東海大學化學工程與材料工程學系

碩士論文

指導教授:李國禎博士

利用核殼式 Pt-Sn 觸媒催化丙烷脫氫之研究

The study of core-shell Pt-Sn catalysts for propane

-0-0

dehydrogenation to propylene

4

研究生:謝沅芷

中華民國一百零六年七月

日琢

圖目錄		III
表目錄		V
第一章	緒論	1
第二章	文獻回顧	4
2.1	丙烯(Propylene)	4
2.2	丙烯之歷史沿革	7
2.2.1	丙烯的脫氫反應(PDH)	7
2.3	觸媒的選擇與特性	16
2.3.1	金屬	16
2.3.2	雙金屬金屬觸媒	17
2.3.3	分散金屬觸媒	
2.3.4	載體的不同	
2.4	觸媒的製作方法	19
2.4.1	PVP 穩定金屬奈米微粒	19
2.4.2	溶膠-凝膠法(sol-gel)	
2.4.3	核-殼結構(Core-Shell structure)之奈米粒子	
2.4.4	含浸法	
2.5	反應動力學	
第三章	實驗系統	
3.1	實驗藥品及儀器	
3.1.1	實驗藥品	
3.1.2	實驗氣體	
3.1.3	實驗儀器設備	
3.2	觸媒製備方法	
3.2.1	核殼式觸媒製備的方法	
3.2.1	觸媒含浸製備的方法	
3.3	丙烷脫氫反應	
3.4	産物分析	
3.4.1	氣相層析儀分析	
3.4.2	火焰離子偵測器 (FID)	
3.4.3	定性分析	
3.5	定量分析	
3.6	熱場發射掃描式電子顯微鏡(FE-SEM)	

3.7	X 射線繞射實驗 (XRD)	44
3.8	全自動數位穿透式電子顯微鏡 (TEM)	46
3.9	能量散佈分析儀(EDS)	47
3.10	程溫還原(TPR)	49
3.11	比表面積與孔洞分析實驗(BET)	51
3.11.1	BET 表面之測定原理	51
3.11.2	BET 表面積及孔徑大小之測定實驗	56
3.12	感應耦合電漿原子發射光譜分析法(ICP-AES)	57
第四章	結果與討論	58
4.1	定義產率、轉化率、選擇率及空白測試	59
4.2	觸媒活性的探討	62
4.2.1	製備 Pt-Sn@SiO2之 TEOS 濃度對丙烷脫氫反應的影響	62
4.2.2	Pt/Sn 莫耳比之影響	66
4.2.3	以含浸法製備之 Pt-Sn/氧化鋁(γ-Al2O3)觸媒	69
4.3	反應條件對丙烷脫氫反應之影響	73
4.3.1	觸媒煅燒溫度對丙烷脫氫反應之影響	74
4.3.2	反應溫度對丙烷脫氫反應之影響	76
4.3.3	觸媒重量對丙烷脫氫反應之影響	80
4.3.4	反應物(丙烷)濃度對丙烷脫氫反應之影響	84
4.3.5	反應流量對丙烷脫氫反應之影響	87
4.4	觸媒長時間衰退之探討	90
4.4.1	表面元素分析(EDS)	96
4.4.2	X 射線繞射分析 (XRD)	99
4.4.3	觸媒再生之探討	99
4.5	觸媒分析	101
4.5.1	BET 表面積與孔洞之分析	103
4.5.2	能量散佈分析儀(EDS)之分析	107
4.5.3	熱場發射掃描式電子顯微鏡(FE-SEM)之分析	111
4.5.4	全自動數位穿透式電子顯微鏡 (TEM)之分析	114
4.5.5	感應耦合電漿原子發射光譜分析儀(ICP-AES)之分析	118
4.5.6	程温還原之分析	120
4.6	動力學分析	122
第五章	結論	128
第六章	參考文獻	131

圖目錄

啚	2.1	丙烯之應用	5
圖	2.2	丙烯供需之間的差距	6
圖	2.3	不同溫度下丙烷脫氫之平衡轉化率,固定壓力 1atm	8
圖	2.4	不同壓力下丙烷脫氫之平衡轉化率,固定溫度 873K	8
圖	2.5	生產丙烯之技術比較	10
圖	2.6	Catofin 生產丙烯的製備過程	12
啚	2.7	Oleflex (UOP) 製備過程	14
啚	2.8	在雙金屬觸媒上可能的金屬微結構	17
圖	3.1	核殼式觸媒分類圖	29
圖	3.2	製備 PtSn 合金裝 置圖	30
圖	3.3	含浸法所使用不同溶劑之分類圖	32
圖	3.4	丙烷脫氫反應裝置圖	35
圖	3.5	氣相層析儀示意圖	37
圖	3.6	FID 裝置示意圖	38
啚	3.7	氣相層析儀帶留時間圖	39
啚	3.8	丙烷之校正曲線	41
啚	3.9	産物丙烯之校正曲線	41
圖	3.10	熱場發射掃描式電子顯微鏡	43
啚	3.11	穿透式電子顯微鏡基本元件圖	46
啚	3.12	TPR 實驗裝置圖	50
圖	3.13	吸附曲線的形式	52
啚	4.1	未添加觸媒時丙烷脫氫反應之氣相層析圖	61
啚	4.2	TEOS 濃度對丙烷脫氫之影響	65
啚	4.3	不同 Pt/Sn 的莫耳比例之觸媒對丙烷脫之影響	68
圖	4.4	不同溶劑製備之觸媒對丙烷脫氫之影響	72
啚	4.5	煅燒溫度對丙烷脫氫反應之影響	75
啚	4.6	反應溫度對丙烷脫氫反應之影響	77
啚	4.7	反應溫度對丙烷脫氫的副產物之產率影響	78
啚	4.8	反應溫度對丙烷脫氫的副產物之選擇率影響	78
啚	4.9	觸媒重量對丙烷脫氫之影響	82
啚	4.10	Pt 含量對丙烷脫氫之影響	82
啚	4.11	不同觸媒重在不同時間下對丙烷脫氫之影響	83
啚	4.12	反應物濃度對丙烷脫氫反應之影響	86
啚	4.13	低氣體流量對丙烷脫氫(a)產率(b)轉化率及(c)選擇率之影響	88
啚	4.14	高氣體流量對丙烷脫氫(a)產率(b)轉化率(c)選擇率之影響	89
啚	4.15	活性與時間之關係圖	90

圖 4.16	Pt-Sn@ SiO2(0.0118M TEOS)之觸媒活性與時間之關係圖	92
圖 4.17	Pt-Sn@Al203之觸媒活性與時間之關係圖	93
圖 4.18	Pt-Sn@ SiO2(0.0118M TEOS)觸媒之失活活化能	95
圖 4.19	Pt-Sn@ SiO2(0.0118M TEOS)新鮮觸媒之 EDS 圖	97
圖 4.20	Pt-Sn@ SiO2(0.0118M TEOS)觸媒經反應後之 EDS 圖	98
圖 4.21	Pt-Sn@γ-Al2O3(甲醇為溶劑)觸媒經反應後之 EDS 圖	99
圖 4.22	Pt-Sn@γ-Al203(乙二醇為溶劑)觸媒經反應後之 EDS 圖	100
圖 4.23	Pt-Sn@γ-Al2O3(去離子水為溶劑)觸媒經反應後之 EDS 圖	101
圖 4.24	Pt-Sn@ SiO2(0.0118M TEOS)反應前後之 X 射線繞射分析圖.	102
圖 4.25	觸媒再生對丙烷脫氫反應影響	104
圖 4.26	Pt-Sn@ SiO2(0.0118M)觸媒 Pt:Sn 合金比例為 1:1 之 EDS 圖	108
圖 4.27	Pt-Sn@ SiO2(0.0118M)觸媒 Pt:Sn 合金比例為 1:0.5 之 EDS 圖	109
圖 4.28	Pt-Sn@ SiO2(0.0118M)觸媒 Pt:Sn 合金比例為 1:2 之 EDS 圖	110
圖 4.29	Pt-Sn@ SiO2(0.047M)觸媒之 TFSEM 圖(×10000)	111
圖 4.30	Pt-Sn@ SiO2(0.0235M)觸媒之 TFSEM 圖(× 10000)	112
圖 4.31	Pt-Sn@ SiO2(0.0157M)觸媒之 TFSEM 圖(× 10000)	112
圖 4.32	Pt-Sn@ SiO2(0.0118M)觸媒之 TFSEM 圖(× 10000)	113
圖 4.33	Pt-Sn@ SiO2(0.0078M)觸媒之 TFSEM 圖(× 10000)	113
圖 4.34	Pt-Sn@ SiO2(0.0059M)觸媒之 TFSEM 圖(× 10000)	114
圖 4.35	Pt-Sn@ SiO2(0.047M)觸媒之 TEM 圖	115
圖 4.36	Pt-Sn@ SiO2(0.0235M)觸媒之 TEM 圖	115
圖 4.37	Pt-Sn@ SiO2(0.0157M)觸媒之 TEM 圖	116
圖 4.38	Pt-Sn@ SiO2(0.0118M)觸媒之 TEM 圖	116
圖 4.39	Pt-Sn@ SiO2(0.0078M)觸媒之 TEM 圖	117
圖 4.40	Pt-Sn@ SiO2(0.0059M)觸媒之 TEM 圖	117
圖 4.41	不同 TEOS 濃度製備的觸媒之 TPR 圖	121
圖 4.42	不同合金比例製備的觸媒之 TPR 圖	121
圖 4.43	以 Pt-Sn@ SiO2(0.0118M)觸媒在 600℃下進行動力學分析	125
圖 4.44	以 Pt-Sn@ SiO2(0.0118M)觸媒在不同溫度下進行動力學分析	126
圖 4.45	以 lnk 對 1/T 作圖求得活化能	127

表目錄

表 3-1	藥品等級與製造商一覽表	. 25
表 3-3	儀器型號與廠商一覽表	. 26
表 3.4	氣相層析儀滯留時間	. 40
表 4.1	空白測試對丙烷脫氫反應之影響	. 60
表 4.2	製備 Pt-Sn@SiO2之 TEOS 濃度對丙烷脫氫反應之影響(t=1h)	. 63
表 4.3	不同 Pt/Sn 的莫耳比例之觸媒對丙烷脫氫反應的影響	. 66
表 4.4	不同溶劑製備之觸媒對丙烷脫氫反應之影響	. 70
表 4.5	煅燒溫度對丙烷脫氫反應之影響	. 74
表 4.6	觸媒重量對丙烷脫氫反應之影響	. 81
表 4.7	反應物濃度對丙烷脫氫反應之影響	. 84
表 4.8	Pt-Sn@ SiO2(0.0118M TEOS)觸媒之失活的活化能	. 94
表 4.9	Pt-Sn@ SiO2(0.0118M TEOS)新鮮觸媒之表面元素	. 97
表 4.10	Pt-Sn@ SiO2(0.0118M TEOS)觸媒經反應後之表面元素	. 98
表 4.12	Pt-Sn@γ-Al2O3(乙二醇為溶劑)觸媒經反應後之表面元素	100
表 4.13	Pt-Sn@γ-Al2O3(去離子水為溶劑)觸媒經反應後之表面元素	101
表 4.14	Pt-Sn@ SiO2(0.0118M TEOS)不同金屬比例之 BET 表	105
表 4.15	Pt-Sn@ SiO2不同 TEOS 濃度之表面積及孔徑分析表	106
表 4.16	Pt-Sn@ SiO2(0.0118M)觸媒 Pt:Sn 合金比例為 1:1 之 EDS 數據	108
表 4.17	Pt-Sn@SiO2(0.0118M)觸媒 Pt:Sn 合金比例為 1:0.5 之 EDS 數據.	109
表 4.18	Pt-Sn@ SiO2(0.0118M)觸媒 Pt:Sn 合金比例為 1:2 之 EDS 數據	110
表 4.19	不同殼層厚度之觸媒金屬含量	118
表 4.20	Pt-Sn@ SiO2(0.0118M)觸媒不同合金比例之金屬含量	119
表 4.19	Pt-Sn@ SiO2不同 TEOS 濃度之金屬比例(觸媒量 0.3g)	120
表 4.22	Pt-Sn@ SiO2(0.0118M)不同合金比例之金屬比例	121
表 4.23	以 Pt-Sn@ SiO2(0.0118M)觸媒在 600℃下進行動力學分析	125
表 4.24	以 Pt-Sn@ SiO2(0.0118M)觸媒在不同溫度下進行動力學分析	126

