
東海大學

資訊工程研究所

碩士論文

指導教授: 楊朝棟博士

一個基於 OpenStack 上具虛擬機耗能監測及動態遷移
的節能雲端基礎設施之實作

Implementation of an Energy Saving Cloud Infrastructure

with Virtual Machine Power Usage Monitoring and Live

Migration on OpenStack

研究生: 萬宗岳

中華民國一零五年六月

1

摘 要

雲端運算是基於網路上，而且需要不少的實體機，進而消耗大量的電能，這種

情況會減少雲端服務提供者的利潤，而且對整個雲端運算叢集也會有傷害。雲

端運算所消耗的電量是近年來大家注重的議題，當在進行大量的計算時，消耗

的電量可不容小覷，如何達到最高的效能與最低的功耗是現在各界都在追求的。

虛擬化在現今被廣泛的使用，但現有的虛擬機電量優化方法都無法對於不同規

格下的實體機產生很好的作用。本論文實作出一個可以即時監測 OpenStack 的

狀態與監測 OpenStack 上的虛擬機即時狀態以及透過動態遷移達到節能的雲端

基礎設施。監測的項目包含 CPU 的使用率、記憶體的負載、以及耗電量，都是

以即時的方式顯示的，完整的監測實體機與虛擬機的即時狀態。並記錄每台實

體機的 CPU 使用率與耗電量，且呈現在此雲端基礎設施上，提供使用者當作實

驗依據的參考。再來是以監測到的電量為基礎，透過動態遷移的方法來自動調

配各個實體機上的虛擬機，使各個實體機的耗電量得以平衡，既可以避免資源

的閒置與浪費，也可以避免因實體機持續的高功耗導致機器壽命減少，進而達

到節能的目的。

關鍵字: 即時監測、節能、機器監測、動態遷移、動態調配、雲端基礎設施

I

Abstract

Cloud computing is a kind of Internet-based computing, and requires more phys-

ical machines and consumes an large amount of power, that will reduce the profit

of the service providers and harm the environment. Power consumption of cloud

computing is an issue we focus on in recent years, when making a large number

of operations, the power consumption cannot be underestimated. Virtualization

is widely used in cloud computing nowadays. However, existing energy efficient

scheduling methods of virtual machines (VMs) in cloud cannot work well if the

physical machines (PMs) are heterogeneous and their total power is considered.

This thesis implement a cloud infrastructure that can monitor the status of Open-

Stack and monitor the real-time status of virtual machine on OpenStack then

achieve to energy saving through live migration. The projects of monitoring in-

clude the utilization of CPU, load of memory, and power consumption. These data

show in real-time, completely monitor the real-time status of physical machines

and virtual machines. It also record the utilization and power consumption of

physical machines then show on this cloud infrastructure, to provide experimental

evidence for the user as a reference. Base on the power consumption we monitor-

ing, we can automatically allocate virtual machines on every physical machines by

live migration, to balance the power consumption of every physical machines. It’s

not only can avoid idle and waste of resources but also can avoid reducing machine

life because of the physical machines always keep in high usage, and achieve to

power saving.

Keywords: Real-Time Monitoring; Power Saving; Machine Monitoring; Live

Migration; Dynamic Allocation; Cloud Infrastructure

II

致謝詞

研究所兩年的生活，所經歷的每個時刻至今仍歷歷在目，快樂的、難過的與挫

折的，有的時候希望時間是過的快一點的，讓我直接進入人生的下一個階段，

但在經歷過這些磨練之後，著實的感覺到自己更不一樣了，不管是在面對事情

的態度或是對於專業科目上，這兩年的磨練讓我覺得自己已經變得更加成熟。

我要感謝我的研究所指導老師楊朝棟教授，在我目標不明確時，給了我最佳

的的建議與方向，還有提供許多設備讓我做起實驗來更加順手，沒有了老師提

供的設備，我的實驗肯定會困難重重。也感謝老師讓我去中國參加 PAAP 國際

會議，學習新事務，拓展國際視野。

另外，感謝抽空前來參加論文口試的委員們，謝謝系上劉榮春老師對我的研

究提供了很多的意見、指導和鼓勵。謝謝呂芳懌老師、賴冠州老師及許芳榮老

師，給了我很多專業上的想法與建議，因為有您們的意見讓本來不完整與鬆散

的架構，在重整之後，讓我的論文能更加完整及嚴謹。

還要感謝實驗室的同學與學長們，謝謝人豪、培倫、暐勳，在我遇到問題

時，給予我最大的幫助、想法、與鼓勵。

最後要感謝我的家人，謝謝你們這些年來的支持，讓我能夠無憂無慮的讀

書，因為你們對我的關心，讓我堅強的走到今天，度過這兩年的磨練。

東海大學資訊工程學系 高效能實驗室 萬宗岳 105 年 07 月

III

Table of Contents

摘要 I

Abstract II

致謝詞 III

List of Figures VI

List of Tables VII

1 Introduction 1
1.1 Motivation . 2
1.2 Thesis Goal and Contributions . 2
1.3 Thesis Organization . 3

2 Background Review and Related Work 4
2.1 Cloud Computing . 4

2.1.1 Essential Characteristics . 5
2.1.2 Service Models . 6
2.1.3 Deployment Models . 8

2.2 Virtualization . 9
2.3 Hypervisor . 11

2.3.1 Hosted Hypervisor . 12
2.3.2 Bare-Metal Hypervisor . 13

2.4 OpenStack . 14
2.4.1 OpenStack Component . 14
2.4.2 OpenStack Conceptual Architecture 18

2.5 Live Migration . 19
2.6 NFS (Network File System) . 21
2.7 PDU (Power Distribution Units) 23
2.8 Related Work . 24

3 System Design and Implementation 27
3.1 System Architecture . 27
3.2 Design Flow and Algorithm . 28

IV

TABLE OF CONTENTS V

3.2.1 Design Flow and Algorithm of Distributed Load Balancing
Method . 28

3.2.2 Design Flow and Algorithm of Power Saving Method 29
3.3 System Implementation . 31

3.3.1 Status Monitoring . 32
3.3.2 Power Consumption Recording 32

4 Experimental Results 37
4.1 Experimental Environment . 37
4.2 Experimental Results and Discussion 38

5 Conclusions and Future Work 43
5.1 Conclusions . 43
5.2 Future Work . 44

References 45

Appendix 48

A OpenStack Installation 48

B NFS Installation 63

C Programming Codes 65

D Monitor Codes 72

List of Figures

2.1 The overall cloud model . 5
2.2 The different between traditional architecture and virtual architecture 10
2.3 The hosted hypervisor architecture 12
2.4 The bare-metal hypervisor architecture 13
2.5 The conceptual architecture of OpenStack 18
2.6 The concept of Live Migration . 19
2.7 The phase of Pre-copy memory migration 20
2.8 The Network File System (NFS) 22
2.9 Raritan’s PDU . 23

3.1 The overall system architecture . 28
3.2 DLB method flow chart . 31
3.3 Power Saving method flow chart . 34
3.4 The flow of status monitoring . 35
3.5 Status monitoring on web site . 35
3.6 Power consumption hitorical record 36
3.7 Power consumption hitorical record 36

4.1 Relationship between power consumption of physical machine and
CPU utilization of virtual machine 38

4.2 Power consumption of each nodes before DLB and after DLB (The-
oretically) . 39

4.3 Power consumption of each nodes before DLB and after DLB (ac-
tually) . 40

4.4 Number of VMs on each compute nodes 41
4.5 Power consumption of each compute nodes 41
4.6 Total Power consumption of compute nodes 42
4.7 Live migration interface on the web site 42

VI

List of Tables

4.1 Hardware specification . 38
4.2 Software specification . 38

VII

Chapter 1

Introduction

Cloud computing is an operation base on Internet; it brings a huge change for

industry evolved with the use of the Internet. Not only the IT industry which

provides cloud computing technology, but also the general usage of it in the gov-

ernment, enterprise and individuals are changed with the born of cloud computing,

all the places which need a lot of computing have changed because the birth of

cloud computing. In IT industry, cloud computing caused the deepest impact

undoubtedly. From the most basic computer components - processors, servers,

storage devices, network equipment, information security equipment, software,

data centers, information services, even the smartphones, tab and other mobile

devices are having close relationship with cloud computing.

Cloud computing mainly combines virtualization, service management au-

tomation and standardized technology to provide flexible computing ability and

data analysis method with high performance. Companies can run many kinds of

service on the cloud platform without the need to construct data centers. This

innovative computing and business model has attracted widespread attention in

industry and academia.

Cloud computing is a major trend in recent years, especially in Big Data, when

the data collect and analysis have to use cloud computing service. Although there

are many cloud computing platform on the market, but the special needs of the

1

Chapter 1 Introduction 2

enterprise and cannot choose the most suitable solution to use, OpenStack which

the open-source service that can solve this problem, with each company to design

its own environment.

1.1 Motivation

Cloud computing is the trend in IT industry today, companies, organizations and

schools are following the trend of the cloud computing, establish a large-scale

cloud computing cluster replace of one person with one computer. Although vir-

tualization can reduce the cost of the hardware equipment, but also spawned a

problem–energy consumption. Many places which need to deploy lots of virtual

machines are using OpenStack, because of the characteristics of OpenStack that

easy management of the virtual machine, OpenStack is widely used. But there

does not show the resource utilization of physical machines and power consump-

tion on the interface they provide, so we want to give the completely message

of physical machines and virtual machines to users, make it more convenient to

manage machines, then through live migration and algorithm to achieve to balance

power consumption and energy saving.

1.2 Thesis Goal and Contributions

The objective of this paper is implement an energy saving cloud infrastructure with

virtual machine power usage monitoring and live migration on OpenStack. It’s

mainly to monitor the real-time status and power consumption of every compute

nodes and virtual machines on OpenStack, and achieve power saving through live

migration. To monitor the utilization of CPU, load of memory, and power con-

sumption of every compute nodes and virtual machines on OpenStack. These data

show in real-time, completely monitor the real-time status of physical machines

and virtual machines. It also record the utilization and power consumption of

physical machines then show on this cloud infrastructure, to provide experimental

Chapter 1 Introduction 3

evidence for the user as a reference. Base on the power consumption we monitor-

ing, we can automatically allocate virtual machines on every physical machines by

live migration, to balance the power consumption of every physical machines. It’s

not only can avoid idle and waste of resources but also can avoid reducing machine

life because of the physical machines always keep in high usage, and achieve to

power saving.

1.3 Thesis Organization

In Chapter 2, we will describe some background information, including Cloud

Computing, Virtualization, Hypervisor, OpenStack, Live Migration, PDU and

related work. In Chapter 3, we will introduce our experimental environment and

the overall architecture of our design. Chapter 4 shows the experimental results

and analysis. Chapter 5 provides conclusions and future work of this work.

Chapter 2

Background Review and Related

Work

2.1 Cloud Computing

The US National Institute of Standards and Technology (NIST) definition of cloud

is: ”Cloud computing [1–4] is a model for enabling ubiquitous, convenient, on-

demand network access to a shared pool of configurable computing resources (e.g.,

networks, servers, storage, applications, and services) that can be rapidly provi-

sioned and released with minimal management effort or service provider interac-

tion.” This cloud model is composed of five essential characteristics, three service

models, and four deployment models, as shown in Figure 2.1.

4

Chapter 2 Background Review and Related Work 5

Figure 2.1: The overall cloud model

2.1.1 Essential Characteristics

According to the National Institute of Standards and Technology (NIST) definition

of cloud computing identifies ”five essential characteristics”:

• On-demand Self-service: A consumer can unilaterally provision computing

capabilities, such as server time and network storage, as needed automati-

cally without requiring human interaction with each service provider.

• Broad Network Access: Capabilities are available over the network and ac-

cessed through standard mechanisms that promote use by heterogeneous

thin or thick client platforms (e.g., mobile phones, tablets, laptops, and

workstations).

