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Abstract

The following condition (due to A. Rosa) is known to be necessary for an Eulerian

graph G admitting a graceful valuation: |E(G)| ≡ 0 or 3 (mod 4). The condition

is thus sufficient if G is a cycle Cn on n vertices. In 1994 J. Abrham and A.

Kotzig proved that the 2-regular graph kC4, the disjoint union of k copies of 4-

cycles, admits graceful labeling for every positive integer k. In 1996 they also

showed that the 2-regular graph Cp ∪Cq, the disjoint union of Cp and Cq, admits

a graceful valuation if p+ q ≡ 0 or 3 (mod 4). In this thesis we study the notion

graceful deficiency, which measures how far a graph is away from being graceful.

We completely determine the graceful deficiency for cycles Cn and windmill graphs,

and conjecture that the graceful deficiency of the 2-regular graph Cp∪Cq is 1 with

p+ q ≡ 1 or 2 (mod 4).
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Chapter 1

Background and Motivation

1.1 Introduction

In this dissertation, by a graph we mean an undirected finite graph without mul-

tiple edges and loops. All terminologies and notations on graph theory not men-

tioned or defined here can be referred to the textbook by D. West[15].

Definition 1.1.1. Let G = (V,E) be a finite simple undirected graph with |V | = m

and |E| = n. A one-to-one function f : V → {0, 1, ..., n} from the vertex set V (if

any) is said to be a graceful labeling of G, if the absolute value |f(u) − f(v)|

is assigned to the edge uv as its label and the resulting edge labels are pairwise

distinct (see Figure 1.1).

This is equivalent to requiring the set of induced edge labels is exactly {1, 2, ..., n}.

A graph admitting such a graceful labeling is called a graceful graph.

In particular, graceful labeling originated as a means of attacking the con-

jecture of Ringel that K2n+1 can be decomposed into 2n + 1 subgraphs that are

all isomorphic to a given tree with n edges. For this reason A. Rosa raised the

Graceful Tree Conjecture (which implies the conjecture of Ringel) that every

tree is graceful, which is one of most challenging problems in graph theory and

remains wide open until today. Among the trees known to be graceful are: cater-

pillars (a caterpillar is a tree with the property that the removal of its endpoints

leaves a path); trees with at most 4 end-vertices; trees with diameter at most 5;
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symmetrical trees (i.e., a rooted tree in which every level contains vertices of the

same degree); rooted trees where the roots have odd degree and the lengths of the

paths from the root to the leaves differ by at most one and all the internal vertices

have the same parity; rooted trees with diameter D where every vertex has even

degree except for one root and the leaves in level bD
2
c; rooted trees with diameter

D where every vertex has even degree except for one root and the leaves, which

are in level bD
2
c; rooted trees with diameter D where every vertex has even degree

except for one root, the vertices in level bD
2
c− 1, and the leaves which are in level

bD
2
c, etc.

We focus in this thesis on the graceful labeling of Eulerian graphs in particular

for cycles and windmill graphs, and also their associated deficiency problems.

0

23 1

23

Figure 1.1: Graceful labeling for C3

The following condition (due to A. Rosa) is known to be necessary for a 2-

regular graph G admitting a graceful valuation: |E(G)| ≡ 0 or 3 (mod 4). We

give a proof here for completeness:

Theorem 1.1.2. (Rosa[12]) If a graph G with n edges is Eulerian and admits a

graceful labeling, then n ≡ 0 or 3 (mod 4).

Proof: The graph G = (V,E) is an Eulerian graph and thus every vertex in the

graph has even degree. Note that G admits a graceful labeling, hence there exists

a vertex labeling f : V → {0, 1, ..., n} so that edge labels are exactly 1, ..., n, where

the induced edge label for the edge uv is |f(u)− f(v)| which is either f(u)− f(v)

or f(v)− f(u) depending on the values of end point labels. Therefore we observe

the following while adding all the induced edge labels:∑
uv∈E

|f(u)− f(v)| =
∑
w∈V

σ(w)ḟ(w)
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where σ(w) is the total contribution of the vertex label f(w) for the above sum.

Suppose there are a positive +f(w)’s, and b negative −f(w)’s. Without loss of

generality, may assume a ≥ b. Hence σ(w) = a − b = (a + b) − 2b, which is even

since a+ b is even, as the degree of the vertex w. On the other hand, the sum of

all its induce edge labels is∑
uv∈E

|f(u)− f(v)| = 1 + 2 + ...+ n =
n(n+ 1)

2

which must be even, due to the fact that σ(w) is even for each vertex w. Therefore

n ≡ 0 or 3 (mod 4) and we are done.

Remark 1.1.3. The above Theorem is true in general for disconnected graceful

graph whose components are Eulerian.

1.2 Graceful Labeling

In addition to graceful labeling, which Rosa called β-valuation, we introduce one

more special classes of graphs admitting graceful valuations.

Definition 1.2.1. The α-labeling of a graph G with n vertices and m edges, is a

one-to-one mapping f from the set of vertices of G to the set {0, 1, 2, . . . ,m}, such

that all induced edge labels are pairwise distinct, where the induced edge label of the

edge uv is |f(u)−f(v)|, and in addition there exists a number x ∈ {0, 1, 2, . . . ,m}

such that for arbitrary edge uv either f(u) ≤ x < f(v) or f(v) ≤ x < f(u).