第一章 緒論

烯烴石化原料中,丙烯的重要性僅次於乙烯,但成長速度為乙烯 的一倍。丙烯是一種很重要的有機化工原料,可被用來製造高分子, 主要是製造聚丙烯,聚丙烯的需求量僅次於聚乙烯。聚丙烯可被用來 製作塑料薄膜、包裝、纖維或者應用於汽車工業及電子工業等。丙烯 還有第二大市場是用於生產丙烯腈,再來就是製備環氧丙烷。随着全 球丙烯需求量增長,製造丙烯已成為具有非常大商業利益的工業 [1]。

目前丙烯的來源中,主要來自輕油裂解和煉礦的副產品,有小部 分來自專門的製備方式,如丙烷脫氫反應、丁烯和乙烯置換反應、醇 製烯烴反應等,這些專門製備方式中丙烷催化脫氫製備丙烯的技術佔 據越來越重要地位。

到 2018 年全球專門製備丙烯產能將占到丙烯供應總量的 29%。 2015 年全球專門丙烯總產能約 1460 萬噸,到了 2020 年將進一步達 到约 3000 萬噸[1]。 最重要製備丙烯的方式為輕油蒸氣裂解,其方法所製備出來的丙 烯為副產物,這種方法需要大量的能量。另外一種製備方式為流體催 化裂解(Fluid catalyst cracking, FCC),主要用來製備汽油,丙烯在此 也是副產物,因此丙烯在此方式製備產率都不是很好[2]。還有一種 製備方式為丙烷經由觸媒催化裂解產生丙烯(Catalytic dehydrogenation of propane),根據方程式:

$C_3H_8 \rightarrow C_3H_6 + H_2$

然而這種製備方法並不是那麼簡單,因為它是一個強吸熱的反應。通 常都使用貴金屬當作觸媒來催化丙烷脫氫製備丙烯。尤其以 Pt 為主 的觸媒來做丙烷脫氫,因為它的活性較優。

隨著人類科技的發展,對於微小材料的需求,已從原來的微米 (10⁻⁶m)範圍進入奈米(10⁻⁹m)範圍的時代。奈米材料是指量測、模 擬、操控及製造介於 1~100 奈米之間。進入奈米尺度後,由於結構尺 寸變小,表面位能增加,造成材料性質隨著尺寸的縮小、組成的變化、 結構的不同而有許多新的奈米特性產生。在奈米技術研發中,膠體粒 子(colloidal particle)是一種有效的工具,可以用來製造規則且複雜的 材料,常應用在化學工程、製藥及生化技術上。 利用「奈米粉體技術」(nano-particle engineering),將一尺寸為微 米至奈米級的核心,在表面度上一層或數層均勻的奈米級殼層,這就 是所謂的 Core-Shell。

本實驗利用了 sol-gel(stober)方法製備 PtSn@SiO₂核殼式觸媒,以 催化丙烷脫氫反應,並改變觸媒製備之變因,如殼層厚度及煅燒溫度, 探討使用核殼式觸媒催化丙烷脫氫的最佳條件,並以 XRD、BET、 ICP-AES、EDS、TEM、SEM 等儀器進行觸媒之分析,以了解其觸 媒的表面性質及物理性質。

第二章 文獻回顧

2.1 丙烯(Propylene)

丙烯(Propylene),分子式 C₃H₆,分子量為42.08,是無 色可燃氣體,是一種化學中間產物,可以通過輕油裂解而獲得。 丙烯屬於易燃氣體,可因為熱、火花或火焰而被點燃。丙烯是僅 次於乙烯(Ethylene)的重要石化基本原料,目前市場上生產丙烯 的方法來自於石油腦(Naphtha)裂解的途徑。然而,隨著頁岩氣的 興起,多項以頁岩氣進料的石化生產設備投資項目正在進行中, 此外,許多生產乙烯的裂解工廠將原料由較高價石油腦轉向廉價 乙烷(Ethane)以降低生產成本。目前乙烷法生產乙烯的成本約為 石油腦裂解的三分之一,但是副產品丙烯產量僅為石油腦裂解的 六分之一。為了穩定丙烯的供給狀態,中國大陸已有許多石化企 業投入丙烷脫氫(Propane Dehydrogenation, PDH)製丙烯的項目。 丙烯之用途如圖 2.1 所示,圖 2.2 為丙烯供需之差距。

圖 2.1 丙烯之應用

圖 2.2 丙烯供需之間的差距(FCC:流體催化裂化, Fluid Catalytic

Cracking; MTA:百萬頓/年)[3]

2.2 丙烯之歷史沿革

2.2.1 丙烯的脫氫反應(PDH)

丙烷脫氫的反應式:

$$C_3H_8 \rightarrow C_3H_6 + H_2$$

丙烯的脫氫反應是一個強吸熱的反應 ($\Delta H^{\circ} = 124 \text{kJ.} mol^{-1}$)。而 這個反應在平衡上也是有限制的,因此為了使反應進行,不只需要觸 媒的催化,還需要高溫低壓的反應條件以及稀釋過後的丙烷氣體。[4] 假如進料氣體中只有丙烷,丙烷的平衡轉化率可以根據方程式: $K_P = PX^2/(1-X^2), K_P$ 為平衡常數,X為丙烷的平衡轉化率,P為 總壓力。根據這個方程式可以計算出在不同溫度及不同壓力的情況下 丙烷的平衡轉化率的變化情形,就如圖 2.3 及 2.4。[5]

圖 2.3 不同溫度下丙烷脫氫之平衡轉化率,固定壓力 1atm

圖 2.4 不同壓力下丙烷脫氫之平衡轉化率,固定溫度 873K

脫氫的反應最常見到的方式是在過程中無添加氧氣在進料氣體, 但這種方式有很多的問題。最主要的問題就是平衡的轉化率有限制, 再來因為反應中需要較高的溫度,這也往往加速觸媒的衰退情形,觸 媒若衰退就必須要再生,這也使反應中必須多一道程序。根據圖 2-5 可觀察到經由不同的製程技術可得到的丙烯產率,其中以丙烷脫氫反 應所製備出的丙烯為最多,此製程在工業中是一個很重要的商業技 術。

在丙烷脫氫反應中主要的反應式為:

 $C_3H_8 \rightarrow C_3H_6 + H_2$

若觸媒裂解則會產生副反應,以下為觸媒裂解所產生的副反應:

a. $C_3H_8 \rightarrow C_2H_4 + CH_4$ b. $C_3H_8 + H_2 \rightarrow C_2H_6 + CH_4$ c. $C_3H_8 + 2H_2 \rightarrow 3CH_4$ 若最後觸媒結焦(Coke),則產生副反應為: $CH_4 \rightarrow C + H_2$

圖 2.5 生產丙烯之技術比較[7]

在工業界中製備的方式有以下四種:[8]

1. Catofin(ABB Lummus Crest Inc.)

過去以來,脫氫製程一直被研發並改良,第一座工廠可追溯到 1986年。Catofin 的操作是藉由 chromia-alumina 觸媒催化,經由氣體 反應並在低於一大氣壓下及高溫約 873K 的條件中進行。在丙烷脫氫 的反應中,轉化率約可達 60%-65%,選擇率則可達約 90%。Catofin 的操作中沒有使用氫氣及沒有將氣體進一部稀釋來去降低觸媒的積 碳現象,因此就會早成觸媒快速的衰退並且使整個反應的時間縮短。 為了使反應能夠持續進行,在系統中會加入 5 個固定床的反應器 (Fixed-Bed reactors),其中兩個用來蒸氣系統,另外兩個用來再生系 統,最後一個則用來清除多餘雜質。其製程如圖 2-6 所示。

圖 2.6 Catofin 生產丙烯的製備過程[8]

Catofin 的脫氫製備在通過最佳的反應器壓力及溫度下進行操作,可 以使丙烷的轉化率達最大值,進而實現最高的丙烯產量,同時降低相 對應的投資和操作成本。這些優勢在 Catofin 製備方式採用 HGM 後 得到進一步的提升。

HGM 是一種創新的金屬氧化物材料,目的在顯著增加 Catofin 裝置的選擇性和產量。HGM 材料與催化劑一同裝入反應器的床層中, 在循環操作週期中經歷氧化和還原過程,產生能量,進而驅動脫氫反 應,這不僅能夠提高產量,降低耗能,而且還能減少排放。 2. Snamprogetti

這個脫氫製備方式也是藉由 chromia-alumina 當作觸媒催化劑, 而不同的是反應器的種類,這裡所使用的為流體化床反應器(Fluidized -Bed reactor)。它們通常都是由數個流體化床所聯接在一起,在過程 中熱的傳遞及反應中觸媒的催化是非常重要的。這個方式的缺點是在 反應中會將觸媒中有毒的氣體洩漏在大氣中,容易造成環境的汙染。

3. Oleflex (UOP)

Oleflex 脫氫製備方式是藉由鉑(Pt)並以無酸性的 alumina 作為載 體當作觸媒催化劑。Oleflex 是一種連續式的反應,包含了觸媒的再 生系統及利用 Platforming 及 Cyclar 方式簡單化的使觸媒連續再生 (CCR)。這個系統再加熱階段使用了三至四個反應器。主要在連續再 生(CCR)反應目的是為了燒掉觸媒上的焦化現象及使鉑金屬能夠重 新分散和去除濕氣。與其他同類競產產品相比,Oleflex 技術擁有非 常低的生產成本、很高的投資報酬及非常小的環境資源占用。其優異 得營運表現在資本的投入很低,丙烯回收率高,能源和水資源消耗 少。

典型的 UOP 技術所使用的觸媒為鉑(Pt)並加促進劑鈷(Co)和鋅 (Zn)以 alumina 作為載體,為了消除載體上的酸性物質會在過程中加 入鹼性物質,而觸媒呈現球型顆粒更能使促進反應進行及再生。為了

13

減少觸媒中衰退的情形及保持產物有高經濟價值,在反應中所使用的 氟體碳氫的比例約為 2-3,反應溫度的範圍約 870K-900K 之間,壓力 保持在1大氣壓下。第一個使用這個技術來做開發的工廠並有經濟價 值可追溯到 1990 年在泰國。

Oleflex 脫氫製程很容易與下游產生轉化,如烷基化反應,以生 產高辛烷值的烷基化油,其醚化生成 MTBE 或 ETBE,隨後通過加氫 生產高辛烷值的異辛烷。脫氫產生的氫氣可用於使異辛烯加氫生成異 辛烷,作為高辛烷值汽油調和的成分。

圖 2.7 Oleflex (UOP) 製備過程[8]

4. STAR (Phillips Petroleum Company)

STAR(Steam Active Reforming)技術上使用的是稀釋過後的氣體 進料,而這個技術常被用來做脫氫反應,它被認為是唯一丙烷/丁烷 脫氫技術可以使用氧化脫氫的優點。STAR 技術在運作時需要較高濃 度的進料氣體及較高的溫度約 873K 和高壓約 3.5atm。它所使用的觸 媒催化劑為鉑(Pt)並使用促進劑 Zn 以 alumina 為載體,具有優良脫氫 性能,在接近平衡的轉化率下有高的選擇率。該催化劑在蒸氣存在和 高溫下非常穩定,因此為這個技術提供了獨特的優勢。它已被商用驗 證,並顯示出超過五年的壽命。

ThyssenKrupp AG公司於 1999 年從飛利浦石油公司收購了 STAR 製程和 STAR 催化劑技術,該公司通過下游的傳統反應器增加氧化脫 氫部分而強化了整個過程。