• Resource Pooling: The provider’s computing resources are pooled to serve

multiple consumers using a multi-tenant model, with different physical and

virtual resources dynamically assigned and reassigned according to consumer

demand. There is a sense of location independence in that the customer

generally has no control or knowledge over the exact location of the provided

Chapter 2 Background Review and Related Work 6

resources but may be able to specify location at a higher level of abstraction

(e.g., country, state, or datacenter). Examples of resources include storage,

processing, memory, and network bandwidth.

• Rapid Elasticity: Capabilities can be elastically provisioned and released, in

some cases automatically, to scale rapidly outward and inward commensurate

with demand. To the consumer, the capabilities available for provisioning

often appear to be unlimited and can be appropriated in any quantity at

any time.

• Measured Service: Cloud systems automatically control and optimize re-

source use by leveraging a metering capability at some level of abstraction

appropriate to the type of service (e.g., storage, processing, bandwidth, and

active user accounts). Resource usage can be monitored, controlled, and

reported, providing transparency for both the provider and consumer of the

utilized service.

2.1.2 Service Models

According to the National Institute of Standards and Technology (NIST) defini-

tion , cloud service architecture that following the service type divided into three

layers, namely, infrastructure as a service (IaaS), Platform as a Service (PaaS)

and software as a service (SaaS). The so-called cloud computing service type is

able to provide the service to users, and through such a service which allows users

to obtain resources, and how users use such services. They were introduced as

follows:

• Infrastructure as a Service (IaaS): The capability provided to the consumer is

to provision processing, storage, networks, and other fundamental computing

resources where the consumer is able to deploy and run arbitrary software,

which can include operating systems and applications. The consumer does

not manage or control the underlying cloud infrastructure but has control

Chapter 2 Background Review and Related Work 7

over operating systems, storage, and deployed applications; and possibly

limited control of select networking components (e.g., host firewalls).

The Benefits of IaaS:

– No need to invest in your own hardware.

– Infrastructure scales on demand to support dynamic workloads.

– Flexible, innovative services available on demand.

• Platform as a Service (PaaS): The capability provided to the consumer is

to deploy onto the cloud infrastructure consumer-created or acquired appli-

cations created using programming languages, libraries, services, and tools

supported by the provider. The consumer does not manage or control the un-

derlying cloud infrastructure including network, servers, operating systems,

or storage, but has control over the deployed applications and possibly con-

figuration settings for the application-hosting environment.

The Benefits of PaaS:

– Develop applications and get to market faster.

– Deploy new web applications to the cloud in minutes.

– Reduce complexity with middleware as a service.

• Software as a Service (SaaS): The capability provided to the consumer is

to use the provider’s applications running on a cloud infrastructure. The

applications are accessible from various client devices through either a thin

client interface, such as a web browser (e.g., web-based email), or a program

interface. The consumer does not manage or control the underlying cloud

infrastructure including network, servers, operating systems, storage, or even

individual application capabilities, with the possible exception of limited

user-specific application configuration settings.

The Benefits of SaaS:

– You can sign up and rapidly start using innovative business apps.

– Apps and data are accessible from any connected computer.

Chapter 2 Background Review and Related Work 8

– No data is lost if your computer breaks, as data is in the cloud.

– The service is able to dynamically scale to usage needs.

2.1.3 Deployment Models

Cloud computing providers and users according to their ownership can be divided

into four categories, namely public cloud, private cloud, community and hybrid

clouds.

• Public Cloud: The cloud infrastructure is provisioned for open use by the

general public. It may be owned, managed, and operated by a business,

academic, or government organization, or some combination of them. It

exists on the premises of the cloud provider.

Key aspects of public cloud:

– Innovative SaaS business apps for applications ranging from customer

resource management (CRM) to transaction management and data an-

alytics.

– Flexible, scalable IaaS for storage and compute services on a moment’s

notice.

– Powerful PaaS for cloud-based application development and deployment

environments.

• Private Cloud: The cloud infrastructure is provisioned for exclusive use by a

single organization comprising multiple consumers (e.g., business units). It

may be owned, managed, and operated by the organization, a third party,

or some combination of them, and it may exist on or off premises.

Key aspects of private cloud:

– A self-service interface controls services, allowing IT staff to quickly

provision, allocate and deliver on-demand IT resources.

Chapter 2 Background Review and Related Work 9

– Highly automated management of resource pools for everything from

compute capability to storage, analytics and middleware.

– Sophisticated security and governance designed for a company’s specific

requirements.

• Hybrid Cloud: The cloud infrastructure is a composition of two or more

distinct cloud infrastructures (private, community, or public) that remain

unique entities, but are bound together by standardized or proprietary tech-

nology that enables data and application portability (e.g., cloud bursting for

load balancing between clouds).

Key aspects of hybrid cloud:

– Allows companies to keep the critical applications and sensitive data in

a traditional data center environment or private cloud.

– Enables taking advantage of public cloud resources like SaaS, for the

latest applications, and IaaS, for elastic virtual resources.

– Facilitates portability of data, apps and services and more choices for

deployment models.

• Community Cloud: The cloud infrastructure is provisioned for exclusive use

by a specific community of consumers from organizations that have shared

concerns (e.g., mission, security requirements, policy, and compliance con-

siderations). It may be owned, managed, and operated by one or more of

the organizations in the community, a third party, or some combination of

them, and it may exist on or off premises.

2.2 Virtualization

In computing, virtualization [5–8] refers to the act of creating a virtual (rather than

actual) version of something, including (but not limited to) a virtual computer

hardware platform, operating system (OS), storage device, or computer network

resources. With virtualization, the computer’s physical resources, such as servers,

Chapter 2 Background Review and Related Work 10

network, memory, and storage, are abstractly presented after conversion, so that

users can apply those resources in a better way than the original configuration.

Simply put, Virtualization is a technology that allows you to transform hard-

ware into software, and it allows you to run multiple operating systems simulta-

neously on a single computer.

Virtual architecture is different from traditional architecture, as shown in Figure

2.2 Traditional architecture can run single operating system on a single computer,

but the virtual architecture can run multiple operating system on a single com-

puter.

Figure 2.2: The different between traditional architecture and virtual archi-
tecture

There are many benefits of virtualization, such as:

• Encapsulation - VMs can be described in a file

– Possible to ”snapshot”

– Easy to move

• Enables running multiple operating systems

• Consolidation and use of unused computation power

• Resource management

• High availability and disaster recovery

Chapter 2 Background Review and Related Work 11

• Create ”Base Environment”

• Safe testing of new software

• Easy Management

2.3 Hypervisor

A hypervisor [9, 10] or virtual machine monitor (VMM) is a piece of computer

software, firmware or hardware that creates and runs virtual machines. A com-

puter on which a hypervisor is running one or more virtual machines is defined as

a host machine. Each virtual machine is called a guest machine. The hypervisor

presents the guest operating systems with a virtual operating platform and man-

ages the execution of the guest operating systems. Multiple instances of a variety

of operating systems may share the virtualized hardware resources.

Simply stated, a hypervisor creates a layer of abstraction that isolates an OS

and its associated applications from the underlying computing hardware. The

isolation effectively mitigates software from its traditional reliance on hardware

devices and their drivers. The implications of this behavior are profound. A

hypervisor allows OSes and their application workloads to run on a broader array of

hardware. Similarly, multiple OSes and workloads, each a unique virtual machine

(VM) or VM instance, can reside on the same system to simultaneously share

computing resources. You can migrate each VM between computing platforms

on demand with little (if any) processing disruption. The result is better use of

computing platforms with seamless workload migration and backup capabilities.

Hypervisors generally fall into two categories: hosted and bare-metal. Both offer

distinct benefits and drawbacks.

Chapter 2 Background Review and Related Work 12

2.3.1 Hosted Hypervisor

A hosted hypervisor, as shown in Figure 2.3, runs within the OS and allows ad-

ditional OS and application instances to run on top of it. VMware Server and

Microsoft Virtual Server, as well as numerous endpoint-based virtualization plat-

forms like VMware Workstation, Microsoft Virtual PC and Parallels Workstation

are hosted hypervisors.

There are advantages of Hosted Hypervisor:

• Virtualization installs like application rather than like OS.

• Can run alongside conventional applications.

• Avoid code duplication–OS already has process scheduler, memory manage-

ment, device support etc.

• More suitable for personal users.

Figure 2.3: The hosted hypervisor architecture

Chapter 2 Background Review and Related Work 13

2.3.2 Bare-Metal Hypervisor

Bare-metal hypervisors, as shown in Figure 2.4, is the most commonly deployed

type, can install directly onto the computing hardware. The OS installs and runs

above the hypervisor. Major virtualization products can be termed as bare-metal

hypervisors, including Oracle VM, VMware ESX Server, Microsoft Hyper-V and

Citrix XenServer.

There are advantages of Bare-Metal Hypervisor:

• Better performance with lower overhead.

• Highly efficient direct I/O pass-through architecture for network and disk.

• Complete control over hardware.

• Advanced features like live migration available.

• Suitable for production environments.

Figure 2.4: The bare-metal hypervisor architecture

Chapter 2 Background Review and Related Work 14

2.4 OpenStack

OpenStack [11–14] is a free and open-source cloud computing software platform.

It began in 2010 as a joint project of Rackspace Hosting and NASA. Currently,

it is managed by the OpenStack Foundation, a non-profit which oversees both

development and community-building around the project. And OpenStack.org

released it under the terms of the Apache License. Users primarily deploy it as

an infrastructure as a service (IaaS) solution. The technology consists of a series

of interrelated projects that control pools of processing, storage, and network-

ing resources throughout a data center which users manage through a web-based

dashboard, command-line tools, or a RESTful API.

2.4.1 OpenStack Component

OpenStack has a modular architecture with various code names for its components.

• Compute (Nova)

OpenStack Compute (Nova) is a cloud computing fabric controller, which is

the main part of an IaaS system. It is designed to manage and automate

pools of computer resources and can work with widely available virtualiza-

tion technologies, as well as bare metal and high-performance computing

(HPC) configurations. KVM [15], VMware, and Xen are available choices

for hypervisor technology, together with Hyper-V and Linux container tech-

nology such as LXC.

It is written in Python and uses many external libraries such as Eventlet

(for concurrent programming), Kombu (for AMQP communication), and

SQLAlchemy (for database access). Compute’s architecture is designed to

scale horizontally on standard hardware with no proprietary hardware or

software requirements and provide the ability to integrate with legacy sys-

tems and third-party technologies.

• Object Storage (Swift)

Chapter 2 Background Review and Related Work 15

OpenStack Object Storage (Swift) is a scalable redundant storage system.

Objects and files are written to multiple disk drives spread throughout servers

in the data center, with the OpenStack software responsible for ensuring

data replication and integrity across the cluster. Storage clusters scale hor-

izontally simply by adding new servers. Should a server or hard drive fail,

OpenStack replicates its content from other active nodes to new locations in

the cluster. Because OpenStack uses software logic to ensure data replica-

tion and distribution across different devices, inexpensive commodity hard

drives and servers can be used. The Total Cost of Ownership (TCO) can

be higher than using enterprise-class storage due to many copies required to

get high availability.

In August 2009, Rackspace started the development of the precursor to

OpenStack Object Storage, as a complete replacement for the Cloud Files

product. The initial development team consisted of nine developers. Swift-

Stack, an object storage software company, is currently the leading developer

for Swift.

• Block Storage (Cinder)

Cinder is a Block Storage service for OpenStack. It’s designed to allow the

use of either a reference implementation (LVM) to present storage resources

to end users that can be consumed by the OpenStack Compute Project

(Nova). The short description of Cinder is that it virtualizes pools of block

storage devices and provides end users with a self service API to request and

consume those resources without requiring any knowledge of where their

storage is actually deployed or on what type of device.

• Networking (Neutron)

OpenStack Networking (Neutron, formerly Quantum) is a system for manag-

ing networks and IP addresses. OpenStack Networking ensures the network

is not a bottleneck or limiting factor in a cloud deployment, and gives users

self-service ability, even over network configurations.