Note that in 1972 S. W. Golomb independently introduced the same β-labeling

and called it graceful.

A natural generalization of graceful graphs is the notion of k-graceful graphs,

introduced by Slater[14] in 1982 and independently by Maheo and Thuillier[9] in

1982.

Definition 1.2.2. A graph G with q edges is k-graceful if there is labeling f

from the vertices of G to {0, 1, 2, ..., q + k − 1} such that the set of edge labels

induced by the absolute value of the difference of the labels of adjacent vertices is

{k, k + 1, ..., q + k − 1}.
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Obviously, 1-graceful is graceful and it is readily shown that any graph that

has an α-labeling is k-graceful for all k. See Figure 1.2 for an example of 2-graceful

labeling for C9.

1

2

4

5

0
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8

9
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3

8
7

6

5

9
4

10

Figure 1.2: A 2-graceful labeling for C9

1.3 Golomb Ruler and Graceful Deficiency

In order to measure how far for a graph away from being graceful, one may study

the following notion:

Definition 1.3.1. Let G be a graph with |E(G)| = n and |V (G)| = m. The

minimum value of the integer r = g(G) is said to be a graceful deficiency of G,

such that there is a one-to-one function f : V (G)→ {0, 1, · · · , n, n+ 1, · · · , n+ r}

which yields pairwise distinct induced edge labels, where the induced edge label for

the edge uv is the absolute value |f(u)− f(v)|. Obviously if G is graceful, then its

graceful deficiency is 0.

It is well known that the concept graceful deficiency is closely related to that

of a Golomb ruler, which has a lot of engineering applications. The Golomb

ruler was first described by Solomon W. Golomb, a professor of Mathematics and

Electrical Engineering in the University of Southern California[5]. The Golomb

ruler measures more discrete lengths than the number of marks it carries. It does
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not measure the same distance twice. For example, we can get 4 marks and 6

lengths (0,1,4,6), it is called a perfect Golomb ruler. It has been proven that no

perfect Golomb ruler exists for five or more marks. A Golomb ruler is optimal if

no shorter Golomb ruler of the same order exists, for example, 5 marks and 11

lengths (0,1,4,9,11).

On the other hand, we know that complete graph K4 has a graceful labeling,

so the 4 marks is a perfect Golomb ruler(see Figure 1.3).

0 1

46

0 1 4 66
5 4

1

3

2

Figure 1.3: Graceful K4 and perfect Golomb ruler with 4 marks

In fact one knows that a complete graph Kn is graceful if and only if n ≤ 4.

Therefore K5 is not admitting a graceful labeling and we can calculate the graceful

deficiency d(K5) = 1 for K5, and it is a optimal Golomb ruler with 5 marks(see

Figure 1.4).

0

1

49

11

10 4 9 11
7

5

1

8
32

11
10

9

4

Figure 1.4: K5 with deficiency 1 and optimal Golomb ruler with 5 marks
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1.4 Skolem Sequence and Its Variant

We will make use of Skolem sequences and hooked Skolem sequences for gracefully

labeling Eulerian graphs in later sections. We introduce backgrounds for Skolem

sequences here.

Definition 1.4.1. A Skolem sequence of order n is a sequence of first 2n posi-

tive integers, so that it is possible to distribute the numbers 1, 2, ..., 2n into n pairs

(ar, br) such that we have the differences br − ar = r for r = 1, 2, ..., n.

In the following, a set of pairs for the Skolem sequence is called a 1, +1

system, because the differences br−ar begin with 1 and increase by 1 whenever r

increases by 1. For example, for n = 4 there is such a system, namely (6,7), (1,3),

(2,5), (4,8). It was well-known that, the Skolem sequence of order n exists if and

only if n ≡ 0, 1 ( mod 4). For readers’ reference, we put the proof here.

Theorem 1.4.2. The Skolem sequence of order n exists if and only if n ≡ 0, 1(mod 4).

Proof: If the pairs (ar, br), r = 1, 2, ..., n, constitute a 1, +1 system of the

numbers 1, 2, ..., 2n, then we have the equations

br − ar = r, r = 1, 2, ..., n.

Note that the sum of all the above equations is

n∑
r=1

br −
n∑

r=1

ar = 1 + 2 + · · ·+ n =
1

2
n(n+ 1).

On the other hand, since the collection of the numbers ar and br is the set of

integers 1, 2, ..., 2n, we also have

n∑
r=1

br +
n∑

r=1

ar = 1 + 2 + · · ·+ 2n = n(2n+ 1).

Adding the last two equations yields

n∑
r=1

br =
1

4
n(5n+ 3)

which is an integer only when n ≡ 0, 1(mod 4).

Conversely we construct the Skolem sequences of proper orders as follows. First

let n ≡ 0 (mod 4). It suffices to give a general description of a 1, +1 system for

any arbitrary n = 4m. Such a system of pairs consists of:
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1. all pairs (4m+ r, 8m− r) for r = 0, 1, · · · , 2m− 1;

2. the pairs (2m+ 1, 6m) and (2m, 4m− 1);

3. the pairs (r, 4m− 1− r) for r = 1, 2, · · · ,m− 1;

4. the pair (m,m+ 1);

5. the pairs (m+ 2 + r, 3m− 1− r) for r = 0, 1, · · · ,m− 3.