2.3 觸媒的選擇與特性

2.3.1 金屬

在觸媒的選擇中,通常都是以貴金屬在做低烷烴類的脫氫反應。 在 1940年, Vladimir Haensel 發現在重組過程中使用以白金(Pt,鉑) 當作觸媒,可以從石腦油中提煉出高辛烷值的汽油[9]。因此白金常 常被用來做研究,因為他擁有較高的活性能夠活化 C-H 鍵,而且對 於破壞 C-C 鍵也有相對較低的活性。其中鉻金屬對於丙烷脫氫反應 也很有效益。氧化鉻是第一種使用在烷類脫氫的觸媒,它的優點是, 不需要再生也可以進行長時間的反應,機械強度強,但它的缺點就是 選擇率及產率相對較低。

使用白金金屬當作觸媒在反應過程中很容易使觸媒快速衰退並 有較低的的選擇率,因此白金觸媒必須改善它的缺點,在很多的研究 顯示中,若在白金觸媒中添加另外一種金屬,可以大大低改善它的缺 點。研究顯示,在白金觸媒中添加Sn、K或Zn都是可行的[10]。

其中以添加Sn來做為討論,錫(Tinum, Sn),它擁有良好的伸展 性能,它在空氣中不易氧化,它的多種合金有防腐蝕的性能,因此它 常被用來作為其它金屬的防腐層。在碳屬小烷類的脫氫反應中,添加

16

錫至觸媒中對於鉑的催化性質有很重要的影響。它能夠抑制氫解,增 加脫氫反應中的選擇性,且能夠增加載體的生命週期。

2.3.2 雙金屬觸媒[11]

由於單金屬觸媒在選擇性脫氫反應中,對於主要產物烯烴的 選擇性不佳,為了尋求突破,在1950年代開始展開雙金屬觸媒的 研究,其為催化作用的電子理論初萌芽的時期,但又隨即沉寂了。 近年來這類的研究,由於雙金屬催化重組觸媒在工業上的重要刺 激,又再度復甦。含有雙金屬(A和B)混合物觸媒的微結構可能形 式如圖2.8所示,可分為四類(1)分離的粒子A及B,如圖2.8-a,(2) 單一相具有不同組成的粒子,如圖2.8-c,(3)單一相的合金粒子, 如圖2.8-d,(4)粒子的組成是均勻的,但具有兩相,如圖2.8-e、g。

圖2.8 在雙金屬觸媒上可能的金屬粒子的微結構

2.3.3 分散金屬觸媒 [11]

過渡金屬觸媒在化學工業製程中廣泛的被利用,例如石油的提煉 及排放廢氣的控制與氣體純化等。未支撐的金屬觸媒常常具有較低的 熱穩定性,因此觸媒常發生聚焦的現象造成表面積下降。為了改善這 些缺點,活性金屬物質常常被支撑在高面積的載體上,這樣不只能提 高活性金屬的使用效能,也提高了壽命。鉑金屬在載體上的分散性對 於脫氫反應很有重要的影響。在鉑金屬觸媒中添加錫之後,對於觸媒 的分散性有大大的提升,因此使得觸媒對於反應的活性也會提高。

2.3.4 載體的不同

載體對於觸媒是一個很重要的影響,尤其是載體上的孔洞面積、 活性點及反應中的穩定性與再生之後的影響性。丙烷脫氫反應中所使 用的觸媒鉑中,最常看到以鋁當作為載體,而以二氧化矽(SiO₂)及沸 石(Zeolite)也常被使用作為載體。使用二氧化矽或鋁當作載體來在丙 烷脫氫反應並不會有太大的區別,最主要的影響還是添加金屬錫。

2.4 觸媒的製作方法

2.4.1 PVP 穩定金屬奈米微粒 [12]

金屬觸媒活性及選擇性與觸媒粒徑、形狀等結構特性,以及反應 媒介、擔體等環境因素息息相關。奈米金屬微粒更因極高的表面原子 數,表面不飽和導致表面活性增加,表面粗糙程度隨粒徑減小而增加, 形成凹凸不平的原子台階,增加化學反應的接觸面。製備奈米金屬微 粒的技術已備受矚目,化學還原法、電化學還原法、氣相沉積法、微 波幅射法、UV 光解法、熱分解法等,其中化學還原法在催法反應中 常被廣泛的應用,因為具有容易製備、粒徑較小、分散穩定等優點。 在工業上觸媒要求再現性,因此金屬奈米微粒通常在製備過程中常負 載於異相擔體或添加高分子、配位基或適當容易當作穩定劑,並分散

高分子穩定劑能與金屬奈米微粒表面產生較弱的作用力,而對金 屬微粒形成高分子鏈保護層的官能性高分子,其以水溶性高分子為主, PVP (poly-N-vinyl pyrolidone,聚乙烯吡咯銅)、PEI (poly ethyleneimine,聚乙烯亞胺)、PVA(poly-vinyl alcohol,聚乙烯醇)均曾 被使用,其中以PVP 與金屬吸附效果顯著最為青睐。

19

2.4.2 溶膠-凝膠法(sol-gel)[13]

溶膠-凝膠法(sol-gel)是一種製備奈米粒子的濕化學法,其基本 原理是: 以易於水解金屬結合物(無機鹽或金屬醇鹽)為原料,並將之 溶於溶劑中形成均匀的溶液,如此可使金屬結合物與溶劑產生水解或 醇解反應,經過水解或醇解過程而逐漸生成 1nm 左右的粒子形成溶 膠。在形成溶膠的過程中,反應物需要在液相中被均匀的混和反應, 且反應所生成的溶膠需要處於一個穩定的系統,不應該會有沉澱物產 生。若溶膠經過長時間的置放或是將之乾燥處理,其便會轉變成凝膠, 當溶膠轉化為凝膠時,在凝膠中還是存在著大量液相,因此若要得到 所需之氧化物奈米粉末,就必須將凝膠在經過萃取、乾燥或熱處理等 後續步驟。對於金屬醇水解的溶膠-凝膠法,一般需要用有機醇當作 介質,使水的體積分率在該反應的液相中站比較低的比率,由於低的 表面張力及不易形成氫鍵,因此所得到之粉末其團聚強度也跟著下降, 由於金屬醇鹽類原料昂貴,加上操作不易,該方法的推廣與應用也跟 著受到限制。

20

2.4.3 核-殼結構(Core-Shell structure)之奈米粒子 [14]

製備核-殼形式之奈米粒子,除了可將多功能結合在一起外,也 可能產生新的特性。一般而言,其目標可區分為四大項:一、修飾奈 米粒子的特性或產生不同於原成分的新特性;二、調整奈米粒子的表 面特性,以改變其表面電荷密度、反應性、功能性、穩定性、分散性 及生物相容性;三、以核心粒子為板模,製備中空球殼;四、創造多功 能性複合奈米粒子。

核-殼形式的奈米粒子從金屬、陶瓷、高分子或生化分子之間的 結合,目的在於調整奈米粒子的表面特性、製備中空球殼材料或創造 多功能性複合奈米粒子。

金屬奈米粒子非常容易聚集,就會縮小其表面積及表面活性,導 致降低了其奈米的特性。因此為了避免這個問題,並且維持奈米的大 小及形狀,可以使用矽殼層,其功能就像是一個物理屏障可以有效的 預防金屬奈米粒子的聚集。此外,矽殼層有很好的性質,像是對於水 有高溶解度,無毒及可控制孔隙度。Hyeon 等人將矽殼層運用在雙金 屬奈米粒子上,並發現奈米粒子在水中有很好的分散性及生物相容性。 最近研究顯示,Somorjai 等人發現高溫反應時將矽殼層運用鉑金屬奈 米粒子有很好的效果。在反應溫度達750℃時,矽殼層能夠有效的預防鉑金屬燒結,及防止反應氣體直接通過矽殼層的孔洞接觸金屬。 [14]

製備核-殼形式之奈米粒子,除了藉由反應、成核(nucleation)、 成長(growth)速率過大的差異性來產生外,最常見的製備方法是以兩 步驟來完成。先以一般單成分奈米粒子合成法合成所需要的核心粒子, 再進一步以披覆技術產生奈米殼層。

2.4.4 含浸法 [15]

含浸法為最簡單的觸媒製備方式,將載體與含有金屬物質的溶液 接觸,通常是水溶液,然後再將載體烘乾,即可得到類似像沉澱法中 的活化觸媒。通常含浸法分為「乾含浸法」及「濕含浸法」兩種,濕 含浸法是將金屬溶於溶液中,不同的載體,使用不同組成濃度的溶液, 此方法難以有效的利用到所有溶液。乾含浸法(dry impregnation)或稱 初濕含浸法(incipient wet impregnation)就是對載體吸水量做出較準確 的控制。而不論利用上述哪種方式來含浸觸媒,都必須將含浸的觸媒 乾燥及煅燒。此方法所得到的觸媒,其形狀及大小即為載體之形狀和 大小,因此在製備過程中省去了過濾和成形的步驟,所以含浸法的設 備也就相對較少。基於經濟性之考量,必須盡可能地使金屬做到最好 的散佈型態,影響金屬分散度的因素包含了含浸的條件及擔體性質兩 部分,孔洞的大小則影響金屬離子進入孔隙的難易程度,除此之外, 含浸的時間即含浸溶劑的特性(含表面張力及黏度等)也會影響金屬 分散度的因素。

2.5 反應動力學[16]

化學動力學也稱反應動力學、化學反應動力學,是物理化學的一 個分支,研究化學反應的反應速率及反應機理。它的主要研究領域包 括:分子反應動力學、催化動力學、宏觀動力學、表觀動力學等,也 可依不同化學分支分類為有機反應動力學及無機反應動力學。化學動 力學往往是化工生產過程中的決定性因素。

丙烷脫氫反應主要在固定床反應器中進行,並使用冪次定律式 (power-rate law)來表示表面反應的動力學及觸媒衰退的反應,將實驗 數據及分析結果透過 O.D.E 進行分析並比較。為了避免在分析中導致 轉化率因為時間轉換所產生的差異性,因此轉化率及時間的數據必須 優先處理。在動力學中,雖然在反應時間為零及反應速率常數很大時 對於動力學分析不會有太大的影響,但衰退反應中的失活常數卻對於 動力學有很大的影響。 儘管脫氫反應之化學式很簡單,但脫氫反應的製程卻是相當的複雜。 因此可用的反應動力學及觸媒衰退方程式在脫氫反應分析中佔了很 重要的位置。通常建議在主要反應中所使用的為 First-order 動力學, 而觸媒的衰退則是套用衰退定律。其他副產物的反應也可以運用 power-rate law 來進行分析,脫氫反應的條件通常在高溫低壓中進行。

第三章 實驗系統

本章敘述實驗所需藥品、儀器、實驗步驟及產物、觸媒的分析方法及條件。

3.1 實驗藥品及儀器

3.1.1 實驗藥品

藥品名稱	化學品	規格	製造廠商
乙醯丙酮酸鉑	Pt(acac) ₂	98%	SIGMA
氯化錫	SnCl ₄	99%	Arcos
聚乙烯吡咯烷酮	PVP	99.5%	Arcos
乙二醇	$C_2H_6O_2$	99.5%	Showa
氧化鋁	$\gamma - Al_2O_3$	1/16 spheres	STREM
銨水	NH4OH	25-30% in water	Showa
乙醇	C ₂ H ₅ OH	95%	景明
四乙氧基矽烷	Si(OC2H5)4	98%	Seedchem
丙酮	C ₃ H ₆ O	99.9%	ECHO
甲醇	СН ₃ ОН	99.5%	TEDIA
丙三醇(甘油)	$C_3H_8O_3$	99%	Showa

表 3-1 藥品等級與製造商一覽表

3.1.2 實驗氣體

氣體名稱	化學式	純度	購買廠商
丙烷	C_3H_8	99.9%	東洋氣體
氮氟	N_2	99.99%	東洋氣體
空氣	*	$21\%O_2 + 79\%N_2$	東洋氣體
氫氣	H ₂	99.99%	東洋氣體
氦氣	Не	99.99%	東洋氣體
混和氣	*	95%Ar+5%H ₂	東洋氣體

