東海大學應用化學研究所碩士論文

指導教授:楊定亞 博士

多組成反應合成吡咯里西啶

及氮呯/香豆素稠合衍生物

Multicomponent Synthesis of Pyrrolizidine

and Azepine/Coumarin-Fused Derivatives

研究生:彭郁婷 撰

中華民國一〇六年二月

謝誌

時光飛逝、歲月如梭,看似漫長的碩班轉眼間也即將進入尾聲, 回首過去這段時間,自己的學習、挑戰、徬徨與成長皆歷歷在目。能 走到這個階段,首先要感謝的是我的指導老師楊定亞老師,在我對未 來非常徬徨的時候,給我建議與指引。進入實驗室後,老師更一步步 的訓練,耐心指導並標出盲點,即使經過許多挑戰及失敗,依然不斷 地給予正面的修改建議,協助我克服這些難關,使我受益良多。

在實驗室的這段期間,感謝 Kiran 博士教導我許多實驗上的知識 與技巧;感謝不但是朋友更是實驗室的最佳夥伴品慧,她帶給我不同 的觀點與想法,也協助克服許多大大小小的困難;實驗室的學長姐、 同學以及學弟妹們,在實驗上傳授經驗、互相協助、一同學習成長, 生活上互相關心幫忙,因為你們讓我有如此充實的實驗室生活,在此 一併致謝。

感謝我的朋友們, 在難過或喜悅時的陪伴與分享。也感謝在求學 之路上無盡支持的家人, 因為有你們, 我感到無限關心與溫暖, 讓我 能順利完成研究所學業。

再次深深感谢這一路上給我支持與協助的每一個人。

I

中文摘要

本文主要探討多組成反應的設計、合成及結構鑑定,一系列吡咯 里西啶及氮砰/香豆素稠合之衍生物,並探討其潛在抗菌活性。第一 部份,由微波輔助三組成反應,以脯氨酸、苯甲醛和1,3-茚二酮作為 起始物,合成吡咯里西啶衍生物。第二部份,以假三組成反應縮合 3-氨基-4-羟基香豆素與苯乙酮,製備氮呯/香豆素稠合之七員環雜環 衍生物。探討合成方法範圍與限制並推測其反應機構,也發現部份氮 呯/香豆素稠合的化合物具有對大腸桿菌的中等抗菌活性。

英文摘要

In this thesis, we report the design, synthesis, and characterization azepine/coumarin-fused of pyrrolizidine and compounds via multicomponent reactions and subsequent evaluation of their potential antibacterial activities. In the first microwave-assisted part, three-component reactions of L-proline, benzaldehyde and 1,3-indandione obtained the pyrrolizidine derivatives. In the second part, the azepine/coumarin-fused seven-membered heterocyclic derivatives were condensation 3-amino-4-hydroxycoumarin prepared by of with acetophenone in a pseudo three-component reaction manner. The scope and limitation of these synthetic methods along with the plausible mechanisms are discussed. Some azepine/coumarin-fused compounds were found to possess moderate antibacterial activity against E. coli.

謝誌I
中文摘要II
英文摘要III
目錄IV
圖表目錄VI
第一章、緒論1
1.1 多組成反應1
1.2 微波促進反應4
1.3 香豆素9
1.4 吡咯里西啶11
1.5 氮呯13
第二章、研究動機15
2.1 設計微波輔助三組成反應合成吡咯里西啶衍生物15
2.2 設計假三組成反應合成氮呼/香豆素稠合衍生物17
第三章、結果與討論19
3.1 設計微波輔助三組成反應合成吡咯里西啶衍生物

27
35
36
36
38
66
69

圖表目錄

圖 1.1、理想之合成期望條件
圖 1.2、多組成反應之反應策略圖
圖 1.3、苯甲醯胺水解反應
圖 1.4、微波波長範圍圖
表 1.1、相關數據比較
圖 1.5、微波加熱與油浴加熱相互比較之溫度分布圖
圖 1.6、以微波促進反應合成 2,6-naphthyridine 衍生物
圖 1.7、以多組成反應及微波促進反應合成吡咯里西啶衍生物
圖 1.8、以多組成反應及微波促進反應合成 imidazo[1,2-a]pyridines8
圖 1.9、Tonka-bean、coumarin 及 4-hydroxycoumarin 圖
圖 1.10、吡咯里西啶(pyrrolizidine)1
圖 1.11、生物學上重要的吡咯里西啶衍生物1]
圖 1.12、氮平(azepine)13
圖 1.13、生物學上重要的氮评衍生物13
圖 2.1、含有吡咯里西啶骨架之衍生物15
圖 2.2、化合物 4 和 5 合成途徑16

圖 2.3、化合物 8 合成途徑1	7
圖 2.4、化合物 18 合成途徑1	7
圖 3.1、脯氨酸,苯甲醛和 1,3-茚二酮之代表性多組成反應1	9
圖 3.2、反應途徑 I 與反應途徑 II 比較圖2	20
表 3.1、優化螺吡咯里西啶 12a、13a 及 14a 之反應參數2	21
圖 3.3、合成螺吡咯里西啶衍生物之不同官能醛的範圍2	2
圖 3.4、螺吡咯里西啶衍生物 12a-l 結構圖2	23
圖 3.5、螺吡咯里西啶衍生物 13e-l 結構圖2	24
圖 36、螺吡收甲西啶衍生物 14 結構圖 2	24
回 5.0 场 L 谷王口 足内王初 IF 阳 侍回	
圖 3.7、12a 及 13a 和 13g 及 14g 之 X-ray 晶體繞射結構圖2	25
圖 3.7、12a 及 13a 和 13g 及 14g 之 X-ray 晶體繞射結構圖2 圖 3.8、推測化合物 12a、13a 以及 14a 之反應機構合成途徑2	25 26
圖 3.7、12a 及 13a 和 13g 及 14g 之 X-ray 晶體繞射結構圖2 圖 3.8、推測化合物 12a、13a 以及 14a 之反應機構合成途徑2 圖 3.9、設計以化合物 21 合成氮呼/香豆素稠和衍生物 23a 之路徑.2	25 26
 圖 3.0 或 化存至日 足肉 至初 14 然傳圖	25 26 27
 圖 3.0 以化各主日文的主动 14 沿海國	25 26 27 28
 圖 3.0 场 化存至口及闭至初 14 高稱圖	25 26 27 28 29
 圖 3.5 號記書至自足所至初 14 點稱圖	25 26 27 28 29 11 22
 圖 3.5 承记导至日足附至初 14 點稱圖	25 26 27 28 29 11 22 3

第一章、緒論

1.1 多組成反應

有機化學發展至今已相當成熟,其中包含各種合成方法、技巧與 策略,但多數有機化合物合成條件依然使用一個步驟接著一個步驟的 全合成來進行建構。在多步驟合成中,分離與純化過程不免面臨產物 流失,造成目標產物的減少。因此理想之合成期望條件如圖 1.1,¹ 能具備簡單、安全、成本低、高產率、高轉換率與反應時間短等因素 之反應,被認為是一個極為理想的合成條件。

多組成反應(Multi-Component Reactions, MCRs)作為一個良好的 合成策略,包含反應程序簡易、產率佳、高轉換率以及在單一反應槽 即可完成反應等,這些優點近似於理想合成期望條件之特性。²多組 成反應一般的定義為「產物由三個以上的起始物反應所組成,且產物 包含起始物的部份結構」,典型的多組成反應以三種起始物組成,反 應過程中可能產生更多的反應物參與反應。而其中反應物會以先後不 同之順序參與反應,之後進行分子內重排、質子轉移、環化或縮合等 反應,這類型的反應歸因於反應物的組成與其可能產生的作用。不同 於一般反應需確實的逐步分離與純化,多組成反應藉由 one pot (一鍋 化)的優勢,在時間上,一步合成目標產物且只需經過一次純化;在 經濟上,有效節省化合物與溶劑的使用。

近年來,多組成反應於研究已越來越頻繁,也衍生出多種設計反 應之策略,以快速合成不同的化合物。2011年 Orru 教授發表將多組 成反應策略歸類為四種(如圖 1.2)。³分別為,I:單取代反應(Single Reactant Replacement, SRR),反應(A, B, C)藉由不同反應物(C-X)取代 原先的反應物(C);II:序列模組反應(Modular Reaction Sequences, MRS),反應物(A, B, C)先經由多組成反應形成中間體,再分別與(D, E, F)反應物合成一系列最終產物;III: 應用條件差異反應 (Conditions-Based Divergence, CBD),藉由改變反應條件,使得相同 反應物(A, B, C)生成不同產物。IV: 組合式多組成反應(Combination of MCRs, MCR2),將兩種或兩種以上不同之多組成反應連續組合在一個反應中完成。每種反應策略都具有其獨特性以合成各系列結構,而本文主要探討之多組成反應則是使用單取代反應作為合成策略。

圖 1.2、多組成反應之反應策略圖

1.2 微波促進反應

以微波促進反應⁴在學術及工業實驗室越來越熱門,不論是有機 合成、藥物合成甚至無機等領域,都可運用微波來取代原本反應方式。 1986年首篇將微波應用於有機化學反應之報導,由 Gedye⁵發表利用 微波加熱,加速苯甲醯胺水解反應(圖 1.3)。

reflux: 1 h, 90% MW(microwave): 10 min, 99% 圖 1.3、苯甲醯胺水解反應

微波照射是以 0.3~300 GHz 的電磁波照射,相對應波長範圍為 1~1000 mm,如圖 1.4。^{4b} 在電磁波圖譜中,微波區位於紅外線與無線 電波之間。一般而言,波長在 1~25 cm 之間的電波被廣泛用於雷達發 射,其餘波長範圍的電波則用於無線電通訊。通常為了避免微波與無 線電通訊及手機頻率互相干擾,所有家用微波爐和化學合成使用的專 業用微波反應器,其頻率均為 2.45 GHz (相對應波長為 12.25 cm),雖 然也有其他頻率的電磁波應用於微波加熱,但在合成化學專用反應器 中並不多見。

比較表 1.1 所列舉的數據,⁶明顯可看出頻率為 2450 MHz (0.0016 eV)的微波能量還不足以斷開分子中的共價鍵。由此可知,微波不能 利用電磁波能量的直接吸收來誘導化學反應,與紫外光及可見光的照 射(光化學)形成對比。微波促進反應是直接與反應混合物中任何具有 偶極矩分子或離子進行耦合,導致反應溫度迅速增加,促進反應進 行。

電磁波種類及其相對量子能量						
電磁波種類	頻率 (MHz)	量子能量 (eV)				
γ射線	$3.0 \ge 10^{14}$	1.24 x 10 ⁶				
X射線	$3.0 \ge 10^{13}$	1.24 x 10 ⁵				
紫外光	1.0 x 10 ⁹	4.1				
可見光	$6.0 \ge 10^8$	2.5				
紅外光	$3.0 \ge 10^6$	0.012				
微波	2450	0.0016				
無線電波	1	4.0 x 10 ⁻⁹				

表 1.1、相關數據比較

化學鍵能比較				
化學鍵類型	化學鍵能量(eV)			
С–С	3.61			
C=C	6.35			
С-О	3.74			
C=0	7.71			
С–Н	4.28			
О–Н	4.80			
氫鍵	0.04~0.44			

目前由熱力帶動有機物的轉換方式有兩種,分別為傳統加熱或微 波快速加熱。對於有機合成反應之差異,傳統加熱採用外部熱源進行 傳導加熱,例如:油浴鍋、加熱包,此方法受限於各種反應容器導熱 性,相對而言向反應容器內部傳輸能量之速度緩慢且效率不高,並導 致容器的溫度高於反應混合物的溫度,使內部產生溫度梯度,較容易 使反應物產生局部加熱之現象,也導致起始物、產物或試劑的衰解。

與之相反,透過微波能量和反應混合物中的溶劑、試劑或催化劑 的直接耦合,在反應容器內部核心進行充分加熱,反應容器通常是微 波可穿透的材料,例如:硼矽酸鹽玻璃、石英或聚四氟乙烯製成,使 得反應不受限於容器導熱性。當傳統加熱方法與微波能量穿透容器壁 產生的溫度梯度結果如圖 1.5。⁷可看出微波具有相反的溫度梯度,可 使內部熱傳遞效果較好。

左圖:微波照射1分鐘;右圖:油浴加熱1分鐘

根據研究實驗資料,使用微波促進反應,不但可縮短反應時間(發現微波促進反應比起傳統加熱方法快1,000倍),並且能減少副反應、 提高產率和改善反應再現性,^{4a}也使微波反應更加普及,接下來列舉 三篇參考文獻,第一篇為運用微波促進反應,後兩篇則同時使用多組 成反應及微波促進反應。

2015年 Quintana⁸ 團隊發表,藉銠催化劑使 cyano-yne-allene 進行 [2+2+2]分子內環化加成反應,直接快速合成 2,6-naphthyridine 衍生 物(圖 1.6)。

圖 1.6、以微波促進反應合成 2,6-naphthyridine 衍生物

2006 年 Raghunathan⁹ 團隊發表,在無溶劑條件下之進行三組成反應,運用微波照射促進反應進行分子間[3+2]環加成,合成吡咯里西 啶衍生物,此合成方法同時具高度區域選擇性及優良的產率(圖 1.7)。

圖 1.7、以多組成反應及微波促進反應合成吡咯里西啶衍生物

2014年 Hong-yu Li¹⁰團隊發表,利用鈀催化微波照射,使2-氨基 吡啶、2-bromo-1-phenylethanone以及1-bromo-4-nitrobenzene經三組 成反應,快速合成 imidazo[1,2-a]pyridines。此骨架之衍生物已存在於 市售藥物中,因此,此研究不但使用便宜易取得之起始物、縮短反應 步驟,並合成一系列多官能化之潛在藥物活性化合物(圖1.8)。

圖 1.8、以多組成反應及微波促進反應合成 imidazo[1,2-a]pyridines

1.3 香豆素

香豆素(coumarin),¹¹學名 α-苯並吡喃酮(benzo-α-pyrone),化學 式為 C₉H₆O₂,是一含有氧原子之雜環化合物,也可看作是順式鄰羥 基肉桂酸的內酯,外觀為無色或白色的結晶或晶體粉末,具有新鮮乾 草氣味,其廣泛存在於植物界中,並作為香豆素類化合物的主要骨架 (如圖 1.9)。

香豆素的英文名稱「coumarin」源於零陵香豆的加勒比詞 「coumarou」。最早由 Vogel 於 1820 年從南美洲蓋亞那(Guyana)的零 陵香豆(Tonka bean),即黃香草木犀(Melilotus officinalis)中,用乙醇萃 取分離得到,在當時此分離方法既經濟又環保,為取得香豆素之主要 來源。但天然香豆所含香豆素至多僅 1.5%,因此現今以人工合成方 式取代天然提煉方法。

