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Abstract

Nowadays, speech recognition has many practical applications which are
currently used by people in the world. Typical examples are the SIRI of iPhone,
Google speech recognition system, and mobile phones operated by voice, etc. On the
contrary, speaker identification in 1ts current stage is relatively immature. Therefore,
in this paper, we study a speaker.identification technique which first takes the original
voice signals of a person, e.g., Bob. After that, the voice signals is converted from
time domain to frequency domain by employing the Fourier transformation approach.
A MFECC-based human auditory filtering model is then utilized to adjust the energy
levels of different frequencies as the quantified characteristics of Bob’s voice. Next,
the energies are normalized to the scales of logarithm as the feature of the voice
signals. Further; the probability density. function of Gaussian mixture model is
employed to represent the distribution of the logarithmic characteristics as Bob’s
specific acoustic model. When receiving an unknown person;.e.g., X’s voice, the
system processes the voice with the same procedure, and compares the processing
result, which is x’s acoustic model, with known-people’s acoustic models collected in

an acoustic-model database beforehand to identify who the maost possible speaker is.

Keywords: speaker identification, Fourier transformation, Mel-frequency cepstral

coefficients, Gaussian mixture model, acoustic model
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1. Introduction

In this information era, many high-tech products gradually enter our everyday
lives, and significantly change our living habits and patterns. The biometrics
identification technology which provides us with easier and more convenient methods
to identify specific people has gradually replaced some existing authentication
techniques, that need to be learned-before people can. operate them properly. The face
recognition systems used at airport halls [1] and the voice assistant SIRI of iPhone [2]

are two examples of the biometric identification systems.

On the one hand, voice has been the most direct method for us to express ideas,
communicate with others and do something for interaction. People invented
telephones, which started from home phones, then evolving to the next generation,
called functional phone, and at last the current smart phone. No matter how their
functions and shapes-are changed, the fact that people use voice to deliver information
and communicate with others has not been changed. In fact, voice is the easiest and
most convenient way. for people to transmit their messages. Therefore, identifying
people’s identities. from user’s dialogue voice and dialogue contents, and then
providing the corresponding services should be a better method to practically improve
and convene our everyday lives. Up to present, voice recognition technology has been
well developed, and the speech recognition technology [3] is relatively matured and
has been applied to our living activities. But speaker identification technology [4] is
still far away from its practical applications. The reasons are that 1) there are too
many parameters needed to be processed for speaker identification; 2) it is hard to

collect voice features completely; 3) the identification process is complicated and



takes a long time for calculation. Thus, it is difficult to be applied to those
applications which need immediate response. Furthermore, the studies of speaker
identification nowadays are partial, rather than a whole. For example, Hidden Markov
Model Toolkit (HTK) [5], Kaldi Speech Recognition Toolkit [6], and so on,
individually focus on different portions of speech recognition. HTK is developed for
statement recognition without having acoustic model matching function, and Kaldi is
used to recognize speech. lacking feature extraction. Therefore, in this study, we
implement a practical system, which integrates several existing partial techniques and
subsystems and improve their interfaces/functions to_make.them as a whole so as to

practically bring more convenience to people’s lives.

The rest of this paper is organized as follows. Sections 2 and 3 introduce related
work and background of this study, respectively. Section 4 presents our System
architecture, System implementation and evaluation are described and discussed in

Section 5. Section.6-concludes this paper and outlines our future studies.



2. Related Work

Speech is one of human’s most convenient biological communication tools due to
its features of universe, convenience and uniqueness. In recent years, people start
using biometrics to validate one’s identity, e.g., using voice to recognize who the
speaker is. This issue is called speaker identification. Compared with other biometrics

technologies, the advantages of speaker recognition-are as follows.

(1) Voice is easy to acquire, and users are also-relatively easier to accept and use
voice to identify a person when the person’s face cannot be seen currently, only

voice.

(2) Voice access costs are low, and voice is easily available and able to be simply

used.

2.1 Voice Recognition System

\oice recognition technology can be roughly divided into two sub-areas: speech
recognition and speaker recognition [7]. The former.is to analyze the content of the
words/speech spoken by a speaker, whereas the latter is to identify who the speaker is.
Some applications of speech recognition can be found in the market. But as
mentioned above the speaker recognition is far away from mature. This study focuses
on the latter, which can be roughly divided into two parts: Speaker Identification and
Speaker Verification [8]. The speaker verification is a process used to determine the
probability that a speaker, e.g. u, is really the speaker x; in a set of known speakers

S = {x1,x5,x5 ... x,} asa verification. On the other hand, when receiving voice



signals of a speaker u, a speaker recognition system will find out the most likely and
possible speakers from S by comparing the similarities between u and each

X, X, €5,1<i<n

The speaker identification systems can be divided into two types, including
text-dependent [9] and text-independent [10], according to the words pronounced or
speech given, i.e., the context of the voice. The type of text-dependent is the case in
which the context is fixed to specified words or a specific speech/article. All speakers
read the same words or sentences,. then the identification system records the voice
signals, and extract their features with which to perform its.identification. The design
of such a system is relatively simple. The type of text-independent is the case in
which a speaker can say anything that he/she likes, without any limitation. This type
of system extracts speaker’s pronunciation features for modeling and compares the
similarity betweenu and x;, x; € S, S0 as to identify who the speaker is. Because the
scope of words/sentences involved is wider, the design of such a system is relatively
complex, and the implementation.is difficult. But the system flexibility is high. It is
useful to the real world, and the space of its future development is wide. In fact, this
type of system is more helpful to people in our ‘everyday activities than the type of

text-dependent systems.

