unwanted resources to the whole structure.

Therefore, users do not need to purchase a lot of resources for short-term demand,

they just need to increase rent amount, and decrease it after completion of tasks.

As shown in 2.1, service models of cloud computing are introduced as follows.

Figure 2.1: Service Mode

• Infrastructure as a Service (IaaS) [6]: Consumers use the underlying comput-

ing resources such as processing units, storage spaces, network elements or

intermediary software. Consumers can control the operating system, storage,

deployed applications and network elements (such as firewalls, and load bal-

ancers), but does not control the cloud infrastructure. For example: Cisco,

Hewlett-Packard (HP), EMC, VMware, Intel and IBM.

Chapter 2 Background and Related Work 5

• Platform as a Service (PaaS) [7]: Consumers use the host to operate appli-

cations which just provide hardware-related environments. PaaS is mainly

hosted client application execution platforms. Programmers do not have to

install application development software, they only need to use the Inter-

net and complete program system development. Users control the operation

of the application environment, but do not control the network infrastruc-

ture, operating systems, hardware or its operations. The application plat-

form is usually infrastructure, for example: Google App Engine, Salesforce’s

Force.com and the like.

• Software as a Service (SaaS) [8,9]: Consumer use applications, but not con-

trol the operating system, network infrastructure, hardware or its operations.

SaaS is the basis of a service concept and is usually combined with commer-

cial software. It is generally regarded as enterprises to obtain the same low

cost commercial license. This concept is not only different from the tradi-

tional software packaging, deployment, and license, but also it changes the

development framework and charging methods, and maintenance mode of

software. Its concept is leasing customer service, rather than selling it. A

common pattern is to provide a set of account passwords. Examples of SaaS

include Microsoft CRM and Salesforce.com.

　

2.1.2 Big Data

Big data [10–12] refers to data in such a huge scale that, within a reasonable

time, cannot be manually captured, managed, processed, and organized to become

information comprehensible by human. Compared with the individual analysis of

small independent data sets with the same total amount of data, after combining

the various small data sets as a big data set, additional information and data

relevance can be retrieved and used to detect trends, determine product quality

Chapter 2 Background and Related Work 6

and real-time messages, etc. Such use is the major reason for the prevalence of big

data.

IDC defines big data as a new generation of technologies and architectures

designed to economically extract value from very large volumes of a wide variety of

data by enabling high velocity capture, discovery and analysis. Big data definitions

are summarized into four “V”, as show in Figure 2.2.

Figure 2.2: Big data 4V

That combination of greater capacity (volume), higher diversity (variety),

faster formation rate (velocity), and the first three “V” promoted the fourth one

- the value (value) as described below:

• Volume: A large amount of data generated, processed, and stored, and it’s

the literal meaning of big data with massive amount of information.

• Velocity: For example: market forecasting is aging fast and a prediction will

be meaningless if not made in time; so timeliness of big data is very critical.

• Variety: It refers to the form of information, including text, audio, video,

web, and streaming data that are structural or non-structural.

Chapter 2 Background and Related Work 7

• Veracity: If the information is from diverse sources, we need to discuss the

reliability and quality of the information. If the data have problem, the

results of analysis cannot be trusted.

Nowadays the big data processing and analysis application is becoming a new

merging point of information technology applications. The mobile Internet net-

working, social networking, digital home, IoT, and e-commerce comprise the next

generation IT applications, and these applications will continue to generate a huge

amount of data.

2.1.3 NoSQL

NoSQL [13–15] appeared in 1998. It is developed by Carlo Strozzi as a lightweight,

open source, relationship database without SQL function. In 2009, Eric Evans

from Rackspace’s put forward the concept of NoSQL once again. In this time,

NoSQL mainly refers to non-relational, distributed, and not provide ACID . [16]

repository model. The slogan of NoSQL East conference held in Atlanta is “se-

lect fun, profit from real world where relational= false.”Therefore, the most com-

mon explanation is “non-associated type”, which emphasizes the advantages of

key-value stores and document repository, rather than simply opposes Relational

Database Management System (RDBMS). The full name of NoSQL is Not Only

SQL. It is different from relational database management system design, as shown

in Figure 2.3.

Chapter 2 Background and Related Work 8

Figure 2.3: Compare with NoSQL and RDBMS

Implementation of NoSQL can use either hard disk or RAM for storage. Re-

lational database are not very efficient for mechanisms with frequent reading and

writing or mechanisms of writing few but huge data. NoSQL structures usually

provide weak consistency guarantees, such as eventual consistency or transactions

limited to single data items. It use decentralized structure with data redundantly

stored in multiple servers. It often uses a distributed hash table; in this way, the

system can be easily scaled to add more servers and to implement fault tolerance

for servers. The famous applications of NoSQL include BigTable, which is inde-

pendently developed by Google, and Dynamo by Amazon; besides, in the open

source projects, there are HBase and Apache Cassandra.

2.2 Internet of Things and Wireless Sensor Net-

work

2.2.1 Internet of Things (IoT)

The IoT [17, 18] is based on the Internet, traditional telecommunication network

and other information carriers to enable all ordinary physical objects, which can

be independently addressed, achieve interoperability of networks. IoT is machine

Chapter 2 Background and Related Work 9

to machine (MTM) with the Internet. It covers everything in the world by using

RFID and wireless data communication technology. IoT generally uses a wireless

network; since the number of devices around everyone can reach 1000 to 5000,

so IoT might include more than 500 Trillion objects. BY the IoT, everyone can

use electronic tags to find real objects on the Internet and find out their specific

locations. Users can use a central computer to manage and control machines,

equipment and personnel; they can even remote control house devices and cars,

and search locations to prevent goods from stealing. By IoT, systems with GPS

can communicate with each other and share information. Figure 2.4 shows three

classes of IoT.

Figure 2.4: Three classes of IoT

IoT can be divided into three classes:

• Perception layer: Perception and monitoring carried out for different scenar-

ios; it has sensing, identification, and communication capabilities.

• Network layer: It transmits the data collected from the perception layer to

the Internet.

• Application layer: According to different requirement, experts of IoT and

industry work together to develop the appropriate integral application soft-

ware.

Chapter 2 Background and Related Work 10

Currently, many governments have already announced that the IoT will be

raised from general business practices to national strategic industry. In China,

people are optimistic about the potential of IoT development, and it has been listed

as a key project of the 12th five-year plan. Meanwhile, Japan and South Korea and

other countries also actively commit to the development of IoT: US intelligence

Earth program, Europe’s i2010 policy, Japan’s I-japan plan, the new network in

South Korea, and Perception mainland in China, all of them are trajectory toward

IoT. The business sector also develops new products for this trend. So IoT will

have a revolutionary impact on the future of human life. Among them, industries

relevant with the safety of people are facing with a major revolution.

2.3 Hadoop Ecosystem

2.3.1 Hadoop

Hadoop [19,20] is an open source project under the Apache Software Foundation.