Secondly let n ≡ 1 (mod 4). It will suffice to give a general description of a 1, +1

system for any arbitrary n = 4m+ 1. Such a system of pairs consists of:

1. the pairs (4m+ 2 + r, 8m+ 2− r) for r = 0, 1, · · · , 2m− 1;

2. the pairs (2m+ 1, 6m+ 2) and (2m+ 2, 4m+ 1);

3. the pairs (r, 4m+ 1− r) for r = 1, 2, · · · ,m;

4. the pair (m+ 1,m+ 2);

5. the pairs (m+ 2 + r, 3m+ 1− r) for r = 1, · · · ,m− 2.

Therefore in terms of the above construction we are done.

As for the cases n ≡ 2, 3 (mod 4), the natural alternative is so-called a Hooked

Skolem sequence.

Definition 1.4.3. A Hooked Skolem sequence of order n is a sequence of the

first 2n+ 1 positive integers, skipping 2n, such that it is possible to distribute the

numbers 1, 2, · · · , 2n− 1, 2n+ 1 into n pairs (ar, br) such that we have br − ar = r

for r = 1, 2, · · · , n.

It is well-known[11] that a Hooked Skolem sequence of order n exists if and

only if n ≡ 2, 3 (mod 4).
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Chapter 2

Graceful Deficiency for Eulerian

Graphs

In this chapter, we will calculate some missing values for graceful labeling and

garceful deficiency of cycle graphs. We also use Skolem sequence and Hooked

Skolem sequence to label the windmill graphs.

2.1 Graceful Labeling for 2-Regular Graphs

A graph G will be termed Eulerian if |E(G)| > 0 and if every vertex of G is

of even degree. Rosa[12] proved that any graceful Eulerian bipartite graph, and

in particular, any Eulerian graph G with an α-valuation satisfies the condition

|E(G)| ≡ 0 (mod 4).

Graceful valuations and α-valuations of 2-regular graphs have been studied

by A. Rosa[12] and A. Kotzig[6][7]. More recently, the relation between graceful

valuations and α-valuation of some 2-regular graphs and some Skolem sequences

has been studied by J. Abrham[1].

The following results will be needed later:

1. The cycle Cn is graceful if and only if n ≡ 0 or 3 (mod 4) (Rosa[12]).

2. The cycle Cn has an α-valuation if and only if n ≡ 0 (mod 4) (Kotzig [8],

Rosa[12]).

3. If G is a 2-regular graph with a graceful labeling f then there exists a unique
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integer x(0 ≤ x ≤ |V (G)|) such that f(v) 6= x for all v ∈ V (G). If f is an

α-valuation of G and |V (G)| = 4k then either x = k or x = 3k (Kotzig [6]).

This number x will be referred to as the missing value.

J. Abrham and A. Kotzig[2] proved that there are two results with the inequality

for the missing values on Cn graphs when n ≡ 0, 3 (mod 4) as follows:

Theorem 2.1.1. Let G be a 2-regualr graph on n = 4k vertices (k ≥ 1) possessing

a graceful labeling f . Then the missing value x satisfies the inequalities k ≤ x ≤

3k; f is an α-valuation of G if and only if either x = k or x = 3k. For any k > 1,

and for any integer x satisfying 3
2
k ≤ x ≤ 5

2
k, there exists a graceful labeling of the

4k-cycle with the missing value x. For 1 < k ≤ 6, and for any integer x satisfying

k ≤ x ≤ 3k, there exists a graceful labeling of the 4k-cycle with the missing value

x.[2]

Theorem 2.1.2. Let G be a 2-regualr graph on n = 4k − 1 vertices (k ≥ 1)

possessing a graceful labeling f . Then the missing value x satisfies the inequalities

k ≤ x ≤ 3k − 1.[2]

There are more results on 2-regular with several component by J. Abrham and

A. Kotzig [3] [4].

Theorem 2.1.3. The graph kC4(consisting of several C4 cycles) has an α-valuation

(a stronger form of the graceful valuation) for every positive integer k 6= 3. The

graph 3C4 is known to be graceful but it does not have an α-valuation.[3]

Example 2.1.4. k = 4, 4C4 have an α-valuation with (0,16,2,15), (1,13,5,11),

(3,14,7,12), (6,10,8,9)(see Figure 2.1).

Theorem 2.1.5. Let p, q be positive integers, p ≥ 3, q ≥ 3. Then the 2-regular

graph Cp ∪Cq, disjoint union of Cp and Cq, has a graceful valuation if and only if

p+ q ≡ 0 or 3 (mod 4). Moreover Cp ∪Cq has an α-valuation if and only if both

p, q are even and p+ q ≡ 0 (mod 4).[4]

We have the following table for graceful labeling result with several graphs.
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Figure 2.1: 4C4 with graceful labeling

Table 2.1: Summary of Graceful results

Graph Graceful

cycles Cn G iff n ≡ 0, 3(mod 4)

trigular sankes G iff number of blocks ≡ 0, 1 (mod 4)

Cp ∪ Cq G iff p+ q ≡ 0, 3(mod 4)

C
(t)
n n = 3 G iff t ≡ 0,1 (mod 4)

Kn G iff n ≤ 4

2.2 Graceful Labeling of Cycles

In this section we calculate the missing values for cycles Cn with the graceful

labeling or the graceful deficiency. We first define related terminologies in order

to describe our main results. We also use the result on Theorem 2.1.1 and

Theorem 2.1.2, if n = 4k and Cn has a graceful labeling, then the missing vaule

x satisfies the inequalities k ≤ x ≤ 3k; and if n = 4k − 1 and Cn has a graceful

labeling, then the missing value x satisfies the inequalities k ≤ x ≤ 3k − 1. We

calculate the missing value x = k, 2k, 3k with Cn when n = 4k, and calculate the

missing value x = k, 2k − 1, 2k, 3k with Cn when n = 4k − 1.