2.2 The Environmental Noise

\oice recognition has been applied to a variety of domains [11][12][13]. But
voice recognition systems are very susceptible to noise, often resulting in poor
recognition rate. In the real world, different environments will generate different types

of noise of different features. Generally, the sounds collected, no matter whether



outdoors or indoors, usually have a certain degree of environmental noise. The
problem is that when the same noise Y appears in both the training phase and test
phase, the noise will be a part of the acoustic models of x; and u. Consequently, even
Ay, and A, after removing Y are quite different, A, and4, with Y will be
something similar. On the other hand, if the environmental noise individually in
Ay, and A, are the different, even x; and u_are the same person, something different
will be found between A, and 4,,. Both cages will affect the comparison result of
similarity. Researchers are considering how to-reduce-the effects due to environmental
noise, i.e., how to increase the degree of.anti-interference, so as to correctly recognize
voice signals. This is also one of the key topics in the research of voice recognition.
One of the methods is Spectral Subtraction (SS) [14], which superimpaositions a small
background sound as noises over the original voice signals. In the original voice
signals, those voice components the same as those of the noises will be hiddened, so
as to achieve the purpose of noise reduction..However, based on the unrecoverability
of the voice signal superimposition, spectral subtraction may also destroy some
spectral details in the original signal [15], leading to the loss of some useful
information. In order to improve this deficiency, the Support Vector Machine(SVM)
[16] classifies voice features into different classes, aiming to reduce the difference
among voice features of the same, class to_improve recognition accuracy. But this
method often requires a lot of training voice, and 1s not conducive to a timely

response system.

2.3 Operational Efficiency

A voice recognition system installed in a mobile device has its market

advantages compared to those voice recognition systems installed in a PC. If a voice
5



recognition system can be one of the applications of a mobile device, smart phones
and other 3C portable products, it can then process people's voice, and understand
user's commands. With the system, some valuable operations, functions and
algorithms can be implemented in them, to not only prevent these devices from
unauthorized use, i.e., voice recognition can be employed as one of security tools, but
also make these systems more convenient to be utilized and more human-oriented, i.e.,
they can make system more friendly, thus greatly enhancing these products’ market

competitiveness.

Generally, PC’s computing power and capability exceeds maobile devices’. So the
voice recognition algorithms run on a PC can be more complex than those on a
mobile phone. When wanting to port these algorithms from a PC to a mobile device,
we need to consider the processing speed and capability of the mobile device, its
operational efficiency, the amount of resources it consumes and the amount of
calculation required; which are the new challenges of the voice recognition system in

the future.



3. Background of this study

Generally, sound is an analog signal which must be converted to a digital signal
before it can be processed by a computer. Often, the processed voice data is very large.
So from processing efficiency viewpoint, we must extract the most representative

features from the data. This.is so-called feature extraction.

The process of speaker identification consistsof two phases, I.e., training and test.
The training phase is to extract voice features of a speaker u by using a feature
extraction technique and then establish an acoustic model for. u. The test phase is to
calculate the similarity between the acoustic model created for the voice of an

unknown speaker x and the acoustic models of u, and then judge whether or not x is u.

3.1 Feature Extraction

\oice signals in time domain change very fast and sharply. But if we transform
the voice signals from time domain to frequency domain, the corresponding spectrum
can be clearly shown. The spectrum is the connotative.characteristics of the voice
signals. Also, the voice signals have a characteristic of short time stationary [17],
meaning it is stable in a short time period without changing significantly. Therefore,
we can also observe the instantaneous frequency [18] of the signals from the

spectrum.

To extract features from voice signals, people often divide voice signals into
units, each of which consists of continuous signals. A unit comprises signals in a very

short time period, e.g., T. Often T is fixed. Generally, the signals in a unit is called a



frame, from which we can extract the voice features. In this study, the feature
extraction technique employed is Mel-Frequency Cepstral Coefficients (MFCC) [19].
The MFCC is designed based on the characteristics of human ears which have
different acoustical sensitivities to the sounds of different frequencies. Mel scale, as
shown in Figure 1, is a non-linear scale on frequencies following the sensitivities of
human ear when hearing sounds. It is proposed by Stevens et al. [20] in 1937. As
shown, the human ears are not sensitive on high-frequency sound, but are relatively
sensitive on low frequency. The-equation which converts frequency f to Mel scales

fmer(f) is as follows [20].

fmet(f) = 2595 X log (1 +%) (1)

3000 -

2500 |-

1500 -

Mel scale

1000

0 1 i 1 1 i I 1 1 1
0 1000 2000 3000 4000 5000 6000 7000 8000 S000 10000
Hertz scale

Figure 1. The Mel scale [20].



In this study, we design a set of triangular bandpass filters based on the Mel
scales of different frequencies to filter input signals as the simulation of Human-ear
experience when hearing sound comprising different frequencies. We first filter the
energies of the frequencies in the processed signal spectrum with the triangular
bandpass filters. The energies of high-frequency signals will be reduced largely due to
less sensitive (i.e., attenuation is larger), whereas those of low-frequency signals will
be reduced relatively lower. After that, the remaining energies of the signals will be
converted and quantized into_the scales of logarithm as the features of the voice

signals.

3.2 Building Speaker Model

After the feature extraction, the voice signals in fact are converted to a large
number of feature parameters. Then, we need to find a suitable statistical model to
describe the distribution of these parameters. With this model, we can compare the

similarities of the voice features among different persons.

In recent years, studies indicate that the. energy distribution of human voice
signals follows a Gaussian Model [21]. Therefore, this-study chooses the Gaussian
Mixture Model (GMM) [22] as the statistics model of the energy distribution when
are text-independent speaker identification system is developed. In other words,

GMM is utilized to build the feature model as the acoustic model of the speaker.

3.2.1 Gaussian Mixture Model

In the real world, many data distributions show the characteristic of the Gaussian

model, also known as a normal distribution. This model has been widely used in
9



identifying and/or classifying the distribution of something. The GMM is a
combination of multiple Gaussian models, and each Gaussian model is given a weight
to express the distribution among these Gaussian models. Figure 2 shows an example,

in which there are a total of three Gaussian models.

Figure 2. AGMM which consists of three Gaussian models [23].