The initial prototype of Hadoop-Nutch was developed for web searching by Doug

Cutting and Mike Cafarella. In 2006, Doug Cutting joined Yahoo and set up a pro-

fessional team to continue research and development of this technology, officially

named as Hadoop. Hadoop is written in java; it can provide a distributed com-

puting environment for huge data. The concept of Hadoop architecture is based

on the BigTable and Google File System papers published by Google. Currently,

Yahoo! and other companies have teams for Hadoop development; and more and

more companies and organizations publicly express the intention to use Hadoop

as cloud computing platform.

Hadoop includes a number of sub-projects. Hadoop MapReduce provides a

distributed computing environment; Hadoop Distributed File System provides a

lot of storage space; and HBase provides a BigTable-like distributed database.

There are other parts that can be used to link together these three main parts,

Chapter 2 Background and Related Work 11

providing easy integration of cloud services, as shown in Figure 2.5. The following

section will introduce Hadoop Distributed File System (HDFS) and HBase.

Figure 2.5: Apache Hadoop Ecosystem

2.3.2 HDFS

Hadoop is a cluster system, which is an integrated super computer expanded from

a single server to thousands of machines. In this cluster the information is stored

in HDFS, which integrates dispersed storage resources into a fault-tolerant, high

efficiency, large capacity, and remote backup storage environment. In Hadoop sys-

tems, the large amount of data and temporary files generated during computation

are stored on this distributed file system.

• NameNode: It is responsible for maintaining the HDFS File System Names-

pace. It records the mapping relations of a file and its blocks. It also records

blocks and data nodes in the blocks for Hadoop cluster configuration man-

agement and backup management of the file blocks. Metadata of NameNode

is stored in the memory without any paging operation of the virtual memory.

• DataNode: It is the server where file blocks are actually stored. It is used

for recording metadata of the blocks. The most important information it

Chapter 2 Background and Related Work 12

provides is the mapping relation for the location of data in the local file

system. It provides metadata to clients, and it will periodically transmit the

status of existing blocks to NameNode.

Through HDFS, Hadoop can store tera bytes (TB) or peta bytes (PB) of big

data. It does not need to worry about the size of a single file exceeding the size

of a disk sector, or data lost caused by damaged machines. HDFS has not been

integrated into the Linux kernel, and it only can operate files via dfs shell command

of Hadoop, or use FUSE to be treated as a file system under the user space. All

systems under Hadoop are integrated with HDFS as a data storage, backup, and

sharing medium. As mentioned earlier, when the system is assigning computing

tasks, MapReduce will assign computing task to the nodes stored with the data

for operation, thus reducing the time to transmit the large amount of data via

networks.

• HDFS Architecture

HDFS is master/slave architecture [21, 22], composed of two roles, i.e., the

name node and data nodes.Name node is responsible for managing and stor-

ing permissions for each file attribute information (such as metadata and

namespace) in the file system. The data node usually consists of hundreds

of nodes. A file is divided as several smaller blocks and stored in different

data nodes; each block has several replicas of data stored in different nodes.

When one of the node is damaged, data stored the file system still can be in-

tact. The NameNode needs to record the locations for every file. When there

are needs to access files, it coordinates the DataNode for responses. When a

node is damaged, NameNode will automatically move and copy data. Figure

2.6 shows HDFS architecture.

Chapter 2 Background and Related Work 13

Figure 2.6: HDFS Architecture

A file can be thought as a treasure map. Inside the machine a MasterNode

is used to manage other slave/worker nodes. In order to securely store the

treasure map, it is divided into several pieces (blocks), typically 128 MB a

piece; and each piece is copied into three copies (data replication) and these

pieces are distributed to slave nodes for storage. The slaves use “DataN-

ode” program to store the treasure map, while the master uses “NameNode”

program to monitor the status of the treasure map store in slaves. If the

master’s program, NameNode, finds a piece of the treasure map in some

DataNode is missing or damaged, it will find the other piece of it on the

other DataNode and duplicate it to keep three replicas of every piece of the

treasure map in the whole system.

2.3.3 HBase

Apache HBase [23–25] is a project undertaken by Powerset to deal with the huge

amount of data generated by natural language searching. But now it is already

a top-level project of the Apache Foundation. HBase runs on HDFS and has

attracted widespread attention. Facebook chose HBase to implement its messaging

Chapter 2 Background and Related Work 14

platform in November 2010. HBase is distributed database on HDFS architecture,

and is different from general relational database. It is modelled with reference

of Google’s BigTable, and is programmed in Java. It is fault-tolerant to store

massive sparse data. The table from HBase can be used as inputs and outputs

in MapReduce tasks. It can be accessed through the Java API, and it also can

be accessed by REST, Avro or the Thrift API. Today, it has been used in a

number of data-driven sites, including Facebook’s messaging platform. In order

to conveniently disperse data and operation work, the entire data table is divided

into many regions. One region is composed of one or more columns, which can be

stored in different hosts called as the region servers; master server is used to record

a region corresponding to each region server; besides, there is the master server to

record every region server corresponding to every region. The master server will

automatically reassign regions on the region server that cannot provide services to

another region server. The HBase service architecture is shown in Figure 2.7.

Figure 2.7: HBase Service Architecture

• Data Model

HBase can provide MapReduce programs with data sources or storage space.

After HBase version 0.20, it provides TableMapper and TableReducer cat-

egories to allow inheritance of the Mapper and Reducer classes. And thus,

key and value in MapReuce can be more easily removed and stored in HBase.

Chapter 2 Background and Related Work 15

HBase uses row and column as index to access data values. It is more like

using map container when querying. Another feature of HBase is that each

piece of data has a timestamp, so that in a same field there are multiple sets

of data of different time. An HBase data table is composed of a number of

rows and columns families; each column has a row key as index. A column

family is a set of column label, which may have many groups of labels. These

labels can be added as needed any time without having to reset the entire

data table. When access data in data table, one usually uses a combina-

tion of (‘row key’, ‘family: label’) or (‘row key’, ‘family: label’, ‘timestamp’,

‘value’) to retrieve the required fields. Next, we will introduce the Data

Model in HBase, which is shown in Figure 2.8.

Figure 2.8: Data Model of HBase

• Table: It is composed of a number of rows, which are decided at the first

time when the table is constructed.

• Row: One row contains a row key and one or more columns; similar to

HDFS, rows are ordered in the alphabetical order.

• Column: One column contains a column family and a qualifier, and is sepa-

rated by “:”.

Chapter 2 Background and Related Work 16

• Column Family: It is a set of columns and its corresponding values. Each

column family will have a bunch of property values associated with the store.

For example, whether the value needs to be stored in the cache, how the data

is compressed, how row keys are encoded. Each row has the same column

family, but it is possible that the family is empty.

• Column Qualifier: Column qualifier can be understood as the index to the

column family. The column family is determined when the table is created,

but the qualifier can be added when needed and thus each column quali-

fier can be very different. Because HBase does not provide meta table that

records information of columns, users must manage and remember informa-

tion of the used columns.

• Cell: A complete cell consists of row, column family, column qualifier, value

and timestamp.

• Timestamp: The timestamp is added when a value is written. It is unique

by default, but it can also be set artificially.

• Namespace: It can be understood as to manage table by groups. This is a

new concept for subsequent version with new features and prepared specifi-

cally for use in HBase Shell.