Definition 2.2.1. Assume that a graceful labeling of a graph G = (V,E) with m

vertices and n edges is a one-to-one mapping ψ of V into the set {0, 1, 2, . . . , n}.

We define three subsets U,W , and T of V as follows:

1. A vertex v ∈ V belongs to U if ψ(v) > ψ(u) for any neighbor u of v.

2. A vertex v ∈ V belongs to W if ψ(v) < ψ(u) for any neighbor u of v.

10



3. Moreover T = V − (U ∪W ).

We also define ψ̄(e) = |ψ(u) − ψ(w)| for the edge e = uw, where u ∈ U and

w ∈ W .

Note that one can easily verify that |U | = |W |, and the common cardinality of

these two sets will be denoted by p. Clearly, p ≤ 2k. Then we have the following:

Cn is a graceful labeling if and only in n ≡0 or 3 (mod 4), and we will calculate

the missing value x for the cycle graph:

Theorem 2.2.2. Cn is a graceful if n ≡ 0(mod 4) and we calculate the missing

value x = k, 2k, 3k whenever n = 4k.

Proof: With the notations defined as above, we do the following:

1. We calculate n = 4k when n ≡ 0(mod 4), and we separate {0, 1, 2, ..., 4k}

into two sets. The set {0, 1, 2, ..., 2k} = W , and {2k+ 1, 2k+ 2, ..., 4k} = U .

The sets W and U are as we mention before, and |W | = 2k + 1, |U | = 2k.

Clearly, we get the missing value x ∈ W .

The sum of induced edges labeling is

∑
e∈E(G)

ψ̄(e) =
4k∑
i=1

i = 2k(4k + 1)

The sum of induced edges labeling is equal to 2 times of vertex set in U

subtraction 2 times of vertex set in W.∑
e∈E(G)

ψ̄(e) = 2
∑
u∈U

ψ(u)− 2
∑
w∈W

ψ(w)

The sum of ψ(u) is

∑
u∈U

ψ(u) =
4k∑

i=2k+1

i =
1

2
× 2k(6k + 1)

The sum of ψ(w) and subtraction the missing value x.

∑
w∈W

ψ(w) = (
2k∑
i=0

i)− x =
1

2
× 2k(2k + 1)− x

11



The sum of edges labeling is equal to sum of vertex labeling.

2k(4k + 1) = 2× [
1

2
× 2k(8k − 2k + 1)]− 2× [

1

2
× 2k(2k + 1)− x]

Therefore we have x = k.

So we can get that, the 4k-cycle have a graceful labeling and its missing

value is x = k. The graceful labeling of 4k-cycle can be given by

(0, 4k, 1, 4k − 1, 2, 4k − 2, ..., k − 1, 3k + 1, k + 1, 3k, ..., 2k, 2k + 1)

Example 2.2.3. k = 2, the missing value x = 2, then 8-cycle graceful

labeling is (0, 8, 1, 7, 3, 6, 4, 5)(see Figure 2.2)

0

8

1

73

6

4

5

3
4

5

6

7

81

2

Figure 2.2: Graceful labeling for C8 with missing value x = 2

2. If we separate {0, 1, 2, ..., 4k} to two sets. The set {0, 1, 2, ..., 2k − 1} ∈ W ,

and {2k, 2k + 1, ..., 4k} ∈ U .|W | = 2k, |U | = 2k + 1. Clearly, we can get the

missing value x ∈ U .

The sum of edges labeling is equal to sum of vertex labeling.

2k(4k + 1) = 2× [
1

2
× (2k + 1)(8k − 2k)− x]− 2× [

1

2
× 2k(2k − 1)]

4k2 + k =
1

2
× (2k + 1)(6k)− x− 1

2
× 2k(2k − 1)

4k2 + k = 6k2 + 3k − x− 2k2 + k

∴ x = 3k
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We can get the 4k-cycle have a graceful labeling and its missing value x = 3k.

The graceful labeling of 4k-cycle can be given by

(0, 4k, 1, 4k − 1, 2, 4k − 2, ..., k, 3k − 1, k + 1, 3k − 2, ..., 2k − 1, 2k)

Example 2.2.4. k = 2 , the missing value x = 6, then another 8-cycle

graceful labeling is (0, 8, 1, 7, 2, 5, 3, 4)(see Figure 2.3)

0

8

1

7

3

4

5

2

7

6
5

4

2

1 8

3

Figure 2.3: Graceful labeling for C8 with missing value x = 6

In the Example 2.1.1 and Example 2.1.2, the missing value x = k and x = 3k

can be present a graceful of α-valuation, but when we consider the missing

x = 2k, the sum of edges labeling is

∑
e∈E(G)

ψ̄(e) =
4k∑
i=1

i = 2k(4k + 1)