表 3-2 氣體純度與購買公司一覽表

3.1.3 實驗儀器設備

表 3-3 儀器型號與廠商一覽表

儀器名稱	型號	製造廠商
氣體流量控制器	5850E series	Brooks
氮氟質量流量控制器	5850 series	Brooks
丙烷質量流量控制器	5800E series	Brooks
高溫鍛燒爐	訂製	豐盈儀器公司
化學吸附之高溫管狀爐	DB-5090	中國層析
電子天平	XB220A	Precisa

管件	*	Swagelok
氣相層析儀	6890N	Agilent
磁石加熱攪拌器	C-Mag	程揚儀器
全自動比表面積及孔徑	A S A D2020	MICDOMEDITICS
分析儀	ASAF 2020	MICKOMERTICS
X射線繞射光譜儀	XRD-6000	SHIMADZU

3.2 觸媒製備方法

3.2.1 核殼式觸媒製備的方法

在本實驗所使用的觸媒中,主要探討以核殼式觸媒催化丙烷脫氫 反應性能, 觸媒製備方式如下:

第一部分: 製備 Pt-Sn 合金

- 在 375ml 的乙二醇中加入 500 毫克的 Pt(acac)₂,150 微升的 SnCl₄
 及 1250 毫克的 PVP,將其放入油浴中,加熱至 185℃,反應 30
 分鐘。
- 將反應後的液體冷卻至室溫,再將液體取出離心三次,以150ml 丙酮為清洗液,離心完後取出黑色固體。
- 3. 將黑色固體放置烘箱,溫度為100℃,烘乾12小時。

第二部分:將合金以 sol-gel 方式包入 TEOS(1/4 倍)

- 將黑色固體取出放置燒杯,並加入 8.75 毫升的去離子水、2.75 毫
 升的銨水、54.1 毫升的乙醇及 1.091 毫升的 TEOS。
- 2. 將液體放至磁石攪拌器,攪拌24小時。
- 3. 取出液體離心三次,並以去離子水清洗。
- 4. 取出黑色固體放置乾鍋中,煅燒以每分鐘升溫1℃,升溫至600℃ 煅燒,並且維持4小時。
- 5. 煅燒後,取出觸媒,並且秤重,完成觸媒製備。

本實驗以核殼式製備觸媒的方法中,總共製備了幾種不同 TEOS 量之觸媒,其分類如圖 3-1 所示。圖 3-2 為製備 PtSn 合金的 裝置圖。

圖 3.1 核殼式觸媒分類圖

- 1. 球型冷凝管
- 2. 圆底燒瓶
- 3. 油浴(甘油)
- 4. 磁石加熱攪拌器
- 5. 冷媒入口
- 6. 冷媒出口
- 7. 溫度計

圖 3.2 製備 PtSn 合金裝置圖
3.2.1 觸媒含浸製備的方法

含浸法為一種常見的觸媒製備方式,且製造方法簡單,在本實驗中,含浸法製備的觸媒主要是用來與核殼式觸媒作為比較。

第一部分: 載體($\gamma - Al_2O_3$)前處理

- 將適量載體放置溫度 100°C的烘箱烘乾約 12 小時,使載體上的水 分能夠有效地被去除。
- 為了使金屬能有效的負載在載體上,因此必須先求得載體本身的吸水量為多少,本實驗吸水量的做法為取 lg 的γ-Al₂O₃,滴入適量的水,使載體呈現泥狀,即表示載體所需的吸水量,lg 的γ-Al₂O₃,需要 1.4ml 的去離子水。

第二部分:含浸金屬於載體上

- 量取所需配置的 Pt(acac)₂及SnCl₄之克數(本實驗中配置的白金與 錫的莫耳比為 1:1),加入算出載體所需的吸水量,如 1g 的 γ -Al₂O₃ 需要 0.704 毫升的水。
- 將金屬液體緩慢的滴入於載體中,並且過程中必須不斷攪拌,然 後靜置約12hr 讓載體能充分吸收,並於12小時候放置烘箱,溫度 為100°C,烘乾1天。

 烘乾後取出放置乾鍋中,以1°C/min升溫至550°C,並恆溫6小時, 最後煅燒完成得到觸媒之完成品。

本實驗在以含浸法製備觸媒時,使用了不同的溶劑來溶解金屬, 如圖 3.3 分類。

圖 3.3 含浸法所使用不同溶劑之分類圖

3.3 丙烷脫氫反應

在本實驗中,以填充床作為反應器,並以溫度控制器來控制升溫速度 及時間,裝置如圖 3.4 所示。

操作條件

反應溫度: 600℃

反應壓力: latm

反應時間: 30min-240min

總流速: 50ml/min

丙烷濃度:10%

實驗步驟:

第一部分: 觸媒還原

- 1. 秤取約 0.5g 的 PtSn@SiO2觸媒,加入乾燥後之反應器中。
- 2. 將反應器放至高溫管狀爐中,反應器中的溫度由

J-type-thermocouple 測得。

- 3. 由溫度控制器將反應器升溫至 400℃。
- 4. 升至 400℃後,以 21.2ml/min 的流速通入混合氣(95%Ar+5%H₂), 並維持 2 個小時來進行觸媒還原。

第二部分:丙烷脫氫反應

- 將還原後的觸媒繼續加熱至反應溫度 600℃,並將混合氣關閉,升 溫過程中要持續的通入氮氣,為了將反應器中所殘留的混合氣排 出。
- 到達反應溫度時,開啟丙烷鋼瓶及流量控制器,調整丙烷流量為 5ml/min,氮氣流量為45ml/min,並開始計時。
- 3. 以氣密針抽取反應器出口的樣品氣體,並以GC進行產物分析。

第三部分: 觸媒再生

- 1. 將反應過後的觸媒取出並秤重,將觸媒放至坩鍋中。
- 將坩鍋放至高溫鍛燒爐中,以1℃/min 升溫至100℃並維持2個小時,再以1℃/min 升溫至200℃並維持2個小時,再以1℃/min 升溫至400℃並維持2
 個小時,再以1℃/min 升溫至500℃並維持2個小時。
- 將坩鍋中觸媒取出並秤去重量,完成再生,再生後觸媒與新鮮觸 媒重量差 0.02g~0.05g。

圖 3.4 丙烷脫氫反應裝置圖

3.4 產物分析

產物分析以氣相層析儀分析為主。氣相層析儀可直接求得丙烯之 產率,而丙烯選擇率為丙烯產率除以丙烷轉化率。

3.4.1 氣相層析儀分析

本研究分析產物時採用 Agilent 氣相層析儀,如圖 3.5 所示。GC 偵測得到訊號傳輸至電腦,利用 Agilent 的積分軟體,得到各個產物 peak 面積。儀器設定隨分析物之改變而有所不同,本研究使用 GC 分 析者為丙烷脫氫的反應物丙烷及產物丙烯。分析儀器與設定如下:

Injector temperature ∶ 200 ℃

FID detector temperature : 200 $^{\circ}$ C

Oven initial temperature : 45° C

Time for initial temperature : 1 min

Heating rate : 10 °C/min

Final temperature : 100 ℃

Time for final temperature : 1 min

Column : Rt@Alumina BOND/Na₂SO₄(30mx0.53mm, 10µm)

Carrier gas : Helium

氣相層析儀可進行定性分析和定量分析。定性分析即利用滯留 時間之不同判定為何種化合物;定量分析則是先使用產物標準品作 出該產物校正線,之後每次反應後注射入樣品所得的面積比,帶入 此校正線,即可得到該產物的重量。

圖 3.5 氣相層析儀示意圖

3.4.2 火焰離子偵測器 (FID)

FID 示意圖如圖 3.6 所示, FID 原理基本上是將流出管柱的樣品 通入一燃燒室,會通入此火焰中以將有機分子氧化並生產具電價的粒 子(離子),便可利用正負離子可導電的特性,偵測到電子訊號,其 優點為靈敏度高。

如同在其他 GC 技術中所常見狀況,因為水與氧會與固定相交互 作用並造成嚴重的問題,故在低水與氧雜質下需有載體氣體,例如在 輸出的氣相層析圖中有高基線雜訊與管柱破壞,即會同時降低分析儀 的靈敏度並減少管柱壽命。此外 FID 對於火焰用之氫氣與空氣供應中 的碳氫化合物雜質亦極為敏感。

圖 3.6 FID 裝置示意圖

3.4.3 定性分析

將樣品注入氣相層析儀中,利用樣品至偵測器的時間的不同, 分辨出樣品之性質。圖 3.7 及表 3.1 為丙烯環氧化反應後產物定性 分析之結果。

圖 3.7 氣相層析儀帶留時間圖

樣品成份	滯留時間(min)
CH_4	0.594
C_2H_6	0.759
C_2H_4	1.047
C_3H_8	1.548
C_3H_6	2.920

表 3.4 氣相層析儀滯留時間

3.5 定量分析

本實驗之分析大多為使用氣相層析儀,故須建立反應物及最終 產物的檢量線,以便於實驗上的分析。藉由積分儀所示積分面積和 氣體濃度呈一線性關係,進而求得氣體濃度值。以下為製作檢量線 的製作方法,圖 3.8 及圖 3.9 分別為丙烷檢量線及丙烯檢量線。

- 1. 先預估檢量線範圍,了解產物及反應物的濃度範圍。
- 2. 以氮氟作為稀釋的氟體,以總流量 50 ml/min,調整氮氟氟體流量 計及丙烷氟體流量計。
- 3. 開啟氮氣鋼瓶及丙烷鋼瓶,並同時開啟氣體流量計。
- 利用氣密針在反應器出口抽取氣體樣品約 0.5ml,注入氣相層析儀, 並分析之。
- 5. 重複2~4步驟,調整不同丙烷濃度,完成丙烷檢量線所需之範圍。
- 6. 重複1~4步驟,調整不同丙烯濃度,完成丙烯檢量線所需之範圍。

圖 3.8 丙烷之校正曲線

圖 3.9 產物丙烯之校正曲線

3.6 熱場發射掃描式電子顯微鏡(FE-SEM)

FE-SEM 如圖 3.10 所示,包括下列兩個部分:

 提供並聚集電子於樣品上產生訊息主體,包括電子槍、電磁透鏡、 樣品室及真空系統。

2. 顯像系統。

電子槍所產生的電子束,經過電磁透鏡聚成極小的電子束後,照 射於樣品上後形成作用,並在不同層面釋放歐傑電子、二次電子、背 向散射電子及 X 射線。電子束碰撞樣品後,產生的訊號由偵測器接 收,並經轉換放大後顯示於螢光幕上,即可顯像以及元素分析光譜圖 (Spectrum)。

而場發射式電子槍則比一般電子槍所使用之鎢燈絲和六錋化鑼 燈絲的亮度又分別高出10~100倍,同時電子能量散佈僅為0.2~0.3eV, 所以目前市售的高解析度掃描式電子顯微鏡都是採用場發式電子 槍。

42

熱場發式電子槍是在 1800K 溫度下操作,避免大部分氣體分 子吸附在針尖表面,所以免除了針尖 flashing 的需求。熱式能維 持較佳的發射電流穩定度,並能在較差的真空度下 (10⁻⁹ torr) 操 作。雖然亮度與冷式類似,但其電子能量散佈卻比冷式大 3~5 倍, 影響解析度較差,通常較不常使用。本實驗 FE-SEM 所使用儀器 機型為 JSM-7000F。

圖 3.10 熱場發射掃描式電子顯微鏡

3.7 X射線繞射實驗 (XRD)

X 射線式定義為短波長的電磁波,它乃由於高能量電子經過減速 作用或是電子在原子內層軌域發生電子躍遷而產生的。X 光波長範圍 大約在10⁻⁵Å~100Å 左右,然而用於 X 射線光譜學的 X 射線波長範 圍則大約為 0.1Å~25Å。X 射線繞射與其他種的電磁輻射相似,X 輻 射的電向量與被其穿過物質的電子間,因為交互作用而造成散射。當 X 射線被晶體內有規則的環境所散射時,散射的光線間會發生建設性 或破壞性干涉,因當散射中心之間的距離與輻射波長大小約在同一等 級,便產生繞射。