A GMM formula can.be expressed as follows.

M
pEID = ) wibi) )

in which M is the number of Gaussian models in the GMM, x is the feature vector of
dimension D where D varies depending on the accuracy that a feature extraction
method we would like to have, b;(x) is the x;’s Gaussian model, w; is the weight

of Gaussian model i , where Y™, w; = 1.

10



3.2.2 Training Phase

In order to identify the distribution probability of the voice features of a speaker,
denoted by 4, we use the Maximum Likelihood Estimation (MLE) [24], which is the
basic theory of Expectation Maximization (EM), to identify the most suitable
parameters of the corresponding GMM, so that the conditional parameter-distribution
probability of the GMM, denoted. by P(X|1), is the most similar to that of the
speaker’s features. In the training phase, the MLE algorithm iteratively calculates the
expected value of P(X|1) by using.its-previous features, i.e., the result of the last
iteration, and initial parametersto find out the maximized 2. The detailed steps will be

described in Chapter 4.

3.3 The Speaker ldentification Method

When the system receives an unknown speaker, e.g., x’s voice signals, the
identification system-performs the aforementioned procedure to process the voice
signals, and compares the similarity between x’s voice features and each of the
registered users’ GMMs collected in the acoustic-model database (maybe creating
indexes to reduce the searching space of the objects). The purpose is to find out the
registered user, e.g., u, whose voice features-are the most similar to x’s. In the signal
feature space, the similarity between x and u is reflected on the distance between x’s
and u’s acoustic models, denoted by A, and A,, respectively. In other words, in an
ideal case, if x and u are different individuals, the distance between A, and A, inthe
signal feature space (such as the aforementioned D dimensions) will be longer than
the distance between the two acoustic models established for the same speaker, i.e.,

A, — 4| < 1A, — Ay, where A," is an acoustical model pre-established in the

11



acoustic-model database for x. Theoretically, |1, — 4’| = minycjep{|2, — 4}
where M is the number of trained users, i.e., the number of acoustic models collected

in the acoustic-model database.

There are at least two distances that are the most widely used to express

|4, — 4|, i.e., Euclidean distance and Bhattacharyya distance [25]. The Euclidean

distance takes into account the ave ce between the distributions of two

12



4. The System Architecture

Because a speaker identification system contains wide areas of techniques, it is
not easy to integrate them together. The identification procedure generally comprises
three steps. 1) Feature extraction; 2) Acoustic model establishment; 3) Acoustic model
matching. However, the. steps may be slightly changed depending on the
environments in which the identification system works on. For example, if voice is
transmitted through telephones or collected in a-noisy place; the noise needs to be

reduced first. Even this, basically they still follow the three main steps.

4.1 MFCC Process

The process.flow of MFCC is shown in Figure 3. After signals are received, the
system partitions.the signals into frames, invokes a window function to increase the
continuity of voice signals in a frame, utilizes the fast Fourier transform to convert the
digital signals into spectrum data, and employs the Triangular bandpass filter designed
in this study to simulate the spectral data process of our ears. Finally, the Discrete

Cosine Transform (DCT) [26] is used to-convert the spectral energy data into MFCC.

13
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Figure 3. MFCC process

(1) Framing

Framing is a voice slicing method that divides a chosen voice file F info frames
of fixed time period, e.g., T, since F is often long. But T is short, in general ranging
between 20-30ms, in which the voice signals usually are regular and continuous, i.e.,
the 'main purpose of framing is to reduce discontinuity of the signals in a frame,
because signal discontinuity may lead to extracting incorrect parameter values during
analysis. In this study, T = 26ms. Also, to avoid discontinuity between two adjacent
frames, every two consecutive frames as shown in Figure 4 are mutually overlapped
13ms. That'is, the signals in the second half of frame i is-also the signals of the first
half of frame i+1, for all is, i=1,2,..,n—1 where n is the number of frames
partitioned from F. In other words, the first half of frame 1 and the second half of
frame n of F are processed only once by our scheme. The rest of the signals is

processed twice.

14
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Figure 4. After Framing, each pair of consecutive frames will overlap 13ms.

(2) Window function

In this study, we use the Hamming window. [27] to process a frame. The
Hamming window is a window function able to change the phases of voice signals to
a designated range to make the voice signals between two.consecutive frames more
continuous. Given a frame S(n), n=0,1,...,N — 1, assume that S'(n) is the
processing result of S(n) by invoking the Hamming window, where N is the total

number of frames obtained by dividing a voice file, then [28]

S'(n) =S(n) *W(n,a) 3

where W(n,a) = (1 —a) —a X cos%,o <n <N —1, is the Hamming window

function. From W (n, a), we can see that different positions of the signal waveforms

of S(n) are modified differently, i.e., different degrees of amplitude reduction. The

15



amplitude reduction in the head and tail areas of a frame, e.g., S(n), will be greater
than that in the middle area. The purpose is to increase the overall signal continuity
between S(n) and its direct neighbor frames. A larger a value will cause strong
signal connectivity, meaning waveforms are sharply shaped. Of course, the smaller
the value of a, the weaker the continuity of the signals in a frame, but more signal

details are still retained.

(3) Triangular bandpass filter and Discrete cosine transform

This study uses-a set of Q triangular bandpass filters to filter voice signals after
the signals are transformed into frequency-domain signals. The purpose is to make the
signals follow the attenuation characteristics of the Mel scale (see Figure 1). In Figure
5, the frequency band is between 0 and 8000 (Hz). A total of 10 triangular band-pass
filters is given. The low-frequency part has.a more dense band-pass filters, meaning
after the filter, the attenuated energies are low since human ears are sensitive on low

frequencies. The density of the high-frequency part is relatively lower.

16
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Figure 5. 10 triangular bandpass filters between 0 and 8000 (Hz) bands.