On the other hand, the sum of ψ(u) with 2 times

2×
∑
u∈U

ψ(u) = 2×
4k∑

2k+1

i =
1

2
[(2k + 1) + 4k]× 2k = (6k + 1)× 2k

The sum of ψ(w) with 2 times

2×
∑
w∈W

ψ(w) = 2×
2k−1∑
0

i =
1

2
[0 + (2k − 1)]× 2k = (2k − 1)× 2k

If the cycle graph has a graceful labeling, then∑
e∈E(G)

ψ̄(e) = 2
∑
u∈U

ψ(u)− 2
∑
w∈W

ψ(w)

13



But

2k(4k + 1) = 8k2 + 2k 6= (12k2 + 2k)− (4k2 − 2k) = 8k2 + 4k

so, ∑
e∈E(G)

ψ̄(e) 6= 2
∑
u∈U

ψ(u)− 2
∑
w∈W

ψ(w)

So if the missing value x = 2k, and the set {0, 1, 2, ..., 2k} ∈ W , and the set

{2k + 1, 2k + 2, ..., 4k} ∈ U , then the cycle graph has no graceful labeling.

We put the vertices value 2k− 1 and 3k− 1 to the set of T , and we find a system

of a graceful labeling with the missing value of x = 2k. It can be given by

(0, 4k, 1, 4k − 1, 2, 4k − 2, ..., 3k, 3k − 1, k + 1, 3k − 2, ..., 2k − 1)

and it is not a α-labeling.

Example 2.2.5. k = 2, the missing value x = 4, then another 8-cycle graceful

labeling is (0, 8, 1, 7, 2, 6, 5, 3)(see Figure 2.4), and this is a β-valuation
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5

4

1

8
3

2

Figure 2.4: Graceful labeling for C8 with missing value x = 4

Theorem 2.2.6. Cn is graceful if n ≡ 3(mod 4) and the missing value x =

k, 2k − 1, 2k, 3k − 1 when n = 4k − 1.

Proof:

1. We calculate n = 4k−1 when n ≡ 3(mod 4), and we separate {0, 1, 2, ..., 4k−

1} to three sets. The set {0, 1, 2, ..., 2k−1} ∈ W , and {2k+1, 2k+2, ..., 4k−1}

∈ U , and |W | = 2k |U | = 2k − 1, also we put 2k into the set ∈ T . We can

14



clearly find the missing value x ∈ W .

The sum of edges labeling

∑
e∈E(G)

ψ̄(e) =
4k−1∑
i=1

i = 2k(4k − 1)

The sum of ψ(u) is

∑
u∈U

ψ(u) =
4k−1∑

i=2k+1

i =
1

2
× (2k − 1)(8k − 2k + 1− 1)

The sum of ψ(w) and subtraction the missing value x

∑
w∈W

ψ(w) = (
2k−1∑
i=0

i)− x =
1

2
× (2k − 1)(2k − 1 + 1)− x

We calculate that

k(4k − 1) =
1

2
(2k − 1)(8k − 2k + 1− 1)− [

1

2
(2k − 1)(2k − 1 + 1)− x]

4k2 − k = 6k2 − 3k − 2k2 + k + x

So we get

∴ x = k

A graceful labeling of a (4k− 1)-cycle with the missing value x = k,T = 2k,

can be given by

(0, 4k − 1, 1, 4k − 2, 2, 4k − 3, ..., k − 1, 3k, k + 1, 3k − 1, ..., 2k + 1, 2k)

Example 2.2.7. k = 2, the missing value x = 2, then 7-cycle graceful

labeling is (0, 7, 1, 6, 3, 5, 4)(see Figure 2.5)

2. We separate {0, 1, 2, ..., 4k−1} to three sets. The set {0, 1, 2, ..., 2k−2} ∈ W ,

and {2k, 2k+ 1, ..., 4k− 1} ∈ U , and the element 2k− 1 ∈ T . |W | = 2k− 1,

|U | = 2k, |T | = 1, so We can clearly find the missing value x ∈ U .

The sum of edges labeling

∑
e∈E(G)

ψ̄(e) =
4k−1∑
i=1

i = 2k(4k − 1)

15
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Figure 2.5: Graceful labeling for C7 with missing value x = 2

The sum of ψ(u) and subtraction the missing value x

∑
u∈U

ψ(u) = (
4k−1∑
i=2k

i)− x =
1

2
2k(2k + 4k − 1)− x

The sum of ψ(w)

∑
w∈W

ψ(w) =
2k−2∑
i=0

i =
1

2
(2k − 2)(2k − 1)

The sum of edges labeling is equal to the sum of vertex labeling

k(4k − 1) =
1

2
(6k − 1)(2k)− x− 1

2
(2k − 2)(2k − 1)

We calculate that

4k2 − k = 6k2 − k − x− 2k2 + 3k − 1

So we get

∴ x = 3k − 1

A graceful numbering of a (4k− 1)-cycle with the missing value x = 3k− 1,

T = {2k − 1}, can be given by

(0, 4k − 1, 1, 4k − 2, 2, 4k − 3, , k, 3k + 1, k + 1, 3k, , 2k, 2k − 1)

Example 2.2.8. k = 2, the missing value x = 5, then 7-cycle graceful labeling is

(0, 7, 1, 6, 2, 4, 3)(see Figure 2.6)
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Figure 2.6: Graceful labeling for C7 with missing value x = 5