Chapter 2 Background Review and Related Work 16

OpenStack Networking provides networking models for different applica-

tions or user groups. Standard models include flat networks or VLANs that

separate servers and traffic. OpenStack Networking manages IP addresses,

allowing for dedicated static IP addresses or DHCP. Floating IP addresses

let traffic be dynamically rerouted to any resources in the IT infrastructure,

so users can redirect traffic during maintenance or in case of a failure.

Users can create their own networks, control traffic, and connect servers

and devices to one or more networks. OpenStack Networking provides an

extension framework that can deploy and manage additional network services

—such as intrusion detection systems (IDS), load balancing, firewalls, and

virtual private networks (VPN).

• Dashboard (Horizon)

OpenStack Dashboard (Horizon) provides administrators and users a graph-

ical interface to access, provision, and automate cloud-based resources. The

design accommodates third party products and services, such as billing, mon-

itoring, and additional management tools. The dashboard is also brandable

for service providers and other commercial vendors who want to make use

of it. The dashboard is one of several ways users can interact with Open-

Stack resources. Developers can automate access or build tools to manage

resources using the native OpenStack API or the EC2 compatibility API.

• Identity Service (Keystone)

OpenStack Identity (Keystone) provides a central directory of users mapped

to the OpenStack services they can access. It acts as a common authentica-

tion system across the cloud operating system and can integrate with existing

backend directory services like LDAP. It supports multiple forms of authen-

tication including standard username and password credentials, token-based

systems and AWS-style (i.e. Amazon Web Services) logins. Additionally,

the catalog provides a queryable list of all of the services deployed in an

OpenStack cloud in a single registry. Users and third-party tools can pro-

grammatically determine which resources they can access.

Chapter 2 Background Review and Related Work 17

• Image Service (Glance)

OpenStack Image Service (Glance) provides discovery, registration, and de-

livery services for disk and server images. Stored images can be used as a

template. It can also be used to store and catalog an unlimited number of

backups. The Image Service can store disk and server images in a variety

of back-ends, including OpenStack Object Storage. The Image Service API

provides a standard REST interface for querying information about disk

images and lets clients stream the images to new servers.

Glance—OpenStack’s image service module—is a compute module, as it

does not store images, variations, or instances—but rather catalogs them

and holds their metadata from Swift or a storage backend datastore. Other

modules must communicate with the images metadata through Glance—for

example, Heat. Also, Nova can present information about the images, and

configure a variation on an image to produce an instance. However, Glance

is the only module that can add, delete, share, or duplicate images.

• Telemetry (Ceilometer)

OpenStack Telemetry Service (Ceilometer) provides a Single Point Of Con-

tact for billing systems, providing all the counters they need to establish

customer billing, across all current and future OpenStack components. The

delivery of counters is traceable and auditable, the counters must be easily

extensible to support new projects, and agents doing data collections should

be independent of the overall system.

• Orchestration (Heat)

Heat is the main project in the OpenStack Orchestration program. It im-

plements an orchestration engine to launch multiple composite cloud ap-

plications based on templates in the form of text files that can be treated

like code. A native Heat template format is evolving, but Heat also en-

deavours to provide compatibility with the AWS CloudFormation template

format, so that many existing CloudFormation templates can be launched

Chapter 2 Background Review and Related Work 18

on OpenStack. Heat provides both an OpenStack-native ReST API and a

CloudFormation-compatible Query API.

• Database (Trove)

Trove is Database as a Service for OpenStack. It’s designed to run entirely

on OpenStack, with the goal of allowing users to quickly and easily utilize

the features of a relational or non-relational database without the burden of

handling complex administrative tasks. Cloud users and database admin-

istrators can provision and manage multiple database instances as needed.

Initially, the service will focus on providing resource isolation at high perfor-

mance while automating complex administrative tasks including deployment,

configuration, patching, backups, restores, and monitoring.

2.4.2 OpenStack Conceptual Architecture

Launching a virtual machine or instance involves many interactions among sev-

eral services. The Figure 2.5 provides the conceptual architecture of a typical

OpenStack environment.

Figure 2.5: The conceptual architecture of OpenStack

Chapter 2 Background Review and Related Work 19

In this work, we use version Kilo. We just use Nova, Glance, Keystone, Horizon

in our model.

2.5 Live Migration

Live migration [16–20],as shown in Figure 2.6, refers to the process of moving a

running VM or application between different physical machines without discon-

necting the client or application. Memory, storage, and network connectivity of

the VM are transferred from the original guest machine to the destination.

Figure 2.6: The concept of Live Migration

Two techniques for moving the VM’s memory state from the source to the

destination are pre-copy memory migration and post-copy memory migration.

• Pre-copy memory migration, as shown in Figure 2.7.

– Warm-up phase

In pre-copy memory migration, the hypervisor typically copies all the

memory pages from source to destination while the VM is still running

on the source. If some memory pages change (become ’dirty’) during

this process, they will be re-copied until the rate of re-copied pages is

not less than the page dirty rate.

Chapter 2 Background Review and Related Work 20

– Stop-and-copy phase

After the warm-up phase, the VM will be stopped on the original host,

the remaining dirty pages will be copied to the destination, and the VM

will be resumed on the destination host. The time between stopping the

VM on the original host and resuming it on destination is called ”down-

time”, and it ranges from a few milliseconds to seconds according to the

size of memory and applications running on the VM. There are some

techniques to reduce live migration down-time, such as using probability

density function of memory change.

Figure 2.7: The phase of Pre-copy memory migration

• Post-copy memory migration

Post-copy VM migration is initiated by suspending the VM at the source.

With the VM suspended, a minimal subset of the execution state of the VM

(CPU state, registers and, optionally non-pageable memory) is transferred

to the target. The VM is then resumed at the target. Concurrently, the

source actively pushes the remaining memory pages of the VM to the target

- an activity known as pre-paging. At the target, if the VM tries to access

a page that has not yet been transferred, it generates a page-fault. These

faults, known as network faults, are trapped at the target and redirected to

the source, which responds with the faulted page. Too many network faults

Chapter 2 Background Review and Related Work 21

can degrade performance of applications running inside the VM. Hence pre-

paging can dynamically adapt the page transmission order to network faults

by actively pushing pages in the vicinity of the last fault. An ideal pre-

paging scheme would mask large majority of network faults, although its

performance depends upon the memory access pattern of the VM’s work-

load. Post-copy sends each page exactly once over the network. In contrast,

pre-copy can transfer the same page multiple times if the page is dirtied

repeatedly at the source during migration. On the other hand, pre-copy re-

tains an up-to-date state of the VM at the source during migration, whereas

with post-copy, the VM’s state is distributed over both source and destina-

tion. If the destination fails during migration, pre-copy can recover the VM,

whereas post-copy cannot.

2.6 NFS (Network File System)

Network File System (NFS) [21–23], as shown in Figure 2.8, is a distributed file

system protocol originally developed by Sun Microsystems in 1984, allowing a

user on a client computer to access files over a network much like the local stor-

age. NFS, like many other protocols, builds on the Open Network Computing

Remote Procedure Call (ONC RPC) system. The Network File System is an open

standard defined in Request for Comments (RFCs), allowing anyone to implement

the protocol. Even though different universities and laboratories have developed

a variety of distributed file systems, NFS is the first product is applicable for both

academic and commercial use.

Chapter 2 Background Review and Related Work 22

Figure 2.8: The Network File System (NFS)

NFS’s basic principle is ”to allow different clients and server nodes share the same

file system through a set of RPC”, thus, independent of the operating system, NFS

allows different hardware and operating systems to share a common file system.

NFS provides the following services:

• Search file in the directory.

• List the files in the directory.

• Manage Directory.

• Obtain attribute of all files.

• The file read / write

NFS is often used with Unix operating systems (such as Solaris, AIX and HP-UX)

and Unix-like operating systems (such as Linux and FreeBSD). It is also available

to operating systems such as the classic Mac OS, OpenVMS, IBM i, certain editions

of Microsoft Windows, and Novell NetWare, and alternative remote file access

Chapter 2 Background Review and Related Work 23

protocols including the Server Message Block (SMB, also known as CIFS), Apple

Filing Protocol (AFP), NetWare Core Protocol (NCP), and OS/400 File Server

file system (QFileSvr.400).

2.7 PDU (Power Distribution Units)

A Power Distribution Unit (PDU) [24,25],as shown in Figure 2.9, is a device used

in datacenters to distribute AC power to multiple servers and other equipment.

Power distribution units (PDUs) range from simple 120v power strips to units

that break out 120 volts from 240v and three-phase power. Advanced units are

managed remotely via the SNMP management protocol or from a Web browser or

other management console, causing outlets to be turned on and off at prescribed

times and in a proper sequence for shutting down and powering up equipment.

Figure 2.9: Raritan’s PDU

The growing complexity of IT environments, from wiring closets and server

rooms to data centers of all sizes, has increased the need for reliable power distri-

bution to the rack level. Eliminating power management issues is essential for IT

and Facilities managers to maintain system availability of increasing higher density

equipment. Power Distribution Units are an essential element in managing power

capacity and functionality for critical network, server and data center equipment.

• Basic PDU

Chapter 2 Background Review and Related Work 24

The most basic PDU is a large power strip without surge protection. It

is designed to provide standard electrical outlets for data center equipment

and has no monitoring or remote access capabilities. The floor-mounted and

rack-mounted PDUs can be more sophisticated, providing data that can be

used for power usage effectiveness (PUE) calculations.

• Floor-mounted PDU

A floor-mounted PDU, sometimes called a main distribution unit (MDU),

provides an important management bridge between a building’s primary

power and various equipment racks within a data center or network opera-

tions center (NOC). Each PDU can handle larger amounts of energy than an

ordinary power strip (300 kilovolt-amps and higher depending on the man-

ufacturer and model) and typically provides power to multiple equipment

racks.

• Rack-mountable PDU

A rack-mountable PDU mounts directly to an equipment rack so it can

control and monitor power to specific servers, switches and other data center

devices and assist in balancing power loads. Rack-mountable PDAs are

known by several different names, including smart PDUs and intelligent

PDUs. Such PDUs include three-phase displays for devices sharing power

well as remote management tools that use the Simple Network Management

Protocol (SNMP) to provide administrators with the ability to adjust and

monitor power demands from offsite locations.

2.8 Related Work

In the recent years, there are many power saving method research. We choose

some research about power saving method to discussion.

In first paper [26], it is about power saving method for virtual machine manage-

ment platform in cloud. They use the open source codes and PHP web programs

Chapter 2 Background Review and Related Work 25

to implement a virtualization resource management system for power-saving. In

this thesis, they propose to adopt system integrated open source software like

KVM and libvirt to construct a virtual cloud management platform, which de-

tects the status of resources via SNMP, calculates the operation efficiency of the

overall system, allocates virtual machines through the live migration technology

and turns off extra machines on the cloud to save energy.

Their objective is to provide enterprises or end users with power-saving private

cloud solutions. In this work they also have built a webpage to allow users to easily

access the cloud virtualization resources, i.e., users can manage virtual machines

and monitor the status of resources via the web interface. From analysis of the

experimental results of live migration of virtual machines, this work demonstrates

that efficient use of hardware resources is realized by the power-saving method,

and the aim of power-saving is achieved.

It is about a cloud infrastructure monitor platform with power saving method

in second paper [27]. The aim of this thesis is based on the Cloud service In-

frastructure as a Service, use KVM and libvirt to build cloud environments; in

addition, they calculate effective power consumption by writing a PHP program

to collect host and VM information to calculate the efficiency of the entire system

resource. By giving every host and VM a power cap, they perform live-migration

on VMs and shutdown idle hosts to save power. They also build an interface

that enables users to monitor virtual machines and physical machines. In the ex-

periment, they use PDU to record the power consumption information, and from

analysis of these data they prove that they can more effectively utilize hardware

resources and save power.