2.3.4 Hive

Apache Hive [26–28] is a data warehouse based on Hadoop open source tools for

storing and processing massive amounts of structured data. As show in Figure

2.9. MapReduce is the foundation of hive architecture. Hive architecture includes

the follow components: CLI (Command Line Interface)、JDBC/ODBC、Thrift

Server、WEB GUI、Metastore and Driver (Complier、Optimizer and Executor),

these components are divided into two categories: Service module and client mod-

ule.

Chapter 2 Background and Related Work 17

Figure 2.9: Hive Architecture

• Service module:

1. Driver: This module contain compiler, optimizer and executor, this

module use HiveQL (like SQL) statements to parsing and optimization

compiler, execution task, then invoke MapReduce computing frame-

work.

2. Metastore: This module store hive metadata, hive store metadata in

RDB. Metadata is important to hive, so hive support independent

Metastore, install on a remote server cluster, Decouple Hive services

and service Metastore, to make sure hive operation robustness.

3. Thrift service: Thrift is a software framework developed by Facebook,

it used to developed scalable and cross-language services.

• Client module:

Chapter 2 Background and Related Work 18

1. CLI: Command Line Interface.

2. Thrift client: Many client interface of Hive architecture are built on

this module, consist of JDBC and ODBC interfaces.

3. WEBGUI: Hive client provides a way to get hive services by web in-

terface, this interface corresponds to the HWI (Hive Web Interface)

module.

2.3.5 Sqoop

Sqoop [29–31] is SQL to Hadoop, Sqoop is a convenient tool that migration data

between traditional relational database and NoSQL. Sqoop take advantage of

Hadoop MapReduce parallel feature that accelerate migration data by batch pro-

cessing.

Sqoop is a import tool that support data migrate from relation database to Hive、

HDFS and Hbase, also support full table import and incremental table import.

As show in Figure 2.10 is Sqoop basic workflow, when Sqoop import table data

from RDB, depend on different split-by value to split the data, next let segmented

blocks assigned in different map, each map will process block data. Finally, store

data in the Hadoop distributed storage system.

• Sqoop feature:

1. High efficiency control resources, task parallel processing to save pro-

gram execution time.

2. Data type mapping and transforming can be automatically, users can

also define their own.

3. Supports multiple relational databases, MySQL, Oracle, SQL Server,

DB2 etc.

Chapter 2 Background and Related Work 19

Figure 2.10: Sqoop basic workflow

2.4 Related Work

Our entire system is divided into several sections to study and find out what we

can optimize and reference information. With the data growing getting bigger and

increasingly complex, many research are focus on combine RDB and NoSQL. Ying-

Ti Liao et al. [32] proposed a data adapter, application can easily make access to

the database and dump all the data in RDB to NoSQL database by data adapter.

This paper does raise a very good mixed type library data dump modules can be

used for our reference. The experiment make we had some doubts, when a large

amount of data to a certain extent, all the data stored in two databases will not

affect the system service efficiency.

In the data access part, Fan Zhang et al. [33] proposed a task-level adaptive

MapReduce framework for real-time streaming data in healthcare applications.

Real-time data processing system estimate the cluster performance when process-

ing real-time data into the map on the first time, after the second, when the

real-time data entering, application will analysis of the amount of data size then

Determine whether to turn to the other map and testing the effectiveness of the

newly opened map at the same time. Thus improving real-time processing of mas-

sive data. This paper provide large real-time data processing architecture for our

reference. After evaluation and experiments, we found when data set is not much

Chapter 2 Background and Related Work 20

larger. Large real-time data processing architecture will spent to many time on

system sets up and cleans up the job, also not conducive to crawling data.

In the data dump part, IKrishna Karthik Gadiraju et al. [34] proposed a

Benchmarking performance for migrating a relational application to a parallel

implementation. They compare the performance of loading data and querying

for SQL and Hive Query Language (HiveQL) on a relational database installation

(MySQL) and on a Hive cluster, measure the speedup for query execution for

three dataset sizes resulting from the scale up. Hive loads the large datasets faster

than MySQL, while it is marginally slower than MySQL when loading the smaller

datasets. Query execution in Hive is also faster.

The last part is the air pollution monitoring system, Yun-Ting Wang proposed

the Implementation of Sensor Data Accessing on HBase for Intelligent Indoor En-

vironmental Monitoring Cloud Service. the proposed Intelligent Indoor Environ-

ment Monitoring System in Cloud (iDEMS) combined environmental sensors with

ZigBee wireless sensor network technology to store and process environmental data

in HBase. The environmental data collected by sensors will be stored and pro-

cessed cloudy in HBase which support large amounts of data to store in, free to

increase storage space easily. It also can compute through Hadoop MapReduce for

HBase database to do distributed computing or cloud computing to process envi-

ronments records. We refer part of the iDEMS Architecture to make our service

consummate.

Chapter 3

System Design and

Implementation

This section presents the proposed air pollution monitoring system with hybrid

database converter and its implementation. In sub-section 3.1, we intrroduce the

proposed system architecture. Next, we introduce the design detail of hybrid

database converter in sub-section 3.2. Finally, hybrid database converter imple-

mentation and three way to dump data in sub-section 3.3.

3.1 The Proposed System Architecture

The air pollution monitoring system is a system which can save and analysis the

concentration of air pollution factor by catching the real-time data of monitoring

station around to achieve real-time monitoring and provide the historical data for

experts and most people by graphical interface as shown in Figure 3.1. In terms

of data storage, air pollution monitoring system adopts RDB to store data after

catching data of air pollution factor from monitoring station and then requests

data from RDB through the application. However, this concept is not efficient for

big data today. So we propose a hybrid database converter architecture that can

save data quickly and conform to Big Data analysis system architecture without

21

Chapter 3 System Design and Implementation 22

affecting service. As show in Figure 3.2, air pollution factor transforms data be-

tween RDB and NoSQL through hybrid database converter to reduce the amount

of data of RDB and then avoid lower performance by the growing data. Moreover,

we use NoSQL to analysis big data quickly to achieve the combination of two

different database.

Figure 3.1: Air pollution monitoring system data accesss

In terms of database design, we will divide the data into two categories: the

original data that catch from monitoring station and the resulting data after anal-

ysis. For convenient analysis by users, the caught data are classified into day data,

month data, and year data. In order to prevent the original data used during an-

alyzing, we must arrange the data and show on application by graphical. Two

kinds of data is growing continuously, but the magnitude of growth varies greatly.

Chapter 3 System Design and Implementation 23

Figure 3.2: Join hybrid database converter

3.2 Design Detail of Hybrid Database Converter

In this section, we first introduce the design detail of hybrid database converter

by two parts: first is database controller, and the other is data dumping. Finally,

hybrid database converter implementation, cluster deployment, and data converter

are present.

3.2.1 Database Controller

Database controller has four models, data collection, data processing, data calcu-

lation, and controller. They are shown in Figure 3.3

• Data Collection is mainly catch data and store into RDB, through api to

catch information of air pollution factor from monitoring station then store

into RDB and catch the record to send to controller.