In fact, we can change the missing value and the T set element and then it has a

graceful labeling

A graceful numbering of a (4k − 1)-cycle with x = 2k and T = {k} can be given

by

(4k − 1, 0, 4k − 2, 1, 4k − 3, ..., k − 1, k, 3k − 1, k + 1, ..., 2k − 1)

Example 2.2.9. k = 2, the missing value x = 4, then 7-cycle graceful labeling is

(7, 0, 6, 1, 2, 5, 3)(see Figure 2.7)
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Figure 2.7: Graceful labeling for C7 with missing value x = 4

Another graceful numbering of a (4k−1)-cycle with x = 2k−1 and T = {3k−1}

can be given by

(4k − 1, 0, 4k − 2, 1, ..., 3k, 3k − 1, k − 1, 3k − 2, ..., 2k − 2)

17



Example 2.2.10. k = 2, the missing value x = 3, then 7-cycle graceful labeling

is (7, 0, 6, 5, 1, 4, 2)(see Figure 2.8)
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Figure 2.8: Graceful labeling for C7 with missing value x = 3

2.3 Graceful Deficiency of Cycles

In previous chapter it is mentioned that, if a graph G is an Eulerian graph and

has a graceful labeling then n ≡ 0 or 3 (mod 4). Therefore one can try to find

a graceful labeling for n-cycle when n ≡ 0 or 3 (mod 4), however when n ≡ 1 or

2 (mod 4), it is impossible to find a graceful labeling, thus one may define a new

concept called graceful deficiency in this case.

Definition 2.3.1. Let G be a graph with |E(G)| = n and |V (G)| = m. The

minimum value of the integer r = g(G) is said to be a graceful deficiency of G,

such that there is a one-to-one function f : V (G)→ {0, 1, · · · , n, n+ 1, · · · , n+ r}

which yields pairwise distinct induced edge labels, where the induced edge label for

the edge uv is the absolute value |f(u)− f(v)|. Obviously if G is graceful, then its

graceful deficiency is 0.

Now we are in a position to get g(Cn) = 1 if and only n ≡ 1 or 2 (mod 4).

Theorem 2.3.2. The graceful deficiency g(Cn) = 1 if n ≡ 1(mod 4), and its

missing values are k and 2k when n=4k-3.

18



Proof: We calculate n = 4k − 3 when n ≡ 1(mod 4), and we separate

{0, ..., 4k − 2} to three sets. The set {0, ..., 2k − 2} ∈ W , and {2k, ..., 4k − 2}

∈ U , and the element 2k − 1 ∈ T .|W | = 2k − 1, |U | = 2k − 1, |T | = 1. We can let

the missing value x ∈ W , and the missing value y ∈ U . We need to remove the

edge of the value 1.

The sum of edges labeling remove 1 is

∑
e∈E(G)

ψ̄(e) = (
4k−2∑
i=1

i)− 1 = (4k − 1)(2k − 1)− 1

The sum of edges labeling is equal to sum of vertex labeling.∑
e∈E(G)

ψ̄(e) = 2
∑
u∈U

ψ(u)− 2
∑
w∈W

ψ(w)

The sum of ψ(u) and subtraction the missing value y

∑
u∈U

ψ(u) = (
4k−2∑
i=2k

i)− y = (3k − 1)(2k − 1)− y

The sum of ψ(w) and subtraction the missing value x

∑
w∈W

ψ(w) = (
2k−2∑
i=0

i)− x = (k − 1)(2k − 1)− x

The sum of edges labeling is equal to the sum of vertex labeling

(4k − 1)(2k − 1)− 1 = 2[(3k − 1)(2k − 1)− y]− 2[(k − 1)(2k − 1)− x]

We calculate that

8k2 − 6k = 8k2 − 4k − 2y − 2x

2y − 2x = 2k

So we can get

y − x = k

we take y = 2k and x = k

A graceful labeling of a (4k−3)-cycle with deficiency g(Cn) = 1 and x = k, y = 2k

can be given by

(0, 4k − 2, 1, 4k − 3, ..., k − 1, 2k + 3, k + 1, 2k + 2, ..., 2k − 1)
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Figure 2.9: C9 with graceful decificiency g(C9) = 1

Example 2.3.3. k = 3, the missing values x = 3, y = 6, then 9-cycle graceful

deficiency of g(C9) = 1, and we can get a label for C9 is (0, 10, 1, 9, 2, 8, 4, 7, 5)(see

Figure 2.9)

Theorem 2.3.4. The graceful deficiency g(Cn) = 1 if and only if n ≡ 2(mod 4),

and its missing values are k and 2k + 1 when n = 4k − 2.

Proof: We calculate n = 4k − 2 when n ≡ 2(mod 4), and we separate

{0, ..., 4k − 1} to two sets. The set {0, ..., 2k − 1} ∈ W , and {2k, ..., 4k − 1}

∈ U . |W | = 2k, |U | = 2k. We can let the missing value x ∈ W , and the missing

value y ∈ U . We need to remove the edge of the value 2.