X 射線繞射實驗是用來判斷結晶物質的組成及結構。一般具有結 晶構造的化合物在 X 射線繞射圖上有特定的波峰出線,因此許多化 合物可直接經由繞射圖形與參考圖形的對照來確認其結構。X 射線繞 射也可以用來作定量的分析,用以決定樣品某一特定相所佔的大約比 例,不過其儀器須經校正程序。

44

樣品若為粉末狀,通常取適量於載具裡,利用玻璃片將樣品括平 均勻放入儀器中分析,若是高分子 亦可先熱壓成片之後置入於載具 中分析。

本實驗中所使用 X 光射線光源為銅靶的 Ka 射線,測量時電壓 與電流為 40kv 與 30mA。XRD 所使用之機型為 Shimazu XRD-6000。

3.8 全自動數位穿透式電子顯微鏡 (TEM)

穿透式電子顯微鏡(Transmission Electron Microscopy)如圖 3.11 所示,是利用電子束照射樣品,若樣品含有多電子的原子,則電 子無法穿過樣品,在偵測器上顯示黑點;若電子束可以穿透或較輕的 原子,在偵測器上顯示亮點,這種不同亮度與對比的影像及代表了樣 品的結構與形狀。

圖 3.11 穿透式電子顯微鏡基本元件圖

3.9 能量散佈分析儀(EDS)

能量散佈分析儀主要是由擴散鋰原子的矽晶接收器(Lithium Drifted Si p-i-ndiode, Si(Li)為核心的固態偵測器,其中鋰是為了中和矽晶接 收器中可能存在的其中雜質,減少電子電洞在對結合中心使得偵測的 效率準確,由於此種偵測器必須要在低溫下操作,傳統機型係利用液 熊氮冷卻之,現在已有冷凍幫浦冷卻的機型推出。電子束激發而放射 出來的 X 光穿過薄的鈹窗(Beryllium Window, Be)或超薄高分子膜窗 甚至是無窗型的偵測器中,激發矽晶接收器產生電子電洞對,再轉換 成電流,經放大器(Amplifier)及脈衝處理器(Pulse Processor)的處理後, 送至能量轉化器(Energy-to-Digital Converter)處理由多頻道分析儀 (Multi-channel Analyzer, MCA)將 X 光能量信號存入其對應之頻道位 置。偵測特性 X 光的分析方法,能量散佈分析儀相較於波長散佈分 析儀的優點有:

- 1. 快速且可偵測不同能量的 X-光譜圖。
- 使用之一次電子束電流較低可得較佳的空間解析度,且較不會損 傷試片表面。
- 3. 接收訊號的角度大。

- 4. 儀器之設計較為簡單。
- 5. 操作簡易,不需做對準及聚焦。

而主要缺點則有:

1. 能量解析度差。

- 2. 對輕元素的偵測能力差。
- 3. 偵測極限差(>0.1%)。

4. 定量能力較差。

基於上述的快速及設計簡單、操作簡易的優點,一般掃描式電子 顯微鏡及穿透式電子顯微鏡所附加的特性 X 光偵測器多採用能量散 佈分析儀。

3.10 程溫還原(TPR)

TPR 是對觸媒本身對於氧鍵結的強弱做測試,還原是製備金屬中 非常重要的活化步驟,因此還原溫度對於觸媒的金屬分散性有絕大的 影響。當觸媒在低溫還原時,會使得觸媒的不完全還原;在高溫還原 時,會導致觸媒燒結,降低催化效果。TPR 是透過熱傳導檢測器(TCD) 得到訊號,再經由積分器顯示其結果。熱傳導檢測器是利用惠斯登電 橋(Wheatstone bridge)來偵測不同溫度下,還原載氣中H₂的變化情形, 不同氣體有其不同的熱傳導係數,當載氣流經熱電阻絲時可將其電阻 絲上的熱帶走,故藉由其被帶走的熱量不同而其紀錄上會顯示不同的 結果。圖 3.12 為 TPR 裝置圖。

圖 3.12 TPR 實驗裝置圖

1.	煅燒爐	7.	質量控制器
2.	U型管	8.	抽氣裝置
3.	氣體供應源	9.	TCD 控制器
4.	程序升温控制器	10.	. 數據處理器
5.	流量控制器	11.	TCD
6.	溫度計	12.	,分子篩

3.11 比表面積與孔洞分析實驗(BET)

3.11.1 BET 表面之測定原理

觸媒的性能與其表面積之大小和孔徑度的分佈有密切的關係,因 為觸媒表面直接接觸到反應物氣體,所以表面積的大小控制了觸媒的 活性,而孔洞大小和孔洞的形式控制其選擇性。總表面積包含觸媒的 內表面積與外表面積,藉由 Brunauer – Emmett - Teller (BET)方法來 測量。而孔徑的大小則藉由不等量氮氣吸附觸媒在孔洞中,再分別以 氦氣填充,由此可得出吸附前後所吸附上去的量,再利用 BJH (Barrett – Joyner - Halenda)吸附法,可得出孔徑的大小分布。

藉由氣體的物理吸附來測定表面積,表面積是由氣體的分子數以 單層覆蓋於固體表面而決定。由測定氣體體積或氣體重量計算單層的 吸附氣體分子數目進而求得固體的表面積。等溫線是表示氣體在一固 定溫度下的吸附量,在固體上達到一個平衡。通常吸附曲線可分為六 種形式,如圖 3.13 所示。

51

圖 3.13 吸附曲線的形式

- Type I:又稱作 Langmuir type 等溫曲線,通常發生在具有微小孔洞的多孔性固體中。在相對壓力值小於1時,所吸附之氣體便已將所有孔洞填滿。
- Type II:又稱作 S type 等溫曲線,通常發生在孔徑大於 20nm 和非多孔性的物質中。在低壓時會有轉彎點 B,一般認為是單 層吸附已經完成,開始轉往多層吸附。
- Type III:此類吸附曲線呈向下凹型,發生於氣體分子與固體間 之吸附力遠小於氣體分子間的作用力時,會有此類型的圖型, 且通常在單層吸附尚未完成前就開始多層吸附。
- 4. Type IV:此類型的吸附曲線在相對壓力時與 Type II相似,多發 生於多孔性物質。隨著壓力上升吸附劑開始在孔洞中凝結而發 生毛細現象(capillary condensation),造成吸附量劇增。其脫 附曲線常具有遲滯現象(hysteresis),為典型的中孔洞物質之吸 附曲線。
- Type V: 在低分壓區與 Type III相似,高分壓區則會發生毛細現象。此類吸附曲線較為少見。

6. Type VI:此類型的吸附曲線通常發生在具有規則且均勻的非孔

洞物質,會發生多重吸附,此類吸附曲線也較為少見。

典型的中孔洞物質其吸附等溫線主要有兩個特徵,一個是受毛細 現象的影響,而使得在某一段分壓範圍時吸附量急遽上升;另一個則 是遲滯現象的發生,亦即吸脫附曲線中,吸附與脫附所走的路徑不一 樣,在特定分壓下吸附量總是比脫附量來得高。而遲滯現象的形狀則 會受孔洞結構的不同而有所影響,因此常被用來說明孔洞的大小形 狀。

Brunauer、Emmett 及 Teller(BET)吸附理論為 Langmuir 吸附理 論的延伸,可用以計算非孔洞性固體表面之多層吸附現象。利用不同 吸附分子層中氣體分子蒸發及冷凝速率之平衡,可導出 BET 吸附方 程式。此理論系假設氣體的吸附熱與表面分子的覆蓋率無關。其吸附 方程式為:

$$\frac{P}{V(P_0 - P)} \equiv \frac{1}{V_m C} + \frac{C - 1}{V_m C} \times \frac{P}{P_0}$$

其中, P_0 為吸附氣體的飽和蒸汽壓, V_m 為單一吸附層的容積,P為平衡壓力,V為吸附氣體的總體積,C為常數,此常數可藉由吸附熱(\triangle Hi)和氣體凝結(\triangle Hc)來算得。以 $\frac{P}{V(P_0-P)}$ 對 $\frac{P}{P_0}$ 之作圖應該是一條直線,而斜率是 $\frac{C-1}{V_mC}$,截距為 $\frac{1}{V_mC}$,即可求出 V_m 。相對壓力值有正確 BET 適用範圍是介於 0.05~0.35 之間。在高的相對壓力下,BET方程式是不正確的因為毛細管凝結效應的關係,當 $\frac{P}{P_0}$ 低於 0.05 時,吸附氣體的量太小以至於偵測不到充分的正確值。

若氣體吸附僅限定於n個分子層(n與孔隙大小有關),則其方程 式為:

$$V = \frac{V_m C}{1 - X} \times \frac{1 - (n+1)X^n + nX^{n+1}}{1 + (C - 1)X^n - CX^{n+1}}$$

其中, $X=\frac{P}{P_0}$,當 n=1 時,此公式即成為 Langmuir 吸附方程式; 當 n= ∞時,此公式即為 BET 吸附方程式。

3.11.2 BET 表面積及孔徑大小之測定實驗

觸媒之表面積測定利用 BET 計算在液態氮溫度下之氮分子物理 吸附量。取約 0.200g~0.500g之樣本置於石英管中以專用管塞塞住, 為防止粉末樣品流入儀器內。將石英管置於除氣(Degases)處抽真空, 並以加熱包加熱,以去除表面水分及不純物。完成除氣步驟後,將樣 品秤重並與石英管直接連接至樣品分析處。使石英管慢慢進入於液態 氮中,使其吸附氮氟於樣品上呈飽和狀態,再於室溫下量測脫附之氮 氣量。以氮氣在室溫脫附量及氮氣之單分子面積(約 0.162nm²)計算 觸媒之表面積,亦可進行實驗計算其孔徑大小及體積。由於表面積的 大小會影響觸媒活性成分的分佈,進而對反應產量有直接的影響;而 孔徑分佈及大小會影響反應物吸附速率及擴散速率、觸媒的催化特性, 但是並不一定與觸媒的活性與生成物產量成正比,所以在觸媒的表面 積只當作輔助其他分析工具。本實驗所使用 BET 之儀器機型為 Micrometrics ASAP2020 •

3.12 感應耦合電漿原子發射光譜分析法(ICP-AES)

感應耦合電浆原子發射光譜分析法,乃是以感應耦合電浆(ICP) 作為能量來源,以揮發、原子化、游離及激發樣品,進行原子發光光 譜分析的儀器。由於每一個元素的原子能階各不相同,發出線狀光譜 各有特性,由特性光譜來判定光譜元素為何,達到定性之目的。且由 光譜線之強度,經由檢量線可導出未知試樣的濃度,再做定量分析。 因此可提供樣品中各元素主成分、副成分及微量的成分的分析服務。

ICP-AES 可分析的元素已達 80 多種,均可精確定量,相較於其 他分析法可減少繁複的樣品前處理步驟,如萃取、濃縮等,為一優秀 多元素分析系統。ICP-AES 可分為兩種,一為連續式儀器可在短時間 連續測定樣品中各元素之濃度,另一種為同時式儀器可同時測定樣品 中多種元素之濃度。

本論文之觸媒 Pt-Sn@SiO₂為粉末固體,因此需先使用 HF 將其溶 解成液體才能測定樣品中元素之濃度。本實驗是經由清華大學國科會 貴重儀器中心完成,所使用儀器之型號為德國 Kontron, S-35。

57

第四章 結果與討論

本研究主要以 Pt-Sn@SiO₂核殼式奈米顆粒為丙烷脫氫反應之觸 媒,探討不同條件下製備的觸媒對丙烯產率之影響,製備條件包括改 變 TEOS 之添加量、觸媒之煅燒溫度、白金與錫之合金比例等,以找 尋 Pt-Sn@SiO₂觸媒的最佳製備條件,並以下列之特性分析來研究觸 媒的物理性質。

(1)全自動穿透式電子顯微鏡(HTTEM)之分析

- (2)X光繞射分析儀(XRD)之分析
- (3)能量散佈分析儀(EDS)之分析
- (4)比表面積與孔徑分析儀(BET)之分析
- (5) 感應耦合電漿原子發射光譜分析法(ICP-AES)之分析
- (6) 程溫還原(TPR)之分析