Chapter 3 System Design and Implementation 24

Figure 3.3: Hybrid Database Converter

• Data Processing is mainly to do first process before convert after data store

in RDB, to reduce the amount of data of RDB and data searching time, and

also provide graphical data pre-processing.

• Data Analyzing is mainly use NoSQL to analysis and process the big data,

then return result to the controller after analyzing and processing.

• Controller is mainly to execute dump data, also according dump requirement

to insert or delete tables data.

3.2.2 Data Dumping

The ways of dumping can be divide into two different directions: RDB to NoSQL

or NoSQL to RDB, and four types of dump: both of NoSQL and RDB have all

data, NoSQL has all data and RDB has part of data, NoSQL and RDB have part

Chapter 3 System Design and Implementation 25

of data that each other do not have and part of data that both have, and NoSQL

and RDB have part of data but do not have common data. As show in Figure 3.4.

Figure 3.4: Transformation types between RDB and NoSQL databases

We choose three different types of data store to compare and get the type that

most conform with our air pollution monitoring system. To compare the three dif-

ferent types of data dumping, we divide three classification of data: original data,

data after arranging, and others data; original data have the original information

that catch from all monitoring station, the data after arranging have day data,

month data, and year data from monitoring station after processing and calcu-

lating, others data have the record of user and information from each monitoring

station.

Synchronize:

This model will store all data into NoSQL and RDB, and the new data will be

stored in RDB first, then dump into NoSQL through controller in Non-access time,

so in the case of backup, when there has data loss, it can recover data through

the backup in resource pool. But when the data of data table reaches a certain

amount, the speed of store data into database from air pollution monitoring system

will be slowly.

All data in NoSQL and RDB has part of data:

Chapter 3 System Design and Implementation 26

This model will store all data into NoSQL, RDB only stored the data which

air pollution monitoring system needs. So we metastasis all the original data

into NoSQL, and clear the original data in RDB to reduce the amount of data in

database. It’s not only can lengthen the usable time of database but also backup

data in the resource pool. Reducing load of database through metastasis data in

regular time for make sure that the service of air pollution monitoring system be

perfectly.

Only part of the same data:

This model will store data into RDB and NoSQL separately, in addition to the

information is the same, the data is owned by individually. RDB in this model is

mainly store the data and information from monitoring station which is usable for

air pollution monitoring system, and the original data and information that is not

often used is stored into NoSQL. It’s can lengthen the usable time of database

and reduce load of database but when it do a backup, it may cause the original

system failure and loss data because the data is not completely..As show in Figure

3.5.

Figure 3.5: Three kinds of data conversion model

Chapter 3 System Design and Implementation 27

3.3 Hybrid Database Converter Implementation

In this work, we have established the cloud big data clusters through thirteen

physical machines, one node as master, twelve node as the computing node to set

up Apache Hadoop, Apache Spark, Apache Sqoop, Apache Hive, Apache HBase.

Table 3.1 shows the software specification.

Table 3.1: Software Specification

Version

Hadoop 2.6.0-cdh5.4.5

HDFS 2.6.0

YARN 2.6.0

Spark 1.3.0

Sqoop 1.4.5

Hive 1.2.1

HBase 1.0.0

Chapter 3 System Design and Implementation 28

3.3.1 Cluster Deployment

On the deployment, platform environment using one server as master, and com-

puting nodes using 1 Gigabit Ethernet, each node as DataNode, NodeManage,

and RegionServer, where three computing nodes as ZooKeeper.

Through the Thirteen hosts, i.e., the one NameNode and Twelve DataNodes,

the Hadoop HDFS NameNode Web Interface shows that the cluster provides 10.56

TB of big data storage space. This information also shows how many live DataN-

odes are functioning shown in Figure 3.6.

Figure 3.6: Hadoop NameNode information

Figure 3.7 shows thirteen nodes are currently in operation and the Applications

running status or history.

Chapter 3 System Design and Implementation 29

Figure 3.7: Hadoop cluser information

Chapter 3 System Design and Implementation 30

3.3.2 Data Convter

In data convter, we split dump data into three parts, first dump, batch of dump,

and time of disaster recovery. First dump is mainly to save data table in Hive

sequential through in accordance with different modules, batch of dump will dump

new data in a period of time, disaster recovery will revert RDB which has broken

data, and we will simulate by different size of data.

First Dump:

In this step, the system will dump all the data table to NoSQL directly, when

system is connetcted to the hybrid database converter system, hybrid database

will fetch all the data from RDB, and put the data to NoSQL by the Sqoop.If it

is not the first time connected to the hybrid database, the system will dumping

the data after it store the information to a certain extent.

Batch of Dump:

In this step, system will examine RDB tables in certain period of time, if

table has update data, system will dump the update data to the NoSQL. Show

as Algorithm 1. In order to achieve the batch dump, we when dump to time t,

we will check whether a table data Tn have updated information or not, if there

is updated information we will dumping Ti data to NoSQL. Because some data

table needs to be read and can’t be clear the data table, so Ti must to determine

it’s necessary to clear the data or not. If it needed, it’ll clean up the Ti data and

make the next batch dump time.

DB Disaster Recovery:

In this step, for our system can do DB disaster recovery in database, we use

two dump methods to store all data in NoSQL, and use algorithm to recover data

in RDB in the most short time and rebuild service. Show as Algorithm 1.In order

to reply the database, we check database whether destroyed or not, when the

database destroyed, check all tables Tn in NoSQL, as different module, judge the

Chapter 3 System Design and Implementation 31

table Ti whether need to back to RDB or not. If Ti need reply, copy the Ti data

to HDFS list L, then put L to RDB.

Algorithm 1 Batch of Dump Algorithm
1: while (time equal to t) do
2: for (i=1;i<=n;i++) do
3: if (Ti has the update data) then
4: Dump Ti data to T ′

i

5: end if
6: if (Ti need to be clear) then
7: Clean the table
8: end if
9: end for

10: end while

Algorithm 2 DB Disaster Recovery Algorithm
1: while (Determine whether the need to reply) do
2: for (i=1;i<=n;i++) do
3: if (Ti need to be reply to RDB) then
4: if (Ti need to be processing) then
5: Processing Ti data to L
6: else
7: Copy Ti data to L
8: end if
9: end if

10: end for
11: Put the data L to the RDB
12: end while

3.3.3 Data Convter

We take an air pollution monitoring platform as an example, we implement a

service platform, mainly is used to monitor changes in air pollution factor, it

will fetch 76 monitoring stations and data will be stored in our hybrid database

system. Each station can fetch an amount of about 1MB of data per day, so

every stations can fetch to the amount of data of about 76MB a day. Through

data collection and collation of air pollution in nearly seven years, the current

amount of data about 2GB. As shown in Figure 3.8, the system will fetch the

Chapter 3 System Design and Implementation 32

data back to the database then sent to the server through the wireless network

and the existing data dump into the cloud platform quickly. The cloud system is

based on 12 physical machine, using the features of Hadoop to link the physical

machine effectively, and then made a huge historical data through the MySQL

connect with the Hive, the results are presented in the monitoring system. When

each data dump to the cloud-based platform, the information will be placed in

distributed database systems, every fixed time, data will also be stored in the cloud.