Use the Triangular bandpass filter, each filter shows its energy-levels of frequency
distribution with logarithm scales, and a total of Q logarithmic energies ES in a

frame are transformed into C,,,s by using the discrete cosine function [26].

Q
cm=;Ekxcos[m<k—%)g],m=1,...,L )

where Ej, is the spectral energy value produced by the kth triangular filter in the
previous step, and Q is the number of triangular filters. In general, Q=22 [26], even in
Figures only shows 10 triangular filters. Discrete cosine transform (DCT) [26] is a
transformation associated with Fourier transform. It is similar to discrete Fourier

transform, but adopts only real numbers. In this study, L = 12, because a

17



12-dimensional feature parameter is sufficient to represent the voice feature of a

frame [19].

4.2 Establishment of Gaussian Mixture Model

In this study, the time consumed to establish the corresponding Gaussian mixture
model given training data.in the training phase is much longer than that of the test
phase. To speed up. the process of acquiring the best parameters for Gaussian mixture
model, it is necessary toestimate the initial parameters precisely. This can shorten the
processing time for optimizing the parameters. In. this study, we use the K-means
clustering [7] to cluster the original feature vectors due to its fast and simple

characteristics in clustering data. The detailed steps are as follows.

4.2.2 K-means clustering
(1) initialization

Given a voice file'F which is partitioned into N _frames, a total of N vectors,
denoted by, V.. = {vy, V2, «, I}, Will be obtained where y; is a (L+1)-dimensional
feature, since besides the L-dimensional feature, energy is also considered as a feature,
1<i<n . In this study, be clustered into K groups, e.g.,
G = {group(1), group(2), ..., group(K)},K <n. The initial steps is randomly
selecting K vectors, e.g., C = {vy,v,, ..., vx}, from Vec, as the center vectors of G,
where v; is the center vector of group(i),v; € C,group(i) € G. In this study,

K=128. In other words, we cluster these voice vectors into 128 groups.

18



(2) Clustering

For each vector in the remaining vectors R = v,. — C = {xq, X5, ..., Xn—128} €.0.,
x; 1 <i<n-—128, we calculate the distances between x; and the 128 current
center vectors as Dy, = {dxil,dxiz, ...,dxiK}, in which d,, is the distance between

x; and v, 1<s<K,v;€C, and v, is the center vector of group(s). If

d, = minlsssK{dxis|dxis €Dy, 1=ss< K} and . x; € group(j) , then

xi,j
group(j) = group(j) U {x;}. If originally x; & group(l) and [ # j, group(l) =

group(l) — {x;}.

(3) Updating the cluster centers

For each vector group, e.g., group(j) = {le,sz, ...,x]-p} » |group(j)| = pj,

we calculate the accumulative distances between a vector, €.g., x5 and all other

pj — 1 elements_in-group(j) = {x;}, resulting in 7D, =¥V d where

T &q=1,q+#1 "Xjijq

d Is the distance between x;; and xj4,X;;, Xjqg € group(j), for all is, i =

Xjijq
12,..,pj . So, . a _total of "p; accumulative " distances, denoted by
ATD,, = {TD,,;TD,,, ...,Tijpj}, can be obtained. If TD, == minyzp, {TD,,},

then x;,, is the new center vector of the group(j), denoted by v';, for all js,

!

1 <j < K. Let the K new center vectors be C"' = {v';,v'5, ..., Vg }.

(4) Convergence

If no element of group(j), e.g., xj;, moves to group(h),j#h1<i<

|group(j)|, forall j;, 1 <j < K, it means that the process of this algorithm is

19



convergent, and its execution is then terminated. Otherwise, Let v; = v;’, for all

i, 1<i<K,ie, C=C" andgo to Step 2.

4.2.3 EM algorithm [29]

Here, we compute a weight for each group and combine these 128 Gaussian models
as a GMM. The vector. distribution of these 128 groups is the initial distribution
parameter distribution of the GMM: In order to obtain the best GMM parameter A,
that is, the distribution of the concerned voice features has the greatest similarity to
the distribution of the model parameter 4. To achieve this, it is necessary to estimate
the most suitable model parameter A, the probability density of which can be

expressed as follows [29].

K
PR = | [Pl (5)
i=1

in which x; is one of the 128 Gaussian models after clustering, and X is feature
vectors of GMM which is deterministic. In.order to find the model parameter A’
which can maximize the likelihood function value of the GMM, as mentioned above,
we use the Estimation Maximization algorithm (EM) [29] to interactively find the
Gaussian models of the GMM. In the first iteration, the EM algorithm re-estimates the
new model parameter A’ by using the initialization parameter A obtained by
invoking the K-means clustering method so that P(X|A1") = P(X|1). Let A =21,
continue to iteratively update the new A by invoking the EM algorithm until P(X|4)

converges or reaches the upper limit of the number of iterations set by the system.
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Figure 6. Theestablishment process. of the GMM.

4.3 Bhattacharyya Distance [25]

So far, we have converted the voice signals into the GMM of the eigenvector
distribution, i.e., 4, as an acoustic model of a person which is established as follows.
Assuming a total of N user acoustic models has been.  collected, i.e.,
U = {A1,44, ...,Ax}, in.the acoustic-model database. The Bhattacharyya distance
between two acoustic models A4, and-4;, denoted' by dgp(A,,4;),4; €EU,i =
1,2,..,N and A, is.an unknown user’s acoustic -model. If dgyp(1,,1,,) =
min, < j<n{dpp (A 4j)}, the probability that u is n will'be the largest. But based on the
conversion error and the impact. of environmental noise, it is hard to ensure that u is
exactly n. In this study, we take m acoustic models with the smallest dgp(1,,4,),7 =

1,2,..,m,m < N, and sort these dgp()s in an ascending order where

1
1 @+
NP E A

DI S

1 -1
oo G 20) = 5 (o= 1" (251 Gt = ) +
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in which w,(y;) is the average vector of 4,(4;), and X,(Z;) is the covariance
matrix of 1,(4;). We hope u will be one of the m users with the smallest dg,()s. The

similarity between A, and A4; is defined as follows.