In third paper [28], it is about a cloud energy saving system with virtual ma-

chine dynamic resource allocation method base on OpenStack. They mention that

many companies, organizations and academic institutions are following the cloud

computing trend; the establishment of large-scale cloud computing clusters avoids

the need to provide one person with one computer. Even though virtualization

Chapter 2 Background Review and Related Work 26

can reduce the cost of hardware equipment, but it still faces with two problems:

energy consumption and the waste of the idle resources.

To solve these two problems, they propose two algorithms, i.e., dynamic re-

source allocation and energy saving. In order to implement these two algorithms

with live migration of virtual machines, they first build an infrastructure platform

based on cloud software –OpenStack. Next, dynamic resource allocation and

energy saving algorithms are designed and implemented. Finally, they use the

Power Distribution Unit (PDU) to monitor system status and record power con-

sumption; the real time status monitoring data verify that the proposed algorithms

are efficient in energy saving and idle resource planning.

In A method for managing green power of a virtual machine cluster in cloud

[29], they mention about the gross occupied resource weight ratio is defined as the

ratio of the sum of resource weights of all virtual machines over the sum of available

resource weights of all running physical machines. When the gross occupied re-

source weight ratio is greater than the maximum tolerant occupied resource weight

ratio, preset to ensure quality of service, a standby physical machine in the non-

running physical machines is selected and wakened up to join as one of the running

physical machines. On the other hand, when the gross occupied resource weight

ratio is less than the minimum critical occupied resource weight ratio, preset to

trigger energy saving algorithms, one of the running physical machines, selected as

a migration physical machine with the virtual machines therein removed after live

migration, is moved from other running physical machines, and then turned off. As

a result, a resource allocation process is realized to distribute loads of the running

physical machines such that the total number of the running physical machines

can be flexibly dispatched to achieve the objective of green power management.

Chapter 3

System Design and

Implementation

With the universal of virtualization and OpenStack, how to reduce the power con-

sumption is an issue that we face, and the user interface that OpenStack provided

has some insignificance. In this section, we will introduce our system architecture

and the flow of our algorithm. Finally, we will show our user interface.

3.1 System Architecture

This section introduces the architecture of the proposed cloud platform based on

the infrastructure software OpenStack. The architecture consists of a controller

node and two computing nodes. Several major OpenStack services are running on

the Controller node, such as Identity service, Image service, Networking service,

Nova service, and Dashboard. To perform live migration on the VMs between

the two computing nodes, we use Network File System (NFS) as shared storage

and install the NFS server on the controller node. These three computing nodes

are only utilized to run the Nova service and NFS client and connected to the

PDU for monitoring and recording their energy consumption. The overall system

architecture is shown in the Figure 3.1.

27

Chapter 3 System Design and Implementation 28

Figure 3.1: The overall system architecture

3.2 Design Flow and Algorithm

To achieve efficient distributed load balance and energy saving, two algorithms

are designed based on OpenStack. The algorithmic design flow for DLB and the

algorithmic design flow for energy saving are introduced in subsection 3.2.1 and

subsection 3.2.2, respectively.

3.2.1 Design Flow and Algorithm of Distributed Load Bal-

ancing Method

To achieve efficient distributed load balance and energy saving, we consider the

performance index in 3.5, where P represent the power of every compute nodes af-

ter distributing. In other words, we need to minimize the summation of differences

between every two nodes as follow.

minimize | P1 − P2 |2 + | P2 − P3 |2 + | P1 − P3 |2 (3.1)

To achieve above minimum value, we propose the function,

Chapter 3 System Design and Implementation 29

Pm is defined the power of all VMs on m PM

p(m,n) is defined the power of n VM on m PM

Pm = (
∑n

i=1 pm,i) (3.2)

and our goal is

Pµ =
(
∑m

i=1 Pi)

m
(3.3)

So we have to find the following:

min
∑m

i=1(Pi − Pµ)
2 (3.4)

The proposed method for finding the minimum value is introduced as follows.

First, we calculate power of VMs on all compute nodes and arrangement in de-

scending, and calculate the value P, P represent power of all VMs / number of

compute node, it means that how much power on each compute node is the most

balanced. Then it start from first VM, it judge that whether put this VM in first

node will over P, it will check on other node if it over P, or it will put this VM

in first node. If the VM has been check on all nodes, but all nodes will over P, it

will put in the node which is most close to P. Above steps will continue until all

VMs have been distributed on compute nodes, then start live migration.

Atatal is defined the total power of all VMs / number of PM

3.2.2 Design Flow and Algorithm of Power Saving Method

First, we can choose which node we want to shutdown on web site, then we will

check the other compute nodes wherther have enough CPU usage. Then we cal-

culate power of VMs on all compute nodes and arrangement in descending, and

calculate the value P, P represent power of all VMs / number of compute node, it

Chapter 3 System Design and Implementation 30

Algorithm 1 DLB method Algorithm
1: if (power of VM + total power of VM on the compute node > Atotal) then
2: if (All nodes have been check) then
3: Put this VM in the node which is the most close to Atotal

4: else
5: Check other node
6: end if
7: else
8: Put this VM in the node
9: end if

10: if (All VMs have been put in nodes) then
11: Start live migration
12: else
13: Keep distributing VM
14: end if

means that how much power on each compute node is the most balanced. Then it

start from first VM, it judge that whether put this VM in first node will over P,

it will check on other node if it over P, or it will put this VM in first node. If the

VM has been check on all nodes except the node that we choose to shutdown, but

all nodes will over P, it will put in the node which is most close to P. Above steps

will continue until all VMs have been distributed on compute nodes, then start

live migration, and it will shutdown the node we choose first after live migration.

We check the other compute nodes wherther have enough CPU usage by fol-

lowing:

C(p,m) = Number of CPU core of m host

C(v, n) = Number of CPU core of n VM

Check whether:

∑m
i=1C(p,i) >

∑n
j=1C(v,j) (3.5)

Chapter 3 System Design and Implementation 31

Figure 3.2: DLB method flow chart

We will choose which compute node will be shutdown on web site first

S is defined as the compute node which we want to shutdown

Atatal is defined the total power of all VMs / number of PM

3.3 System Implementation

In this thesis, we will use the Python language and PHP to write some automatic

program, including the state monitoring program which can monitor the virtual

machines and the physical machines, energy consumption record program which

can monitor the power consumption. The following is a detailed description of the

programs.

Chapter 3 System Design and Implementation 32

Algorithm 2 Power Saving method Algorithm
1: if (Other two compute nodes have enough CPU usage) then
2: if (power of VM + total power of VM on the compute node > Atotal) then
3: if (All nodes except S have been check) then
4: Put this VM in the node which is the most close to Atotal

5: else
6: Check other node except S
7: end if
8: else
9: Put this VM in the node

10: end if
11: if (All VMs have been put in nodes) then
12: Start live migration then shutdown S
13: else
14: Keep distributing VM
15: end if
16: else
17: Reselect which compute node will be shutdown
18: end if

3.3.1 Status Monitoring

We monitored the states, i.e., CPU utilization and memory utilization, of phys-

ical machines and VMs via status monitoring program. We used python system

and process utilities (psutil), which is a cross-platform library for retrieving infor-

mation on running processes and system utilization of CPU, memory, disks, and

networking in Python. It is useful mainly for system monitoring. The status mon-

itoring function was developed with the Python programming language to capture

status and post data to receiving program. We then used the receiving program

which was developed with the PHP language to receive all monitoring data and

insert these monitoring data into database, then show on the web site we design.

The flow of status monitoring is shown in Figure 3.4.

3.3.2 Power Consumption Recording

In this work, we captured the power consumption of compute nodes via PDU.

PDU’s power consumption data is obtained by SNMP. The Energy Consumption

Recording function, developed by PHP programing language, is an automatic

Chapter 3 System Design and Implementation 33

recording program. Through Energy Consumption Recording program, we can

automatically collect the power consumption data of compute nodes from PDU.

Figure 3.6 and Figures 3.7 are the power consumption hitorical record on web site.

Chapter 3 System Design and Implementation 34

Figure 3.3: Power Saving method flow chart

Chapter 3 System Design and Implementation 35

Figure 3.4: The flow of status monitoring

Figure 3.5: Status monitoring on web site

Chapter 3 System Design and Implementation 36

Figure 3.6: Power consumption hitorical record

Figure 3.7: Power consumption hitorical record

Chapter 4

Experimental Results

In this chapter, we show the experimental environment and the experimental

results. In section 4.1, we describe our experimental environment including hard-

ware specification and software specification. The experimental results are shown

in section 4.2. We test the two algorithms implemented in the same system and

show the experimental results.

4.1 Experimental Environment

The experimental environment consists of four computers and their hardware spec-

ifications are listed in Table 4.1. Controller consist of 12-core CPU, 64 GB memory,

2 TB disk, two compute nodes consist of 64-core CPU, 48 GB memory, 2 TB disk,

and one compute node consist 32-core CPU, 64 GB memory, 2 TB disk and four

servers are with Ubuntu 14.04 as the operating system.

Software specifications are listed in Table 4.2. The OpenStack version is Kilo

released on 30 April 2015. The PHP version is 5.5.9. The SNMP version is 5.7.2.

37

Chapter 4 Experimental Results 38

Table 4.1: Hardware specification

Host Name CPU RAM HDD OS

Controller node 12-core 64GB 2TB Ubuntu14.04

Computing node1 64-core 48GB 2TB Ubuntu14.04

Computing node2 64-core 48GB 2TB Ubuntu14.04

Computing node3 32-core 64GB 2TB Ubuntu14.04

Table 4.2: Software specification

Software OpenStack Python PHP SNMP NFS

Version Kilo 2.7.6 5.5.9 5.7.2 4

4.2 Experimental Results and Discussion

First we do the test of the relationship between power consumption of physical

machine and CPU utilization of virtual machine. Show as figure, we can see that

before 50% of CPU utilization of virtual machine is linear growth, and growth rate

is larger, after 50%, growth rate is gentler. We use the result of this experiment

to be the power consumption basis to our other experiment.

Figure 4.1: Relationship between power consumption of physical machine and
CPU utilization of virtual machine

Chapter 4 Experimental Results 39

We test DLB method. We deploy some virtual machines on every compute nodes,

totally eight virtual machines, all virtual machines consist of 4-core CPU, 4 GB

memory, 20 GB disk, and with Ubuntu 14.04 as the operating system. Then run

the program to occupy varying resource utilization to make different power con-

sumption. To run DLB method after deploying, show as Figure 4.2 and Figure 4.3.

Before DLB, the power consumption of every compute nodes is not equal, there

have high consumption and low consumption, after DLB, the power consumption

of every compute nodes is very similar. The result represent that it can achieve

power load balancing by our method.Figure 4.2 is the power consumption after

live migration will be like that theoretically, Figure 4.3 is the power consumption

after live migration will be like that actually, there has a little different is because

that the power consumption of every virtual machine on different physical machine

will be a little different, but they are almost equal, to show that our method is

feasible.

Figure 4.2: Power consumption of each nodes before DLB and after DLB
(Theoretically)

Chapter 4 Experimental Results 40

Figure 4.3: Power consumption of each nodes before DLB and after DLB
(actually)

Then we test Power Saving method. We deploy some virtual machines on every

compute nodes, totally eight virtual machines, all virtual machines consist of 4-

core CPU, 4 GB memory, 20 GB disk, and with Ubuntu 14.04 as the operating

system. Then run the program to occupy varying resource utilization to make

different power consumption. To run Power Saving method after deploying, and

we choose to shutdown compute3.

Figure 4.4 shows that there have two virtual machines on compute1, two vir-

tual machines on compute2, and four virtual machines on compute3 before Power

Saving method, after we run power saving method, it moves out all virtual ma-

chines on compute3 then distribute on other two compute nodes.