After stored in cloud storage, data will be processed and operation. After the

data processing, users can handle the necessary information to do data dumping

through the management platform. Finally, the system will be presents in web

pages by using HTML 5, JavaScript and CSS 3, in order to achieve the dynamic

web pages, our paper through the implementation a UI by jQuery, users can see

the information about air pollution and instant information via the user interface.

In this service, we focus on air pollution monitoring, the detection of air quality

by sensors and the data convert to the visual information displayed on the user

interface, and saved to the database at the same time. In the system interface,

we configured the data converter, providing periodic information dumping, the

managers can dumping data whatever they want, we also had automatic control

system, if the data in the RDBMS reaches a certain level, it will dump into the

cloud system, it mainly to maintain application performance when fetching data

in database, and warning to air pollution monitoring.

Figure 3.8: Air pollution monitoring platform architecture

Chapter 4

Experimental Results

This chapter introduces experiments in detail. First, both hardware and software

used in experimental environment are listed. Then, the experimental results are

shown and analyzed. Finally, discussions are made.

4.1 Experimental Environment

This subsection introduces our environmental environment including hardware and

software. To implement the proposed system, we use 12 physical servers connected

by Gigabit Ethernet to establish a cluster. In hardware, each physical server is

Intel Core i7 CPU with 16GB Memory and 1TB HD. In software, Ubuntu 14.04.2

is adopted as our operating systems. Also,Hadoop 2.6.0-cdh5.4.5、Spark 1.3.0、

Sqoop 1.4.5、Hive 1.2.1、HBase 1.0.0 are installed, as shown in Table 4.1 and

Figure 4.1.

33

Chapter 4 Experimental Results 34

Table 4.1: Experimental environment

ID CPU RAM HDD NIC
1 Intel® Core™ i7-4770@3.40GHz 16GB DDR3 1TB 1Gb Ethernet
2 Intel® Core™ i7-4770@3.40GHz 16GB DDR3 1TB 1Gb Ethernet
3 Intel® Core™ i7-4770@3.40GHz 16GB DDR3 1TB 1Gb Ethernet
4 Intel® Core™ i7-4770@3.40GHz 16GB DDR3 1TB 1Gb Ethernet
5 Intel® Core™ i7-4770@3.40GHz 16GB DDR3 1TB 1Gb Ethernet
6 Intel® Core™ i7-4770@3.40GHz 16GB DDR3 1TB 1Gb Ethernet
7 Intel® Core™ i7-4770@3.40GHz 16GB DDR3 1TB 1Gb Ethernet
8 Intel® Core™ i7-4770@3.40GHz 16GB DDR3 1TB 1Gb Ethernet
9 Intel® Core™ i7-4790@3.60GHz 16GB DDR3 1TB 1Gb Ethernet
10 Intel® Core™ i7-4790@3.60GHz 16GB DDR3 1TB 1Gb Ethernet
11 Intel® Core™ i7-4790@3.60GHz 16GB DDR3 1TB 1Gb Ethernet
12 Intel® Core™ i7-4790@3.60GHz 16GB DDR3 1TB 1Gb Ethernet
13 Intel® Xeon® E5-2630v3@2.40GHz*2 64GB DDR4 2TB 1Gb Ethernet

Figure 4.1: Spark and Hadoop Computing cluster

Chapter 4 Experimental Results 35

4.1.1 Compare massive storage methods

In terms of data storage, we compare three different types of storage: HDFS,

HBase, and Hive. Compare speed and performance of data dumping from RDB,

to find the best way of storage for NoSQL to improve the overall performance.

We split several different sizes data from the air pollution database to assess the

transmission speed impact of different storage methods.

As show in Figure 4.2. when the amount of data is growing bigger and bigger,

the transform time of HBase is much larger than the other two dump mode, Hive

and HDFS efficacy is almost the same. Therefore, in the data dump part Hbase

performance is lower than the other two.

Figure 4.2: Data Transform Time

4.2 Data Dumping Experiment

First we analyze the change of data of three categories. With the increase of time,

the amount of data also become more and more big. Therefore, we must observed

the change of original data, arranging data, and other data.

Chapter 4 Experimental Results 36

Figure 4.3: Variation of Three Kinds of Data

Show as Figure 4.3 and Figure 4.4, we can find the original data collect by

air pollution station growing very fast. Arranged data and other data cumulative

compare to original data is almost not change.

Figure 4.4: Data Growth of Three Kind of Data

Chapter 4 Experimental Results 37

4.2.1 First dump

We arrange three different size of data, one year, six years, and twelve years of

data to put in our module to do data dumping experiment, as shown in Table 4.2.

Table 4.2: Dump Data Set

Original data Arranging data Other data
1 year 1526.9(MB) 394.5(MB) 20.5(MB)
6 years 9161.4(MB) 719.5(MB) 25.5(MB)
12 years 18322.8(MB) 1174.5(MB) 31.5(MB)

We put three different size of data in three different modules, show as figure,

synchronize represent synchronize data, All in NoSQL & part in RDB represent

all data that NoSQL has, Part of same represent part of same data in database.

Show as Figure 4.5, we find that best performance of three modules in first dump

is Part of same module, almost fifty seconds faster average in each data sets, there

has one reason that the amount of dumping is smaller than other two modules.

Figure 4.5: First Dump Time

Chapter 4 Experimental Results 38

4.2.2 Batch of Dump

In this experiment will process the data that increase every day in RDB and

dump in Hive. We will use three different phases’data to do the experiment, to

experiment that the degree of data accumulation will affect the speed of dump on

module or not.

The speed of dumping in three modules, different years, and different size of

data is show as Figure 4.6. The process time of synchronize module and part of

same module is increase by time, but all in NoSQL & part in RDB module is not

decrease its’dump time by time. It knows that the best module is all in NoSQL

& part in RDB module, although all in NoSQL & part in RDB module is slow

than third module in first dump, but the speed of batch of dump is faster than

other two modules.

Figure 4.6: Batch of Dump Time

4.2.3 Database Disaster Recovery

This experiment will assume RDB without any data to do experiment of data

recovering, to compare the time of three different data dump with three different

Chapter 4 Experimental Results 39

type of data. The experiment of data recovering in different module and different

size of data is shown as Figure 4.7. The recovery time of synchronize and all in

NoSQL & part in RDB module is nearly, but the part of same module need a lot

of time to recover database. During the part of same module recovering, it’s

not only rewind data in RDB, but also process the original data to the data after

arrange to save in RDB to provide service save and take.

Figure 4.7: DB Disaster Recovery

4.2.4 The Three Models Compare

Through the three experiment knows that the best module is all in NoSQL &

part in RDB module. The performance of the three modules in three different

experiment, the performance of second module is the best. Show as the Figure

4.8, we use 10 to 1 to rate the performance of three models experimental data

which is high or low. When the time was increased to six years, three experiments

are biased in favor of the all in NoSQL & part in RDB model. Therefore, we use

the all in NoSQL & part in RDB model for the entire hybrid library service.