The sum of edges labeling remove 2 is

∑
e∈E(G)

ψ̄(e) = (
4k−1∑
i=1

i)− 2 = 2k(4k − 1)− 2

The sum of edges labeling is equal to sum of vertex labeling.∑
e∈E(G)

ψ̄(e) = 2
∑
u∈U

ψ(u)− 2
∑
w∈W

ψ(w)

The sum of ψ(u) and subtraction the missing value y

∑
u∈U

ψ(u) = (
4k−1∑
i=2k

i)− y = k(6k − 1)− y

20



The sum of ψ(w) and subtraction the missing value x

∑
w∈W

ψ(w) = (
2k−1∑
i=0

i)− x = k(2k − 1)− x

The sum of edges labeling is equal to the sum of vertex labeling

2k(4k − 1)− 2 = 2[k(6k − 1)− y]− 2[k(2k − 1)− x]

We calculate that

8k2 − 2k − 2 = 12k2 − 2k − 2y − 4k2 + 2k + 2x

So we get

y − x = k + 1

we take y = 2k + 1 and x = k

A graceful labeling of a (4k − 2)-cycle with deficiency g(Cn) = 1 and x = k,

y = 2k + 1 can be given by

(0, 4k − 1, 1, 4k − 2, ..., k − 1, 3k, k + 1, 3k − 1, ..., 2k)

Example 2.3.5. k = 3, the missing values x = 3, y = 7, then 10-cycle graceful

definiciency of g(C10) = 1, and we can get a label for C10 is (0, 11, 1, 10, 2, 9, 4, 8, 5, 6)(see

Figure 2.10)
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Figure 2.10: C10 with graceful deficiency g(C10) = 1
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2.4 Graceful Labeling on Windmill Graphs

The well-known windmill graph Wd(k, n) is an undirected graph constructed for

k ≥ 2 and n ≥ 2 by joining n copies of the complete graph Kk at a shared vertex.

In this section we will discuss several K3 graph shared a vertex, and we call it

Wd(3, n) graph.

Theorem 2.4.1. The windmill Wd(3, n) has a graceful labeling if and only if n

≡ 0 or 1 (mod 4)

In the section 1.3, we introduction, a Skolem sequence of order n is a sequence

S = (s1, s2, ..., s2n) of 2n integers if and only if n ≡ 0 or 1 ( mod 4). We use the

Skolem sequence to label the windmill graph.

Case 1: n = 4m (n ≡ 0 mod 4)(n is the number of triangles)

We use Skolem sequence to construction several groups with {1, 2, ..., 8m}

1. The pairs (4m+ r, 8m− r) for r = 0, 1, , 2m− 1

2. The pairs (2m+ 1, 6m) and (2m, 4m− 1)

3. The pairs (r, 4m− 1− r) for r = 1, 2, ,m− 1

4. The pair (m,m+ 1)

5. The pairs (m+ 2 + r, 3m− 1− r) for r = 0, 1, ,m− 3

Example 2.4.2. m = 2, we use Skolem sequence to divided several groups. All

the pairs are (8, 16)(9, 15)(10, 14)(11, 13)(5, 12)(1, 6)(2, 3)(4, 7).

And we translation every number to 8 units. We get the new pairs are

(16, 24)(17, 23)(18, 22)(19, 21)(13, 20)(9, 14)(10, 11)(12, 15).

And we have a graceful labeling for Wd(3, 8).(see Figure 2.11)

Case 2: n = 4m+ 1 (n ≡ 1 mod 4)(n is the number of triangles)

We use Skolem sequence to construction several groups with {1, 2, ..., 8m+ 2}

1. The pairs (4m+ 2 + r, 8m+ 2− r) for r = 0, 1, , 2m− 1

2. The pairs (2m+ 1, 6m+ 2) and (2m+ 2, 4m+ 1)

3. The pairs (r, 4m+ 1− r) for r = 1, 2, ,m
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Figure 2.11: Wd(3, 8) with graceful labeling

4. The pair (m+ 1,m+ 2)

5. The pairs (m+ 2 + r, 3m+ 1− r) for r = 1, ,m− 2

Example 2.4.3. m = 2, we use Skolem sequence to divided several groups. All

the pairs are (10, 18)(11, 17)(12, 16)(13, 15)(5, 14)(6, 9)(3, 4)(1, 8)(2, 7).

And we translation every number to 9 units. We get the new pairs are

(19, 27)(20, 26)(21, 25)(22, 24)(14, 23)(15, 18)(12, 13)(10, 17)(11, 16).

And we have a graceful labeling for Wd(3, 9).(see Figure 2.12)
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Figure 2.12: Wd(3, 9) with graceful labeling
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2.5 Graceful Deficiency on Windmill Graphs

The windmill graph Wd(3, n) has no graceful labeling when n ≡ 2 or 3.By the

Definition 2.2.1. we can find a graceful definiciency for the graph.

Theorem 2.5.1. The graceful definiency g(Wd(3, n)) = 1 for n ≡ 2 or 3 (mod

4)

In section 1.3, we know for n ≡ 2 or 3 (mod 4), it has no Skolem sequence, so

we use the numbers 1, 2, ..., 2n− 1, 2n+ 1 can be distributed into n disjoint pairs

(ar, br) such that br = ar + r for r = 1, ..., n. This is well-known Hooked Skolem

sequence.