Chapter 4 Experimental Results 41

Figure 4.4: Number of VMs on each compute nodes

Figure 4.5 shows that the power consumption on each compute node, the power

consumption of compute1 and compute2 has be increased because the virtual

machines on compute3 have distributed on compute1 and compute2, and the power

consumption of compute3 become zero because we shutdown compute3.

Figure 4.5: Power consumption of each compute nodes

Chapter 4 Experimental Results 42

Figure 4.6 shows the total power consumption of three compute nodes, it

reduce almost 120W because we shutdown compute3, and it shows that it really

can save power by our Power Saving method.

Figure 4.6: Total Power consumption of compute nodes

Figure show the interface of live migration on web site, it can choose that just

live migrate one VM or auto live migration by the two method. It can choose which

method that user wants to use by click Optimize Virtual Machine Distribution.

Figure 4.7: Live migration interface on the web site

Chapter 5

Conclusions and Future Work

In this thesis, we implement an energy saving cloud infrastructure with virtual

machine monitoring and live migration with Distributed Load Balancing method

and Power Saving method.We will describe our conclusion in section 5.1 and future

work in section 5.2.

5.1 Conclusions

In this thesis, we implement an energy saving cloud infrastructure with virtual

machine monitoring and live migration with Distributed Load Balancing method

and Power Saving method. We will describe our conclusion in section 5.1 and

future work in section 5.2.

In this work, we implement an infrastructure platform base on OpenStack.

We achieve our goal by using a DLB method to balance the power consumption of

physical machines and an energy saving method to save the energy consumption.

The DLB method not only can avoid idle and waste of resources but also can avoid

reducing machine life because of the physical machines always keep in high usage.

The energy saving method works mainly through shutting physical machines to

save energy consumption.

43

Chapter 5 Conclusions and Future Work 44

Through the DLB method we can find the most suitable power load for the

physical machines. After running DLB method, we will distribute all VMs to

physical machines to achieve the suitable power load. The energy saving method

can distribute the VMs on all compute nodes to some compute nodes and shut

down one compute node to achieve the energy saving purpose.

In this thesis, we achieve our goal to distribute the power load on the physical

machines. The experimental results show that we save 120 W by the energy saving

method.

5.2 Future Work

The DLB method and the Power Saving method still have some work to do. We

plan to combine OpenStack with Docker to achieve speed up the time of deploying

VM. On the web site, we plan to have more functions, i.e building virtual machine

on the web site, have more detail of virtual machine, and management of compute

node. In the future work, we will not only continue studying the DLB method

and the Power Saving method to improve our system, but also apply our system

to a larger environment.

References

[1] Cloud computing, 2015. https://www.ibm.com/cloud-computing/

what-is-cloud-computing.

[2] What is cloud computing?, 2015. http://www.ibm.com/cloud-computing/

us/en/what-is-cloud-computing.html.

[3] Cloud open lab, 2012. http://www.cloudopenlab.org.tw/ccipo_

industryDefinition.do.

[4] Rajkumar Buyya, Christian Vecchiola, and S. Thamarai Selvi. Mastering

Cloud Computing: Chapter 4 –Cloud Computing Architecture. MORGAN

KAUFMANN, 2013.

[5] Rajkumar Buyya, Christian Vecchiola, and S. Thamarai Selvi. Mastering

Cloud Computing: Chapter 3 –Virtualization. MORGAN KAUFMANN,

2013.

[6] Xiaofei Liao, Hai Jin, Shizhan Yu, and Yu Zhang. A novel memory allocation

scheme for memory energy reduction in virtualization environment. Journal

of Computer and System Sciences, 81:3 – 15, 2015.

[7] Yaozu Dong, Xiantao Zhang, Jinquan Dai, and Haibing Guan. Hyvi: A hybrid

virtualization solution balancing performance and manageability. Parallel and

Distributed Systems, 25:2332 – 2341, 2014.

[8] Chapter 7–Multicore Virtualization. Multicore Software Development Tech-

niques, 2016.

45

https://www.ibm.com/cloud-computing/what-is-cloud-computing
https://www.ibm.com/cloud-computing/what-is-cloud-computing
http://www.ibm.com/cloud-computing/us/en/what-is-cloud-computing.html
http://www.ibm.com/cloud-computing/us/en/what-is-cloud-computing.html
http://www.cloudopenlab.org.tw/ccipo_industryDefinition.do
http://www.cloudopenlab.org.tw/ccipo_industryDefinition.do

References 46

[9] Hypervisor, 2015. https://technet.microsoft.com/zh-tw/magazine/

hh802393.aspx.

[10] Aristide Fattori, Andrea Lanzi, Davide Balzarotti, and Engin Kirda.

Hypervisor-based malware protection with accessminer, 2015.

[11] Openstack open source cloud computing software, 2015. http://www.

openstack.org/.

[12] What is openstack?, 2015. http://opensource.com/resources/

what-is-openstack.

[13] Openstack, 2015. http://docs.openstack.org/kilo/install-guide/

install/apt/content/.

[14] Zhaojun Li, Haijiang Li, Xicheng Wang, and Keqiu Li. A generic cloud

platform for engineering optimization based on openstack. Advances in En-

gineering Software, 75:42 – 57, 2014.

[15] Luca Abeni, Csaba Kiraly, Nanfang Li, and Andrea Bianco. On the perfor-

manc of kvm-based virtual routers. Computer Communications, 70:40 –53,

2015.

[16] Hai Jin, Li Deng, Song Wua, Xuanhua Shia, Hanhua Chena, and Xiaodong

Panc. Mecom: Live migration of virtual machines by adaptively compressing

memory pages. Future Generation Computer Systems, 38:23 – 25, 2014.

[17] Mattias Forsman, Andreas Glad, Lars Lundberg, and Dragos Ilie. Algorithms

for automated live migration of virtual machines. Journal of Systems and

Software, 101:110 – 126, 2015.

[18] Muhammad Atif and Peter Strazdins. Adaptive parallel application resource

remapping through the live migration of virtual machines. Future Generation

Computer Systems, 37:148 – 161, 2014.

[19] Hai Jin, Wei Gao, Song Wu, Xuanhua Shi, Xiaoxin Wu, and Fan Zhou. Op-

timizing the live migration of virtual machine by cpu scheduling. Journal of

Network and Computer Applications, 34:1088 – 1096, 2011.

https://technet.microsoft.com/zh-tw/magazine/hh802393.aspx
https://technet.microsoft.com/zh-tw/magazine/hh802393.aspx
http://www.openstack.org/
http://www.openstack.org/
http://opensource.com/resources/what-is-openstack
http://opensource.com/resources/what-is-openstack
http://docs.openstack.org/kilo/install-guide/install/apt/content/
http://docs.openstack.org/kilo/install-guide/install/apt/content/

References 47

[20] Kejiang Ye, Xiaohong Jiang, Ran Ma, and Fengxi Yan. Vc-migration: Live

migration of virtual clusters in the cloud. In Grid Computing (GRID), 2012

ACM/IEEE 13th International Conference on, pages 209–218, Sept 2012.

[21] Shaoming Guo, Wang Yang, and Guojun Wang. Nfs protocol performance

analysis and improvement for mobile transparent computing. High Perfor-

mance Computing and Communications 2013 IEEE International Conference

on, pages 1878 – 1883, 2013.

[22] Network file system, 2015. http://nfs.sourceforge.net/.

[23] Alex Osadzinski. The Network File System (NFS). Computer Standards and

Interfaces, 1988–1989.

[24] Power distribution unit, 2015. http://en.wikipedia.org/wiki/Power_

distribution_unit.

[25] What is power distribution unit?, 2013. http://searchdatacenter.

techtarget.com/definition/power-distribution-unit-PDU.

[26] Jung-Chun Liu Yi-Wei Su Chao-Tung Yang, Kuan-Lung Huang and William

Cheng-Chung Chu. Implementation of a power saving method for virtual ma-

chine management in cloud. 2013 International Conference on Cloud Com-

puting and Big Data, 2013.

[27] Jung-Chung Liu Chien-Chih Chen Chao-Tung Yang, Chih-Liang Chuang and

William C. Chu. Implementation of cloud infrastructure monitor platform

with power saving method. 2015 29th International Conference on Advanced

Information Networking and Applications Workshops, 2015.

[28] Jung-Chun Liu Shuo-Tsung Chen Chien-Chih Chen, Chao-Tung Yang. Imple-

mentation of a Cloud Energy Saving System with Virtual Machine Dynamic

Resource Allocation Method Based on OpenStack. 2015.

[29] Kuan-Lung Huang Fuu-Cheng Jiang Chao-Tung Yang, Jung-Chun Liu. A

method for managing green power of a virtual machine cluster in cloud. Future

Generation Computer Systems, Volume 37, July 2014, pages 26 – 36, 2014.

http://nfs.sourceforge.net/
http://en.wikipedia.org/wiki/Power_distribution_unit
http://en.wikipedia.org/wiki/Power_distribution_unit
http://searchdatacenter.techtarget.com/definition/power-distribution-unit-PDU
http://searchdatacenter.techtarget.com/definition/power-distribution-unit-PDU

Appendix A

OpenStack Installation

I. Network Time Protocol (NTP)

$ apt-get install ntp

$ service ntp restart

II. Database (Controller node setup)

$ apt-get install -y mariadb-server python-mysqldb

#===== MySQL configure =====

[mysqld]

...

bind-address = Your_IP

[mysqld]

...

default-storage-engine = innodb

innodb_file_per_table

collation-server = utf8_general_ci

init-connect = 'SET NAMES utf8'

character-set-server = utf8

$ service mysql restart

$ mysql_secure_installation

Set root password? [Y/n] Y

Remove anonymous users? [Y/n] Y

Disallow root login remotely? [Y/n] Y

Remove test database and access to it? [Y/n] Y

Reload privilege tables now? [Y/n] Y

48

Appendix 49

III. Database (Compute node setup)

$ apt-get install python-mysqldb

IV. MySQL Setting

$ mysql -u root -p

CREATE DATABASE keystone;

GRANT ALL PRIVILEGES ON keystone.* TO 'keystone'@'localhost' \

IDENTIFIED BY 'KEYSTONE_DBPASS ';

GRANT ALL PRIVILEGES ON keystone.* TO 'keystone'@'%' \

IDENTIFIED BY 'KEYSTONE_DBPASS ';

exit

$ mysql -u root -p

CREATE DATABASE glance;

GRANT ALL PRIVILEGES ON glance.* TO 'glance'@'localhost' \

IDENTIFIED BY 'GLANCE_DBPASS ';

GRANT ALL PRIVILEGES ON glance.* TO 'glance'@'%' \

IDENTIFIED BY 'GLANCE_DBPASS ';

exit

$ mysql -u root -p

CREATE DATABASE nova;

GRANT ALL PRIVILEGES ON nova.* TO 'nova'@'localhost' \

IDENTIFIED BY 'NOVA_DBPASS ';

GRANT ALL PRIVILEGES ON nova.* TO 'nova'@'%' \

IDENTIFIED BY 'NOVA_DBPASS ';

exit

V. Messaging Server

$ apt-get install rabbitmq-server

$ rabbitmqctl change_password guest YOUR_RABBIT_PASS

VI. Identity Service Install and Configure

$ apt-get install -y keystone python-openstackclient apache2 libapache2-mod-wsgi

memcached python-memcache

$ openssl rand -hex 10

#===== KeyStone configure =====

#Edit /etc/keystone/keystone.conf

[DEFAULT]

Appendix 50

...

admin_token = ADMIN_TOKEN

...

verbose = True

[database]

The SQLAlchemy connection string used to connect to the database

connection = mysql://keystone:KEYSTONE_DBPASS@controller/keystone

...