Chapter 4 Experimental Results 40

Figure 4.8: Experiment Results

4.3 Platform Implementation

We implement an air pollution monitoring platform, collect data from 76 station

and store in our hybrid database system. Each station can collect 1MB data a

day, we have 76 station, so we can collect 76MB data every day. Through collect

and arrange 7 years air pollution data, we have about 2GB data. On the web site,

we show our data by two part, one is real-time data and another is historical data.

In the case of real-time data, it will show the PSI and air quality of each station.

In the case of historical data, it’s will be more detail, every day, every month,

every year and each year air pollution data and it can compare change with air

pollution with other station. Show as Figure 4.9, we catch air pollution real-time

data from each station and show to user, to provide air quality and PSI value now

for user. In the system, we build a backstage service for user that can provide user

to watch the status of data in database, and it can dump by batch and recover

data.

Chapter 4 Experimental Results 41

Figure 4.9: Air Quality

Show as Figure 4.10, we show all data with a graphic from station, to provide

the change of air pollution factor for user.

Figure 4.10: Daily Stats

Show as Figure 4.11, Figure 4.12, and Figure 4.13, we show air pollution factor

form each station, and through observed value of every day, every month, every

year to achieve monitoring.

Chapter 4 Experimental Results 42

Figure 4.11: Daily Values Record

Figure 4.12: Monthly Values Record

Show as Figure 4.14, Figure 4.15and Figure 4.16. against data of every year

to monitoring further, to compare air pollution factor with different station, and

for more comprehensive to observed the change of air pollution factor, we add

the change of air pollution factor of every year, to provide more comprehensive

monitoring data.

Show as Figure 4.17, we make functions on the web site that can provide

user batch dump and disaster recovery in database. For make disaster recovery

Chapter 4 Experimental Results 43

Figure 4.13: Annual Values Record

Figure 4.14: Regional Numerical Comparison

experiment can more smoothly, we also provide to clear database that user can do

the function of disaster recovery.

Chapter 4 Experimental Results 44

Figure 4.15: Value Record of Each Years

Figure 4.16: Numerical Comparison of Each Years

Chapter 4 Experimental Results 45

Figure 4.17: DB Controller

Chapter 5

Conclusions and Future Work

In order to solve that the growing information cause the computing capacity of

system decrease, and affecting the overall performance of system services; so we

propose a hybrid database converter to achieve the integration of original system

and big data analysis platform. So that the original system has big data analysis

capability, and do data backup at the same time. Compare three different types

of converting data and get the most suitable converter for air pollution system,

to improve the data analysis capability of the original system. In the part of

converter, in the case of not effect service, we decrease 60% of time in batch

processing. User not only can observed real-time information of air pollution,

but also can observed every day, every month, every year, and all change of air

pollution factor through historical data. To provide user complete data search

service from slight to comprehensive air pollution data.

46

Chapter 5 Conclusions and Future Work 47

5.1 Concluding Remarks

In this study, we consider most of the existing systems do not have enough re-

sources to direct re-build the system on big data processing architecture. So, we

proposed hybrid database converter to solve the problem of resources insufficient.

It’s not only provide Big Data analyze, but also decrease the load of original

database, to prove the life of database. At the time, it’s can keep database

complete through database disaster recovery. Solve the difficulties of big data

processing and storage for our system, provide a more flexible Big Data system.

5.2 Future Work

In this paper, we propose an efficient hybrid database converter. In the future,

we hope to further let hybrid database converter erected on Docker Container, by

Docker rapid deployment and the feature of virtual machines can be monitored,

Strengthen the capacity of data analysis, store and data backup on all cluster. n

the case of data collect, only the data of air pollution cannot analyze accurate,

therefore we will add the data of water, electricity, speed of wind, and even oil

liquefaction, to provide user can analyze more kinds of data. Finally we hope we

can add Big Data analysis and data mining, not only for data monitoring, but

also achieve decision making for service.

References

[1] Sunilkumar S. Manvi and Gopal Krishna Shyam. Resource management for

infrastructure as a service (iaas) in cloud computing: A survey. In Journal of

Network and Computer Applications, 41:424–440, May 2014.

[2] Cloud computing, 2015. http://en.wikipedia.org/wiki/Cloud_

computing.

[3] FarrukhShahzad. State-of-the-art survey on cloud computing security chal-

lenges. Procedia Computer Science, 37:357–362, 2014.

[4] Nabil Sultan. Discovering the potential of cloud computing in accelerating

the search for curing serious illnesses. International Journal of Information

Management, 34:221–225, April 2014.

[5] Jianghua Liu, Xinyi Huang, and Joseph K. Liu. Secure sharing of personal

health records in cloud computing: Ciphertext policy attribute based sign-

cryption. Future Generation Computer Systems, October 2014.

[6] A. Meera and S. Swamynathan. Agent based resource monitoring system in

iaas cloud environment. Procedia Technology, 10:200–207, 2013.

[7] Geetha Manjunath and Dinkar Sitaram. Moving To The Cloud - Chapter 3

–Platform as a Service. Syngress, 2012.

[8] Ying-Dar Lin, Minh-Tuan Thai, Chih-Chiang Wang, and Yuan-Cheng Lai.

Two-tier project and job scheduling for saas cloud service providers. Journal

of Network and Computer Applications, 52:26–36, 2015.

48

http://en.wikipedia.org/wiki/Cloud_computing
http://en.wikipedia.org/wiki/Cloud_computing

References 49

[9] Chandan Banerjee, AnirbanKundu, and RanaDattagupta. Saas oriented

generic cloud compiler. Procedia Technology, 10:253–261, 2013.

[10] Hai Wang, Zeshui Xua, Hamido Fujita, and Shousheng Liud. Towards fe-

licitous decision making: An overview on challenges and trends of big data.

Information Sciences, 367-368:747–765, 2016.

[11] David Gil and Il-Yeol Song. Modeling and management of big data: Chal-

lenges and opportunities. Future Generation Computer Systems, 63:96–99,

2016.

[12] Jorge Merino, Ismael Caballero, Bibiano Rivas, Manuel Serrano, and Mario

Piattini. A data quality in use model for big data. Future Generation Com-

puter Systems, 63:123–130, 2016.

[13] Grolinger. Data management in cloud environments: Nosql and newsql data

stores. Journal of Cloud Computing, pages 2–22, 2013.

[14] R. Rees. No problem: An intro to nosql databases,. 2010.

[15] E. Gallagher. Nosql benchmark study release. 2014.

[16] Sarwar Kamal, Shamim Hasnat Ripon, Nilanjan Dey, Amira S. Ashour,

and V. Santhid. A mapreduce approach to diminish imbalance parameters

for big deoxyribonucleic acid dataset. Computer Methods and Programs in

Biomedicine, 131:191–206, 2016.

[17] QaziMamoon Ashraf and Mohamed HadiHabaeb. Autonomic schemes for

threat mitigation in internet of things. Journal of Network and Computer

Applications, 49:112–127, March 2015.

[18] Heiko Niedermayer, Ralph Holz, Marc-Oliver Pahl, and Georg Carle. On

using home networks and cloud computing for a future internet of things.

Future Internet, 6152:70–80, March 2009.