Tonka-beancoumarin4-hydroxycoumarin

圖 1.9、Tonka-bean、coumarin 及 4-hydroxycoumarin 圖

天然物中經常含有的香豆素,不但在自然界扮演重要角色,亦經 常出現在人類生活之中。其用途大致可分為四領域。第一部份為消費 產品及工業產品之香料主成分,例如:清潔劑、家用肥皂、化妝品、 香水、精油及其他身體保養產品或是食品調味。12 第二部份為傳統染 料,例如:日光螢光染料及螢光增白劑。由於香豆素衍生物其本身能 夠吸收光能,再經由轉換以輻射方式釋放能量,故大多具強螢光特性。 且 C-4 位置引入羥基後,可使螢光增加,即使在可見光下,也能觀察 到螢光現象。第三部份用於高科技用途,例如:非線性光學材料、雷 射染料、有機電發光二極體顯示器(OLED)、非破壞性瑕疵檢測、太 陽能電池。13 第四部份則用於醫療用途,例如:抗凝血、抗菌、抗過敏、 抗癌等藥物、生物活性機制之研究及生化或病理檢測試劑方面。14香 豆素應用範圍廣,且本實驗室對 4-羥基香豆素(4-hydroxycoumarin)衍 生物研究多年,對於香豆素特性亦有相當了解,使用香豆素骨架在合 成上之優勢如下四點:

- 1. 價格便宜,易於取得。
- 2. 結構穩定,便於儲存。
- 3. 反應位點多,合成變化性高。
- 4. 具有生物活性,應用及發展性廣。

1.4 吡咯里西啶

吡咯里西啶(pyrrolizidine/ hexahydro-1*H*-pyrrolizine,又稱為吡咯 雙烷或雙吡咯烷)是由兩個稠合的五員環組成的雜環系統,其中一個 橋頭碳原子被氮原子取代(圖 1.10),因結構中含有帶鹼性的氮原子, 屬於吡咯里西啶生物鹼(Pyrrolizidine Alkaloids, PAs)。據文獻報導,世 界上的開花植物中有 3%含吡咯里西啶生物鹼,且 PAs 已在 13 個科的 植物中檢出。¹⁵這些數以百計天然存在含吡咯里西啶生物鹼的化合物 是由植物自行合成產生,作為抵抗食草動物的防禦機制,其肝毒性等 危害,不但對昆蟲有影響,甚至人類也有許多 PAs 中毒的報導。但不 可否認其特殊骨架也表現出很好的生物學和藥理學活性。以下幾種為 市售之含有吡咯里西啶骨架之藥物 (圖 1.11)。¹⁶

圖 1.11、生物學上重要的吡咯里西啶衍生物

絲裂黴素 C (Mitomycin C),是具有廣泛性抗多種腫瘤之抗生素, 其有效的抗腫瘤活性被用作癌症之化學治療劑。主要作用使細胞 DNA 解體同時阻礙 DNA 複製,達到抑制或停止腫瘤細胞之生長,可 用於治療乳癌、胃癌、食道及膀胱腫瘤等。¹⁷

鉤藤鹼(Rhynchophylline),為吡咯里西啶結構稠和六員環,在傳統醫學中廣泛使用,被用作治療心血管和中樞神經系統疾病,如抗高血壓、血管擴張、抗心律失常、癲癇發作及腦缺血等。¹⁸

CJ-16,264,由真菌分離而得,為大家所知的抗生素,可抑制具多 重耐藥性之革蘭氏陽性菌(Gram-positive bacteria)以及像是卡他莫拉 菌(Moraxella catarrhalis)和大腸桿菌(Escherichia coli)之革蘭氏陰性菌 (Gram-negative bacteria)生長。¹⁹

UCS1025A,其主要作用為抑制端粒酶(Telomerase),相當於癌細胞之抗增殖活性。在人體細胞組織中端粒酶的存在可調控細胞衰老, 當端粒酶含量低,將使細胞染色體不穩定,導致細胞死亡。而文獻顯 示癌細胞中端粒酶含量高於正常細胞,因此透過降低端粒酶使得癌細 胞凋亡,是另類的化療策略藥物。²⁰

12

1.5 氮呼

氦平(azepine),分子式為C₆H₇N,是含有氮原子之七員環雜環化 合物(圖1.12),具有四個互變異構構形,本身非常不穩定。若氮平雙 鍵與其他分子(例如:苯) 稠和後,部分化合物具有藥理或生物活性, 例如:馬卡西平、米氮平及地西泮等(圖1.13)。

圖 1.13、生物學上重要的氮呼衍生物

卡馬西平(Carbamazepine, CBZ),是一種治療癲癇、躁鬱症以及 神經性疼痛之藥物,另外也可用作抗利尿劑、肌肉鬆弛劑等。主要由 口服經胃腸道吸收,但長時服用可能有暈眩、頭痛、噁心、嘔吐及嗜 睡等副作用。²¹

米氮平(Mirtazapine),是去甲腎上腺素及特異性血清素性抑鬱藥 (NaSSA),主要用作治療抑鬱症。也常被用作抗焦慮藥、安眠藥、止 吐藥和食慾促進劑,亦有文獻提及如給予晚期癌症患者使用,對於其 生活上亦發生之之疼痛,噁心,食慾不振,失眠和焦慮等問題,使用 米氮平能有效改善其生活品質。22

地西泮(Diazepam),常用於治療焦慮症、酒精戒斷症候群、痙攣、 癲癇發作、失眠和睡眠肢動症。地西泮屬於較安全、較無致命問題且 為藥效快之藥物,因此也成為全世界處方用量最大的藥物之一。雖然 療效良好但容易產生依賴與濫用,因此在台灣也列為第四級毒品。²³

第二章、研究動機

2.1 設計微波輔助三組成反應合成吡咯里西啶衍生物

含有吡咯里西啶骨架之衍生物具有優良的生物及藥理活性,使得 吡咯里西啶骨架成為熱門研究主題,並合成設計一系列已記載於文獻 之衍生物(圖 2.1),但仍期望積極開發合成不同官能化之新途徑。

圖 2.1、含有吡咯里西啶骨架之衍生物

本實驗室在 2014 年發表一篇文獻,²⁴將起始物與同時作為催化 劑及試劑之脯氨酸(1, L-proline)、四當量苯甲醛(**3a**, benzaldehyde)及其 衍生物和 4-羥基香豆素(**2**, 4-hydroxycoumarin),使用微波輔助多組成 反應合成具有吡咯里西啶骨架之衍生物,快速合成途徑如下圖 2.2。

圖 2.2、化合物 4 和 5 合成途徑

鑒於化合物4、5之合成方法,利用多組成反應的優勢:一鍋化、 方法簡易以及產率高等特色,以及實驗室已具備之微波反應爐,期望 將合成範圍更加延伸。同樣以1,3-二酮(1,3-diketone)衍生物作為起始 物,將原先之4-羥基香豆素(2)改成使用1,3-茚二酮(10,1,3-indandione), 推測以相似之合成方式,可獲得多種官能化之目標物,設計製備具有 吡咯里西啶骨架之新分子。

2.2 設計假三組成反應合成氮呼/香豆素稠合衍生物

2012年,本實驗室楊喻茹學姊研究「Benzoxazole 衍生物設計與 合成」,意外發現,²⁵將2-氨基苯酚(6,2-aminophenol)以及 *p*-nitroacetophenone (7c),溶於二氯甲烷中加入催化劑三氟甲磺酸鏡, 使用封管加熱 100°C,反應進行24小時,得到含有氧之氮呯骨架產 物(8)並鑑定。合成途徑如圖2.3。

圖 2.3、化合物 8 合成途徑

參考其他文獻指出,將2-氟苯胺(9,2-fluoroaniline)及苯乙酮(7a, acetophenone),溶於二甲苯中加入催化劑對甲苯磺酸,加熱迴流,獲得只有氮呼骨架之產物 18。合成途徑如圖 2.4。²⁶

圖 2.4、化合物 18 合成途徑

以上兩反應途徑皆為氮呼/苯稠和之產物,部分化合物具有良好 之藥理與生物活性,其衍生物也已在市售藥物中被使用,並有許多相 關研究文獻的報導。²⁷但對於亦有機會具有生物活性之氮呼/香豆素稠 合衍生物卻沒有太多研究與報導,²⁸因此參考兩反應途徑推測,若在 胺基取代之香豆素旁引入不同的官能基,即鹵素或羥基,則有機會控 制合成不同的七員環雜環系統產物。期待藉由調控香豆素上連接不同 官能基,進而合成相異系列之七員環雜環系統。

第三章、結果與討論

3.1 設計微波輔助三組成反應合成吡咯里西啶衍生物

圖 3.1 為吡咯里西啶衍生物之合成途徑,首先將脯氨酸(1)、1,3-茚二酮(10)和兩當量之苯甲醛衍生物(3a)溶於甲苯,加熱迴流攪拌一 小時後,即可得 2-benzylidene-1*H*-indene-1,3(2*H*)-dione (11a)、螺吡咯 里西啶化合物 12a、13a 以及 14a。產率分別為 35%、10%、15%及 5%,也經由氫譜得知為正確化合物。

圖 3.1、脯氨酸,苯甲醛和 1,3-茚二酮之代表性多組成反應

我們預計加入同時作為試劑及有機催化劑之脯氨酸(1)用於催化 苯甲醛(3a)和 1,3-茚二酮(10)使其縮合得到 α,β-不飽和酮(11a)之螺吡 咯里西啶衍生物。為了使產物更有利於合成螺吡咯里西啶 12a、13a 及 14a,將修改之反應途徑比較於圖 3.2。反應途徑 I,假四組成反應, 直接以 2 當量的醛衍生物(3A)作為起始物反應,使產物引入相同官能 化 12AA、13AA 及 14AA 產物(如圖 3.4 化合物 12a-i;圖 3.5 化合物 13a-i;圖 3.6 化合物 14a、14e 及 14g),但主要產物皆為中間產物 11A。 反應途徑 II,先將 1 當量醛衍生物(3A)與 1,3-茚二酮(2)縮合得化合物 11A,接著化合物 11A 直接與醛衍生物(3A)或不同官能化之醛衍生物 (3B)進行三組成反應,使產物可引入一種以上之官能團產物(如圖 3.4 化合物 12j-l;圖 3.5 化合物 13j-l;圖 3.6 化合物 14j)。所得產物為 12AB、 13AB 及 14AB。修改為反應途徑 II 後,雖然產率只有些微提升,但 意外地發現,藉由調控加入官能化醛衍生物之先後順序,可設計合成 引入不同官能基於目標產物,使得合成應用範圍增加。

圖 3.2、反應途徑 I 與反應途徑 II 比較圖

接著,進一步優化反應條件,研究結果總結於表 3.1。在此一鍋 化三組成反應可發現二甲苯是最有利的溶劑(反應條件 5 和 6),與低 沸點溶劑反應結果相比(~100 °C,反應條件 1 到 3)獲得較高產率。當 延長反應時間,對產率的提升並沒有很大的幫助(反應條件 6)。另外, 在環保意識崛起下,也嘗試使用微波照射進行反應,結果不僅有效 提升反應物朝向產物的轉換率,反應結果較專一不易有雜質產生,亦 發現微波照射具有較高的產率,可明顯降低副產物的比例,因此接 下來的反應皆採用微波照射條件進行(反應條件 9)。

表 3.1、優化螺吡咯里西啶 12a、13a 及 14a 之反應參數

	reaction condition	time (h)	yield(%) ^a		
entry			12a	13a	14a
1	THF/ reflux	1	20	15	10
2	1,4-dioxane/ reflux	1	5	22	5
3	DCE/ reflux	1	10	27	7
4	toluene/ reflux	1	12	20	5
5	xylene/ reflux	1	20	25	10
6	xylene/ reflux	3	22	25	12
7	toluene/ 200 W, 150 $^{\circ}$ C	20 min	15	25	10
8	1,4-dioxane/ 150 W, 150 °C	20 min	20	28	22
9	1,4-dioxane/ 300 W, 275 °C	20 min	30	31	22
10	xylene/ 275 W, 250 $^{\circ}$ C	10 min	30	25	20

Note: (a) L-proline (1, 1.0 equiv), benzaldehyde (3a, 2.2 equiv), and 11a (1.1 equiv) were used. (b) Increase in the concentration of benzaldehyde (3-4 equiv) did not affect the product distribution. ^aIsolated yield.

將優化後的條件替換為具不同官能基的衍生物,用以評估多組成 反應之官能基範圍,圖 3.3 列舉出所使用之具不同官能基的醛衍生物。 並在圖 3.4、圖 3.5 及圖 3.6 描述最終所合成螺吡咯里西啶衍生物 12、 13 及 14 的化合物結構以及產率。結果發現,芳香醛的對位不論是拉 電子基或推電子基取代,皆為可行的反應;但如果芳香醛以及脂肪醛 是鄰位取代,通常易產生較複雜的混合物且產率不佳。

various aldehydes

圖 3.3、合成螺吡咯里西啶衍生物之不同官能醛的範圍

12a, 30%

12b, 28%

12c, 32%

12d, 20%

12e, 32%

12g, 26%

12h, 39%

12k, 20%

12i, 30%

12I, 32%

圖 3.4、螺吡咯里西啶衍生物 12a-l 結構圖

13f, 41%

13e, 28%

13k, 23%

13I, 19%

圖 3.5、螺吡咯里西啶衍生物 13e-l 結構圖

圖 3.6、螺吡咯里西啶衍生物 14 結構圖

我們將化合物¹H NMR 光譜圖數據做特徵分析。從圖譜中可得知 化合物 12 的特徵,在吡咯里西啶環的 2-H 有一個單重吸收峰,化學 位移 4.57-4.67 ppm 之間;化合物 13,是在吡咯里西啶環 2-H 有小的 雙重吸收峰(J=5.7-6.0 Hz), 化學位移 4.57-4.67 ppm 之間; 而化合物 14, 也是在吡咯里西啶環 2-H 有小的雙重吸收峰(J=10.8-11.1 Hz), 化學位移 4.82-5.18 ppm 之間,光譜皆正確。

我們也順利取得化合物 12a 及 13a 和 13g 及 14g 的結晶(如圖 3.7)。 從結構上分析螺吡咯里西啶衍生物 12,其 1,4-取代是具有專一性的順 式異構物。另一個螺吡咯里西啶衍生物 13,為 1,2-順式取代異構物, 在分離過程中會有少量的 1,2-反式取代異構物 14,但反式部份化合物 則因產率低而不易分離或未分離。最終產物產生 3 個 C-C 鍵及 1 個 C-N 鍵,此系列 MCRs 產物皆含有 3 個立體中心且具雙環產物。