[memcache]

Memcache servers in the format of "host:port". (list value)

servers = localhost:11211

[token]

provider = keystone.token.providers.uuid.Provider

driver = keystone.token.persistence.backends.memcache.Token

[revoke]

...

driver = keystone.contrib.revoke.backends.sql.Revoke

$ su -s /bin/sh -c "keystone-manage db_sync" keystone

#===== Wsgi-KeyStone configure =====

Listen 5000

Listen 35357

<VirtualHost *:5000>

WSGIDaemonProcess keystone-public processes=5 threads=1 user=keystone

display-name=%{GROUP}

WSGIProcessGroup keystone-public

WSGIScriptAlias / /var/www/cgi-bin/keystone/main

WSGIApplicationGroup %{GLOBAL}

WSGIPassAuthorization On

<IfVersion >= 2.4>

ErrorLogFormat "%{cu}t %M"

</IfVersion>

LogLevel info

ErrorLog /var/log/apache2/keystone-error.log

CustomLog /var/log/apache2/keystone-access.log combined

</VirtualHost>

<VirtualHost *:35357>

WSGIDaemonProcess keystone-admin processes=5 threads=1 user=keystone

display-name=%{GROUP}

WSGIProcessGroup keystone-admin

WSGIScriptAlias / /var/www/cgi-bin/keystone/admin

WSGIApplicationGroup %{GLOBAL}

WSGIPassAuthorization On

<IfVersion >= 2.4>

ErrorLogFormat "%{cu}t %M"

</IfVersion>

Appendix 51

LogLevel info

ErrorLog /var/log/apache2/keystone-error.log

CustomLog /var/log/apache2/keystone-access.log combined

</VirtualHost>

$ ln -s /etc/apache2/sites-available/wsgi-keystone.conf /etc/apache2/sites-enabled

$ mkdir -p /var/www/cgi-bin/keystone

$ curl http://git.openstack.org/cgit/openstack/keystone/plain/httpd/keystone.py?

h=stable/kilo | tee /var/www/cgi-bin/keystone/main /var/www/cgi-bin/keystone/admin

$ chown -R keystone:keystone /var/www/cgi-bin/keystone

$ chmod 755 /var/www/cgi-bin/keystone/*

$ service apache2 restart

$ rm /var/lib/keystone/keystone.db

$ export OS_SERVICE_TOKEN=ADMIN_TOKEN

$ export OS_SERVICE_ENDPOINT=http://controller:35357/v2.0

$ openstack service create \

--name keystone --description "OpenStack Identity" identity

+-------------+----------------------------------+

| Field | Value |

+-------------+----------------------------------+

| description | OpenStack Identity |

| enabled | True |

| id | 4beecffff2554875bb21e36a3e9732cc |

| name | keystone |

| type | identity |

+-------------+----------------------------------+

$ openstack endpoint create \

--publicurl http://CONTROLLER_IP:5000/v2.0 \

--internalurl http://CONTROLLER_IP:5000/v2.0 \

--adminurl http://CONTROLLER_IP:35357/v2.0 \

--region RegionOne \

identity

+--------------+-----------------------------------+

| Field | Value |

+--------------+-----------------------------------+

| adminurl | http://192.168.245.132:35357/v2.0 |

| id | 427c9f134e56499bbb43aaef910d4951 |

| internalurl | http://192.168.245.132:5000/v2.0 |

| publicurl | http://192.168.245.132:5000/v2.0 |

| region | RegionOne |

| service_id | 4beecffff2554875bb21e36a3e9732cc |

| service_name | keystone |

| service_type | identity |

+--------------+-----------------------------------+

Appendix 52

$ openstack project create --description "Admin Project" admin

+-------------+----------------------------------+

| Field | Value |

+-------------+----------------------------------+

| description | Admin Project |

| enabled | True |

| id | c56fe7a817ab4abfa18342b142121b5f |

| name | admin |

+-------------+----------------------------------+

$ openstack user create --password-prompt admin

+----------+----------------------------------+

| Field | Value |

+----------+----------------------------------+

| email | None |

| enabled | True |

| id | 1999e067fd75481a8a6dd00a030ece12 |

| name | admin |

| username | admin |

+----------+----------------------------------+

$ openstack role create admin

+-------+----------------------------------+

| Field | Value |

+-------+----------------------------------+

| id | 86b5d0acb87e4b85b3250b23365932a4 |

| name | admin |

+-------+----------------------------------+

$ openstack role add --project admin --user admin admin

+-------+----------------------------------+

| Field | Value |

+-------+----------------------------------+

| id | 86b5d0acb87e4b85b3250b23365932a4 |

| name | admin |

+-------+----------------------------------+

$ openstack project create --description "Service Project" service

+-------------+----------------------------------+

| Field | Value |

+-------------+----------------------------------+

| description | Service Project |

| enabled | True |

| id | c503c03fc76f4916a04a1fefecc8bb61 |

| name | service |

+-------------+----------------------------------+

$ unset OS_TOKEN OS_URL

Appendix 53

$ openstack --os-auth-url http://CONTROLLER_IP:35357 \

--os-project-name admin --os-username admin --os-auth-type password \

token issue

+------------+----------------------------------+

| Field | Value |

+------------+----------------------------------+

| expires | 2015-09-04T07:41:45Z |

| id | 4e6a719c159f493c87052c3e1c6fb21c |

| project_id | c56fe7a817ab4abfa18342b142121b5f |

| user_id | 1999e067fd75481a8a6dd00a030ece12 |

+------------+----------------------------------+

$ openstack --os-auth-url http://CONTROLLER_IP:35357 \

--os-project-domain-id default --os-user-domain-id default \

--os-project-name admin --os-username admin --os-auth-type password \

token issue

+------------+----------------------------------+

| Field | Value |

+------------+----------------------------------+

| expires | 2015-09-04T07:43:23.197410Z |

| id | 1e5e605514d644bd89e59301ba77c1d8 |

| project_id | c56fe7a817ab4abfa18342b142121b5f |

| user_id | 1999e067fd75481a8a6dd00a030ece12 |

+------------+----------------------------------+

$ openstack --os-auth-url http://CONTROLLER_IP:35357 \

--os-project-name admin --os-username admin --os-auth-type password \

project list

+----------------------------------+---------+

| ID | Name |

+----------------------------------+---------+

| c56fe7a817ab4abfa18342b142121b5f | admin |

| c503c03fc76f4916a04a1fefecc8bb61 | service |

+----------------------------------+---------+

$ openstack --os-auth-url http://CONTROLLER_IP:35357 \

--os-project-name admin --os-username admin --os-auth-type password \

user list

+----------------------------------+-------+

| ID | Name |

+----------------------------------+-------+

| 1999e067fd75481a8a6dd00a030ece12 | admin |

+----------------------------------+-------+

$ openstack --os-auth-url http://CONTROLLER_IP:35357 \

--os-project-name admin --os-username admin --os-auth-type password \

role list

+----------------------------------+-------+

Appendix 54

| ID | Name |

+----------------------------------+-------+

| 86b5d0acb87e4b85b3250b23365932a4 | admin |

+----------------------------------+-------+

edit admin-openrc.sh

export OS_PROJECT_DOMAIN_ID=default

export OS_USER_DOMAIN_ID=default

export OS_PROJECT_NAME=admin

export OS_TENANT_NAME=admin

export OS_USERNAME=admin

export OS_PASSWORD=ADMIN_PASS

export OS_AUTH_URL=http://CONTROLLER_IP:35357/v3

$ source admin-openrc.sh

$ openstack token issue

+------------+----------------------------------+

| Field | Value |

+------------+----------------------------------+

| expires | 2015-09-04T07:55:15.597454Z |

| id | 4f83041d35204fc281c89530a7bec5c5 |

| project_id | c56fe7a817ab4abfa18342b142121b5f |

| user_id | 1999e067fd75481a8a6dd00a030ece12 |

+------------+----------------------------------+

VII. Add the Image service

$ mysql -u root -p

MariaDB [(none)]> CREATE DATABASE glance;

MariaDB [(none)]> GRANT ALL PRIVILEGES ON glance.* TO 'glance'@'localhost' \

-> IDENTIFIED BY 'GLANCE_DBPASS ';

MariaDB [(none)]> GRANT ALL PRIVILEGES ON glance.* TO 'glance'@'%' \

-> IDENTIFIED BY 'GLANCE_DBPASS ';

MariaDB [(none)]> exit

$ source admin-openrc.sh

$ openstack user create --password-prompt glance

+----------+----------------------------------+

| Field | Value |

+----------+----------------------------------+

| email | None |

| enabled | True |

| id | ef1c53829ba74308ba6c3f7ff6d685a2 |

Appendix 55

| name | glance |

| username | glance |

+----------+----------------------------------+

$ openstack role add --project service --user glance admin

+-------+----------------------------------+

| Field | Value |

+-------+----------------------------------+

| id | cd2cb9a39e874ea69e5d4b896eb16128 |

| name | admin |

+-------+----------------------------------+

$ openstack service create --name glance \

--description "OpenStack Image service" image

+-------------+----------------------------------+

| Field | Value |

+-------------+----------------------------------+

| description | OpenStack Image service |

| enabled | True |

| id | 0264a9d23f864ca4b7421dd490d69965 |

| name | glance |

| type | image |

+-------------+----------------------------------+

$ openstack endpoint create \

--publicurl http://CONTROLLER_IP:9292 \

--internalurl http://CONTROLLER_IP:9292 \

--adminurl http://CONTROLLER_IP:9292 \

--region RegionOne \

image

+--------------+----------------------------------+

| Field | Value |

+--------------+----------------------------------+

| adminurl | http://192.168.245.132:9292 |

| id | 1d0d28b9ff404899aed319a5d75eb55b |

| internalurl | http://192.168.245.132:9292 |

| publicurl | http://192.168.245.132:9292 |

| region | RegionOne |

| service_id | 0264a9d23f864ca4b7421dd490d69965 |

| service_name | glance |

| service_type | image |

+--------------+----------------------------------+

$ apt-get install -y glance python-glanceclient

edit /etc/glance/glance-api.conf

[DEFAULT]

Appendix 56

verbose = True

notification_driver = noop

[database]

...

connection = mysql://glance:GLANCE_DBPASS@controller/glance

[keystone_authtoken]

auth_uri = http://CONTROLLER_IP:5000

auth_url = http://CONTROLLER_IP:35357

auth_plugin = password

project_domain_id = default

user_domain_id = default

project_name = service

username = glance

password = GLANCE_PASS

[paste_deploy]

flavor=keystone

[glance_store]

default_store = file

filesystem_store_datadir = /var/lib/glance/images/

edit /etc/glance/glance-registry.conf

[DEFAULT]

verbose = True

notification_driver = noop

[database]

...

connection = mysql://glance:GLANCE_DBPASS@controller/glance

[keystone_authtoken]

auth_uri = http://CONTROLLER_IP:5000

auth_url = http://CONTROLLER_IP:35357

auth_plugin = password

project_domain_id = default

user_domain_id = default

project_name = service

username = glance

password = GLANCE_PASS

[paste_deploy]

flavor=keystone

$ su -s /bin/sh -c "glance-manage db_sync" glance

Appendix 57

$ service glance-registry restart

$ service glance-api restart

$ rm -f /var/lib/glance/glance.sqlite

$ echo "export OS_IMAGE_API_VERSION=2" | tee -a admin-openrc.sh demo-openrc.sh

$ source admin-openrc.sh

$ mkdir /tmp/images

$ wget -P /tmp/images http://download.cirros-cloud.net/0.3.4/cirros-0.3.4-x86_64

-disk.img

$ glance image-create --name "cirros-0.3.4-x86_64" \

--file /tmp/images/cirros-0.3.4-x86_64-disk.img \

--disk-format qcow2 --container-format bare \

--visibility public --progress

+------------------+--------------------------------------+

| Property | Value |

+------------------+--------------------------------------+

| checksum | ee1eca47dc88f4879d8a229cc70a07c6 |

| container_format | bare |

| created_at | 2015-09-04T07:44:30Z |

| disk_format | qcow2 |

| id | bd9943e7-e341-48fb-8fc3-5b462b009379 |

| min_disk | 0 |

| min_ram | 0 |

| name | cirros-0.3.4-x86_64 |

| owner | c56fe7a817ab4abfa18342b142121b5f |

| protected | False |

| size | 13287936 |

| status | active |

| tags | [] |

| updated_at | 2015-09-04T07:44:30Z |

| virtual_size | None |

| visibility | public |

+------------------+--------------------------------------+

$ glance image-list

+--------------------------------------+---------------------+

| ID | Name |

+--------------------------------------+---------------------+

| bd9943e7-e341-48fb-8fc3-5b462b009379 | cirros-0.3.4-x86_64 |

+--------------------------------------+---------------------+

$ rm -r /tmp/images

VIII. Add the Compute service (Controller node)

Appendix 58

$ mysql -u root -p

MariaDB [(none)]> CREATE DATABASE nova;