[19] Nitesh Maheshwari, Radheshyam Nanduri, and Vasudeva Varma. Dynamic

energy efficient data placement and cluster reconfiguration algorithm for

References 50

mapreduce framework. Future Generation Computer Systems, 28:119–127,

January 2012.

[20] Apache hadoop, 2015. http://hadoop.apache.org/.

[21] Hdfs architecture guide, 2015. https://hadoop.apache.org/docs/r1.2.1/

hdfs_design.html.

[22] Yifeng Luo, Siqiang Luo, Jihong Guan, and Shuigeng Zhou. A ramcloud

storage system based on hdfs: Architecture implementation and evaluation.

Journal of Systems and Software, 86:744–750, March 2013.

[23] Apache hbase, 2015. http://hbase.apache.org/.

[24] Ho Lee, Bin Shao, and U. Kang. Fast graph mining with hbase. Information

Sciences, 315:56–66, September 2015.

[25] C. Li. Transforming relational database into hbase: A case study. Inter-

national Conference on Software Engineering and Service Sciences, pages

683–687, 2010.

[26] Apache hive vs mysql-what are the key differences?, 2015. http://blog.

matthewrathbone.com/2015/12/08/hive-vs-mysql.html/.

[27] Hive vs. rdbms, 2014. http://hadooptutorial.info/hive-vs-rdbms/.

[28] Apache hive, 2014. http://hive.apache.org/.

[29] Apache sqoop, 2016. http://sqoop.apache.org/.

[30] Arushi Jain and Vishal Bhatnagar. Crime data analysis using pig with

hadoop. Procedia Computer Science, 78:571–578, 2015.

[31] Sahithi Tummalapalli and Venkata rao Machavarapu. Managing mysql cluster

data using cloudera impala. Procedia Computer Science, 85:463–474, 2016.

[32] Ying-Ti Liao, Jiazheng Zhou, Shih-Chang Chen, Ching-Hsien Hsu, Wenguang

Chen, Mon-Fong Jiang, and Yeh-Ching Chung. Data adapter for querying and

http://hadoop.apache.org/
https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html
https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html
 http://hbase.apache.org/
 http://blog.matthewrathbone.com/2015/12/08/hive-vs-mysql.html/
 http://blog.matthewrathbone.com/2015/12/08/hive-vs-mysql.html/
 http://hadooptutorial.info/hive-vs-rdbms/
 http://hive.apache.org/
 http://sqoop.apache.org/

References 51

transformation between sql and nosql database. Future Generation Computer

Systems, none:none, 2016.

[33] Fan Zhang, Junwei Cao, Samee U.Khan, Keqin Li, and Kai Hwang. A task-

level adaptive mapreduce framework for real-time streaming data in health-

care application. Future Generation Computer Systems, 43:149–160, 2015.

[34] Krishna Karthik Gadiraju, Manik Verma, Karen C. Davis, and Paul G. Ta-

laga. Benchmarking performance for migrating a relational application to a

parallel implementation. Future Generation Computer Systems, 2016.

Appendix A

Hadoop Installation

I. Modify hosts

sudo vim /etc/hosts

II. Modify hostname

sudo vim /etc/hostname

sudo service hostname start

III. Install Java JDK

sudo apt-get -y install openjdk-7-jdk

sudo ln -s /usr/lib/jvm/java-7-openjdk-amd64 /usr/lib/jvm/jdk

IV. Add hadoop user

sudo addgroup hadoop

sudo adduser --ingroup hadoop hduser

sudo adduser hduser sudo

V. Creat SSH authentication login

52

53

ssh-keygen -t rsa -f \~{}/.ssh/id_{}rsa -P ""