圖 3.7、12a 及 13a 和 13g 及 14g 之 X-ray 晶體繞射結構圖

推測其反應機構(圖 3.8), 脯氨酸(1)及苯甲醛(3a)經由縮合反應形成 oxazolidin-5-one (15)。此中間體 15 進行脫羧反應, 脫去二氧化碳 後形成 azomethine ylide 16。所得的中間體 16 及其共振形式 17 進一步和 2-benzylidene-1*H*-indene-1,3(2*H*)-dione (11a)經過[3+2]環化加成 後形成最終產物 12a、13a 以及 14a。

圖 3.8、推測化合物 12a、13a 以及 14a 之反應機構合成途徑

最後,我們將所合成之化合物委託本系吳雨珊教授實驗室,進行 抗菌活性實驗。化合物以10μM之濃度,分別對三種菌種(金黃色葡 萄球菌(Staphylococcus aureus/S. aureus)、大腸桿菌(Escherichia coli/E. coli)以及綠膿桿菌(Pseudomonas aeruginosa/P. aeruginosa))作測試,結 果發現合成之化合物對此三種菌種皆無抗菌活性。

3.2 設計假三組成反應合成氮呼/香豆素稠合衍生物

設計合成同時具有氮呼及香豆素骨架之化合物,藉由香豆素的官 能基化,再利用多組成反應以最短、最簡單的步驟來合成目標化合物, 並探討可能之生物活性。

圖 3.9、設計以化合物 21 合成氮呼/香豆素稠和衍生物 23a 之路徑

首先以購得之化合物 4-羥基香豆素為主體合成化合物 23a,詳細 實驗步驟如圖 3.9,此部份由實驗室張瑋方學長於 2015 年完成部份衍 生物合成。²⁹合成第一步為硝化反應,³⁰在 4-羥基香豆素(化合物 2)3 號位置引入硝基取代,先將其溶於醋酸後,慢慢滴入硝酸再加熱至 55°C 反應,得到化合物 19。第二步為羥基氯化,將化合物 19 溶於 溶劑二甲基甲醯胺(DMF)中,冰浴下加入溶於二甲基甲醯胺的三氯氧 磷混合液,於室溫攪拌後,用冰水終止反應即可得化合物 20。第三 步將硝基還原成胺基,使化合物 20 溶於乙醇中利用鐵還原並加入 0.1M 鹽酸催化,得到化合物 21。最後一步驟為脫水環化反應,先將 化合物 21 與苯乙酮(7a)溶於甲苯之中,接著加入催化劑對甲苯磺酸 (p-TsOH),合成化合物 23a。因當時無法確定複雜結構的氫譜,所以 經由 X-ray 晶體繞射結構圖得知是正確化合物(圖 3.10)。

圖 3.10、設計氮呼/香豆素稠和產物 23a 之合成路徑

我們預期將4號位置是氯的化合物21,以含氧原子的4號位置 羥基化合物22取代,期望合成七員環雜環含氧的結構。詳細實驗步 驟如圖3.11,與起始物為21反應步驟類似。第一步將化合物2的3 號位置進行硝化,第二步將3號位置硝基取代之化合物19還原為胺 基,最後化合物22進行脫水環化反應,預期合成化合物24a。但經 過氫譜判定,並未合成預期產物24a,而是跟4號位置氯取代的起始 物21獲得相同產物,皆為化合物23a。

圖 3.11、設計以化合物 22 合成氮呼/香豆素稠和衍生物 23a 路徑

以4號位置為氯之起始物 21 反應,此氯基如預期極易離去,因 此會形成含一個氮之雜環化合物。出乎意料之外地,使用4號位置羥 基取代的起始物 22,由於香豆素連接羥基之部分並非芳香環結構, 導致加入催化劑後使羥基質子化形成易離去的水,直接脫去。不同於 文獻²⁶則是將羥基接在苯環上,此情形之羥基非常不容易離去,除非 破壞芳香環,使其直接反應形成含氮及氧之雜環。

比較此兩種反應步驟得知, 化合物 22 相較 21 在合成步驟上可縮 短一步, 且獲得較高產率之胺基還原起始物。並在相同反應條件下(表 3.2,反應條件 2), 比較化合物 21 與 22 所得的七員雜環產物,使用 化合物 22 作為起始物時,所得產物產率更佳。因此後續一系列相關 研究是以化合物 22 作為起始物。

優化反應條件,結果總結於表 3.2。發現依照之前的反應條件使 用 Dean-Stark 裝置,發現與加熱迴流方式結果差異不大,因此使用較 常使用之加熱迴流條件(反應條件1和2)。比較反應以對甲苯磺酸作 為催化劑之當量變化,可明顯看出,當催化劑較多時易質子化在胺基 的未共用電子對上,導致其親核性變弱,不易進行脫水反應使得整體 產率下降(反應條件 2~4)。變換催化劑為醋酸,不但產率低且雜質多, 使得反應無專一性;而研究動機所使用到之三氟甲磺酸鏡,雖然只有 唯一產物,但產率依然低(反應條件2和5、6)。當延長反應時間,對 產率的提升並無太大幫助(反應條件7)。最後再比較使用不同溶劑進 行反應,當反應溫度較低時(如二氯乙烷及1,4-二噁烷),轉換率不佳; 使用較高沸點溶劑(如甲苯)則可快速合成產物,並且提高轉換率及產 率;但若使用沸點為138.5℃之二甲苯進行迴流反應,則此條件易產 生雜質(反應條件2及8~10)。因此最終使用反應條件2為最佳條件。

表 3.2、優化氮呼/香豆素稠和衍生物 23a 之反應參數

entry	reaction condition	cat.	time (h)	yield(%)
1	toluene/ D-S ^a	0.2eq p-TsOH	6	84
2	toluene/ reflux	0.2eq p-TsOH	6	80
3	toluene/ reflux	1eq p-TsOH	6	50
4	toluene/ reflux	2eq p-TsOH	6	NR
5	toluene/ reflux	0.2eq AcOH	6	15
6	toluene/ reflux	0.2eq Yb(OTf) ₃	6	40
7	toluene/ reflux	0.2eq p-TsOH	12	82
8	DCE/ reflux	0.2eq p-TsOH	6	35
9	1,4-dioxane/ reflux	0.2eq p-TsOH	6	trace
10	xylene/ reflux	0.2eq p-TsOH	6	75

Note: 3-amino-4-chloro coumarin (**22**, 1.0 equiv) and acetophenone (**7a**, 2 equiv) were used. ^a D-S: Dean-Stark apparatus.

將優化後的條件使用不同起始物,即4-羥基化合物22和4-氯基 化合物21,分別與具不同官能基之苯乙酮衍生物(7)反應,評估多組 成反應官能基之範圍,圖3.12列出其合成之化合物結構與產率。整 體而言,對位取代官能基產物的產率都在60%以上,具有良好的產率, 除了化合物23e。我們推測化合物23e官能基對位的氮未共用電子對 可能被質子化,使得標準條件的0.2當量催化劑量不足以催化反應進 行,但增加催化量又易造成香豆素3號位置胺基之氮上未共用電子對 被質子化,降低反應性,因此可藉由調整催化量使產率再增加,但有 其極限。另外,化合物23f在苯乙酮鄰位官能化,如預期得到產物, 但推測鄰位有立體障礙的關係,產率只有37%。

圖 3.12、評估多組成反應官能基之範圍及產率

我們將化合物¹HNMR 光譜圖數據做特徵分析。從圖譜中可分析 化合物 23a 的特徵,在氮平 6-H 有兩個寬的單重吸收峰,化學位移 2.19 ppm 及 4.99 ppm,光譜皆正確。我們也順利的結出化合物 23a 之結晶(圖 3.10)。

我們再對其反應機構深入探討,並推測反應機構如圖 3.13。首先 苯丙酮(7a)及化合物 22 先利用脫水反應形成化合物 25,化合物 25 經 過亞胺-烯胺互變異構(imine-enamine tautomerization)形成化合物 26, 同時苯丙酮(7a)在酸的催化下形成酮-烯醇互變異構(keto-enol tautomerization)化合物 27,此時化合物 27 與 26 進行加成反應(addition reaction)形成化合物 28,進一步脫水形成化合物 29,然後化合物 29 互變異構(tautomerization)並且質子化為化合物 30,接著氮上的未共 用電子對共振到香豆素的酮上形成羥基,進行分子內環化形成化合物 31,而化合物 31 羥基之未共用電子對往回共振脫去一分子水及質子, 形成化合物 32,最終進行一個互變異構得到產物 23a。

圖 3.13、推測化合物 23a 之反應機構合成途徑

含有氮呼或香豆素骨架之衍生物多具有生物活性,因此將所合成 之化合物 23a-f 委託本系龍鳳娣教授實驗室,使用 20 μM 濃度進行抗 菌活性實驗。此部分化合物也測試於大腸桿菌、金黃色葡萄球菌以及 綠膿桿菌三種菌種,結果如圖 3.14。藉由比較菌種之存活率,當數值 越低,表示成功降低菌種存活率,即抗菌效果越好。其中 MH2-4 為 龍教授實驗室具有抗菌活性之胜肽標準物。相較之下,化合物 23d 之 抗菌實驗結果,大腸桿菌只剩 32%存活率。其次則是化合物 23a,在 大腸桿菌及金黃色葡萄球菌之存活率分別為 59%及 57%。由實驗數 據顯示,我們所設計之化合物具有抗菌活性。

圖 3.14、氮呼/香豆素稠和衍生物 23a-f 之抗菌活性圖

第四章、結論

第一部份成功以三組成反應合成一系列具有潛在生物活性之吡 咯里西啶衍生物,最終只脫去一分子的水以及一分子二氧化碳,且產 物具有3個C-C鍵與1個C-N鍵,與含有3個立體中心的雙環結構 化合物,再經由微波促進反應增加整體轉換率和產率。經由氫譜與 X-ray 晶體證實結構的正確性,也得知此合成方法可快速合成三種分 別是1,4-cis、1,2-cis 以及1,2-trans 的化合物。

第二部份則是設計合成同時具有氮呼及香豆素骨架之化合物,利 用假性三組成反應, 脫去三分子的水得到產物, 經由起始物取代基的 改變縮短反應步驟並提升產率。也由氫譜及 X-ray 晶體證實結構的正 確性。但很可惜無法得到原本預期化合物, 即同時含有氮及氧的七員 環雜環產物。後續進一步探討其抗菌活性, 也發現某些化合物具有抗 大腸桿菌之活性。

第五章、實驗部份

5.1 儀器部份及試藥來源

- 1. 熔點測定使用 MEL-TEMP II 熔點測定儀,溫度未經校正。
- 2. 紅外線光譜使用 1725XFT-IR (Fourier Transform Infrared)紅外線光 譜儀。純液體樣品塗抹於溴化鉀(KBr)鹽片測定,固體樣品使用全 反射裝置(ATR)測定,光譜單位為波數(cm⁻¹),僅列出特定吸收峰。
- 低解析質譜(Low resolution mass spectroscopy)及高解析質譜 (High resolution mass, HRMS)委託國科會中部貴重儀器中心代測, 使用 JOEL JMS-SX/SX 102A 質譜儀。
- X 光單晶繞射,委託國科會中部貴重儀器中心代測,使用 Bruder AXS SMART-1000 單晶繞射儀在化學分子的三維結構鑑定其鍵長 及鍵角的結構分析。
- 5. 氫核磁共振光譜使用 Varian Unity 300 (300 MHz solars system)及 BRUKER Ascend TM 400MHz,碳核磁共振光譜使用 Varian Unity 300 (75 MHz solars system)及 Varian Unity 600 (150 MHz solars system)。測試樣品用氘氯仿(CDCl3)、甲醇(CD₃OD)、二甲基亞砜 ((CD₃)₂SO)為溶劑,以四甲基矽烷(tetramethylsilane)為內部基準 (internal standard)。化學位移以 ppm 為單位,J 代表偶合常數 (coupling constant),單位為 Hz。分裂形式(splitting pattern)定義如 下:s表單峰(singlet);d表雙重峰(doublet);t表三重峰(triplet); m表多重峰(multiplet)。
- 6. 色層管柱分離(Column chromatography)使用德國默克藥廠(E. Merck) Silica gel 60 (230-400 mesh)型矽膠。

- 薄層色層分離(Thin layer chromatography)使用德國默克藥廠 Silica gel 60 F254 型薄層色層分離片。利用紫外光燈(UV light)直接觀 察。
- 減壓濃縮使用 BÜCHI R114 迴旋蒸發儀和 SIBATA WJ-20 循環水流 抽氣機,室溫下真空度約為 25 mmHg。
- 9. 有機合成所使用的一般試藥均購自日本東京化成工業株式會社 (TCI)、美國 Fisher、英國 Lancaster 及 Alfa Aesar、美國 Aldrich 及 Janssen 藥廠。反應、萃取及沖提用的溶劑如甲醇、乙醇、正己 烷、乙酸乙酯、二氯甲烷均為 ACS 級,購自美國 Tedia 藥廠。試 劑及溶劑除經特別註明外,均購入後直接使用。
- 10. 微波反應使用 CEM Discover 微波合成儀器。
- 11. 抗菌活性測試使用 SpectraMax® Plus 384 微量盤分光光譜儀。

5.2 化合物的合成

合成化合物 11a-i 的通用實驗步驟

採用文獻報導的方法合成 α,β-不飽和酮衍生物。³¹將化合物 1,3-茚二酮(10, 100 mg, 0.68 mmol)、苯甲醛(3a, 80 mg, 0.75 mmol)和脯氨 酸(1, 24 mg, 10 mol%)溶於 20 mL 甲醇中,在室溫下攪拌 15 小時, 固體慢慢析出。反應結束後濾出沉澱,依次用甲醇(5 mL×1)和已烷(10 mL×3)洗滌,真空乾燥,得到縮合產物。

2-Benzylidene-1*H*-indene-1,3(2*H*)-dione (11a)

2-(4-(dimethylamino)benzylidene)-1*H*-indene-1,3(2*H*)-dione (11b)

⁰ 深紅色固體;產率78%;R_f = 0.49 (40% EtOAc/hexanes); mp 204–206 °C (Lit.³³ 208–210 °C); ¹H NMR (CDCl₃, 300 MHz) δ 8.54 (d, J = 8.7 Hz, 2H), 7.94–7.90 (m, 2H), 7.79 (s, 1H), 7.74–7.71 (m, 2H), 6.75 (d, J = 9.6 Hz, 2H), 3.16 (s, 6H).

2-(4-methoxybenzylidene)-1*H*-indene-1,3(2*H*)-dione (11c)

 ^o 黄色固體; 產率 77%; $R_f = 0.55$ (30% EtOAc/hexanes); mp 153–155 °C (Lit.³² 156–157 °C); ¹H NMR (CDCl₃, 300 MHz) δ 8.55 (dd, J = 7.2, 5.1 Hz, 2H), 8.01–7.97 (m, 2H), 7.85 (s, 1H), 7.80–7.78 (m, 2H), 7.02 (dd, J = 6.7, 1.8 Hz, 2H), 3.92 (s, 3H).