similarity (%) = (1-2) x 100 (7)

in which X r etween e maximum

- - ~
n..

sirwarity

e conclu
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5. System Implementation and Evaluation

Many tools are currently available for speech feature extraction or speech
modeling. But most of them focus on sentence recognition, rather than speaker
identification. The famous HTK [5] as a statement recognition tool is developed based
on fixed sentence-voice. recognition. Kaldi [6] is a speech identification tool which
was designed, based on C++ development toals, to-build GMMs. But it lacks feature
extraction and a variety of visualization capabilities. Also, the outputs of different
tools are often of different formats. For example, when HTK is employed, the results
produced by the MFCC procedure are in HTK format. The output format of the file
produced by Kaldi is binary. Consequently, the format of an output file can only be
read by the respective tools. In other words, the outputs of these tools, e.g., T1s, very
often cannot directly be imported into existing tools, e.g., T2s, that are invoked in the

next stage, particularly when the companies that release T1s and T2s are different.

In this study, our speaker identification system Is implemented using the Python
programming language. As mentioned earlier, many existing tools or software focuses
on sentence recognition, or is just implemented for some key components of speech
recognition. The reason why we choase Python programming language is that it can
invoke many mathematical equations and provide many scalable libraries, e.g.,
SymPy [30] for algebra. In other words, this programming language has a certain
degree of cross-platform characteristic [31]. SciPy [32] as another open-source
Python algorithm library offers a mathematical toolkit, with which complex
mathematical operations, such as linear algebra, fast Fourier transform, etc., can be

invoked. In addition, due to feature extraction, a large number of parameters are
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generated. Scipy is also helpful. Further, the NumPy expansion library, as a high-level
Python tool that supports a large number of dimensional array and matrix operations,
is utilized to store the large volumes of output parameters and data, including
observed scientist data, library, files, and our acoustic models. The format employed
is HDF5 [33]. Therefore, the output formats of different steps of our system can be
unified. Consequently, the characteristic parameter data generated at each step can be

smoothly received by the follow-up procedures.

This also reduces the corresponding efforts when developers would like to carry
out their research and development projects by invoking our system or components,
I.e., it is easier to hugely increase the possibility of scaling up or improving the
functions of a speaker identification system. Our system was tested on PC, the

specifications of which are listed in Table 1.

Table 1. Tested hardware and software specifications.

Item Description

CPU Intel Core 15

0S Ubuntu 14.045 LTS
Memaory 4GB

Hard disk 120GB

Microphone INTOPIC JAZZ-010

Sampling frequency

44.1 KHz

File format

16-bit linear PCM

Recording software

Audacity
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A total of five experiments, denoted by Experiment 1 — Experiment 5, were
performed in this study. In Experiment 1, the words involved in the training and test
phases are the same. In Experiment 2, words utilized in the two phases are different.
In the third and fourth experiments, we, respectively, redid Experiments 1 and 2 with
the cases that Chinese sentences and characters, rather than English words, are used.

Experiment 5 compares our system with the MFCC [34] and MFCC plus delta [35].

5.1 Experiment 1

The first experiment was performed in a quiet environment. Fifteen students
were invited to read the Pronunciation Guide of the oxford learner's dictionaries [36]
as the training voice so as to establish the fifteen students’ acoustic models. The
pronunciation guide contains all the English words® pronunciation. Table 2 lists the

words for training.

Table 2. Training-word list used in Experiment 1.

pen bad tea did cat get chain jam
fall van thin this see Z00 shoe vision
hat man now sing leg red yes wet

happy sit ten father got saw put actual
too cup fur about say go my boy
near hair pure
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During the test phase, the fifteen students read the training words a total of 43 times.
The similarities between two speakers x; and x;,1 < i,j <5, and the identification

accuracies of these testers are shown in Table 3.
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Table 3. The similarities and identification accuracies of Experiment 1 performed on the words listed in Table 2 as the training and test data (%).

wsh;%, 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Accuracy
1 88.22 38.15 47.05 45.81 2496 70.44 5542 79.43 64.76 4428 36.97 28.21 41.52 25.01 34.40 90.65
2 38.70 93.76 69.65 11.23 33.82 28.27 52.06 48.63 44.54 58.29 34.41 4843 70.48 27.72 39.96
3 4420 64.68 94.36 78.19 4427 7.11 45.86 58.18 65.25 48.94 48.48 40.40 50.91 23.67 18.86
4 46.15 6.50 77.02 91.79 39.05 11.97 2546 26.98 18.03 37.52 75.26 53.07 77.86 72.43 57.84
5 20.70 30.55 46.74 41.37 87.76 36.72 54.32 69.04 11.28 36.82 8.75 16.01 14.19 65.66 43.33
6 65.66 24.76 5.72 8.67 3536 92.78 27.90 2538 44.10 62.04 11.07 4.13 44.08 12.71 52.06
7 54.87 56.46 45.10 2928 51.37 32.23 92.90 28.02 17.70 63.43 15.44 38.37 36.20 2046 5230
8 75.37 51.73 58.26 30.02 70.96 23.52 31.65 93.27 8.20 4250 41.84 60.48 40.24 16.64 38.04
9 61.66 39.86 64.15 19.29 12.92 43.73 15.05 5.04 91.74 62.42 11.80 16.06 62.82 23.17 58.52
10 4925 57.72 4524 37.36 36.76 58.00 5922 43.03 60.37 9535 81.11 72.76 31.03 77.73 57.35
11 36.25 35.20 4929 78.44 6.43 10.74 17.74 42.97 10.96 80.47 91.48 7.28 12.47 30.18 63.76
12 30.43 48.57 37.87 52.08 17.52 7.99 43.19 57.09 14.08 73.55 11.85 86.71 2420 42.09 64.66
13 38.28 70.69 49.93 81.66 9.67 46.55 32.18 36.65 62.21 31.83 16.01 2830 95.19 61.08 49.54
14 26.49 28.10 27.80 77.04 65.16 12.07 2527 13.26 26.86 80.61 28.52 4401 58.68 93.11 16.82
15 37.65 37.62 15.03 59.57 40.81 49.77 55.84 3432 57.13 55.26 61.32 63.56 52.72 17.60 9551
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Because the words used in the test and training phases are of the same, the intonation
and moods of the same tester on the same words are almost the same to those
established in his/her training stage, meaning the acoustic model contains
phonological features. The acoustic models of the same speaker are similar enough so
that the system can identify the tester more accurately. Although the similarity is
relatively high, it cannot reach 100% because even the same words pronounced by the
same tester, the pronuneiation (sometimes noise) on different times may vary. The
accuracies of the identification are then reduced. But.the similarity of the same tester