cp \~{}/.ssh/id_{}rsa.pub ~/.ssh/authorized_{}keys

scp –r ~/.ssh hduser:~/

VI. Download hadoop

cd ~

wget http://ftp.twaren.net/Unix/Web/apache/hadoop/common \\

/hadoop -2.6.0/hadoop -2.6.0.tar.gz

tar zxf hadoop -2.6.0.tar.gz

mv hadoop -2.6.0.tar.gz hadoop

VII. Add the environment variable

vim .bashrc

export JAVA_HOME=/usr/lib/jvm/jdk/

export HADOOP_INSTALL=/home/hduser/hadoop

export PATH=$PATH:$HADOOP_INSTALL/bin

export PATH=$PATH:$HADOOP_INSTALL/sbin

export HADOOP_MAPRED_HOME=$HADOOP_INSTALL

export HADOOP_COMMON_HOME=$HADOOP_INSTALL

export HADOOP_HDFS_HOME=$HADOOP_INSTALL

export YARN_HOME=$HADOOP_INSTALL

VIII. Set hadoop config

cd hadoop/etc/hadoop

vim hadoop-env.sh

export JAVA_HOME=/usr/lib/jvm/jdk/

vim core-site.xml

<property>

<name>fs.default.name</name>

<value>hdfs://hduser-master:9000</value>

</property>

vim yarn-site.xml

<property>

54

<name>yarn.nodemanager.aux-services</name>

<value>mapreduce_shuffle </value>

</property>

<property>

<name>yarn.resourcemanager.hostname</name>

<value>hduser</value>

</property>

cp mapred-site.xml.template mapred-site.xml

vim mapred-site.xml

<property>

<name>mapreduce.framework.name</name>

<value>yarn</value>

</property>

mkdir -p ~/mydata/hdfs/namenode

mkdir -p ~/mydata/hdfs/datanode

vim hdfs-site.xml

<property>

<name>dfs.replication </name>

<value>2</value>

</property>

<property>

<name>dfs.namenode.name.dir</name>

<value>/home/hduser/mydata/hdfs/namenode</value>

</property>

<property>

<name>dfs.datanode.data.dir</name>

<value>/home/hduser/mydata/hdfs/datanode</value>

</property>

vim slaves

hduser

hduser-02

hduser-03

hduser-04

IX. Copy hadoop to all nodes

scp -r /home/hduser/hadoop hduser:/home/hduser

scp -r /home/hduser/hadoop hduser -02:/home/hduser

scp -r /home/hduser/hadoop hduser -03:/home/hduser

scp -r /home/hduser/hadoop hduser -04:/home/hduser

55

X. Format HDFS

hdfs namenode -format

XI. Start hadoop

start-all.sh

XII. Use jps to see java running program

jps

XIII. MapReduce JobTracker monitoring website

hduser:50030

Appendix B

HBase Installation

I. Download HBase

cd ~

wget http://ftp.twaren.net/Unix/Web/apache/hbase\\

/hbase-1.0.0/hbase-1.0.0-hadoop2-bin.tar.gz

II. Unzip hbase-1.0.0-hadoop2-bin.tar.gz

tar zxf hbase-1.0.0-hadoop2-bin.tar.gz

III. Move the File of HBase

mv hbase-1.0.0-hadoop2 hbase

IV. Set HBase config

cd hbase

vim conf/hbase-env.sh

export JAVA_HOME=/usr/lib/jvm/jdk

export HBASE_HOME=/home/hduser/hbase

hadoop fs -mkdir /hbase

vim conf/hbase-site.xml

56

57

<property>

<name>hbase.rootdir</name>

<value>hdfs://hduser:9000/hbase</value>

</property>

<property>

<name>hbase.cluster.distributed </name>

<value>true</value>

</property>

<property>

<name>hbase.zookeeper.quorum</name>

<value>Test-master</value>

</property>

vim conf/regionservers

hduser hduser-02

hduser-03 hduser-04

III. Copy jar to hbase/lib

rm lib/hadoop-*

cd /home/hduser/hadoop/share/hadoop

cp *.jar /home/hduser/hbase/lib/

IV. Copy hbase to all nodes

scp -r hbase/hadoop hduser:/home/hduser

scp -r hbase/hadoop hduser -02:/home/hduser

scp -r hbase/hadoop hduser -03:/home/hduser

scp -r hbase/hadoop hduser -04:/home/hduser

bin/start-hbase.sh

V. HBase monitoring website

hduser:60010

Appendix C

Hive Installation

I. Download Apache Hive

sudo wget http://apache.stu.edu.tw/hive/hive-1.2.1/apache-hive-1.2.1-bin.tar.gz

II. Unzip hive-1.2.1.bin.tar.gz

tar -zxvf apache-hive-1.2.1-bin.tar.gz

mv apache-hive-1.2.1-bin/ hive

III. Setting .bashrc

vim .bashrc

export HIVE_HOME=/home/hduser/hive

export PATH=$HIVE_HOME/bin:$HIVE_HOME/conf:$PATH

source .bashrc

IV. Create Hive file on HDFS

hadoop fs -mkdir /tmp

hadoop fs -mkdir /user/warehouse

hadoop fs -chmod 777 /tmp

hadoop fs -chown 777 /user/warehouse

58

59

V. Installation libmysql-java

sudo apt-get install libmysql-java

sudo cp /usr/share/java/mysql-connector-java-5.1.28.jar ~/hive/lib

VI. Create a hive user on MySQL

mysql -u root -p

mysql > create database hive;

mysql> grant all on *.* to'hive'@'%' identified by 'hive';

mysql> flush privileges;

mysql> exit;

sudo vim /etc/mysql/my.cnf

Annotate bind-address = 127.0.0.1

VII. Create a file in hive file

mkdir -p /home/hduser/hive/iotmp

chmod 777 /home/hduser/hive/iotmp

cp hive-default.xml.template hive-site.xml

vim hive-site.xml

<configuration>

<property>

<name>javax.jdo.option.ConnectionURL </name>

<value>jdbc:mysql://master:3306/hive?createDatabaseIfNotExist=true</value>

</property>

<property>

<name>javax.jdo.option.ConnectionDriverName </name>

<value>com.mysql.jdbc.Driver</value>

</property>

<property>

<name>javax.jdo.option.ConnectionUserName </name>

<value>hive</value>

</property>

<property>

<name>javax.jdo.option.ConnectionPassword </name>

<value>hive</value>

</property>

<property>

<name>hive.metastore.uris</name>

<value>thrift://master:9083</value>

</property>

60

<property>

<name>hive.exec.local.scratchdir </name>

<value>/home/hduser/hive/iotmp</value>

<description>Local scratch space for Hive jobs</description>

</property>

<property>

<name>hive.downloaded.resources.dir</name>

<value>/home/hduser/hive/iotmp</value>

<description>Temporary local directory for added resources in the remote

file system.</description>

</property>

<property>

<name>hive.querylog.location</name>

<value>/home/hduser/hive/iotmp</value>

<description>Location of Hive run time structured log file</description>

</property>

<property>

<name>hive.server2.logging.operation.log.location</name>

<value>/home/hduser/hive/iotmp</value>

<description>Top level directory where operation logs are stored if logging

functionality is enabled</description>

</property>

</configuration>

cp hive-env.sh.template hive-env.sh

sudo vim hive-env.sh

export HADOOP_HEAPSIZE=1024

export HADOOP_HOME=/home/hduser/hadoop

export HIVE_CONF_DIR=/home/hduser/hive/conf

export HIVE_AUX_JARS_PATH=/home/hduser/hive/lib

Appendix D

Sqoop Installation

I. Download Apache Sqoop

sudo wget http://apache.stu.edu.tw/sqoop/1.4.6/sqoop-1.4.6.tar.gz

II. Unzip sqoop-1.4.6.tar.gz

tar -zxvf sqoop-1.4.6.tar.gz

mv sqoop-1.4.6/ sqoop

III. Setting .bashrc

sudo vim ~/.bashrc

export SQOOP_HOME=/home/hduser/sqoop

export SQOOP_CONF_DIR="$SQOOP_HOME/conf"

export SQOOP_CLASSPATH="$SQOOP_CONF_DIR"

export PATH=$PATH:$SQOOP_HOME/bin

source ~/.bashrc

IV. Create empty accumulo directory

sudo mkdir accumulo

sudo chown hadoop:hduser accumulo

61

62

V. Create and edit sqoop-env.sh

sudo cp sqoop/conf/sqoop-env-template.sh sqoop/conf/sqoop-env.sh

sudo vim sqoop/conf/sqoop-env.sh

export HADOOP_COMMON_HOME=/home/hduser/hadoop

export HADOOP_MAPRED_HOME=/home/hduser/hadoop

export HCAT_HOME=/home/hduser/hive/hcatalog

export HBASE_HOME=/home/hduser/hbase

export HIVE_HOME=/home/hduser/hive

export ACCUMULO_HOME=/home/hduser/accumulo

VI. Download MySql connector

wget http://dev.mysql.com/get/Downloads/Connector-J/mysql-connector-java-5.1.36.zip

sudo mv mysql-connector-java-5.1.36-bin.jar sqoop/lib

	摘要
	Abstract
	致謝詞
	Table of Contents
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivation
	1.2 Contributions
	1.3 Thesis Organization

	2 Background and Related Work
	2.1 Cloud Computing and Big Data
	2.1.1 Cloud Computing
	2.1.2 Big Data
	2.1.3 NoSQL

	2.2 Internet of Things and Wireless Sensor Network
	2.2.1 Internet of Things (IoT)

	2.3 Hadoop Ecosystem
	2.3.1 Hadoop
	2.3.2 HDFS
	2.3.3 HBase
	2.3.4 Hive
	2.3.5 Sqoop

	2.4 Related Work

	3 System Design and Implementation
	3.1 The Proposed System Architecture
	3.2 Design Detail of Hybrid Database Converter
	3.2.1 Database Controller
	3.2.2 Data Dumping

	3.3 Hybrid Database Converter Implementation
	3.3.1 Cluster Deployment
	3.3.2 Data Convter
	3.3.3 Data Convter

	4 Experimental Results
	4.1 Experimental Environment
	4.1.1 Compare massive storage methods

	4.2 Data Dumping Experiment
	4.2.1 First dump
	4.2.2 Batch of Dump
	4.2.3 Database Disaster Recovery
	4.2.4 The Three Models Compare

	4.3 Platform Implementation

	5 Conclusions and Future Work
	5.1 Concluding Remarks
	5.2 Future Work

	References
	Appendix
	Appendix
	Appendix
	A Hadoop Installation
	B HBase Installation
	C Hive Installation
	D Sqoop Installation