2-(4-nitrobenzylidene)-1*H*-indene-1,3(2*H*)-dione (11d)

。 黄色固體; 產率 89%; $R_f = 0.48$ (30% EtOAc/hexanes); mp 231–233 °C (Lit.³⁴ 225 °C); ¹H NMR (CDCl₃, 300 MHz) δ 8.55 (d, J = 9.0 Hz, 2H), 8.34 (d, J = 8.7 Hz, 2H), 8.07 (dd, J = 5.7, 3.0 Hz, 2H), 7.90 (s, 1H), 7.89 (dd, J = 5.7, 3.0 Hz, 2H).

2-([1,1'-biphenyl]-4-ylmethylene)-1*H*-indene-1,3(2*H*)-dione (11e)

 \circ 黄色固體;產率 78%; $R_f = 0.63$ (30% EtOAc/hexanes); mp 166–168 °C (Lit.³⁵ 167–169 °C); ¹H NMR (CDCl₃, 300 MHz) δ 8.57 (d, J = 8.4 Hz, 2H), 8.05–8.01 (m, 2H), 7.95 (s, 1H), 7.84–7.81 (m, 2H), 7.77 (d, J = 8.4 Hz, 2H), 7.69 (d, J = 6.9 Hz, 1H), 7.52–7.39 (m, 4H).

黄色固體; 產率 54%; R_f= 0.42 (20% EtOAc/hexanes); mp 173–175 °C (Lit.³⁶ 177 °C); ¹H NMR (CDCl₃, 300 MHz) δ 8.07 (dd, J = 3.6, 0.9 Hz, 1H), 8.03 (s, 1H), 8.01–7.97 (m, 2H), 7.89–7.87 (m, 1H), 7.81–7.78 (m, 2H), 7.25–7.24 (m, 1H).

2-(furan-2-ylmethylene)-1*H*-indene-1,3(2*H*)-dione (11g)

黃色固體; 產率 86%; R_f= 0.64 (30% EtOAc/hexanes); mp 206–208 °C (Lit.³² 209.5–211 °C); ¹H NMR (CDCl₃, 300 MHz) δ 8.59 (d, J = 3.6 Hz, 1H), 7.99-7.97 (m, 2H), 7.81-7.76 (m, 3H), 7.77 (s, 1H),6.74–6.72 (m, 1H).

2-((5-nitrofuran-2-yl)methylene)-1*H*-indene-1,3(2*H*)-dione (11h)

黄色固體; 產率80%; R_f = 0.58 (40%

EtOAc/hexanes); mp 218–219 °C; ¹H NMR (CDCl₃, 300 MHz) δ 8.61 (d, J = 4.2 Hz, 1H), 8.05 (dd, J = 5.6, 3.3 Hz, 2H), 7.88 (dd, J = 5.6, 3.3 Hz, 2H), 7.69 (s, 1H), 7.48 (d, J = 4.2 Hz, 1H); ¹³C NMR (CDCl₃, 75 MHz) δ188.2, 188.1, 153.3, 151.5, 142.5, 140.6, 136.1, 136.0, 131.4, 126.1, 123.8, 123.6, 113.3; IR v_{max} (KBr) 3144, 168, 1518, 1347, 1223, 1021, 827, 730 cm⁻¹; HRMS (EI) m/z calcd for $C_{14}H_7NO_5$ [M⁺] 269.0324, found 269.0319.

2-((5-methylfuran-2-yl)methylene)-1*H*-indene-1,3(2*H*)-dione (11i)

o'' 黄色固體;產率75%; $R_f = 0.63$ (30% EtOAc/hexanes); mp 178–180 °C; ¹H NMR (CDCl₃, 300 MHz) δ 8.56 (d, J = 3.9 Hz, 1H), 7.95–7.92 (m, 2H), 7.77–7.74 (m, 2H), 7.69 (s, 1H), 6.39 (d, J = 3.6 Hz, 1H), 2.47 (s, 3H); ¹³C NMR (CDCl₃, 150 MHz) δ 190.5, 189.2, 161.3, 150.5, 142.2, 140.3, 134.9, 134.5, 129.1, 127.5, 122.9, 122.8, 122.7, 112.2, 14.5; IR ν_{max} (KBr) 3695, 2970, 1716, 1675, 1589, 1507, 1354, 1211, 1026, 734 cm⁻¹; HRMS (EI) m/z calcd for C₁₅H₁₀O₃ [M⁺] 238.0630, found 238.0622.

合成化合物 12a-i、13a-i、14a、14e、14 及 14j 的通用實驗步驟

將 1L 圓底燒瓶中裝 11a (100 mg, 0.43 mmol)、脯氨酸(1, 98 mg, 0.85 mmol)和適量苯甲醛(3a, 59 mg, 0.55 mmol)溶於 1,4-二噁烷(10 mL), 在 275 °C (300 W, 開放容器標準條件)下照射 25 分鐘,接著通過壓縮空氣冷卻反應燒瓶,進行濃縮,利用管層析分離純化混合物, 得到產物。

(1'R,3'S,7a'S)-1',3'-diphenyl-1',3',5',6',7',7a'-hexahydrospiro[indene-2,2'-pyrrolizine]-1,3-dione (12a)

浅 黄 色 固 體;產 奉 30%; $R_f = 0.45$ (20% EtOAc/hexanes); mp 186–187 °C; ¹H NMR (CDCl₃, 300 MHz) δ 7.76 (dt, J = 7.5, 1.2 Hz, 1H), 7.58–7.51 (m, 1H), 7.48 (d, J = 3.9 Hz, 2H), 7.28–7.25 (m, 2H), 7.20–7.16 (m, 2H), 7.11–7.00 (m, 6H), 4.79–4.71 (m, 1H), 4.61 (s, 1H), 3.77 (d, J = 10.8 Hz, 1H), 3.12–3.04 (m, 1H), 2.74–2.67 (m, 1H), 2.18–1.95 (m, 3H), 1.75–1.68 (m, 1H); ¹³C NMR (CDCl₃, 150 MHz) δ 201.0, 199.2, 142.8, 141.8, 138.1, 135.5, 135.4, 135.0, 128.34, 128.30, 127.9, 127.5, 127.4, 127.2, 122.6, 122.5, 76.6, 73.3, 67.5, 58.7, 54.2, 31.7, 25.9; IR v_{max} (KBr) 2924, 1734, 1701, 1593, 1358, 1257, 1100, 938, 765, 699 cm⁻¹; HRMS (EI) m/z calcd for C₂₇H₂₃NO₂ [M⁺] 393.1729, found 393.1724.

(1'R,3'S,7a'S)-1',3'-bis(4-(dimethylamino)phenyl)-1',3',5',6',7',7a'-hex ahydrospiro[indene-2,2'-pyrrolizine]-1,3-dione (12b)

黄色固體; 產率 28%; R_f = 0.26 (40% EtOAc/hexanes); mp 210–211 °C; ¹H NMR (CDCl₃, 300 MHz) δ 7.74 (d, J = 7.2 Hz, 1H), 7.56–7.48 (m, 3H), 7.12 (d, J = 8.7 Hz, 2H), 7.05 (d, J = 8.7 Hz, 2H), 6.44 (dd, J = 9.0, 4.8 Hz, 4H), 4.68–4.60 (m, 1H), 4.48 (s, 1H), 3.65 (d, J= 10.5 Hz, 1H), 3.06–2.98 (m, 1H), 2.783 (s, 6H), 2.780 (s, 6H), 2.72– 2.66 (m, 1H), 2.13–1.88 (m, 2H) , 1.71–1.56 (m, 2H); ¹³C NMR (CDCl₃, 150 MHz) δ 201.7, 200.1, 149.8, 149.5, 143.2, 142.1, 135.2, 134.7, 129.1, 128.1, 126.0, 123.4, 122.7, 122.4, 112.2, 112.0, 76.5, 73.4, 67.6, 58.4, 54.0, 40.4, 40.3, 31.7, 25.5; IR v_{max} (KBr) 3695, 2869, 1733, 1702, 1613, 1524, 1355, 1254, 946, 810 cm⁻¹; HRMS (EI) m/z calcd for C₃₁H₃₃N₃O₂ [M⁺] 479.2573, found 479.2579.

(1'R,3'S,7a'S)-1',3'-bis(4-methoxyphenyl)-1',3',5',6',7',7a'-hexahydros piro[indene-2,2'-pyrrolizine]-1,3-dione (12c)

一Ó 白色固體;產率 32%; $R_f = 0.34$ (30% EtOAc/hexanes); mp 122–124 °C; ¹H NMR (CDCl₃, 300 MHz) δ 7.75 (dd, J = 7.5, 0.9 Hz, 1H), 7.58–7.50 (m, 3H), 7.17 (d, J = 8.7 Hz, 2H), 7.09 (d, J = 8.7 Hz, 2H), 6.59 (t, J = 8.7 Hz, 5H), 4.67–4.62 (m, 1H), 4.51 (s, 1H), 3.69 (d, J = 10.5 Hz, 1H), 3.64 (s, 6H), 3.07–2.99 (m, 1H), 2.70–2.65 (m, 1H), 2.12–1.93 (m, 3H); ¹³C NMR (CDCl₃, 75 MHz) δ 201.3, 199.7, 158.8, 158.6, 143.0, 141.9, 135.4, 134.9, 130.3, 129.4, 128.4, 127.7, 122.6, 122.5, 113.6, 113.3, 76.2, 73.4, 67.7, 58.2, 55.0, 54.3, 54.1, 31.7, 25.8; IR v_{max} (KBr) 2932, 1739, 1705, 1610, 1513, 1250, 1180, 1031, 831 cm⁻¹; HRMS (EI) m/z calcd for C₂₉H₂₇NO₄ [M⁺] 453.1940, found 453.1946.

(1'R,3'S,7a'S)-1',3'-bis(4-nitrophenyl)-1',3',5',6',7',7a'-hexahydrospir o[indene-2,2'-pyrrolizine]-1,3-dione (12d)

 O_2N 淡橘色固體;產率 20%; $R_f = 0.46$ (30% EtOAc/hexanes); mp 186–188 °C; ¹H NMR (CDCl₃, 300 MHz) δ 7.98– 7.91 (m, 4H), 7.82 (d, J = 7.5 Hz, 1H), 7.66 (t, J = 7.2 Hz, 1H), 7.59 (t, J = 7.8 Hz, 1H), 7.49 (d, J = 7.8 Hz, 1H), 7.45 (d, J = 8.4 Hz, 2H), 7.34 (d, J = 8.7 Hz, 2H), 4.83–4.78 (m, 1H), 4.70 (s, 1H), 3.86 (d, J = 10.5 Hz, 1H), 3.11–3.05 (m, 1H), 2.73–2.65 (m, 1H), 2.19–2.02 (m, 3H), 1.74– 1.67 (m, 1H); ¹³C NMR (CDCl₃, 150 MHz) δ 199.7, 198.1, 147.4, 147.3, 145.8, 142.6, 142.3, 141.4, 136.5, 136.0, 129.3, 128.1, 123.6, 123.3, 123.01, 122.95, 75.7, 73.2, 67.8, 58.2, 54.2, 31.5, 26.4; IR v_{max} (KBr) 2959, 1738, 1700, 1519, 1346, 1256, 1109, 859, 691 cm⁻¹; HRMS (EI) m/z calcd for C₂₇H₂₁N₃O₆ [M⁺] 483.1430, found 483.1425.

(1'R,3'S,7a'S)-1',3'-di([1,1'-biphenyl]-4-yl)-1',3',5',6',7',7a'-hexahydro spiro[indene-2,2'-pyrrolizine]-1,3-dione (12e)

白色固體; 產率 32%; R_f = 0.63 (30%)

EtOAc/hexanes); mp 219–220 °C; ¹H NMR (CDCl₃, 300 MHz) δ 7.80 (dt, J = 7.5, 0.9 Hz, 1H), 7.59–7.47 (m, 3H), 7.44–7.40 (m, 4H), 7.37–7.32 (m, 10H), 7.29–7.24 (m, 4H), 4.82–4.77 (m, 1H), 4.67 (s, 1H), 3.83 (d, J

= 10.2 Hz, 1H), 3.16–3.08 (m, 1H), 2.79–2.73 (m, 1H), 2.21–1.98 (m, 3H), 1.79–1.73 (m, 1H); ¹³C NMR (CDCl₃, 150 MHz) δ 201.0, 199.3, 142.9, 141.9, 140.5, 140.3, 140.2, 140.0, 137.4, 135.6, 135.1, 134.7, 128.8, 128.63, 128.58, 127.7, 127.2, 127.1, 126.9, 126.8, 126.7, 126.6, 122.8, 122.6, 73.4, 67.7, 58.5, 54.3, 31.7, 26.0; IR v_{max} (KBr) 2972, 1742, 1704, 1486, 1353, 1260, 764, 696 cm⁻¹; HRMS (EI) m/z calcd for C₃₉H₃₁NO₂ [M⁺] 545.2355, found 545.2357.

(1'R,3'R,7a'S)-1',3'-di(thiophen-2-yl)-1',3',5',6',7',7a'-hexahydrospiro [indene-2,2'-pyrrolizine]-1,3-dione (12f)

黄色固體; 產率 42%; R_f = 0.34 (20% EtOAc/hexanes); mp 210–211 °C; ¹H NMR (CDCl₃, 300 MHz) δ 7.87 (dd, J = 8.4, 1.5 Hz, 1H), 7.69–7.58 (m, 3H), 7.01 (dd, J = 4.8, 1.2 Hz, 1H), 6.95 (dd, J = 4.8, 1.2 Hz, 1H), 6.78 (d, J = 3.3 Hz, 1H), 6.73 (t, J = 4.2 Hz, 1H), 6.65 (t, J = 4.2 Hz, 1H), 6.60 (d, J = 3.3 Hz, 1H), 4.79 (s, 1H), 4.69–4.62 (m, 1H), 3.97 (d, J = 9.9 Hz, 1H), 3.18–3.10 (m, 1H), 2.83–2.76 (m, 1H), 2.15– 1.94 (m, 3H) , 1.79–1.73 (m, 1H); ¹³C NMR (CDCl₃, 150 MHz) δ 200.1, 198.7, 143.1, 143.0, 142.1, 137.9, 135.7, 135.2, 126.7, 126.4, 125.7, 124.8, 124.3, 123.8, 122.9, 122.7, 72.3, 71.9, 69.4, 54.3, 53.4, 31.4, 25.4; IR ν_{max} (KBr) 2956,2380, 1733, 1700, 1591, 1367, 1354, 1257, 752, 710 cm⁻¹; HRMS (EI) m/z calcd for C₂₃H₁₉NO₂S₂ [M⁺] 405.0857, found 405.0851. (1'R,3'R,7a'S)-1',3'-di(furan-2-yl)-1',3',5',6',7',7a'-hexahydrospiro[in dene-2,2'-pyrrolizine]-1,3-dione (12g)

自色固體; 產率 26%; R_f = 0.33 (30% EtOAc/hexanes); mp 154–155 °C; ¹H NMR (CDCl₃, 300 MHz) δ 7.94 (d, J = 7.5 Hz, 1H), 7.75–7.64 (m, 3H), 6.96–6.93 (m, 2H), 6.24 (d, J = 3.3Hz, 1H), 6.09–6.07 (m, 2H), 6.03 (d, J = 3.3 Hz, 1H), 4.56–4.49 (m, 2H), 3.76 (d, J = 10.2 Hz, 1H), 3.17–3.09 (m, 1H), 2.82–2.75 (m, 1H), 2.16–1.95 (m, 3H), 1.82– 1.74 (m, 1H); ¹³C NMR (CDCl₃, 150 MHz) δ 200.8, 199.9, 153.7, 149.4, 142.4, 142.3, 142.2, 141.5, 135.64, 135.55, 123.2, 122.8, 110.0, 109.9, 107.6, 107.3, 70.5, 66.4, 65.5, 53.6, 52.8, 27.7, 26.7; IR v_{max} (KBr) 2944, 1741, 1707, 1593, 1349, 1257, 1000, 795, 746, 730 cm⁻¹; HRMS (EI) m/z calcd for C₂₃H₁₉NO₄ [M⁺] 373.1314, found 373.1319.