is higher than those between two different testers.

5.2 Experiment 2

In this experiment, we used 40 training words, which as listed in Table 4 are
different from those shown in Table 2, to test the system with the acoustic models

established in Experiment 1. Table 5 illustrates the test results.

Table 4. 40 test words used in Experiment 2. They are different from those listed in Table 2.

able | advice | beauty | boot careful| chapter | convention cousin

credit | cushion | date | develop | discuss | down | environment | evidence

export fear force grand | highlight | idea increase instruction
itself lamb lively | margin milk must not often
out pay pink | positive roof send solve swap
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Table 5. The average similarities and average accuracies of Experiment 2 (%).

Sy 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Accuracy
1 84.58 47.44 48.80 41.40 30.57 60.95 43.05 75.34 58.27 4923 34.02 30.82 41.40 34.70 34.06 87.21
2 43.53 89.51 70.22 4.80 31.89 20.51 55.71 53.28 30.97 58.47 36.11 52.83 70.49 23.12 3595 83.25
3 47.92 68.45 90.11 74.00 37.88 9.40 49.62 61.21 54.97 4722 49.83 40.84 52.70 22.86 12.46 82.02
4 40.63 8.91 72.03 87.50 41.74 8.10 33.32 35.00 20.84 38.37 78.35 5430 79.40 84.61 56.58 84.93
5 2595 2920 42.67 45.75 84.18 37.77 51.34 70.27 16.63 37.67 16.15 2292 3.51 69.85 43.01 86.00
6 62.35 24.80 12.26 8.59 36.33 87.00 38.40 25.09 42.62 64.69 13.26 3.67 41.89 5.97 4791 90.00
7 47.94 51.94 51.77 35.88 5541 36.04 87.86 2481 11.37 53.07 13.01 45.52 32.89 24.86 64.95 88.44
8 75.84 55.83 63.66 3536 70.20 22.04 29.72 86.28 8.61 53.86 3242 55.88 33.30 17.35 35.69 86.73
9 60.31 35.63 58.41 18.54 15.72 37.83 15.17 10.35 86.61 65.47 9.20 16.15 62.88 27.89 57.77 86.38
10 46.21 53.76 51.88 35.05 36.56 59.92 56.25 50.00 63.67 91.94 80.65 79.68 23.35 79.28 58.67 83.26
11 35.72 3222 48.50 80.62 11.94 9.17 13.14 36.83 13.83 80.50 87.86 12.81 10.43 28.96 61.76 83.24
12 33.36 52.79 43.90 55.19 18.69 1.69 4430 51.51 18.21 76.19 8.79 84.36 19.72 51.21 63.90 85.22
13 44.63 66.21 50.22 76.64 6.26 4436 30.84 36.92 62.75 26.12 10.66 2293 88.28 55.84 62.52 87.55
14 33.19 22.73 2438 82.81 69.32 5.66 25.89 20.18 29.29 77.28 30.90 46.43 59.64 86.28 19.16 88.22
15 35.18 37.22 15.36 57.61 47.16 50.40 60.64 36.25 58.40 62.23 64.66 59.57 58.27 21.15 89.60 86.39
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As shown, accuracies illustrated in Table 5 are slightly lower than those shown in
Table 3. This is because of using different test and training words. The first difference
comes from the fact that even the same words pronounced by the same speaker, the
pronunciations at different time points may slightly change. The second difference is
due to different words of different pronunciations, resulting in a little lower accuracies,
even when the speaker is the same. However, the distribution of speech features in the
feature space is actually resulted from different frequency distributions in human
voice signals. So-when some words are not. included in the training phase, our
identification system can _still identify the speaker among. the established acoustic

models.

5.3 Experiment 3

In the third-experiment, English training words and test words are substituted by
a Chinese article-[37] which as shown in Table 6 has 22 sentences in turn consisting
of 208 Chinese characters as the training data to establish testers’ acoustic models
during the training phase. Ten sentence as the test data are selected from the article.
Table 7 shows the experimental results in which the similarities and identification
accuracies, respectively, are individually lower than those listed in Table 3. The
reason is that voice signals collectedin the test phase are a subset of the
sentence-voice set of the article. Theoretically, the voice features collected in the test

phase are a part of those collected during the training phase.
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Table 6. Chinese sentences as the training data to establish the testers’ acoustic models in

Experiment 3.
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Table 7. The similarities and accuracies of Experiments 3 (%).