Case 3: n = 4m+ 2 (n ≡ 2 mod 4)(n is the number of triangles)

We use Hooked Skolem sequence to construction several groups with

{1, 2, ..., 8m+ 3, 8m+ 5}

1. The pairs (r, 4m+ 2− r) for r = 1, , 2m

2. The pair (2m+ 1, 6m+ 2)

3. The pair (4m+ 2, 6m+ 3)

4. The pair (4m+ 3, 8m+ 5)

5. The pairs (4m+ 3 + r, 8m+ 4− r) for r = 1, ,m− 1

6. The pairs (5m+ 2 + r, 7m+ 3− r) for r = 1, ,m− 1

7. The pair (7m+ 3, 7m+ 4)

Example 2.5.2. m = 2, we use Hooked Skolem sequence to divided several groups.

All the pairs are ((1, 9)(2, 8)(3, 7)(4, 6)(5, 14)(10, 15)(11, 21)(12, 19)(13, 16)(17, 18).

And we translation every number to 10 units. We get the new pairs are

(11, 19)(12, 18)(13, 17)(14, 16)(15, 24)(20, 25)(21, 31)(22, 29)(23, 26)(27, 28).

And we have a graceful deficiency g(Wd(3, 10)) = 1.(see Figure 2.13)

Case 4: n = 4m− 1 (n ≡ 3 mod 4)(n is the number of triangles)

We use Hooked Skolem sequence to construction several groups with

{1, 2, ..., 8m− 3, 8m− 1}
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Figure 2.13: Wd(3, 10) with graceful deficiency g(Wd(3, 10)) = 1

1. The pairs (r, 4m− 1− r) for r = 1, ,m− 1

2. The pair (m,m+ 1)

3. The pairs (m+ 1 + r, 3m− r) for r = 1, ,m− 2

4. The pair (2m, 4m− 1)

5. The pair (4m, 8m− 1)

6. The pairs (4m+ r, 8m− 2− r) for r = 1, , 2m− 2

7. The pair (2m+ 1, 6m− 1)

Example 2.5.3. m = 2, we use Hooked Skolem sequence to divided several groups.

All the pairs are (1, 6)(2, 3)(4, 7)(8, 15)(9, 13)(10, 12)(5, 11).

And we translation every number to 7 units. We get the new pairs are

(8, 13)(9, 10)(11, 14)(15, 22)(16, 20)(17, 19)(12, 18).

And we have a graceful deficiency g(Wd(3, 7)) = 1.(see Figure 2.14)

2.6 Graceful Labeling of Triangular Snakes

A. Rosa[13] has defined a triangular snake (or 4-snake) as a connected graph in

which all blocks are triangles and the block-cutpoint graph is a path. We call a
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Figure 2.14: Wd(3, 7) with graceful deficiency g(Wd(3, 7)) = 1

4-snake with n blocks a 4n-snake. Not all 4-snake are graceful, for as Rosa[12]

has shown, an Eulerian graph can only be graceful if it size (number of edges)

is congruent to 0 or 3 modulo 4. Hence a 4n-snake can only be graceful for n

congruent to 0 or 1 modulo 4. See Figure 2.15.
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Figure 2.15: 45-snake for graceful labeling

In that paper[10], in order to deal with the other cases, they defined a weaker

property than that of being graceful, namely that of being almost graceful.

Definition 2.6.1. Let G = (V,E) be a simple graph and ϕ : V → {0, 1, ..., |E| −

1, x} be an injective map where x is either |E| or |E|+ 1. Define the induced map

ϕ̄ : E → {1, 2, ..., x} as in the definition of graceful above. If ϕ̄ maps E onto

{1, 2, ..., |E| − 1, x}, then we call ϕ an almost graceful labeling of G, and we say

that G is an almost graceful graph.

Rosa[13] has introduced a slightly weaker form of almost graceful called nearly

graceful, which allows the range of ϕ to be any subset of {0, 1, ..., |E|+ 1}.
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Theorem 2.6.2. Every 4n-snake for n congruent to 0 or 1 modulo 4 is graceful,

and every 4n-snake for n congruent to 2 or 3 modulo 4 is almost graceful.
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Figure 2.16: 43-snake for almost graceful labeling

In this paper, we define the graceful deficiency, which is congruent to the

almost graceful labeling or the nearly graceful labeling. It is the same labeling

for that has no graceful labeling graph.
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Chapter 3

Concluding Remarks

3.1 Summary of Results

In this thesis we give a new graceful labeling with cycle graph Cn for n ≡ 0, 3

(mod 4), and if n ≡ 1, 2 (mod 4), there are no graceful labeling, so we define

a graceful deficiency to label it. And the windmill graph we also find a graceful

labeling for it if it has a graceful labeling. We use the Skolem sequence to label

it, and it has no graceful labeling, we find the graceful deficiency to label it. We

use the hooked Skolem sequence to label it.

3.2 Further Studies

It would be interesting to explore and identify more related concepts and relation-

ships among them. For example, it is nice trying to find the graceful deficiency for

two component of 2-regular graph Cp ∪Cq if p+ q ≡ 1 or 2 (mod 4). We predict

that the graceful deficiency g(Cp ∪Cq)=1 with p+ q ≡ 1 or 2 (mod 4). This is a

interesting and open problem.

Conjecture 1: The graceful deficiency for two component of 2-regular graph

d(Cp ∪ Cq) = 1 if p+ q ≡ 1 or 2 (mod 4).

Conjecture 2: The Eulerian graph G with q edges has no graceful labeling if q ≡

1 or 2 (mod 4), and the graceful deficiency d(G) = 1.
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