4.1 定義產率、轉化率、選擇率及空白測試

為比較不同操作條件下進行丙烷脫氫反應後結果之優劣,因此定 義反應之轉化率、產率及選擇率。丙烷脫氫之反應物為丙烷,因此反 應之轉化率以丙烷為基準(basis)。茲將產率、轉化率及選擇率定義如 下:

空白測試顧名思義即為在反應器中不使用觸媒當作催化劑,在反 應器中即便沒有觸媒催化也會有氣體在反應器中進行反應,而這種反 應表現通常需要在較高的反應溫度下進行。表 4.1 即為兩種反應溫度: 600 ℃及 650℃,個別在不同時間下丙烷脫氫反應的結果。當溫度越 高時,丙烷脫氫反應的結果越佳,若與下述含有觸媒當作反應催化劑 來比較,無添加觸媒於反應器中,丙烷脫氫反應的結果反而差了許多。 本實驗反應壓力為 1atm,反應總流量為 50ml/min,丙烷濃度為 10%。 圖 4.1 為未添加觸媒時丙烷脫氫反應之氣相層析圖。

Time(min)	C _{propane} (%)		Y _{propylene} (%)		S _{propylene} (%)	
	600°C	650°C	600°C	650°C	600°C	650°C
30min	8.36%	16.57%	1.72%	4.57%	20.54%	27.58%
60min	12.36%	21.50%	1.26%	4.31%	10.19%	20.05%

表 4.1 空白測試對丙烷脫氫反應之影響

圖 4.1 未添加觸媒時丙烷脫氫反應之氣相層析圖

4.2 觸媒活性的探討

本論文有關觸媒活性的探討,係比較兩種不同方法製備的觸媒, 一種為溶膠凝膠法製備的 Pt-Sn@SiO₂;另一種為以含浸法製備的 Pt-Sn@Al₂O₃。

我們進行一系列參數之探討與比較,首先將丙烷脫氫反應參數設 定如下:反應溫度為 600°C,體積流量為 50 ml/min,丙烷濃度為 10%, 觸媒量為 0.5g。

4.2.1 製備 Pt-Sn@SiO2之 TEOS 濃度對丙烷脫氫反應的影響

表 4.2 為 TEOS 添加量對丙烷脫氫反應的影響,原倍數之 TEOS 濃度為 0.047M,溫度和壓力固定為 600°C 及 1atm,反應時間為 1 小 時,反應總流速為 50ml/min,丙烷濃度為 10%,其中Cpropane為丙烷 之轉化率,Ypropylene為丙烯之產率,Spropylene為丙烯之選擇率。

TEOS 之濃度 Pt/Si 之原 C_{propane} **Y**_{propylene} Spropylene 子比 (%) **(M)** (%) (%) 0.047M 0.065 55.47% 41.04% 73.10% 0.130 0.0235M 59.35% 41.80% 70.43% 0.0157M 0.195 56.63% 64.19% 36.35% 0.0118M 0.260 51.41% 78.11% 65.82% 0.0078M 0.390 56.73% 43.48% 76.64% 0.0059M 0.520 41.75% 24.55% 58.80%

表 4.2 製備 Pt-Sn@SiO2之 TEOS 濃度對丙烷脫氫反應之影響(t=1h)

(b)

64

圖 4.2 TEOS 濃度對丙烷脫氫 (a)產率(b)轉化率(c)選擇率之影響

根據表 4.2, TEOS 濃度為 0.118M 時(或 Pt/Si 原子比為 0.26), 可 以得到最好的丙烯產率 51.41%,丙烷轉化率 65.82%及丙烯的選擇率 78.11%;當 TEOS 濃度為 0.059M(或 Pt/Si 原子比為 0.52)時,丙烷脫氫 反應的結果為最差。根據圖 4.1 可以明顯看到 TEOS 濃度(或 Pt/Si 原 子比)對丙烷脫氫在長時間反應的趨勢,不同的 Pt/Si 原子比都會隨著 時間越長,產率及轉化率都會隨之下降,表示 Pt/Si 原子比對於反應 時間長短的影響並不大。

4.2.2 Pt/Sn 莫耳比之影響

在製備 TEOS 濃度為 0.0018M 之核殼式觸媒中,使用了三種不同 Pt/Sn 的莫耳比例,分別為1:0.5、1:1及1:2,丙烷脫氫反應之溫 度和壓力固定為 600°C 及 1atm,反應總流量為 50ml/min,丙烷濃度 為 10%。表 4.3 為不同 Pt/Sn 的莫耳比例的觸媒對丙烷脫氫反應之影 響。

表 4.3 不同 Pt/Sn 的莫耳比例之觸媒對丙烷脫氫反應的影響

Mole Ratio of Pt : Sn	C _{propane} (%)	Y _{propylene} (%)	S _{propylene} (%)
1:0.5	46.56%	24.90%	53.48%
1:1	65.82%	51.41%	78.11%
1:2	56.80%	37.20%	65.49%

(b)

(c)

圖 4.3 不同 Pt/Sn 的莫耳比例之觸媒對丙烷脫氫(a)產率(b)轉化率及

(c)選擇率之影響

由表 4.3 可知,當鉑與錫之莫耳比為 1:1 時,可以使丙烷脫氫反 應得到最佳的效果。由圖 4.3 可知,依據不同金屬合金比例之觸媒做 長時間的丙烷脫氫反應,當鉑與錫之莫耳比為 1:1 時,產率、轉化率 及選擇率對時間的變化並不大,反之當鉑與錫之莫耳比提高或降低, 在反應時間越長的情況下,產率及轉化率也會隨之下降,表示觸媒中 的合金比例對於丙烷脫氫在長時間的反應下,顯著影響了觸媒的穩定 性。

68

4.2.3 以含浸法製備之 Pt-Sn/氧化鋁(γ-Al₂O₃)觸媒

探討以含浸法製備觸媒,使用氧化鋁(γ-Al₂O₃)當作觸媒的載體, 氧化鋁是經由 Strem 公司購得,此形狀為球形,能夠有效的使金屬均 勻附著在載體上,並增加了觸媒與反應物接觸的面積。在製備過程中, 為了使金屬先驅物有效的均勻溶解,本實驗改變了不同的溶劑,去離 子水、甲醇、乙醇及乙二醇,並且探討製備之觸媒對於丙烷脫氫反應 之影響。反應壓力為 latm,反應溫度為 600°C,觸媒重量為 0.5g,反 應總流量為 50ml/min,丙烷濃度為 10%。表 4.3 為不同溶劑溶解金屬 先驅物所製備的觸媒對於丙烷脫氫反應之影響。

衣 4.4 个问浴劑聚備之胸媒對內炕脫風反應,	應之影響
-------------------------	------

溶劑	C _{propane} (%)	Y _{propylene} (%)	S _{propylene} (%)
去離子水	22.36%	9.01%	40.30%
甲醇	28.92%	12.88%	44.54%
乙醇	24.21%	2.79%	11.52%
乙二醇	25.11%	8.24%	32.82%

(b)

(c)

圖 4.4 不同溶劑製備之觸媒對丙烷脫氫 (a)產率(b)轉化率及(c)選擇

率之影響

由表 4.4 可知,在使用不同溶劑去溶解金屬先驅物所製備之觸媒 對丙烷脫氫的影響,以甲醇為溶劑時可以得到最好的丙烯產率、丙烷 轉化率及丙烯的選擇率。但以含浸法所製備之觸媒與溶膠凝膠法製備 之觸媒活性比較,溶膠凝膠法製備之觸媒對於丙烷脫氫反應有更佳的 活性,因此本實驗利用溶膠凝膠法來製備觸媒並探討影響丙烷脫氫反 應的各反應參數。

4.3 反應條件對丙烷脫氫反應之影響

經過觸媒製備方法不同的探討,以溶膠凝膠法所製備出的觸媒對 丙烷脫氫反應的效果都比以含浸法製備觸媒來的佳,因此接下來本實 驗會採取以溶膠凝膠法製備之最佳觸媒, Pt-Sn@ SiO₂ (0.0118M TEOS),來進行反應條件的探討。

以下為反應條件的範圍:

- 1. 觸媒煅燒溫度:400°C~700°C
- 2. 反應溫度: 400°C~700°C
- 3. 反應器中觸媒重量:0.15g、0.25g、0.50g、1.00g
- 4. 反應物丙烷濃度:10%、30%
- 5. 反應流量:25ml/min、50ml/min、100ml/min、200ml/min

4.3.1 觸媒煅燒溫度對丙烷脫氫反應之影響

合成 Pt-Sn 合金的前驅物水溶液中,為了避免還原時合金金屬還 原過快而凝聚在一起,因此必須適時加入 PVP 保護劑,而為了避免 合成完的觸媒所留下的 PVP 對反應造成影響,需適當地做熱處理將 PVP 燒除,因此留下多孔隙的結構,使觸媒接觸表面積可大幅提升, 煅燒時間為4小時。表4.5 為煅燒溫度對丙烷脫氫反應之影響。

煅燒溫度(°C)	C _{propane} (%)	Y _{propylene} (%)	S _{propylene} (%)
400	14.83%	1.33%	8.97%
500	22.37%	8.26%	36.91%
600	40.31%	18.47%	45.82%
700	40.41%	15.84%	39.20%

表 4.5 煅燒溫度對丙烷脫氫反應之影響

圖 4.5 煅燒溫度對丙烷脫氫反應之影響

由表 4.5 及圖 4.5 可知,當煅燒溫度越高時,觸媒對於催化丙烷 脫氫反應的效果越佳,最佳煅燒溫度為 600℃。煅燒溫度越高時,推 測載體 SiO₂中的 Si-OH 鍵會因為溫度高進行脫水反應,變成 Si-O-Si, 使得觸媒催化活性提升。但若溫度過高,則觸媒可能在煅燒時,結構 就已經被破壞,造成丙烷脫氫反應效果不佳。

4.3.2 反應溫度對丙烷脫氫反應之影響

脫氫反應的操作溫度十分重要。由於脫氫反應為一強吸熱的反應, 且反應要在一定的溫度下才會具有反應速度,但相對應的副產物的裂 解速度也就會隨之增加。因為脫氫反應需在高溫下進行,所選擇的觸 媒也必須具備化學穩定性好,且在高溫下具有抗氫氣還原及抗水蒸氣 腐蝕,反應器材質需耐高溫及耐腐蝕性的能力。根據圖 4.6 可知,當 操作温度提高時,觸媒的催化活性也隨之升高,在反應溫度為600℃ 時,丙烷脫氫的效果最佳,丙烯產率可達 33.58%,丙烷轉化率為 64.73%。當操作溫度高於 600℃時,丙烯產率開始急速下降,可能因 素為反應溫度過高,增加了觸媒積碳的機率,造成觸媒活性降低,反 而促使了反應往副反應方向進行。本實驗進行了8個反應溫度下加入 0.25g 的 Pt-Sn@ SiO₂(0.0118M TEOS)觸媒,反應壓力為 1atm,反應 流量為 50 ml /min,反應物丙烷濃度為 10%,反應取樣時間為 10min。

圖 4.6 反應溫度對丙烷脫氫反應之影響

圖 4.7 反應溫度對丙烷脫氫的副產物之產率影響

圖 4.8 反應溫度對丙烷脫氫的副產物之選擇率影響

由於脫氫反應需在高溫下進行,因此也促使了裂解反應的產生。 由圖 4.7 及圖 4.8 可知,當反應溫度越高,裂解反應所產生的副產物 越多,在溫度低於 600°C時,丙烷脫氫造成的裂解反應並不多,因此 副產物產率也不高,原因可能為觸媒在低溫時,活性並不佳,也未受 到高溫造成積碳,且丙烷脫氫反應為強吸熱反應,溫度若沒有達到一 定,則反應速度會變慢;反之若溫度高於 600°C時,副產物的產率及 選擇率都會急速上升,而主產物丙烯的產率及選擇率則降低,表示反 應中的裂解反應的反應速度要來得比脫氫反應快很多。