Azoustc

waha%i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Accuracy
1 84.58 34.93 43.10 43.04 21.80 68.66 53.74 74.96 63.44 41.83 33.40 23.50 36.42 19.11 28.54 86.91
2 32.97 91.81 67.08 6.72 29.39 23.86 50.05 4448 4134 53.96 30.44 43.44 66.39 22.04 3593 84.56
3 43.00 61.78 89.55 72.67 41.68 6.10 42.82 52.70 62.79 45.54 45.60 39.38 46.54 2198 17.37 83.73
4 4420 1.74 73.01 90.30 34.08 10.81 22.66 25.14 15.51 33.61 72.67 50.84 73.55 68.05 5233 8431
5 19.17 29.36 44.45 40.35 82.52 33.14 50.39 65.09 10.18 34.99 5.90 14.07 11.58 59.69 38.75 87.71
6 63.09 20.69 2.60 3.47 31.29 90.30 23.68 22.48 40.74 59.16 6.21 0.04 40.97 6.82 51.00 89.54
7 51.06 53.00 39.52 27.02 4543 2693 87.08 26.64 14.60 60.82 12.39 33.17 31.71 14.94 47.62 88.35
8 74.15 49.75 54.56 25.07 67.83 19.25 27.33 90.45 6.42 39.11 38.33 5893 38.58 12.21 36.51 84.66
9 56.42 37.32 61.50 16.02 9.49 38.80 10.74 1.44 87.49 59.80 10.37 11.68 60.61 18.90 54.13 87.97
10 4548 53.51 41.50 34.87 33.50 52.02 54.55 39.75 56.48 90.10 79.47 71.20 26.43 72.07 54.60 84.88
11 33.51 32.18 44.97 72.64 5.36 9.10 16.40 37.22 7.47 77.52 87.48 4.54 10.97 26.69 58.02 87.23
12 28.74 46.96 33.07 47.58 13.45 3.85 37.78 52.23 9.91 69.08 7.24 83.42 22.64 37.28 59.12 89.70
13 33.58 64.78 4732 79.84 7.74 44.08 26.51 3192 57.48 28.60 14.08 26.41 92.59 59.94 48.26 88.23
14 22.05 23.28 24.34 74.17 63.08 7.79 23.73 11.62 22.01 78.56 23.55 38.12 53.62 88.13 11.71 86.53
15 33.75 35.39 9.04 57.96 39.00 45.00 53.29 32.02 53.07 49.84 59.99 60.20 50.84 13.87 91.40 87.19
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5.4 Experiment 4

In Experiment 4, we redid Experiment 2, but the trained acoustic models reuse
the ones established in Experiment 3. One test sentence (4% 5 #t $2) which exclude
the 22 sentences shown in Table 6, is given. The similarities and identification
accuracies as illustrated in Table 8 are lower than those illustrated in Table 3, 5 and 7.

The reasons are the same as those me
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Table 8. The average similarities and average accuracies of Experiment 4 (%).

A

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | Accuracy
1 7226 | 24.86 | 3391 | 2293 | 9.07 | 4203 | 3553 | 67.12 | 5320 | 24.06 | 21.59 | 17.80 | 40.50 | 23.07 | 17.15 | 54.14
2 | 2447 | 6124 | 4880 | 0.72 | 1445 | 7.87 | 41.83 | 4954 | 23.09 | 3925 | 1435 | 38.72 | 52.58 | 864 | 2026 | 6321
3 | 3451 | 5271 | 69.50 | 55.30 | 35.14 | 4.10 | 32.87 | 53.97 | 4829 | 2348 | 43.42 | 2509 | 37.81 | 1023 | 3.09 | 50.10
4 | 2508 | 551 | 5265 | 69.46 | 2574 | 891 | 26.57 | 2362 | 162 | 2515 | 64.40 | 4231 | 5724 | 68.52 | 41.65 | 61.60
5 1243 | 17.88 | 33.97 | 3052 | 6745 | 1730 | 33.68 | 5488 | 193 | 17.64 | 0.88 7.91 6.47 | 51.13 | 35.50 | 59.74
6 | 4595 | 1268 | 2.86 499 | 1869 | 7427 | 1860 | 3.86 | 27.66 | 41.74 | 833 | 11.62 | 22.52 | 791 | 27.44 | 54.12
7 | 38.83 | 40.99 | 30.50 | 24.02 | 3244 | 1449 | 7134 | 7.22 136 | 4008 | 137 | 3320 | 2236 | 942 | 3492 | 5131
8 | 68.03 | 4637 | 5721 | 2596 | 53.72 | 6.63 | 10.14 | 6857 | 3.98 | 36.61 | 2240 | 38.67 | 2447 | 2.11 | 18.66 | 55.34
9 | 5083 | 25.66 | 43.72 | 0.38 394 | 2961 | 088 | 510 | 6090 | 5099 | 077 | 0.15 | 4882 | 16.80 | 44.66 | 54.52
10 | 2838 | 39.99 | 27.65 | 2090 | 16.60 | 43.66 | 39.61 | 37.20 | 48.78 | 80.01 | 6431 | 5450 | 652 | 61.29 | 41.84 | 52.22
11 | 2044 | 1393 | 4140 | 6893 | 035 962 | 207 | 2597 | 331 | 6440 | 74.11 | 12.57 | 11.00 | 11.14 | 4235 | 61.28
12 | 1727 | 3621 | 2740 | 4298 | 634 | 1505 | 3536 | 4331 | 442 | 5295 | 948 | 6234 | 656 | 33.68 | 53.11 | 61.89
13 | 3786 | 50.07 | 3848 | 5938 | 6.51 | 2518 | 1838 | 29.10 | 47.63 | 1123 | 764 | 6.62 | 63.24 | 4586 | 43.40 | 63.40
14 | 2245 | 9388 624 | 67.03 | 52.85 | 898 | 1138 | 0.02 | 1813 | 59.11 | 12.82 | 32.69 | 48.19 | 70.80 | 7.57 | 51.55
15 | 17.12 | 16.14 | 1.05 | 3971 | 3621 | 27.25 | 39.81 | 23.13 | 44.69 | 43.82 | 47.16 | 51.62 | 4362 | 528 | 6498 | 66.34
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In Chinese, there are more than 1100 different pronunciations. But Table 6 only
contains 208 characters of 109 different pronunciations (In Chinese, many different
characters are often of the same pronunciation). Even the similarities and
identification accuracies shown in Table 8 are lower than those of previous
experiments, each of them still has achieved a considerable level, showing that our

system is feasible.