MariaDB [(none)]> GRANT ALL PRIVILEGES ON nova.* TO 'nova'@'localhost' \

-> IDENTIFIED BY 'NOVA_DBPASS ';

MariaDB [(none)]> GRANT ALL PRIVILEGES ON nova.* TO 'nova'@'%' \

-> IDENTIFIED BY 'NOVA_DBPASS ';

MariaDB [(none)]> exit

$ source admin-openrc.sh

$ openstack user create --password-prompt nova

+----------+----------------------------------+

| Field | Value |

+----------+----------------------------------+

| email | None |

| enabled | True |

| id | 83bf24b81f194937bcf79d83bcf211ee |

| name | nova |

| username | nova |

+----------+----------------------------------+

$ openstack role add --project service --user nova admin

+-------+----------------------------------+

| Field | Value |

+-------+----------------------------------+

| id | 86b5d0acb87e4b85b3250b23365932a4 |

| name | admin |

+-------+----------------------------------+

$ openstack service create --name nova \

--description "OpenStack Compute" compute

+-------------+----------------------------------+

| Field | Value |

+-------------+----------------------------------+

| description | OpenStack Compute |

| enabled | True |

| id | 3ce194e9f14142c1beb86fdd21f77a54 |

| name | nova |

| type | compute |

+-------------+----------------------------------+

$ openstack endpoint create \

--publicurl http://CONTROLLER_IP:8774/v2/%\(tenant_id\)s \

--internalurl http://CONTROLLER_IP:8774/v2/%\(tenant_id\)s \

--adminurl http://CONTROLLER_IP:8774/v2/%\(tenant_id\)s \

--region RegionOne \

compute

+--------------+--+

Appendix 59

| Field | Value |

+--------------+--+

| adminurl | http://192.168.245.132:8774/v2/%(tenant_id)s |

| id | e2ee483a875f498fad3e8e6893c67a8d |

| internalurl | http://192.168.245.132:8774/v2/%(tenant_id)s |

| publicurl | http://192.168.245.132:8774/v2/%(tenant_id)s |

| region | RegionOne |

| service_id | 3ce194e9f14142c1beb86fdd21f77a54 |

| service_name | nova |

| service_type | compute |

+--------------+--+

$ apt-get install -y nova-api nova-cert nova-conductor nova-consoleauth \

nova-novncproxy nova-scheduler python-novaclient

edit /etc/nova/nova.conf

[DEFAULT]

verbose = True

...

rpc_backend = rabbit

auth_strategy = keystone

my_ip = CONTROLLER_IP

vncserver_listen = CONTROLLER_IP

vncserver_proxyclient_address = CONTROLLER_IP

[database]

connection = mysql://nova:NOVA_DBPASS@controller/nova

[oslo_messaging_rabbit]

rabbit_host = CONTROLLER_IP

rabbit_userid = openstack

rabbit_password = RABBIT_PASS

[keystone_authtoken]

auth_uri = http://CONTROLLER_IP:5000

auth_url = http://CONTROLLER_IP:35357

auth_plugin = password

project_domain_id = default

user_domain_id = default

project_name = service

username = nova

password = NOVA_PASS

[glance]

host = CONTROLLER_IP

[oslo_concurrency]

lock_path = /var/lib/nova/tmp

Appendix 60

$ su -s /bin/sh -c "nova-manage db sync" nova

edit nova-restart.sh

service nova-api restart

service nova-cert restart

service nova-consoleauth restart

service nova-scheduler restart

service nova-conductor restart

service nova-novncproxy restart

$ sh nova-restart.sh

$ rm -f /var/lib/nova/nova.sqlite

IX. Add the Compute service (Compute node)

$ apt-get -y install nova-compute sysfsutils

edit /etc/nova/nova.conf

[DEFAULT]

verbose = True

...

rpc_backend = rabbit

auth_strategy = keystone

my_ip = COMPUTE_HOST_IP

vnc_enabled = True

vncserver_listen = 0.0.0.0

vncserver_proxyclient_address = COMPUTE_MANAGEMENT_IP

novncproxy_base_url = http://CONTROLLER_IP:6080/vnc_auto.html

[oslo_messaging_rabbit]

rabbit_host = CONTROLLER_IP

rabbit_userid = openstack

rabbit_password = RABBIT_PASS

[keystone_authtoken]

auth_uri = http://CONTROLLER_IP:5000

auth_url = http://CONTROLLER_IP:35357

auth_plugin = password

project_domain_id = default

user_domain_id = default

project_name = service

username = nova

password = NOVA_PASS

[glance]

host = CONTROLLER_IP

Appendix 61

[oslo_concurrency]

lock_path = /var/lib/nova/tmp

$ egrep -c '(vmx|svm)' /proc/cpuinfo

$ rm -f /var/lib/nova/nova.sqlite

X. Legacy Networking (nova-network)

#===== Network configure (Controller node) =====

#Edit /etc/nova/nova.conf file

[DEFAULT]

...

network_api_class = nova.network.api.API

security_group_api = nova

$ service nova-api restart

$ service nova-scheduler restart

$ service nova-conductor restart

#===== Network configure (Compute node) =====

$ apt-get install -y nova-network nova-api-metadata

#Edit /etc/nova/nova.conf file

[DEFAULT]

...

network_api_class = nova.network.api.API

security_group_api = nova

firewall_driver = nova.virt.libvirt.firewall.IptablesFirewallDriver

network_manager = nova.network.manager.FlatDHCPManager

network_size = 254

allow_same_net_traffic = False

multi_host = True

send_arp_for_ha = True

share_dhcp_address = True

force_dhcp_release = True

flat_network_bridge = br100

flat_interface = INTERFACE_NAME

public_interface = INTERFACE_NAME

$ service nova-network restart

$ service nova-api-metadata restart

#===== Create initial network =====

$ source admin-openrc.sh

$ nova network-create demo-net --bridge br100 --multi-host T \

--fixed-range-v4 203.0.113.24/29

Appendix 62

$ nova net-list

XI. Dashboard Installation

$ apt-get install -y openstack-dashboard

http://CONTROLLER_IP/horizon

Login : admin / ADMIN_PASS

Appendix B

NFS Installation

I. NFS Installation and Configuration (Controller node)

$ apt-get install nfs-kernel-server

$ mkdir -p /var/openstack/nfs-storage

#Edit /etc/exports file

/var/openstack/nfs-storage *(insecure,rw,sync,no_root_squash)

$ service nfs-kernel-server restart

#Edit /etc/nova/nova.conf file

live_migration_flag=VIR_MIGRATE_UNDEFINE_SOURCE ,VIR_MIGRATE_PEER2PEER ,VIR_MIGRATE_LIVE

$ service nova-api restart

$ service nova-cert restart

$ service nova-consoleauth restart

$ service nova-scheduler restart

$ service nova-conductor restart

$ service nova-novncproxy restart

II. NFS Installation and Configuration (Compute node)

$ mkdir /var/lib/nova/instances

$ chown nova:nova instances

$ apt-get install nfs-common

$ mount Controller_IP:/var/openstack/nfs-storage /var/lib/nova/instances/

#Edit /etc/fstab file

Controller_IP:/var/openstack/nfs-storage /var/lib/nova/instances/ nfs defaults

0 0

63

Appendix 64

#Edit /etc/passwd file

nova:x:107:114::/var/lib/nova:/bin/bash

$ su nova

$ ssh-keygen

do the free password to login between compute nodes

#Edit /etc/libvirt/libvirtd.conf file

listen_tls = 0

listen_tcp = 1

auth_tcp = "none"

#Edit /etc/init/libvirt-bin.conf file

env libvirtd_opts="-d -l"

#Edit /etc/default/libvirt-bin file

libvirtd_opts=" -d -l"

$ uuidgen

through the uuidgen will get the code

#Edit /etc/libvirt/libvirtd.conf file

host_uuid=code

$ service libvirt-bin restart

#Edit /etc/nova/nova.conf file

[DEFAULT]

...

live_migration_bandwidth=0

live_migration_retry_count=30

live_migration_flag=VIR_MIGRATE_UNDEFINE_SOURCE ,VIR_MIGRATE_PEER2PEER ,VIR_MIGRATE_LIVE

$ service nova-compute restart

Appendix C

Programming Codes

I. Distributed Load Balancing method

#!/usr/bin/python

-*- coding: utf-8 -*-

from novaclient import client

import sys, json, time

import subprocess

nova = client.Client(2, "admin", "password", "admin", "http://IP:5000/v2.0")

sev = nova.servers.list()

hyp = nova.hypervisors.list()

def migration(instance=None, hostname=None):

if instance != None or hostname != None:

host_info = []

host_info.append(['compute01', 'COMPUTE01_ID '])

host_info.append(['compute02', 'COMPUTE02_ID '])

host_info.append(['compute03', 'COMPUTE03_ID '])

lStart = time.time()

for i in range(len(host_info)):

if host_info[i][1] == instance.hostId:

#print ''

if host_info[i][0] == hostname:

65

Appendix 66

print ""

else:

instance.live_migrate(hostname, block_migration=False, disk_over_commit=False)

name = instance.id

ninstance = nova.servers.get(name)

while ninstance.status != "ACTIVE":

ninstance = nova.servers.get(name)

time.sleep(1)

lEnd = time.time()

print ""

break

else:

print 'migration error'

def bubble_sort(input_obj):

for i in range(len(input_obj['vm_name'])):

for j in range(len(input_obj['vm_name'])-1-i):

if input_obj['vm_power '][j] < input_obj['vm_power '][j+1]:

tmp_n = input_obj['vm_name'][j]

tmp_p = input_obj['vm_power '][j]

input_obj['vm_name '][j] = input_obj['vm_name'][j+1]

input_obj['vm_power '][j] = input_obj['vm_power '][j+1]

input_obj['vm_name '][j+1] = tmp_n

input_obj['vm_power '][j+1] = tmp_p

return input_obj

def distribution(json_data):

pm_num = 3

pm_name = []

power_sum = []

power_sum_tmp = []

pm_name.append('compute01')

pm_name.append('compute02')

pm_name.append('compute04')

for n in range(pm_num):

#pm_name.append('compute0'+str(n+1))

power_sum.append(0)

power_sum_tmp.append(0)

#print pm_name[n]

Appendix 67

obj_data = json.loads(json_data)

pm_dist = {'vm_name': [], 'vm_host': []}

avg_total = sum(obj_data['vm_power']) / pm_num

obj_data = bubble_sort(obj_data)

'''

for i in range(len(obj_data['vm_name'])):

print obj_data['vm_name '][i], obj_data['vm_power '][i]

'''

for i in range(len(obj_data['vm_name'])):

flag = 0

for j in range(pm_num):

power_sum_tmp[j] = power_sum[j]

power_sum_tmp[j] = power_sum_tmp[j] + obj_data['vm_power '][i]

if power_sum_tmp[j] <= avg_total:

power_sum[j] = power_sum[j] + obj_data['vm_power '][i]