4.3.3 觸媒重量對丙烷脫氫反應之影響

催化反應系統中找尋適當的觸媒量是重要且必要,因此我們觀察 觸媒量進行丙烷脫氫反應並討論其影響。上述在4.1節中有探討到未 加入觸媒時對於丙烷脫氫反應,反應於600°C,反應時間為60min反 應壓力為1atm,反應流量為50ml/min,反應物丙烷濃度為10%,此 反應結果得到丙烯產率為1.26%,丙烷轉化率為12.36%,由下式(1) 可知,當未添加觸媒於反應器中時,反應速率很低,導致轉化率很低, 表示還是會持續進行脫氫反應。表4.6為不同觸媒重量對於丙烷脫氫 反應的影響,可知丙烯產率會隨著觸媒量增加而增加。

表 4.6 觸媒重量對丙烷脫氫反應之影響

觸媒重量(g)	C _{propane} (%)	Y _{propylene} (%)	S _{propylene} (%)
0.00	12.36%	1.26%	10.19%
0.15	40.31%	18.47%	45.82%
0.25	35.57%	31.77%	89.29%
0.50	65.82%	51.41%	78.11%
1.00	71.30%	52.79%	74.04%

將表 4.6 的數據繪製於圖 4.9,可知當觸媒重量越重時,產率及 轉化率都會隨之上升,觸媒重量若大於 0.5g,則產率及轉化率趨於平 緩,表示丙烷脫氫反應之速率在後半段之觸媒上已經很慢(其為可逆 反應);反之當觸媒量不足時,則無法有效的催化丙烷脫氫反應, 使 得丙烯產率較低。

圖 4.9 觸媒重量對丙烷脫氫之影響

圖 4.10 Pt 含量對丙烷脫氫之影響

由圖 4.11 可知,不同觸媒重在不同時間下對丙烷脫氫反應的影響,當反應時間越長,觸媒因為經過長時間的催化,表面會有結焦的 情形,造成觸媒衰退,導致產率都會隨之下降。但 0.5g 及 1g 之觸媒 量之衰退速度明顯較 0.25g 少,表示較多之觸媒量可以維持固定的丙 烯產率。

圖 4.11 不同觸媒重在不同時間下對丙烷脫氫之影響

4.3.4 反應物(丙烷)濃度對丙烷脫氫反應之影響

以兩種不同反應物濃度探討其對丙烷脫氫反應之影響的比較,以 及在長時間的反應下反應物濃度多寡的影響。本實驗使用 Pt-Sn@ SiO₂(0.0118M TEOS)當作觸媒,反應於 600°C,反應壓力為 1atm,反 應流量為 50 ml/min,觸媒重為 0.5g。表 4.7 為濃度對丙烷脫氫的影響。

丙烷濃度(%)	C _{propa}	nne(%)	Y _{propyl}	ene(%)	S _{propyl}	_{ene} (%)
	10%	30%	10%	30%	10%	30%
30min	69.43%	55.98%	52.31%	33.82%	75.34%	60.41%
60min	65.82%	55.35%	51.41%	33.03%	78.11%	57.87%

表 4.7 反應物濃度對丙烷脫氫反應之影響

由表 4.7 可知,當濃度提高時,產率及轉化率皆下降,可能原因 是觸媒量不足導致脫氫反應無法繼續被催化產生更多的產物。當反應 物濃度提高,會產生強烈吸熱反應,因此反應中的溫度可能沒有達所 需的反應溫度,造成丙烷脫氫效果不佳。由下圖 4.12 可知,濃度低 時,反應時間若較久,則觸媒的衰退會較嚴重,造成產率的趨勢下降 較大,反之,濃度較高反應時間較長時,可能觸媒表面溫度較低(因 為吸熱反應之關係),因此從圖中可以看到產率趨勢近於平緩,觸媒 衰退程度較小。

(a)

(c)

圖 4.12 反應物濃度對丙烷脫氫反應 (a)產率 (b)轉化率及(c)選擇率

之影響

(b)

4.3.5 氣體流量對丙烷脫氫反應之影響

反應系統中氣體流量的快慢對於反應中的反應速率是重要的,因 此我們觀察改變反應流量進行丙烷脫氫反應並探討其影響。反應於 600°C,反應壓力為 1atm,丙烷濃度 10%,觸媒重為 0.5g,觀察低流 量(25ml/min 及 50ml/min)及高流量(100ml/min 及 200ml/min)在長時間 反應下的結果。由圖 4.13 及圖 4.14 可知,在低氣體流速時,曲線幾 乎重疊,表示在低流量時的改變流量對於脫氫反應的影響並不大。根 據下式(2),因為在高轉化率下,反應速率變慢,所以流量之改變影 響不大。在高氣體流量時,丙烯產率及丙烷轉化率的下降趨勢快,在 低轉化率時,因為反應速率變快,因此改變流量之影響較為顯著。

(b)

(a)

(c)

圖 4.13 低氣體流量對丙烷脫氫(a)產率(b)轉化率及(c)選擇率之影響

(b)

(c)

圖 4.14 高氣體流量對丙烷脫氫(a)產率(b)轉化率(c)選擇率之影響

4.4 觸媒長時間衰退與觸媒再生之探討

一般觸媒活性的衰退可分成三類:聚集或老化、淤積或焦化及毒 化。觸媒失活增加了反應速率參數及反應路徑之複雜性,因此我們必 須調整觸媒反應器的設計方法,這種調整通常以改變觸媒活性 a(t) 的 量化描述。觸媒在時間 t 的活性 a(t) 為觸媒在使用時間 t 之後的反應 速率與新鮮觸媒的反應速率之比值。

由於觸媒失活,其活性會隨著時間而降低,典型的活性與時間之 關係如圖 4.15 所示。

圖 4.15 活性與時間之關係圖

本實驗因為反應物為烴類,會有碳化物質沉積在觸媒表面上,推 測觸媒失活的機構為積碳。當反應物和生成物在氣相中之濃度隨時間 之變化極小時,我們可以用莫耳平衡式來計算。

莫耳平衡式為

$$dF_{A} = -r_{A}'a(t)dW -----(3)$$

對活性 a(t) 求解可得。

$$a(t) = \frac{vdC_A}{dW(-r_A')} = \frac{v_0dC_A}{dWkC_A^n} \quad -----(4)$$

v ≠ v₀,因一個分子變成兩個分子,不過因丙烷濃度低,可以假設
v = v₀。方程式(4)中C_A係在時間 t 之某位置反應物之濃度。
此反應其為一階失活反應,則:

$$a(t) = e^{-k_d t}$$
 -----(5)

對於填充床反應器,我們可以將莫耳平衡式與速率式合併後可得

將式(5)帶入式(6),積分後並兩邊取 log

以 $\ln \ln \frac{C_{A0}}{C_A}$ 對t作圖,斜率為 $-k_d$,截距為 $-\ln \frac{v_0}{W_k}$

本實驗將 Pt-Sn@ SiO₂(0.0118M TEOS) 之觸媒放置高溫反應器 中,並固定丙烷進流濃度為 10%,反應溫度為 600°C,反應壓力為 1 atm ,反應總流速為 50ml/min,進行 4 小時的連續反應測試,每 30 分鐘測量一次出口濃度並調整入口濃度之穩定。本實驗主要目的是測 試觸媒是否具有長時間之穩定性,以增其實用性,並以式(7)作圖所 得到斜率為失活速率常數,探討觸媒之衰退情形,而之後再以 EDS、 XRD 進行觸媒鑑定,進一步了解觸媒於反應前後變化之情形。

圖 4.16 Pt-Sn@ SiO₂(0.0118M TEOS)之觸媒活性與時間之關係圖

根據圖 4.16 所示,經由式(7)所計算出並作圖,此圖符合線性, 由斜率可得到失活速率常數為0.0015(min⁻¹)。於含浸法製備之觸媒, 經由式(7)所計算出並作圖,如圖 4.17 所示,由斜率可得到以含浸法 製備之觸媒失活速率常數為 0.0022(min⁻¹),比照文獻上的失活速率 常數 0.00028(min⁻¹) [16],由於文獻中使用以H₂為稀釋的氣體,因 此氫氣會使得反應後生的 C 經由氫氣反應變成CH₄,導致觸媒較不宜 有 Coke 現象產生而本實驗中以N₂為稀釋的氣體,則會增加了 Coke 的反應。比較兩者不同製備方式的失活速率常數,核殼式觸媒失活速 率較慢,對於丙烷脫氫也有較佳的催化效果。

圖 4.17 Pt-Sn@ Al₂O₃之觸媒活性與時間之關係圖

將 Pt-Sn@ SiO₂(0.0118M TEOS)以阿瑞尼斯(Arrhenius)方程式求 得失活活化能,將 lnk_d與(1/T₀ - 1/T)作圖求得活化能E_d。阿瑞尼斯 方程式如下:

$$k_{d} = k_{d}(T_{0})e^{\left[\frac{E_{d}}{R}\left(\frac{1}{T_{0}} - \frac{1}{T}\right)\right]}$$
$$\Rightarrow lnk_{d} = lnk_{d}(T_{0}) + \frac{E_{d}}{R}(1/T_{0} - 1/T)$$

其中 k_d:反應失活速率常數 R:理想氣體常數 8.314 (J/mole·K)

 E_d : 失活活化能 (J/mole) T: 絕對溫度 (K) T_0 : 反應開始溫度

不同溫度下之失活速率如表 4.8,圖 4.18 中直線的斜率代表 E_d/R , 截距為 $lnk_d(T_0)$,進而計算反應中失活活化能 $E_d=54.88(kJ/mole)$ 。

表 4.8 Pt-Sn@ SiO₂(0.0118M TEOS) 觸媒之失活的活化能

反應溫度(°C)	k _d (1/h)	E _d (kJ/mole)
500	0.0906	
550	0.1038	54.88
600	0.2448	

圖 4.18 Pt-Sn@ SiO₂(0.0118M TEOS)觸媒之失活活化能

4.4.1 表面元素分析(EDS)

圖 4.19 與圖 4.20 分別為新鮮的 Pt-Sn@ SiO₂(0.0118M TEOS)觸 媒及經過 4h 測試反應過之觸媒的表面元素分析圖(反應條件:1atm, 600°C, 10% propane, 50ml/min, 觸媒重 0.5g),元素組成分別列於表 4.9 及 4.10。由圖中可知該觸媒中含有 Pt、Sn、Si 及 O 等元素。反應前 之觸媒中含有較多的 Si 元素,這些 Si 元素為核殼式觸媒的外殼層, 其中還含有部分的氧原子;當觸媒經過反應後,含有 2.48wt%的碳元 素,因為在反應中反應溫度高,觸媒表面容易結焦而產生積碳,導致 觸媒活性衰退。圖 4.21~4.23 分析之結果皆是以 Pt-Sn@γ-Al₂O₃在使 用不同溶劑所製備之觸媒,觀察在不同溶劑下反應後之觸媒的元素分 佈圖。由表 4.11~4.13 可知,反應後之觸媒在表面上所積碳的量較上 述核殼式觸媒之積碳量較多,表示含浸法之觸媒較容易失活。

Element	Weight(%)	Atomic(%)
0	41.07	70.76
Si	23.46	23.03
Sn	13.25	3.08
Pt	22.22	3.14
Total	100	

表 4.9 Pt-Sn@ SiO₂(0.0118M TEOS)新鮮觸媒之表面元素

圖 4.19 Pt-Sn@ SiO₂(0.0118M TEOS)新鮮觸媒之表面元素分析圖

Element	Weight(%)	Atomic(%)
С	2.48	5.68
0	38.93	66.86
Si	21.25	20.79
Sn	15.61	3.61
Pt	21.74	3.06
Total	100	

表 4.10 Pt-Sn@ SiO₂(0.0118M TEOS)觸媒經反應後之表面元素

圖 4.20 Pt-Sn@ SiO₂(0.0118M TEOS)觸媒經反應後之表面元素分析表

Element	Weight(%)	Atomic(%)
С	5.54	9.11
0	48.33	59.66
Al	42.01	30.75
Sn	1.01	0.17
Pt	3.11	0.32
Total	100	

4.11 Pt-Sn@γ-Al₂O₃(甲醇為溶劑)觸媒經反應後之表面元素圖

圖 4.21 Pt-Sn@γ-Al₂O₃(甲醇為溶劑)觸媒經反應後之表面元素分析圖

Element	Weight(%)	Atomic(%)
С	7.36	12.62
0	44.80	57.66
Si	37.18	28.37
Sn	3.29	0.57
Pt	7.38	0.78
Total	100	