5.5 Experiment 5

In Experiment 5, we compare our system with.the MFCC. system [34] and
MFCC+delta [35] by redoing the Experiments 1 - 5. Table 9 shows the results when
the training words and test words are in English and the training words are the same
as the test words. Table 10 shows the experiment results when the English words are
used and the test.words are not included in the training words. Table 11 illustrates the
results when the sentences are all in Chinese and the test sentences are a subset of the
training sentences. Table 12 lists the experiment results when the Chinese test

sentences are not included inthe Chinese training sentences.
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Table 9. The identification accuracies of Experiment 5 when the training words and test words

are in English and the training words are the same as the test words (%).

KM | Ours MFCC | MFCC+delta
tester

1 90.65 82.82 84.16

2 87.37 81.03 82.08

80.75
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Table 10. The accuracies of Experiment 5 when the words used are all in English and the test

words are different from those training words (%).

e ™ Ours MFCC | MFCC+delta
1 87.21 46.06 47.77
2 83.25 57.35 58.81
3 82.02 44,88 44.89
4 84.93 54.79 56.72
5 86.00 54.43 54.48
6 90.00 47.95 4962
7 88.44 41.56 42,00
8 86.73 46.20 47.54
9 86.38 44.67 46.50
10 83.26 46.98 48.87
11 83.24 52.49 53.44
12 85.22 55.49 56:29
13 87.55 53.70 54.79
14 88.22 43.87 4515
15 86.39 56.72 57.35

Comparing Tables 9 and 10, it is clear that the identification accuracies of the MFCC
and MFCC+delta systems are lower than those of our system, no matter whether the
test-word set is included in the training-word set or not. Basically, the MFCC does not
establish acoustic models for all speakers, meaning the MFCC alone does not identity
the distribution of voice features. The other reason is that it is difficult to avoid the

change of sound volume (i.e., frequency energies), moods, and intonation during the
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test phase. The accuracies of MFCC+delta is higher than those of MFCC alone,
because it contains dynamic characteristics of voice. But the overall identification
accuracies are still lower than those of our system, indicating that the Gaussian

mixture model is helpful in identifying speakers.

Table 11. The identification accuracies of Experiment 5 when the training sentences and test

sentences are in Chinese and the test sentences are a proper subset of the training sentences

(%).
X Ours MECC. | MFECC+delta
1 86.91 81.81 82.52
2 84.56 79.10 80.71
3 83.73 78.07 80.94
4 84.31 77.58 78.72
5 87.71 80.31 82.35
6 89.54 81.74 83.36
7 88.35 80.18 81.33
8 84.66 75.30 77.08
9 87.97 81.20 83.15
10 84.88 79.17 80.33
11 87.23 77.94 79.12
12 89.70 79.82 81.53
13 88.23 79.21 81.81
14 86.53 79.85 82.00
15 87.19 81.42 83.22
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Table 12. The accuracies of Experiment 5 when the sentences used are in Chinese and the test

sentences are a proper subset of the training sentences (%).

e ™ Ours MFCC | MFCC+delta
1 54.14 32.85 32.85
2 63.21 45.37 45.67
3 50:40 28.57 28.41
4 61.60 38.44 37.67
5 59.74 30.80 30.84
6 5412 29.98 3043
7 51.31 34.77 35.46
8 55.34 30.11 29.62
9 54.52 32.65 32.97
10 52.22 23.78 23.68
11 61.28 4559 4550
12 61.89 37.67 38:19
13 63.40 47.84 48.61
14 51.55 21.90 22,64
15 66.34 47.34 47.19

It can be seen that in Tables 11 and 12, the accuracies of both MFCC and
MFCC+delta are lower than those of our scheme since they do not establishment
acoustic models for all testers. Also, if comparing Tables 9 and 11 (Tables 10 and 12),
we can also see that the accuracies when Chinese is used are lower than those when
English words are utilized. This is because in the training phase, not all Chinese

pronunciations are collected.
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6. Conclusion and Future studies

The purpose of this study is to establish an acoustic model, i.e., a phonetic model,
of a speaker, and to provide a set of practical system processes which can be applied
to identify an unknown speaker. We summarize the operation flow of the whole
identification system and implement a speaker identification system with Python. The
reason for choosing Python is that it provides many basic math-related extensions,
which are extensible, user-friendly, and easy to implement on a variety of platforms.
From the test results of our system, we can find. that the recognition accuracies of the
proposed system is higher when the training voice content of the system covers the
test voice content. When the test materials are not included in the training materials,
different words will produce different. vocal patterns, and will affect the owverall

system identification rate. Three conclusions can be extracted from this study.

(1) The use ofPython can convene the integration and expansion of a system,
because the output formats of different processing steps are-unified in this study.
Thus, new functions or function modifications can be conveniently and easily

developed and performed, respectively.

(2) To accurately identify a speaker, during the training phase, a large number of

voice training is required, causing a long training time.

(3) The number of current vocabularies is large, it is not easy to identify all
pronunciations during the test phase. Also, in different situations, like after
singing, after a long speech, having a cold, etc., with different environmental

noises, a person’s voice may change. This will greatly affect the identification
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accuracies of our system. Therefore, it is hard to produce 100% of identification

rate.

\oice recognition has gradually enters human lives. It is helpful in convening people’s
everyday lives, such as launching commands to a personal computer by using human
voice, accessing data by inputting human voice and playing games by submitting
human-voice commands. Other applications in our daily lives include automatic ticket
purchasing on a vending machine, and online shopping with voice services via a
mobile phone. We believe that in. the near future, these applications will soon
significantly join our everyday living activities. In the future, we would like to find a
method to shorten the training time by identify essential words or pronunciations for
English and Chinese. We will also derive the behavior model and reliability model for
our system so that users can predict the behaviors and reliability of this system before

using it. These will constitute our future studies.
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