#print power_sum[j]

pm_dist['vm_name'].append(obj_data['vm_name'][i])

pm_dist['vm_host'].append(pm_name[j])

break

else:

flag = flag + 1

if flag == pm_num:

for j in range(pm_num):

power_sum_tmp[j] = power_sum[j]

power_sum_tmp[j] = power_sum_tmp[j] + obj_data['vm_power '][i]

power_sum_tmp[j] = abs(power_sum_tmp[j])

for j in range(pm_num):

if min(power_sum_tmp) == power_sum_tmp[j]:

power_sum[j] = obj_data['vm_power '][i]

pm_dist['vm_name'].append(obj_data['vm_name '][i])

pm_dist['vm_host'].append(pm_name[j])

return json.dumps(pm_dist)

if sys.argv[1]:

m_list = distribution(sys.argv[1])

print m_list

Appendix 68

m_list = json.loads(m_list)

for i in range(len(m_list['vm_name'])):

for j in range(len(sev)):

if m_list['vm_name'][i] == sev[j].name:

migration(sev[j], m_list['vm_host'][i])

break

else:

print 'no input'

II. Power Saving method

#!/usr/bin/python

-*- coding: utf-8 -*-

from novaclient import client

import sys, json, time

import subprocess

nova = client.Client(2, "admin", "password", "admin", "http://IP:5000/v2.0")

sev = nova.servers.list()

hyp = nova.hypervisors.list()

def migration(instance=None, hostname=None):

if instance != None or hostname != None:

host_info = []

host_info.append(['compute01', 'COMPUTE01_ID '])

host_info.append(['compute02', 'COMPUTE02_ID '])

host_info.append(['compute03', 'COMPUTE03_ID '])

lStart = time.time()

for i in range(len(host_info)):

if host_info[i][1] == instance.hostId:

if host_info[i][0] == hostname:

print instance.name+";"+hostname+";"+ instance.name+" is on "+hostname+",

doesn't need to Live migration."

else:

instance.live_migrate(hostname, block_migration=False, disk_over_commit=False)

name = instance.id

Appendix 69

ninstance = nova.servers.get(name)

while ninstance.status != "ACTIVE":

ninstance = nova.servers.get(name)

time.sleep(1)

lEnd = time.time()

print instance.name+";"+hostname+";Live migration"+instance.name+"to"+hostname

break

else:

print 'migration error'

def bubble_sort(input_obj):

for i in range(len(input_obj['vm_name'])):

for j in range(len(input_obj['vm_name'])-1-i):

if input_obj['vm_power '][j] < input_obj['vm_power '][j+1]:

tmp_n = input_obj['vm_name'][j]

tmp_p = input_obj['vm_power '][j]

input_obj['vm_name '][j] = input_obj['vm_name'][j+1]

input_obj['vm_power '][j] = input_obj['vm_power '][j+1]

input_obj['vm_name '][j+1] = tmp_n

input_obj['vm_power '][j+1] = tmp_p

return input_obj

def distribution(json_data, input_hosts):

hosts_data = json.loads(input_hosts)

pm_num = len(hosts_data['host_name'])

pm_name = []

power_sum = []

power_sum_tmp = []

for i in range(pm_num):

pm_name.append(hosts_data['host_name '][i])

for n in range(pm_num):

power_sum.append(0)

power_sum_tmp.append(0)

obj_data = json.loads(json_data)

pm_dist = {'vm_name': [], 'vm_host': []}

avg_total = sum(obj_data['vm_power']) / pm_num

Appendix 70

obj_data = bubble_sort(obj_data)

'''

for i in range(len(obj_data['vm_name'])):

print obj_data['vm_name '][i], obj_data['vm_power '][i]

'''

for i in range(len(obj_data['vm_name'])):

flag = 0

for j in range(pm_num):

power_sum_tmp[j] = power_sum[j]

power_sum_tmp[j] = power_sum_tmp[j] + obj_data['vm_power '][i]

if power_sum_tmp[j] <= avg_total:

power_sum[j] = power_sum[j] + obj_data['vm_power '][i]

pm_dist['vm_name'].append(obj_data['vm_name'][i])

pm_dist['vm_host'].append(pm_name[j])

break

else:

flag = flag + 1

if flag == pm_num:

for j in range(pm_num):

power_sum_tmp[j] = power_sum[j]

power_sum_tmp[j] = power_sum_tmp[j] + obj_data['vm_power '][i]

power_sum_tmp[j] = abs(power_sum_tmp[j])

for j in range(pm_num):

if min(power_sum_tmp) == power_sum_tmp[j]:

power_sum[j] = obj_data['vm_power '][i]

pm_dist['vm_name'].append(obj_data['vm_name '][i])

pm_dist['vm_host'].append(pm_name[j])

return json.dumps(pm_dist)

if sys.argv[1] and sys.argv[2]:

m_list = distribution(sys.argv[1], sys.argv[2])

print m_list

m_list = json.loads(m_list)

Appendix 71

for i in range(len(m_list['vm_name'])):

for j in range(len(sev)):

if m_list['vm_name'][i] == sev[j].name:

migration(sev[j], m_list['vm_host'][i])

break

else:

print 'no input'

Appendix D

Monitor Codes

I. Server and Virtual Machines Information Monitor program

-*- coding: utf-8 -*-

import sys

import os

import atexit

import time

import psutil

print "Loading..."

time.sleep(3)

line_num = 1

ShowInfo="On"

def print_line(str):

if ShowInfo=='On':

print str

#function of Get CPU State

def getCPUstate(interval=1):

return (str(psutil.cpu_percent(interval)))

#function of Get Memory

def getMemorystate():

phymem = psutil.phymem_usage()

buffers = getattr(psutil, 'phymem_buffers', lambda: 0)()

cached = getattr(psutil, 'cached_phymem', lambda: 0)()

used = phymem.total - (phymem.free + buffers + cached)

line = " Memory: %5s%% %6s/%s" % (

72

Appendix 73

phymem.percent,

str(int(used / 1024 / 1024)) + "M",

str(int(phymem.total / 1024 / 1024)) + "M"

)

return line

def bytes2human(n):

"""

>>> bytes2human(10000)

'9.8 K'

>>> bytes2human(100001221)

'95.4 M'

"""

symbols = ('K', 'M', 'G', 'T', 'P', 'E', 'Z', 'Y')

prefix = {}

for i, s in enumerate(symbols):

prefix[s] = 1 << (i+1)*10

for s in reversed(symbols):

if n >= prefix[s]:

value = float(n) / prefix[s]

return '%.2f %s' % (value, s)

return '%.2f B' % (n)

def poll(interval):

"""Retrieve raw stats within an interval window."""

tot_before = psutil.network_io_counters()

pnic_before = psutil.network_io_counters(pernic=True)

diskio_before=psutil.disk_io_counters()

sleep some time

time.sleep(interval)

tot_after = psutil.network_io_counters()

pnic_after = psutil.network_io_counters(pernic=True)

diskio_after=psutil.disk_io_counters()

get cpu state

cpu_state = getCPUstate(interval)

get memory

memory_state = getMemorystate()

return (tot_before, tot_after, pnic_before, pnic_after ,\\

cpu_state,memory_state,diskio_before,diskio_after)

def refresh_window(tot_before, tot_after, pnic_before, pnic_after ,\\

cpu_state,memory_state,diskio_before,diskio_after):

os.system("cls")

"""Print stats on screen."""

print_line(time.asctime()+" | "+cpu_state+" | "+memory_state)

#CPU USED INFO

CPU_USED=cpu_state

Appendix 74

#RAM USED INFO

phymem = psutil.phymem_usage()

buffers = getattr(psutil, 'phymem_buffers', lambda: 0)()

cached = getattr(psutil, 'cached_phymem', lambda: 0)()

used = phymem.total - (phymem.free + buffers + cached)

RAM_PA=phymem.percent

RAM_USED=str(int(used / 1024 / 1024))

RAM_ALL=str(int(phymem.total / 1024 / 1024))

#DISK IO INFO

DISK_READ=str(diskio_after.read_bytes - diskio_before.read_bytes)

DISK_WRITE=str(diskio_after.write_bytes - diskio_before.write_bytes)

#SEND-TO-DB SERVER

import httplib,urllib

httpClient = None

try:

ServerID="1"

params = urllib.urlencode({'CPU_USED': CPU_USED, 'RAM_PA': RAM_PA,\\

'RAM_ALL': RAM_ALL,'RAM_USED':RAM_USED,'SID':ServerID})

headers = {"Content-type": "application/x-www-form-urlencoded", "Accept":

"text/plain"}

httpClient = httplib.HTTPConnection('IP', 80, timeout=3)

httpClient.request('POST', '/power/API/ServerInfo.php',params,headers)

#response HTTPResponse

response = httpClient.getresponse()

print response.status

print response.reason

print response.read()

except Exception, e:

print e

finally:

if httpClient:

httpClient.close()

try:

interval = 0

while 1:

args = poll(interval)

refresh_window(*args)

interval = 1

except (KeyboardInterrupt, SystemExit):

pass

II. PDU Information program

Appendix 75

<?php

function get_server_info($host, $community, $objectid) {

$a = snmpget($host, $community, $objectid);

$tmp = explode(":", $a);

if (count($tmp) > 1) {

$a = trim($tmp[1]);

}

return $a;

}

$host="IP";

$community="public";

for($i=1;$i<=8;$i++){

$Power = get_server_info($host,$community ,".1.3.6.1.4.1.13742.4.1.2.2.1.7.".$i);

echo $i."-Power:".$Power."
";

$I = get_server_info($host,$community ,".1.3.6.1.4.1.13742.4.1.2.2.1.4.".$i);

echo $i."-I:".$I."
";

$V = get_server_info($host,$community ,".1.3.6.1.4.1.13742.4.1.2.2.1.6.".$i);

echo $i."-V:".$V."
";

$PF = get_server_info($host,$community ,".1.3.6.1.4.1.13742.4.1.2.2.1.9.".$i);

echo $i."-PF:".$PF."
";

$sql="INSERT INTO `ServerMonitor `.`Power` (`ID`, `TIME`, `SID`, `V`, `C`, `P`, `PF`) \\

VALUES (NULL, CURRENT_TIMESTAMP, '".$i."', '".$V."', '".$I."', '".$Power."','".$PF."')

;";

//echo $sql;

mysql_query($sql) or die('MySQL query error');

$sql="UPDATE `ServerMonitor `.`PowerRealTime` SET `TIME` = CURRENT_TIMESTAMP(), \\

`V` = '".$V."', `C` = '".$I."', `P` = '".$Power."',\\

`PF` = '".$PF."' WHERE `PowerRealTime `.`ID` = ".$i.";";

mysql_query($sql) or die('MySQL query error');

}

?>

	摘要
	Abstract
	致謝詞
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivation
	1.2 Thesis Goal and Contributions
	1.3 Thesis Organization

	2 Background Review and Related Work
	2.1 Cloud Computing
	2.1.1 Essential Characteristics
	2.1.2 Service Models
	2.1.3 Deployment Models

	2.2 Virtualization
	2.3 Hypervisor
	2.3.1 Hosted Hypervisor
	2.3.2 Bare-Metal Hypervisor

	2.4 OpenStack
	2.4.1 OpenStack Component
	2.4.2 OpenStack Conceptual Architecture

	2.5 Live Migration
	2.6 NFS (Network File System)
	2.7 PDU (Power Distribution Units)
	2.8 Related Work

	3 System Design and Implementation
	3.1 System Architecture
	3.2 Design Flow and Algorithm
	3.2.1 Design Flow and Algorithm of Distributed Load Balancing Method
	3.2.2 Design Flow and Algorithm of Power Saving Method

	3.3 System Implementation
	3.3.1 Status Monitoring
	3.3.2 Power Consumption Recording

	4 Experimental Results
	4.1 Experimental Environment
	4.2 Experimental Results and Discussion

	5 Conclusions and Future Work
	5.1 Conclusions
	5.2 Future Work

	References
	Appendix
	Appendix
	A OpenStack Installation
	B NFS Installation
	C Programming Codes
	D Monitor Codes