(1'R,3'R,7a'S)-1',3'-bis(5-nitrofuran-2-yl)-1',3',5',6',7',7a'-hexahydros piro[indene-2,2'-pyrrolizine]-1,3-dione (12h

褐色固體;產率 39%; $R_f = 0.18$ (40% EtOAc/hexanes); mp 204–206 °C; ¹H NMR (CDCl₃, 300 MHz) δ 8.10 (d, J = 7.8 Hz, 1H), 7.85 (td, J = 8.1, 1.5 Hz, 1H), 7.75 (td, J = 8.1, 1.5 Hz, 1H), 7.70 (d, J = 7.8 Hz, 1H), 7.06 (d, J = 3.6 Hz, 1H), 7.03 (d, J = 3.6 Hz, 1H), 6.61 (d, J = 3.8 Hz, 1H), 6.27 (d, J = 3.8 Hz, 1H), 4.57 (s, 1H), 4.55–4.49 (m, 1H), 3.84 (d, J = 10.2 Hz, 1H), 3.22–3.15 (m, 1H), 2.86–

2.79 (m, 1H), 2.22–2.03 (m, 3H), 1.89–1.83 (m, 1H); ¹³C NMR (CDCl₃, 150 MHz) δ 197.2, 196.9, 156.0, 153.6, 151.30, 151.29, 141.6, 141.5, 136.54, 136.45,124.0, 123.1, 112.1, 112.0, 111.4, 110.9, 69.4, 69.1, 67.6, 54.8, 50.7, 31.2, 26.1 ; IR v_{max} (KBr) 2971, 1741, 1703, 1498, 1353, 1237, 1012, 811, 738 cm⁻¹; HRMS (EI) m/z calcd for C₂₃H₁₇N₃O₈ [M⁺] 463.1016, found 463.1012.

(1'R,3'R,7a'S)-1',3'-bis(5-methylfuran-2-yl)-1',3',5',6',7',7a'-hexahydr ospiro[indene-2,2'-pyrrolizine]-1,3-dione (12i)

褐 色 油 肤 物; 產 率 30%; $R_f = 0.34$ (30% EtOAc/hexanes); mp 183–185 °C; ¹H NMR (CDCl₃, 300 MHz) δ 7.94 (d, J = 7.5 Hz, 1H), 7.76–7.65 (m, 3H), 6.07 (d, J = 3.0 Hz, 1H), 5.88 (d, J = 3.0 Hz, 1H), 5.63–5.25 (m, 2H), 4.52–4.44 (m, 1H), 4.42 (s, 1H), 3.70 (d, J = 10.2 Hz, 1H), 3.15–3.07 (m, 1H), 2.81–2.74 (m, 1H), 2.14–1.94 (m, 3H), 1.85 (s, 3H), 1.84 (s, 3H), 1.92–1.74 (m, 1H); ¹³C NMR (CDCl₃, 150 MHz) δ 199.3, 198.1, 151.7, 151.6, 151.1, 148.5, 142.4, 141.9, 135.3, 134.8, 122.8, 122.7, 108.6, 107.6, 105.9, 105.8, 69.9, 69.2, 66.9, 54.4, 51.2, 31.5, 25.5, 13.1, 13.0; IR v_{max} (KBr) 3359, 2923, 1744, 1706, 1633, 1260, 1021, 787, 749 cm⁻¹; HRMS (EI) m/z calcd for C₂₅H₂₃NO₄ [M⁺] 401.1627, found 401.1632.

(1'R,3'S,7a'S)-3'-(4-methoxyphenyl)-1'-(4-nitrophenyl)-1',3',5',6',7',7 a'-hexahydrospiro[indene-2,2'-pyrrolizine]-1,3-dione (12j)

 $-\circ$ 橘色固體; 產率 26%; R_f= 0.2 (20% EtOAc/hexanes); mp 152–154 °C; ¹H NMR (CDCl₃, 300 MHz) δ 7.96 (d, J = 8.7 Hz, 2H), 7.78 (d, J = 7.5 Hz, 1H), 7.61 (td, J = 7.5, 1.8 Hz, 1H), 7.57–7.49 (m, 2H), 7.38 (d, J = 8.7 Hz, 2H), 7.15 (d, J = 8.7 Hz, 2H), 6.58 (d, J = 8.7 Hz, 2H), 4.80–4.73 (m, 1H), 4.54 (s, 1H), 3.85 (d, J = 10.5 Hz, 1H), 3.65 (s, 3H), 3.08–3.01 (m, 1H), 2.72–2.65 (m, 1H), 2.20–1.99 (m, 3H), 1.72– 1.66 (m, 1H); ¹³C NMR (CDCl₃, 150 MHz) δ 200.3, 198.9, 159.0, 147.1, 143.7, 142.7, 141.6, 135.9, 135.4, 129.4, 129.35, 128.3, 128.2, 123.5, 122.8, 122.7, 113.3, 73.4, 67.5, 57.4, 55.0, 53.9, 31.8, 26.1; HRMS (EI) m/z calcd for C₂₈H₂₄N₂O₅ [M⁺] 468.1685, found 468.1688.

(1'R,3'S,7a'S)-1'-(4-(dimethylamino)phenyl)-3'-(4-methoxyphenyl)-1', 3',5',6',7',7a'-hexahydrospiro[indene-2,2'-pyrrolizine]-1,3-dione (12k)

白色固體; 產率 20%; R_f=0.2 (20% EtOAc/hexanes);

mp 193–195 °C; ¹H NMR (CDCl₃, 300 MHz) δ 7.75 (td, *J* =6.9, 1.2 Hz, 1H), 7.58–7.47 (m, 3H), 7.18 (d, *J* = 8.4 Hz, 2H), 7.04 (d, *J* = 8.7 Hz, 2H), 6.59 (d, *J* = 8.7 Hz, 2H), 6.44 (d, *J* = 8.7 Hz, 2H), 4.95 (m, 1H), 4.51 (s,

1H), 3.66 (d, J = 10.5 Hz, 1H), 3.64 (s, 3H), 3.07–2.99 (m, 1H), 2.79 (s, 6H), 2.72–2.63 (m, 1H), 2.14–1.90 (m, 2H), 1.72–1.57 (m, 2H); ¹³C NMR (CDCl₃, 150 MHz) δ 201.8, 198.3, 157.6, 149.0, 142.3, 141.2, 135.5, 135.2, 132.8, 131.2, 128.6, 123.3, 123.2, 123.1, 113.0, 111.4, 72.7, 68.5, 67.0, 64.4, 55.0, 53.9, 40.3, 28.7, 26.9; IR ν_{max} (KBr) 3415, 1737, 1699, 1613, 1512, 1350, 1250, 1034, 948, 796 cm⁻¹; HRMS (EI) m/z calcd for C₃₀H₃₀N₂O₃ [M⁺] 466.2256, found 466.2261.

(1'R,3'R,7a'S)-1'-([1,1'-biphenyl]-4-yl)-3'-(thiophen-2-yl)-1',3',5',6',7', 7a'-hexahydrospiro[indene-2,2'-pyrrolizine]-1,3-dione (12l)

淡 黃 色 固 體;產 率 32%; $R_f = 0.35$ (20% EtOAc/hexanes); mp 116–118 °C; ¹H NMR (CDCl₃, 300 MHz) δ 7.83–7.80 (m, 1H), 7.64–7.53 (m, 3H), 7.44–7.41 (m, 2H), 7.37–7.31 (m, 4H), 7.29–7.22 (m, 3H), 7.02 (dd, J = 5.1, 1.2 Hz, 2H), 6.67–6.61 (m, 2H), 4.85 (s, 1H), 4.82–4.76 (m, 1H), 3.76 (d, J = 10.2 Hz, 1H), 3.21–3.14 (m, 1H), 2.87–2.79 (m, 1H), 2.14–1.97 (m, 3H) , 1.75–1.69 (m, 1H); ¹³C NMR (CDCl₃, 75 MHz) δ 200.3, 198.8, 143.0, 142.8, 141.8, 140.0, 139.8, 135.4, 134.9, 134.2, 128.5, 128.4, 127.0, 126.7, 126.5, 126.1, 124.5, 123.7, 122.6, 122.4, 72.6, 72.1, 67.3, 58.0, 54.1, 31.3, 25.3, 22.4, 13.8; IR ν_{max} (KBr) 2939, 1736, 1702, 1365, 1257, 1230, 1216, 763, 719 cm⁻¹; HRMS (EI) m/z calcd for C₃₁H₂₅NO₂S [M⁺] 475.1606, found 475.1609.

(2'R,3'S,7a'R)-2',3'-diphenyl-2',3',5',6',7',7a'-hexahydrospiro[indene-2,1'-pyrrolizine]-1,3-dione (13a)

自 色 固 體;產率 31%; $R_f = 0.48$ (20% EtOAc/hexanes); mp 188–189 °C; ¹H NMR (CDCl₃, 300 MHz) δ 8.06 (d, J = 6.3 Hz, 1H), 7.88–7.75 (m, 3H), 7.29 (d, J = 7.8 Hz, 3H), 7.26 (s, 1H), 7.20–6.99 (m, 6H), 5.17 (d, J = 5.7 Hz, 1H), 4.63 (t, J = 7.8 Hz, 1H), 3.84 (d, J = 5.7 Hz, 1H), 3.28–3.21 (m, 1H), 2.89–2.81 (m, 1H), 2.26–2.16 (m, 1H), 2.11–2.02 (m, 1H), 1.75–1.68 (m, 2H); ¹³C NMR (CDCl₃, 150 MHz) δ 201.8, 198.1, 142.2, 141.0, 140.4, 135.7, 135.5, 135.4, 130.5, 127.6, 127.5, 127.4,127.3, 126.9, 125.9, 123.3, 123.2, 72.9, 69.1, 66.1, 64.3, 54.0, 28.8, 26.9; IR v_{max} (KBr) 2818, 1698, 1595, 1280, 1248, 761, 699 cm⁻¹; HRMS (EI) m/z calcd for C₂₇H₂₃NO₂ [M⁺] 393.1729, found 393.1722.

(2'R,3'S,7a'R)-2',3'-bis(4-(dimethylamino)phenyl)-2',3',5',6',7',7a'-he xahydrospiro[indene-2,1'-pyrrolizine]-1,3-dione (13b)

、 淡 黄 色 固 體; 產 率 32%; $R_f = 0.49$ (40% EtOAc/hexanes); mp 186–187 °C; ¹H NMR (CDCl₃, 300 MHz) δ 8.03 (d, J = 7.5 Hz, 1H), 7.84–7.79 (m, 1H), 7.76 (d, J = 3.9 Hz, 2H), 7.14 (d, J = 8.7 Hz, 2H), 6.98 (d, J = 8.7 Hz, 2H), 6.52 (d, J = 8.7 Hz, 2H), 6.44 (d, J = 8.7 Hz, 2H), 4.97 (d, J = 5.7 Hz, 1H), 4.59 (t, J = 7.8 Hz, 1H), 3.67 (d, J = 5.7 Hz, 1H), 3.20–3.14 (m, 1H), 2.84 (s, 6H), 2.82 (s, 6H), 2.79–2.72 (m, 1H), 2.22–2.14 (m, 1H), 2.07–1.97 (m, 1H), 1.77–1.66 (m, 2H); ¹³C NMR (CDCl₃, 150 MHz) δ 201.8, 198.4, 149.0, 148.8, 142.3, 141.2, 135.4, 135.1, 131.2, 128.7, 128.4, 123.6, 123.2, 123.1, 112.1, 111.4, 72.7, 68.2, 67.1, 64.5, 53.9, 40.7, 40.3, 28.7, 26.9; IR ν_{max} (KBr) 2801, 2326, 1738, 1699, 1614, 1520, 1348, 816, 789 cm⁻¹; HRMS (EI) m/z calcd for C₃₁H₃₃N₃O₂ [M⁺] 479.2573, found 479.2577.

(2'R,3'S,7a'R)-2',3'-bis(4-methoxyphenyl)-2',3',5',6',7',7a'-hexahydro spiro[indene-2,1'-pyrrolizine]-1,3-dione (13c)

 \checkmark^{O} 淡橘色固體;產率 36%;R_f = 0.46 (30% EtOAc/hexanes);mp 88–90 °C; ¹H NMR (CDCl₃, 300 MHz) δ 8.04 (d, J = 7.5 Hz, 1H), 7.86–7.82 (m, 1H), 7.81–7.76 (m, 2H), 7.18 (d, J = 13.5 Hz, 2H), 7.03 (d, J = 8.7 Hz, 2H), 6.63 (dd, J = 13.8, 8.7 Hz, 4H), 5.04 (d, J = 6.0 Hz, 1H), 4.59 (t, J = 3.9 Hz, 1H), 3.71 (d, 6.0 Hz, 1H), 3.69 (s, 3H), 3.68 (s, 3H), 3.21–3.14 (m, 1H), 2.85–2.77 (m, 1H), 2.23–2.15 (m, 1H), 2.07–1.98 (m, 1H), 1.75–1.68 (m, 2H); ¹³C NMR (CDCl₃, 75 MHz) δ 201.7, 198.2, 158.1, 157.7, 142.2, 141.1, 135.6, 135.4, 132.4, 131.6, 128.5, 127.7, 123.3, 123.2, 113.0, 112.7, 72.6, 68.7, 66.5, 64.0, 55.0, 54.8, 53.8, 28.7, 27.0; IR v_{max} (KBr) 2970, 1739, 1702, 1611, 1512, 1247, 1179, 1031, 789 cm⁻¹; HRMS (EI) m/z calcd for C₂₉H₂₇NO₄ [M⁺] 453.1940, found 453.1945.

(2'R,3'S,7a'R)-2',3'-bis(4-nitrophenyl)-2',3',5',6',7',7a'-hexahydrospir o[indene-2,1'-pyrrolizine]-1,3-dione (13d)

NO₂ 浅黄色固體;產率 22%; $R_f = 0.30$ (30% EtOAc/hexanes); mp 143–145 °C; ¹H NMR (CDCl₃, 300 MHz) δ 8.09 (d, J = 7.5 Hz, 1H), 8.00 (d, J = 8.7 Hz, 2H), 7.95 (d, J = 7.2 Hz, 2H), 7.91 (t, J = 7.4 Hz, 1H), 7.84 (t, J = 6.9 Hz, 1H), 7.79 (d, J = 7.5 Hz, 1H), 7.47 (d, J = 8.6 Hz, 2H), 7.32 (d, J = 8.6 Hz, 2H), 5.34 (d, J = 6.0 Hz, 1H), 4.59 (t, J = 7.5 Hz, 1H), 3.99 (d, J = 6.0 Hz, 1H), 3.28–3.21 (m, 1H), 2.87–2.79 (m, 1H), 2.26–2.05 (m, 2H), 1.80–1.64 (m, 2H); ¹³C NMR (CDCl₃, 150 MHz) δ 201.2, 197.4, 147.6, 146.9, 146.5, 142.6, 141.9, 141.0, 136.4, 136.2, 131.2, 128.0, 123.6, 123.5, 123.3, 123.0, 72.3, 70.0, 64.8, 62.5, 53.8, 28.8, 27.0; IR v_{max} (KBr) 2970, 1739, 1702, 1517, 1345, 1245, 1108, 859, 716 cm⁻¹; HRMS (EI) m/z calcd for C₂₇H₂₁N₃O₆ [M⁺] 483.1430, found 483.1427.

(2'R,3'S,7a'R)-2',3'-di([1,1'-biphenyl]-4-yl)-2',3',5',6',7',7a'-hexahydr ospiro[indene-2,1'-pyrrolizine]-1,3-dione (13e)

白色固體; 產率 28%; R_f = 0.41 (30%

EtOAc/hexanes); mp 207–208 °C; ¹H NMR (CDCl₃, 300 MHz) δ 8.08 (d, J = 7.5 Hz, 1H), 7.89–7.84 (m, 1H), 7.80 (d, J = 7.5 Hz, 2H), 7.49 (t, J = 7.5 Hz, 4H), 7.36–7.31 (m, 10H), 7.26–7.20 (m, 4H), 5.22 (d, J = 5.7 Hz,

1H), 4.68 (t, J = 7.5 Hz, 1H), 3.90 (d, J = 5.7 Hz, 1H), 3.31–3.24 (m, 1H), 2.93–2.85 (m, 1H), 2.28–2.20 (m, 1H), 2.14–2.05 (m, 1H), 1.78–1.71 (m, 2H); ¹³C NMR (CDCl₃, 150 MHz) δ 201.7, 198.0, 142.2, 141.1, 140.9, 140.7, 139.5, 139.2, 138.7, 135.8, 135.5, 134.6, 130.9, 128.51, 128.45, 128.0, 126.9, 126.85, 126.84, 126.83, 126.3, 126.1, 123.34, 123.28, 72.8, 69.1, 66.2, 64.0, 54.0, 28.8, 26.9; IR ν_{max} (KBr) 2961, 1740, 1700, 1487, 1349, 1272, 1250, 745, 694 cm⁻¹; HRMS (EI) m/z calcd for C₃₉H₃₁NO₂ [M⁺] 545.2355, found 545.2359.

(2'R,3'S,7a'R)-2',3'-di(thiophen-2-yl)-2',3',5',6',7',7a'-hexahydrospiro [indene-2,1'-pyrrolizine]-1,3-dione (13f)

 (三) 白色固體; 產率 41%; $R_f = 0.41$ (20% EtOAc/hexanes); mp 177–179 °C; ¹H NMR (CDCl₃, 300 MHz) δ 8.04 (d, J = 6.9 Hz, 1H), 7.88–7.80 (m, 3H), 7.14 (t, J = 3.3 Hz, 1H), 7.04 (dd, J = 4.8, 1.2 Hz, 1H), 6.88–6.79 (m, 4H), 5.28 (d, J = 5.4 Hz, 1H), 4.64 (t, J = 7.2 Hz, 1H), 4.04 (d, J = 5.4 Hz, 1H), 3.24–3.17 (m, 1H), 2.96–2.89 (m, 1H), 2.22–2.13 (m, 1H), 2.07–1.96 (m, 1H), 1.73–1.65 (m, 2H); ¹³C NMR (CDCl₃, 150 MHz) δ 200.9, 197.2, 144.0, 142.0, 141.0, 136.5, 135.9, 135.6, 128.6, 126.1, 126.0, 125.4, 124.8, 124.2, 123.40, 123.37, 68.9, 68.3, 65.7, 58.5, 53.3, 28.0, 26.9; IR ν_{max} (KBr) 2962, 1739, 1697, 1592, 1263, 1234, 699 cm⁻¹; HRMS (EI) m/z calcd for C₂₃H₁₉NO₂S₂ [M⁺] 405.0857, found 405.0851.

(2'R,3'S,7a'R)-2',3'-di(furan-2-yl)-2',3',5',6',7',7a'-hexahydrospiro[in dene-2,1'-pyrrolizine]-1,3-dione (13g)

浅 黄 色 固 體; 產 率 36%; $R_f = 0.47$ (30% EtOAc/hexanes); mp 142–143 °C; ¹H NMR (CDCl₃, 300 MHz) δ 8.03– 8.00 (m, 1H), 7.87–7.81 (m, 3H), 7.39 (d, J = 1.2 Hz, 1H), 7.21 (d, J =1.2 Hz, 1H), 6.23–6.20 (m, 2H), 6.10 (d, J = 3.0 Hz, 1H), 5.99 (d, J = 2.4Hz, 1H), 5.02 (d, J = 6.3 Hz, 1H), 4.65 (t, J = 7.5 Hz, 1H), 3.98 (d, J =6.0 Hz, 1H), 3.27–3.20 (m, 1H), 2.96–2.88 (m, 1H), 2.17–1.99 (m, 2H), 1.76–1.47 (m, 2H); ¹³C NMR (CDCl₃, 150 MHz) δ 201.5, 197.7, 153.7, 149.9, 142.2, 142.1, 141.4, 141.2, 135.9, 135.7, 123.4, 123.3, 109.93, 109.92, 109.7, 106.8, 70.1, 66.9, 65.4, 54.2, 53.7, 28.3, 26.6; IR ν_{max} (KBr) 2965, 2802, 1742, 1699, 1594, 1350, 1271, 1151, 782, 742 cm⁻¹; HRMS (EI) m/z calcd for C₂₃H₁₉NO₄ [M⁺] 373.1314, found 373.1319.

(2'R,3'S,7a'R)-2',3'-bis(5-nitrofuran-2-yl)-2',3',5',6',7',7a'-hexahydros piro[indene-2,1'-pyrrolizine]-1,3-dione (13h)

 O_2N 褐色固體;產率 31%; $R_f = 0.36$ (40% EtOAc/hexanes); mp 99–101 °C; ¹H NMR (CDCl₃, 300 MHz) δ 8.05 (d, J = 7.2 Hz, 1H), 7.92–7.88 (m, 3H), 7.17 (t, J = 3.6 Hz, 2H), 6.64 (d, J = 3.3 Hz, 1H), 6.44 (d, J = 3.3 Hz, 1H), 5.21 (d, J = 5.7 Hz, 1H), 4.49 (t, J = 6.9 Hz, 1H), 4.19 (d, J = 6.0 Hz, 1H), 3.22–3.15 (m, 1H), 2.91–2.83 (m, 1H), 2.15–2.04 (m, 2H), 1.75–1.44 (m, 2H); ¹³C NMR (CDCl₃, 150 MHz) δ 200.2, 196.5, 157.3, 152.9, 151.7, 151.6, 141.8, 141.1, 136.6, 136.5,

123.7, 123.6, 113.8, 112.5, 112.4, 111.5, 70.8, 66.1, 63.8, 53.8, 52.7, 28.4, 26.5; IR v_{max} (KBr) 2928, 1701, 1495, 1354, 1241, 1019, 810, 740 cm⁻¹; HRMS (EI) m/z calcd for C₂₃H₁₇N₃O₈ [M⁺] 463.1016, found 463.1021.

(2'R,3'S,7a'R)-2',3'-bis(5-methylfuran-2-yl)-2',3',5',6',7',7a'-hexahydr ospiro[indene-2,1'-pyrrolizine]-1,3-dione (13i)

褐色油肤物;產率 33%; $R_f = 0.48$ (30% EtOAc/hexanes); ¹H NMR (CDCl₃, 300 MHz) δ 8.00 (d, J = 5.7 Hz, 1H), 7.86–7.80 (m, 3H), 5.96 (dd, J = 15.5, 3.3 Hz, 2H), 5.81–5.79 (m, 2H), 4.90 (d, J = 6.3 Hz, 1H), 4.61 (t, J = 6.9 Hz, 1H), 3.91 (d, J = 6.3 Hz, 1H), 3.25–3.18 (m, 1H), 2.97–2.88 (m, 1H), 2.24 (s, 3H), 2.17 (s, 3H), 2.10–2.00 (m, 2H), 1.75–1.50 (m, 2H); ¹³C NMR (CDCl₃, 150 MHz) δ 201.5, 197.6, 151.9, 151.0, 150.7, 147.8, 142.3, 141.2, 135.8, 135.4, 123.13, 123.11, 110.4, 107.7, 106.0, 105.8, 69.6, 66.7, 65.8, 54.1, 54.0, 28.0, 26.4, 13.6, 13.4; IR v_{max} (KBr) 3426, 2948, 1740, 1702, 1594, 1328, 1263, 1163, 1020, 783, 734 cm⁻¹; HRMS (EI) m/z calcd for C₂₅H₂₃NO₄ [M⁺] 401.1627, found 401.1629.

(2'R,3'S,7a'R)-3'-(4-methoxyphenyl)-2'-(4-nitrophenyl)-2',3',5',6',7',7 a'-hexahydrospiro[indene-2,1'-pyrrolizine]-1,3-dione (13j)

EtOAc/hexanes); mp 104–106 °C; ¹H NMR (CDCl₃, 300 MHz) δ 8.07 (d, J = 7.2 Hz, 1H), 7.94 (d, J = 8.7 Hz, 2H), 7.89 (td, J = 7.5, 1.5 Hz, 1H), 7.83 (td, J = 7.5, 1.5 Hz, 1H), 7.77 (d, J = 6.6 Hz, 1H), 7.34 (d, J = 8.7 Hz, 2H), 7.18 (d, J = 8.1 Hz, 2H), 6.65 (d, J = 8.7 Hz, 2H), 5.19 (d, J = 6.0 Hz, 1H), 4.54 (t, J = 7.5 Hz, 1H), 3.86 (d, J = 5.7 Hz, 1H), 3.68 (s, 3H), 3.24–3.17 (m, 1H), 2.87–2.79 (m, 1H), 2.24–2.00 (m, 2H), 1.75–1.66 (m, 2H); ¹³C NMR (CDCl₃, 150 MHz) δ 201.2, 198.0, 158.0, 146.7, 143.7, 141.9, 141.1, 136.1, 136.0, 131.5, 131.3, 128.3, 123.5, 123.4, 122.7, 113.3, 72.2, 69.6, 65.2, 63.2, 55.0, 53.7, 28.6, 27.2; IR v_{max} (KBr) 2951, 1739, 1700, 1595, 1510, 1344, 1244, 1032, 857, 797 cm⁻¹; HRMS (EI) m/z calcd for C₂₈H₂₄N₂O₅ [M⁺] 468.1685, found 468.1691.

(2'R,3'S,7a'R)-2'-(4-(dimethylamino)phenyl)-3'-(4-methoxyphenyl)-2' ,3',5',6',7',7a'-hexahydrospiro[indene-2,1'-pyrrolizine]-1,3-dione (13k)

N 白色固體;產率 23%; $R_f = 0.1$ (20% EtOAc/hexanes); mp 135–137 °C; ¹H NMR (CDCl₃, 300 MHz) δ 8.03 (d, J = 7.2 Hz, 1H), 7.85–7.78 (m, 1H), 7.76 (d, J = 3.6 Hz, 2H), 7.19 (d, J = 8.4 Hz, 2H), 6.95 (d, J = 8.7 Hz, 2H), 6.65 (d, J = 8.7 Hz, 2H), 6.43 (d, J = 8.7 Hz, 2H), 5.00 (d, J = 5.7 Hz, 1H), 4.60 (t, J = 8.1 Hz, 1H), 3.69 (s, 3H), 3.68 (d, J = 5.7 Hz, 1H), 3.21–3.14 (m, 1H), 2.84(s, 6H), 2.79–2.76 (m, 1H), 2.23–2.15 (m, 1H), 2.10–1.98 (m, 1H), 1.77–1.67 (m, 2H); ¹³C NMR (CDCl₃, 150 MHz) δ 201.6, 199.9, 158.8, 149.6, 143.1, 142.1, 135.3, 134.8, 130.5, 129.1, 128.4, 123.3, 122.7, 122.5, 113.3, 112.3, 76.2, 73.5, 67.8, 58.4, 55.0, 54.1, 40.3, 25.7, 22.6; IR v_{max} (KBr) 2957, 1737,

1702, 1510, 1251, 1029, 821 cm⁻¹; HRMS (EI) m/z calcd for $C_{30}H_{30}N_2O_3$ [M⁺] 466.2256, found 466.2252.

(2'R,3'S,7a'R)-2'-([1,1'-biphenyl]-4-yl)-3'-(thiophen-2-yl)-2',3',5',6',7', 7a'-hexahydrospiro[indene-2,1'-pyrrolizine]-1,3-dione (13l)

^{ph} 自色固體;產率 19%; $R_f = 0.5$ (20% EtOAc/hexanes); mp 207–209 °C; ¹H NMR (CDCl₃, 300 MHz) δ 8.05 (d, J = 7.2 Hz, 1H), 7.88–7.82 (m, 1H), 7.80–7.78 (m, 2H), 7.56 (d, J = 9.0Hz, 2H), 7.41–7.35 (m, 3H), 7.29 (d, J = 8.4 Hz, 3H), 6.97 (dd, J = 1.5, 1.2 Hz, 1H), 6.81 (d, J = 3.6 Hz, 1H), 6.76 (d, J = 5.1 Hz, 1H), 6.74 (d, J = 5.1 Hz, 1H), 5.33 (d, J = 6.0 Hz, 1H), 4.65 (t, J = 7.8 Hz, 1H), 3.77 (d, J = 3.0 Hz, 1H), 3.29–3.22 (m, 1H), 2.98–2.90 (m, 1H), 2.25–2.17 (m, 1H), 2.11–1.97 (m, 1H), 1.75–1.67 (m, 2H); ¹³C NMR (CDCl₃, 150 MHz) δ 201.5, 197.7, 144.8, 142.2, 141.0, 140.7, 139.5, 135.9, 135.6, 134.3, 131.1, 128.5, 127.0, 126.9, 126.1, 126.06, 124.3, 123.9, 123.39, 123.36, 69.5, 68.9, 66.2, 64.0, 53.8, 28.4, 27.0; IR ν_{max} (KBr) 2807, 1699, 1489, 1345, 1248, 986, 721 cm⁻¹; HRMS (EI) m/z calcd for C₃₁H₂₅NO₂S [M⁺] 475.1606, found 475.1602. \circ

(2'S,3'S,7a'R)-2',3'-diphenyl-2',3',5',6',7',7a'-hexahydrospiro[indene-2,1'-pyrrolizine]-1,3-dione (14a)

黄色固體;產率 21%; $R_f = 0.36$ (20% EtOAc/hexanes); mp 102-104 °C; ¹H NMR (CDCl3, 300 MHz) δ 7.87– 7.82 (m, 1H), 7.78–7.75 (m, 1H), 7.71–7.66 (m, 2H), 7.42 (d, J = 6.9 Hz, 2H), 7.24–7.12 (m, 3H), 7.09–7.06 (m, 2H), 7.01–6.93 (m, 3H), 4.95 (d, J= 10.8 Hz, 1H), 4.44 (t, J = 7.5 Hz, 1H), 4.23 (d, J = 10.8 Hz, 1H), 3.02– 2.98 (m, 2H), 2.17–2.05 (m, 1H), 1.99–1.89 (m, 1H), 1.75–1.63 (m, 1H) , 1.60–1.48 (m, 1H); ¹³C NMR (CDCl3, 75 MHz) δ 201.6, 201.3, 142.7, 142.2, 142.0, 135.6, 135.4, 134.4, 128.9, 128.2, 128.1, 127.7, 127.5, 127.3, 127.2, 122.9, 122.7, 72.3, 71.2, 69.1, 64.1, 53.3, 28.0, 26.9; IR v_{max} (KBr) 2967, 1738, 1699, 1595, 1454, 1263, 764, 721, 700 cm⁻¹; HRMS (EI) m/z calcd for C₂₇H₂₃NO₂ [M⁺] 393.1729, found 393.1734.

(2'S,3'S,7a'R)-2',3'-di([1,1'-biphenyl]-4-yl)-2',3',5',6',7',7a'-hexahydro spiro[indene-2,1'-pyrrolizine]-1,3-dione (14e)

白色固體; 產率 6%; R_f=0.31 (30%

EtOAc/hexanes); mp 115–117 °C; ¹H NMR (CDCl₃, 300 MHz) δ 7.89– 7.86 (m, 1H), 7.81–7.78 (m, 1H), 7.73–7.67 (m, 2H), 7.55–7.51 (m, 4H), 7.48–7.23 (m, 12H), 7.18 (d, *J* = 8.7 Hz, 2H) 5.06 (d, *J* = 11.4 Hz, 1H), 4.50 (t, *J* = 7.8 Hz, 1H), 4.35 (d, *J* = 11.4 Hz, 1H), 3.11–3.04 (m, 2H), 2.19–2.09 (m, 1H), 2.05–1.93 (m, 1H), 1.78–1.67 (m, 1H), 1.64–1.54 (m, 1H); IR ν_{max} (KBr) 2970, 2334, 1738, 1703, 1487, 1358, 1262, 765, 747, 698 cm⁻¹; HRMS (EI) m/z calcd for C₃₉H₃₁NO₂ [M⁺] 545.2355, found 545.2351.

(2'S,3'S,7a'R)-2',3'-di(furan-2-yl)-2',3',5',6',7',7a'-hexahydrospiro[ind ene-2,1'-pyrrolizine]-1,3-dione (14g)

白色固體; 產率 30%; R_f=0.39 (30%

EtOAc/hexanes); mp 205–207 °C; ¹H NMR (CDCl₃, 300 MHz) δ 7.99– 7.96 (m, 1H), 7.88–7.77 (m, 3H), 7.39 (bs, 1H), 6.90 (d, J = 3.0 Hz, 1H), 6.29–6.26 (m, 2H), 6.01–5.99 (m, 1H), 5.93–5.91 (m, 1H), 4.83 (d, J =11.4 Hz, 1H), 4.61 (d, J = 11.4 Hz, 1H), 4.33 (t, J = 7.2 Hz, 1H), 3.14– 2.97 (m, 2H), 2.08–1.87 (m, 2H), 1.72–1.45 (m, 2H); ¹³C NMR (CDCl₃, 150 MHz) δ 200.8, 200.0, 153.8, 149.4, 142.5, 142.3, 142.2, 141.5, 135.7, 135.6, 123.2, 122.9, 110.05, 109.96, 107.6, 107.4, 70.5, 66.3, 65.5, 53.6, 52.8, 27.7, 26.7; IR v_{max} (KBr) 2952, 2868, 2326, 1737, 1702, 1593, 1363, 1263, 1002, 749, 731 cm⁻¹; HRMS (EI) m/z calcd for C₂₃H₁₉NO₄ [M⁺] 373.1314, found 373.1318.

(2'S,3'S,7a'R)-3'-(4-methoxyphenyl)-2'-(4-nitrophenyl)-2',3',5',6',7',7 a'-hexahydrospiro[indene-2,1'-pyrrolizine]-1,3-dione (14j)

NO₂ 橘色固體;產率4%; $R_f = 0.1$ (20% EtOAc/hexanes); mp 98–100 °C; ¹H NMR (CDCl₃, 300 MHz) δ 7.89–

7.85 (m, 2H), 7.82–7.77 (m, 2H), 7.76–7.73 (m, 2H), 7.32 (d, J = 8.7 Hz, 2H), 7.27 (d, J = 7.8 Hz, 2H), 6.77 (d, J = 8.7 Hz, 2H), 4.95 (d, J = 11.1 Hz, 1H), 4.40 (t, J = 7.8 Hz, 1H), 4.30 (d, J = 11.4 Hz, 1H), 3.73 (s, 3H), 3.69–3.64 (m, 1H), 3.01–2.93 (m, 2H), 2.14–1.87 (m, 2H), 1.74–1.46 (m, 1H); IR v_{max} (KBr) 2970, 1738, 1700, 1596, 1512, 1347, 1244, 1032, 827 cm⁻¹; HRMS (EI) m/z calcd for C₂₈H₂₄N₂O₅ [M⁺] 468.1685, found 468.1689.

4-Hydroxy-3-nitro coumarin (19)

4-Chloro-3-nitro coumarin (20)

A 溶液,並移至室溫攪拌 15 分鐘,之後加入冰水終止反應並析出固 體,將析出的固體抽氣過濾用冰水與正已烷沖洗固體。淡黃色固體; 產率 95%; R_f= 0.5 (30% EtOAc/hexanes); mp 160–161 °C (Lit.³⁸ 162– 163 °C); ¹H NMR (CDCl₃, 300 MHz) δ 8.01 (dd, J = 8.1, 1.5 Hz, 1H), 7.79 (td, J = 8.4, 1.5 Hz, 1H), 7.55–7.46 (m, 2H).

3-Amino-4-chloro coumarin (21)

3-Amino-4-hydroxy coumarin (22)

OH

↓↓↓ NH2
▶ 將化合物 19 (4 g, 22.58 mmol)溶於 200 mL 乙醇中,加
入少量 Pd/C 當催化劑,在氫氣下攪拌 6 小時固體析出,之後將 Pd/C
過濾,濃縮即可得產物。白色固體;產率 70%; R_f= 0.16 (10%
MeOH/DCM); mp 216 °C (Lit.³⁹ 222–224 °C); ¹H NMR (CDCl₃, 300

MHz) δ 8.19 (bs, 2H), 7.84 (dd, *J* = 8.0, 1.6 Hz, 1H), 7.47 (td, *J* = 7.6, 1.6 Hz, 1H), 7.25–7.21 (m, 2H); ¹³C NMR (CDCl3, 75 MHz) δ 162.8, 160.3, 151.7, 130.3, 123.8, 123.0, 121.3, 116.0, 96.7.

合成化合物 23a-f 的通用實驗步驟

室溫下將化合物 22 (25 mg, 0.141 mmol)溶於甲苯,加入苯乙酮 (7a, 33.9 mg, 0.282 mmol)以及催化劑量對甲苯磺酸,回流攪拌 6-24 小時,反應結束後靜置室溫,進行濃縮,利用管住層析分離,即可得 產物。

8,10-diphenylchromeno[3,4-b]azepin-6(9H)-one (23a)

黄色固體;產率 80%; $R_f = 0.42$ (30% EtOAc/hexanes); mp 220–221 °C; ¹H NMR (CDCl₃, 400 MHz) δ 7.89 (dd, J = 8.0, 1.6 Hz, 2H), 7.83 (dd, J = 7.8, 1.2 Hz, 1H), 7.62–7.60 (m, 2H), 7.50–7.40 (m, 5H), 7.38 (s, 1H), 7.39–7.35 (m, 1H), 7.33–7.29 (m, 3H), 5.01 (bs, 1H), 2.18 (bs, 1H); ¹³C NMR (CDCl₃, 75 MHz) δ 159.9, 152.0, 150.2, 138.4, 137.7, 136.0, 132.4, 131.1, 131.0, 129.8, 129.4, 129.1, 128.7, 128.5, 127.9, 124.4, 124.2, 119.7, 119.2, 117.2, 36.9; IR v_{max} (KBr) 3061, 1721, 1558, 1492, 1447, 1280, 1103, 1067, 766, 690 cm⁻¹.

8,10-bis(4-bromophenyl)chromeno[3,4-b]azepin-6(9H)-one (23b)

淡黄色固體; 產率 61%; $R_f = 0.28$ (20% EtOAc/hexanes); mp 256–258 °C; ¹H NMR (CDCl₃, 400 MHz) δ 7.80 (dd, J = 8.0, 1.2 Hz, 1H), 7.74 (d, J = 8.8 Hz, 2H), 7.60 (d, J = 8.4 Hz, 2H), 7.50 (dd, J = 8.2, 1.2 Hz, 1H), 7.46 (d, J = 8.4 Hz, 2H), 7.45 (d, J = 8.8 Hz, 2H), 7.42 (dd, J = 8.2, 1.2 Hz, 1H), 7.35 (s, 1H), 7.32 (td, J = 7.4, 1.2 Hz, 1H), 4.86 (bs, 1H), 2.17 (bs, 1H); ¹³C NMR (CDCl₃, 150 MHz) δ 159.6, 150.5, 150.3, 137.1, 136.1, 134.6, 132.5, 132.4, 131.9, 131.1, 130.17, 130.12, 129.4, 126.1, 124.6, 124.21, 124.17, 119.7, 119.4, 117.4, 36.5; IR v_{max} (KBr) 3073, 1726, 1579, 1557, 1491, 1281, 1111, 1072, 1006, 749 cm⁻¹.

8,10-bis(4-nitrophenyl)chromeno[3,4-b]azepin-6(9H)-one (23c)

黄色固體;產率 62%; $R_f = 0.32$ (40% EtOAc/hexanes); mp 232–234 °C; ¹H NMR (CDCl₃, 300 MHz) δ 8.35 (d, J = 8.4 Hz, 2H), 8.19 (d, J = 8.4 Hz, 2H), 8.02 (d, J = 8.7 Hz, 2H), 7.82 (d, J = 8.4 Hz, 1H), 7.77 (d, J = 8.4 Hz, 2H), 7.59–7.45 (m, 2H), 7.51 (s, 1H), 7.37 (t, J = 8.1 Hz, 1H), 4.95 (bs, 1H), 2.35 (bs, 1H); ¹³C NMR

(CDCl₃, 150 MHz) δ 159.0, 150.5, 149.5, 149.2, 148.3, 143.9, 141.0, 134.6, 133.1, 131.5, 130.9, 129.5, 128.7, 124.9, 124.6, 124.3, 124.0, 122.2, 118.8, 117.6, 36.6; IR v_{max} (KBr) 2926, 1731, 1594, 1514, 1344, 1109, 847, 751, 692 cm⁻¹.

8,10-bis(4-methoxyphenyl)chromeno[3,4-b]azepin-6(9H)-one (23d)

黄色固體,產率 63%。 $R_f = 0.34$ (40% EtOAc/hexanes); mp 184–186 °C; ¹H NMR (CDCl₃, 300 MHz) δ 7.87 (d, J = 9.0 Hz, 2H), 7.81 (d, J = 7.2 Hz, 1H), 7.56 (d, J = 8.7 Hz, 2H), 7.48– 7.31 (m, 3H), 7.28 (s, 1H), 6.95 (d, J = 9.0 Hz, 2H), 6.80 (d, J = 8.7 Hz, 2H), 4.94 (bs, 1H), 3.86 (s, 3H), 3.78 (s, 3H), 2.07 (bs, 1H); ¹³C NMR (CDCl₃, 150 MHz) δ 161.9, 160.6, 160.3, 151.0, 150.1, 137.1, 132.1, 131.0, 130.8, 130.6, 129.5, 129.4, 128.7, 124.3, 124.1, 120.0, 117.7, 117.2, 114.4, 113.9, 55.4, 55.3, 36.7; IR v_{max} (KBr) 2918, 1706, 1563, 1508, 1256, 1182, 1079, 1027, 769 cm⁻¹.

8,10-bis(4-(dimethylamino)phenyl)chromeno[3,4-*b*]azepin-6(9*H*)-one (23e)

橘色固體;產率 12%; $R_f = 0.26$ (40% EtOAc/hexanes); mp 286–288 °C; ¹H NMR (CDCl₃, 300 MHz) δ 7.87 (d, J = 9.3 Hz, 2H), 7.81 (d, J = 7.5 Hz, 1H), 7.55 (d, J = 9.0 Hz, 2H), 7.44– 7.36 (m, 2H), 7.29–7.23 (m, 1H), 7.25 (s, 1H), 6.73 (d, J = 9.0 Hz, 2H), 6.56 (d, J = 9.3 Hz, 2H), 4.98 (bs, 1H), 3.03 (s, 6H), 2.97 (s, 6H), 2.00 (bs, 1H); ¹³C NMR (CDCl₃, 150 MHz) δ 160.8, 151.9, 151.4, 150.9, 149.9, 137.8, 131.7, 130.43, 130.42, 129.2, 128.9, 125.9, 124.1, 123.9, 123.8, 120.6, 117.0, 115.7, 112.0, 111.2, 40.2, 40.0, 35.9; IR ν_{max} (KBr) 2805, 1721, 1603, 1526, 1365, 1189, 1073, 821, 801, 757 cm⁻¹.

8,10-di-o-tolylchromeno[3,4-b]azepin-6(9H)-one (23f)

淡黃色固體;產率 37%; $R_f = 0.34$ (20% EtOAc/hexanes); mp 216–218 °C; ¹H NMR (CDCl₃, 400 MHz) δ 7.78 (dd, J = 8.0, 0.8 Hz, 1H), 7.47 (td, J = 8.4, 1.2 Hz, 1H), 7.41 (dd, J = 8.2, 1.2 Hz, 1H), 7.29 (td, J = 8.0, 1.2 Hz, 1H), 7.26–7.23 (m, 2H), 7.22–7.18 (m, 3H), 7.15 (s, 1H), 7.16–7.12 (m, 1H), 7.07–7.04 (m, 2H), 4.46 (bs, 1H), 2.52 (s, 3H), 2.44 (bs, 1H), 2.35 (s, 3H).

第六章、参考文獻

- 1. Wender, P. A.; Handy, S. T.; Wright, D. L. Chem. Ind. 1997, 765–769.
- 2. Dömling, A.; Ugi, I. Angew. Chem. Int. Ed. 2000, 39, 3168–3210.
- Ruijter, E.; Scheffelaar, R.; Orru, R. V. A. Angew. Chem. Int. Ed. 2011, 50, 6234–6246.
- 4. (a) Hayes, B. L. *Aldrichimica Acta* 2004, *37*, 66–77; (b) Kappe, C. O.; Stadler, A.; Dallinger, D. *Wiley* 2012, *52*, 2nd Ed; (c) Lidstrom, P.; Tierney, J.; Wathey, B.; Westman, J. *Tetrahedron* 2001, *57*, 9225–9283.
- 5. Gedye, R.; Smith, F.; Westaway, K.; Ali, H.; Baldisera, L.; Laberge, L.; Rousell, J. *Tetrahedron Lett.* **1986**, *27*, 279–282.
- Nüchter, M.; Ondruschka, B.; Bonrath, W.; Gum, A. *Green Chem.* 2004, *6*, 128–141.
- 7. Kappe, C. O. Angew. Chem. Int. Ed. 2004, 43, 6250-6284.
- Haraburda, E.; Lledo, A.; Roglans, A.; Pla-Quintana, A. Org. Lett. 2015, 17, 2882–2885.
- Manian, R. D. R. S.; Jayashankaran, J.; Raghunathan, R. *Tetrahedron* 2006, 62, 12357–12362.
- 10. Wang, Y.; Frett, B.; Li, H. Y. Org. Lett. 2014, 16, 3016–3019.
- 11. Sethna, S. M.; Shah, N. M. Chem. Rev. 1945, 36, 1-62.
- 12. Lake, B. G. Food Chem. Toxicol. 1999, 37, 423-453.
- 13. (a) Hara, K.; Wang, Z. S.; Sato, T.; Furube, A.; Katoh, R.; Sugihara, H.; Dan-oh, Y.; Kasada, C.; Shinpo, A.; Suga, S. *J. Phys. Chem. B* **2005**, *109*, 15476–15482; (b) Chen, J.; Liu, W.; Ma, J.; Xu, H.; Wu, J.; Tang, X.; Fan, Z.; Wang, P. *J. Org. Chem.* **2012**, *77*, 3475–3482.
- Egan, D.; O'Kennedy, R.; Moran, E.; Cox, D.; Prosser, E.; Thornes, R. D. Drug Metab. Rev. 1990, 22, 503–529.
- 15. Wiedenfeld, H.; Edgar, J. Phytochem. Rev. 2010, 10, 137-151.
- 16. Robertson, J.; Stevens, K. Nat. Prod. Rep. 2014, 31, 1721–1788.
- 17. Andrez, J. C. Beilstein J. Org. Chem. 2009, 5, 1–33.
- 18. Zhou, J.; Zhou, S. J. Ethnopharmacol. 2010, 132, 15–27.
- Sugie, Y.; Hirai, H.; Kachi-Tonai, H.; Kim, Y. J.; Kojima, Y.; Shiomi, Y.; Sugiura, A.; Sugiura, A.; Suzuki, Y.; Yoshikawa, N.; Brennan, L.; Duignan, J.; Huang, L. H.; Sutcliffe, J.; Kojima, N. J. Antibiot. 2001, 54, 917–925.
- 20. Lambert, T. H.; Danishefsky, S. J. Am. Chem. Soc. 2006, 128, 426-

427.

- Liu, L.; Zheng, T.; Morris, M. J.; Wallengren, C.; Clarke, A. L.; Reid, C. A.; Petrou, S.; O'Brien, T. J. *J. Pharmacol. Exp. Ther.* **2006**, *319*, 790–798.
- 22. Theobald, D. E.; Kirsh, K. L.; Holtsclaw, E.; Donaghy, K.; Passik, S. D. J. Pain Symptom Manage. 2002, 23, 442–447.
- 23. Calcaterra, N. E.; Barrow, J. C. ACS Chem. Neurosci. 2014, 5, 253–260.
- Manjappa, K. B.; Jhang, W. F.; Huang, S. Y.; Yang, D. Y. Org. Lett. 2014, 16, 5690–5693.
- 25. 東海大學 應用化學系:楊喻茹碩士論文, 2013年。
- Ramig, K.; Alli, S.; Cheng, M.; Leung, R.; Razi, R.; Washington, M.; Kudzma, L. V. Synlett 2007, 2868–2870.
- 27.(a) Smith, B. M.; Smith, J. M.; Tsai, J. H.; Schultz, J. A.; Gilson, C. A.; Estrada, S. A.; Chen, R. R.; Park, D. M.; Prieto, E. B.; Gallardo, C. S.; Sengupta, D.; Dosa, P. I.; Covel, J. A.; Ren, A.; Webb, R. R.; Beeley, N. R. A.; Martin, M.; Morgan, M.; Espitia, S.; Saldana, H. R.; Bjenning, C.; Whelan, K. T.; Grottick, A. J.; Menzaghi, F.; Thomsen, W. J. *J. Med. Chem.* 2008, *51*, 305–313; (b) Coe, J. W.; Brooks, P. R.; Vetelino, M. G.; Wirtz, M. C.; Arnold, E. P.; Huang , J.; Sands, S. B.; Davis, T. I.; Lebel, L. A.; Fox, C. B.; Shrikhande, A.; Heym, J. H.; Schaeffer, E.; Rollema, H.; Lu, Y.; Mansbach, R. S.; Chambers, L. K.; Rovetti, C. C.; Schulz, D. W.; Tingley, F. D.; O'Neill, B. T. *J. Med. Chem.* 2005, *48*, 3474–3477.
- 28. (a) Ranatunga, S.; Tang, C. H.; Kang, C. W.; Kriss, C. L.; Kloppenburg, B. J.; Hu, C. C.; Del Valle, J. R. *J. Med. Chem.* 2014, 57, 4289–4301; (b) Kuroki, Y.; Akao, R.; Inazumi, T.; Noguehi, M. *Tetrahedron* 1994, 50, 1063–1072; (c) Waly, M. A.; Mashaly, M. M.; Khodeir, M. N.; Omar, A. *Boll. Chim. Farm.* 1994, *113*, 698–703; (d) Prasad, K. R.; Darbarwar, M. *Synth. Commun.* 1990, 20, 1379–1385.
- 29. 東海大學 應用化學系:張瑋方碩士論文, 2015年。
- 30. Butler, A. R.; Brown, E. H. Arkivoc 2002, 166–171.
- 31. Lee, C. J.; Sheu, C. N.; Tsai, C. C.; Wu, Z. Z.; Lin, W. *Chem. Commun.* **2014**, *50*, 5304–5306.
- 32. Mitka, K.; Kowalski, P.; Pawelec, D.; Majkab, Z. *Croat. Chem. Acta* **2009**, *82*, 613–618.

- 33. Ahmedova, A.; Burdzhiev, N.; Ciattini, S.; Stanoeva, E.; Mitewa, M. *C. R. Chim.* **2010**, *13*, 1269–1277.
- 34. Karthik, R.; Jasmin, S. R.; Sasikumar, S.; Betanabhatla, K. S.; Christina, A. J. M.; Athimoolam, J.; Saravanan, K. *Pharmacologyonline* 2008, 176–191.
- 35. Child, R. G.; Osterberg, A. C.; Sloboda, A. E.; Tomcufcik, A. S. J. *Pharm. Sci.* **1977**, *66*, 466–476.
- Buu-Hoï, N. G. P.; Hoán, N.; Lavit, D. J. Chem. Soc. 1950, 2130– 2134.
- 37. Ganguly, N. C.; Datta, M.; De, P.; Chakravarty, R. *Synth. Commun.* **2003**, *33*, 647–659.
- Dekic, B. R.; Radulovic, N. S.; Dekic, V. S.; Vukicevic, R. D.; Palic, R. M. *Molecules* 2010, 15, 2246–2256.
- 39. Brady, I.; Leane, D.; Hughes, H. P.; Forster, R. J.; Keyes, T. E. Dalton *Trans.* **2004**, *21*, 334–341.

附錄一、圖譜目錄

化合物	11a 之氫核磁共振光譜	74
化合物	11b 之氫核磁共振光譜	75
化合物	11c 之氫核磁共振光譜	76
化合物	11d 之氫核磁共振光譜	77
化合物	11e 之氫核磁共振光譜	78
化合物	11f 之氫核磁共振光譜	79
化合物	11g之氫核磁共振光譜	80
化合物	11h 之氫核磁共振光譜	81
化合物	11h 之碳核磁共振光谱	82
化合物	11i之氫核磁共振光譜	83
化合物	11i之碳核磁共振光譜	84
化合物	12a 之氫核磁共振光譜	85
化合物	12a 之碳核磁共振光谱	86
化合物	12b 之氫核磁共振光譜	87
化合物	12b 之碳核磁共振光譜	88
化合物	12c 之氫核磁共振光譜	89
化合物	12c 之碳核磁共振光譜	.90

化合物	12d 之氫核磁共振光譜9	1
化合物	12d 之碳核磁共振光谱9	2
化合物	12e 之氫核磁共振光譜9	3
化合物	12e 之碳核磁共振光谱9	94
化合物	12f 之氫核磁共振光譜9	5י
化合物	12f 之碳核磁共振光谱9	6
化合物	12g 之氫核磁共振光譜9	7י
化合物	12g 之碳核磁共振光谱9	8
化合物	12h 之氫核磁共振光譜9	9
化合物	12h 之碳核磁共振光谱10	0
化合物	12i 之氫核磁共振光譜10)1
化合物	12i 之碳核磁共振光譜10	12
化合物	12j 之氫核磁共振光譜10	13
化合物	12j 之碳核磁共振光谱10)4
化合物	12k 之氫核磁共振光譜10	15
化合物	12k 之碳核磁共振光譜10	16
化合物	121 之氫核磁共振光譜10	17
化合物	121 之碳核磁共振光谱10	18
化合物	13a 之氫核磁共振光譜10)9

化合物	13a 之碳核磁共振光譜1	10
化合物	13b 之氫核磁共振光譜1	11
化合物	13b 之碳核磁共振光谱1	12
化合物	13c 之氫核磁共振光譜1	13
化合物	13c 之碳核磁共振光谱1	14
化合物	13d 之氫核磁共振光譜1	15
化合物	13d 之碳核磁共振光譜1	16
化合物	13e 之氫核磁共振光譜1	17
化合物	13e 之碳核磁共振光譜1	18
化合物	13f 之氫核磁共振光譜1	19
化合物	13f 之碳核磁共振光谱12	20
化合物	13g 之氫核磁共振光譜12	21
化合物	13g 之碳核磁共振光谱12	22
化合物	13h 之氫核磁共振光譜12	23
化合物	13h 之碳核磁共振光譜12	24
化合物	13i 之氫核磁共振光譜12	25
化合物	13i 之碳核磁共振光谱12	26
化合物	13j 之氫核磁共振光譜12	27
化合物	13j 之碳核磁共振光谱12	28

化合物	13k 之氫核磁共振光譜1	29
化合物	13k 之碳核磁共振光譜1	30
化合物	131之氫核磁共振光譜1	31
化合物	131 之碳核磁共振光谱1	.32
化合物	14a 之氫核磁共振光譜1	.33
化合物	14a 之碳核磁共振光譜1	.34
化合物	14e 之氫核磁共振光譜1	35
化合物	14g 之氫核磁共振光譜1	36
化合物	14g 之碳核磁共振光譜1	37
化合物	14j 之氫核磁共振光譜1	.38
化合物	19 之氫核磁共振光譜1	.39
化合物	20 之氫核磁共振光譜1	40
化合物	20 之碳核磁共振光谱1	41
化合物	21 之氫核磁共振光譜1	.42
化合物	21 之碳核磁共振光谱1	.43
化合物	22之氢核磁共振光谱1	.44
化合物	23a 之氫核磁共振光譜1	45
化合物	23a 之碳核磁共振光譜1	46
化合物	23b 之氫核磁共振光譜1	.47

化合物	23b 之碳核磁共振光譜	
化合物	23c 之氫核磁共振光譜.	
化合物	23c 之碳核磁共振光谱.	
化合物	23d 之氫核磁共振光譜	
化合物	23d 之碳核磁共振光譜	
化合物	23e 之氫核磁共振光譜.	
化合物	23e 之碳核磁共振光谱.	
化合物	23f 之氫核磁共振光譜.	

附錄二、圖譜資料

化合物 11a 之氫核磁共振光譜

94

97

98

T 020		8 VT.065 300.065 300 200 1.0 5553f
. 2774		dfra dfra dowr dafra daf daf daf daf daf daf daf daf daf da
IH OBSERVE	411	4PLE 21 30 2014 21 30 2014 21 32 413 32,413 32,413 32,413 32,413 32,413 32,413 32,413 32,610 15,55 1,555 1,
STANDARD	exp6 sto	adate SA solven 00 solven 00 string the the the the the the the the the the

Ś

exp7 std1h

DYYYT018

. & VT 300.065 11 30 ппп 200 200

DEC.

BMK-2-190 exp6 std1h

ft 65536 f

dfrg CC, 300.06 ddwr 300.06 ddm add 7 ddm 20 ddm 20 ddr 20 dres 1. PROCESSING 1. PROCESSING 5553 math 65553 math 7 wwer

da da da da da da da da da fa

DYYYT024

1.0

dseq dres homo

PROCESSING

ft 65536 f

wtfile proc fn math

werr wexp wbs wnt

mdd

0

mdd

150

152