表 4.12 Pt-Sn@γ-Al₂O₃(乙二醇為溶劑)觸媒經反應後之表面元素

圖 4.22 Pt-Sn@γ-Al₂O₃(乙二醇為溶劑)觸媒經反應後之表面元素分析圖

Element	Weight(%)	Atomic(%)
С	4.74	7.75
0	48.55	59.58
Al	44.50	32.38
Sn	1.11	0.18
Pt	1.09	0.11
Total	100	

表 4.13 Pt-Sn@γ-Al₂O₃(去離子水為溶劑)觸媒經反應後之表面元素

圖 4.23 Pt-Sn@γ-Al₂O₃(去離子水為溶劑)觸媒經反應後之表面元素分析圖

4.4.2 X 射線繞射分析 (XRD)

本實驗使用之 X 光射線光源為銅靶的 Ka 射線,測量時電壓與 電流為 40kv 與 30mA。掃瞄範圍: 10°~80°,參數設定: scane rate: 6°/min, sampling interval: 0.02° 進行分析。圖 4.24 為新鮮的 Pt-Sn@ SiO₂ (0.0118M TEOS)觸媒未還原及經過長時間測試反應過之觸媒的 X 射線繞射。觸媒還原前的 SiO₂繞射峰值為 2 θ = 23°~ 36°之間較反 應後之觸媒明顯,但相對來說,反應後觸媒有較明顯的 PtSn 繞射峰 值出現,表示這些金屬在還沒反應前皆以氧化態形式存在,其位置為 2 θ = 25°、30°、41°、62°,文獻中顯示 PtSn 繞射峰位置為 2 θ = 25°、 30°、41°、52°、62°。[21]

圖 4.24 Pt-Sn@ SiO₂(0.0118M TEOS)反應前後之 X 射線繞射分析圖
4.4.3 觸媒再生之探討

觸媒經過長時間反應後,造成觸媒失活並且表面容易產生積碳, 將反應過後之觸媒經過再生程序,能夠使觸媒恢復其原先催化性能。 本實驗將反應後 Pt-Sn@ SiO₂(0.0118M TEOS)之觸媒放置高溫煅燒爐, 以 1℃/min 分別升溫至 100℃、200℃、300℃、400℃及 500℃,並分 別維持 2h 進行觸媒再生。由圖 4.25 可知,使用再生後之觸媒催化丙 烷脫氫反應,反應結果與新鮮觸媒催化性能差異不大,表示核殼式觸 媒經由再生後能夠恢復原本之觸媒活性。再生後觸媒與新鮮觸媒重量 差 0.02g~0.05g,因此判斷其重量差為積碳所產生的重量。

(a)

(c)

圖 4.25 觸媒再生對丙烷脫氫反應 (a)產率 (b)轉化率及(c)選擇率

之影響

(b)

4.5 觸媒分析

本節利用 BET、EDS、SEM、TEM、ICP-AES、TPR 分析核殼式 觸媒之組成、表面積大小與其他特性。

4.5.1 BET 表面積與孔洞之分析

藉由 MICROMERITICS 的 ASAP 2020 表面積與孔洞分析儀的分析,可分析出在溫度 600℃鍛燒 4 小時後,再經 400℃氫氣還原的 Pt-Sn@ SiO₂(0.0118M TEOS)之不同合金比例之表面積及孔洞分佈。

觸媒合金比例	Surface	Dono sizo(Å)	Pore volume
(Pt:Sn)	area(m ² /g)	Pore size(A)	(cm ² /g)
1:0.5	50.286	109.775	0.14164
1:1	137.413	81.191	0.28427
1:2	108.631	74.387	0.20602

表 4.14 Pt-Sn@ SiO₂(0.0118M TEOS)不同金屬比例之表面積及孔徑 分析表

根據表 4.14,孔洞體積在觸媒合金莫耳比例為 1:1 時最大,因為 當金屬比例為 1:1 時,觸媒在經空氣鍛燒及還原時較不易被燒結,若 比例提高或降低,則從表中可觀察到孔洞體積都會隨之減小。合金比 例小時,因為錫含量變少,因此鉑金屬容易因高溫鍛燒而變質影響了 孔洞體積的大小;反之合金比例大時,錫含量增加,載體上孔洞被填 滿,孔洞體積就相對降低。由表 4.15 可知,TEOS 濃度越高,Pore size 越大,表示觸媒殼層厚度越大,載體孔洞越多。

TEOS 之濃度	Surface		Pore volume
(M)	area(m ² /g)	Pore size(A)	(cm ² /g)
0.047M	113.423	89.362	0.27786
0.0235M	111.814	88.002	0.25120
0.0157M	122.874	85.808	0.20505
0.0118M	137.413	81.191	0.28427
0.0078M	108.281	73.019	0.20204
0.0059M	95.948	69.860	0.17274

表 4.15 Pt-Sn@ SiO2不同 TEOS 濃度之表面積及孔徑分析表

4.5.2 能量散佈分析儀(EDS)之分析

EDS 是利用電子撞擊樣品後所釋放出之 X 射線,配合元素之分佈圖譜,做樣品表面所含元素之定性和定量分析,本數據是利用東海大學貴重儀器中心之 JOEL JSM-7000F 所掛載之 EDS 分析而得。

下列分析之結果皆是以 Pt-Sn@ SiO₂(0.0118M TEOS)在未還原前 的觸媒,觀察在不同的合金比例下的元素分佈圖。表 4.16 及圖 4.26 為合金莫耳比為 1:1 的元素分佈,可觀察到 Pt 及 Sn 的元素原子百分 比各為 4.94%及 5.97%,其莫耳比約為 1:1.2。表 4.17 及圖 4.27 為合 金莫耳比為 1:0.5 的元素分佈,Pt 及 Sn 之元素原子百分比為 9.51%及 4.79%,金屬莫耳比約為 1:0.5。表 4.18 及圖 4.28 為合金莫耳比為 1:2 的元素分佈,Pt 及 Sn 之元素百分比為 3.77%及 5.12%,金屬莫耳比 為 1:1.36,前兩者大致吻合製備時的觸媒金屬莫耳比。

107

Element	Weight(%)	Atomic(%)
0	32.31	67.76
Si	17.85	21.32
Sn	21.11	5.97
Pt	28.74	4.94
Total	100	

表 4.16 Pt-Sn@ SiO₂(0.0118M)觸媒 Pt:Sn 合金比例為 1:1 之 EDS 數 據

圖 4.26 Pt-Sn@ SiO₂(0.0118M) 觸媒 Pt:Sn 合金比例為 1:1 之 EDS 圖

Element	Weight(%)	Atomic(%)
0	28.30	70.40
Si	10.79	15.29
Sn	14.30	4.79
Pt	46.61	9.51
Total	100	

圖 4.27 Pt-Sn@ SiO₂(0.0118M) 觸媒 Pt:Sn 合金比例為 1:0.5 之 EDS 圖

Element	Weight(%)	Atomic(%)
0	38.05	72.10
Si	17.61	19.00
Sn	20.06	5.12
Pt	24.27	3.77
Total	100	

表 4.18 Pt-Sn@ SiO₂(0.0118M)觸媒 Pt:Sn 合金比例為 1:2 之 EDS 數 據

圖 4.28 Pt-Sn@ SiO₂(0.0118M) 觸媒 Pt:Sn 合金比例為 1:2 之 EDS 圖

4.5.3 熱場發射掃描式電子顯微鏡(FE-SEM)之分析

本實驗所製備之核殼式觸媒經由熱場發射掃描式電子顯微鏡 (FE-SEM)觀察觸媒外觀是否為球形,其結果如圖 4.29 ~ 4.34 所示, 透過不同倍率下可清楚觀察到觸媒外觀具有球形外殼,隨著 TEOS 濃 度減少,觸媒大小也會隨之變小,但因為本實驗之觸媒為奈米粒子, 若要更進一步探討核殼式觸媒中是否有將金屬合金包入,則是要透過 穿透式電子顯微鏡來觀察。

圖 4.29 Pt-Sn@ SiO₂(0.047M) 觸媒之 TFSEM 圖(×10000)

圖 4.30 Pt-Sn@ SiO₂(0.0235M) 觸媒之 TFSEM 圖(×10000)

圖 4.31 Pt-Sn@ SiO₂(0.0157M)觸媒之 TFSEM 圖(×10000)

圖 4.32 Pt-Sn@ SiO₂(0.0118M)觸媒之 TFSEM 圖(×10000)

圖 4.33 Pt-Sn@ SiO₂(0.0078M)觸媒之 TFSEM 圖(×10000)

圖 4.34 Pt-Sn@ SiO₂(0.0059M) 觸媒之 TFSEM 圖(×10000)

4.5.4 全自動數位穿透式電子顯微鏡 (TEM)之分析

核殼式觸媒經由全自動數位穿透式電子顯微鏡(Transmission Electron Microscopy, TEM)分析不同殼層厚度在不同倍率下之 TEM 圖。圖 4.35~4.42 中可看出 PtSn 合金以極小顆粒形式分佈於二氧化 矽為外殼的圓形球體內,但顆粒並不均勻,有可能是因為觸媒中金屬 集結的現象所造成。

圖 4.35 Pt-Sn@ SiO₂(0.047M)觸媒之 TEM 圖

圖 4.36 Pt-Sn@ SiO₂(0.0235M)觸媒之 TEM 圖

圖 4.37 Pt-Sn@ SiO₂(0.0157M)觸媒之 TEM 圖

圖 4.38 Pt-Sn@ SiO₂(0.0118M)觸媒之 TEM 圖

圖 4.39 Pt-Sn@ SiO₂(0.0078M)觸媒之 TEM 圖

圖 4.40 Pt-Sn@ SiO₂(0.0059M)觸媒之 TEM 圖

4.5.5 感應耦合電漿原子發射光譜分析儀(ICP-AES)之分析

核殼式觸媒中金屬的重量百分比是以感應耦合電漿原子發射光 譜分析儀(Inductively Coupled Plasma Atomic Emission Spectroscopy, ICP-AES)所測得,如表 4.19 及 4.20 所示。

觸媒種類	Si		Pt		Sn	
	wt%	莫耳數	wt%	莫耳數	wt%	莫耳數
Pt-Sn@ SiO ₂ (0.047M)	22.7	1.621	22.8	0.117	12.5	0.105
Pt-Sn@ SiO ₂ (0.0235M)	16.3	1.164	29.0	0.149	13.2	0.111
Pt-Sn@ SiO ₂ (0.0118M)	17.0	1.214	25.0	0.128	6.88	0.058
Pt-Sn@ SiO ₂ (0.0058M)	0.8	0.057	11.4	0.0584	6.16	0.052

表 4.19 不同殼層厚度之觸媒金屬含量

金屬 Pt 及 Sn 之莫耳比	Si(wt%)		Pt(wt%)		Sn(wt%)	
	wt%	莫耳數	wt%	莫耳數	wt%	莫耳數
1:0.5	17.3	1.236	34.7	0.178	5.22	0.044
1:1	17.0	1.214	25.0	0.128	6.88	0.058
1:2	15.9	1.136	29.3	0.150	19.5	0.164

表 4.20 Pt-Sn@ SiO₂(0.0118M) 觸媒不同合金比例之金屬含量

利用 sol-gel 法製備的觸媒得到不同殼層厚度及不同 Pt/Sn 比例之 金屬含量。表 4.19 顯示有四種觸媒之 TEOS 濃度,與製備時添加之 Pt/Si 莫耳數相近。但 TEOS 濃度為 0.0118M 時,觸媒之 Pt/Sn 莫耳比 與製備時添加之 Pt/Sn 莫耳數有差異,因為在配置藥品時, SnCl₄為無 色發煙性液體容易散失,不易準確量取所需的量,導致誤差。

4.5.6 程温還原之分析

在製備觸媒的過程中,以空氣在溫度 600°C下,煅燒 4 小時,以 去除雜質,此步驟會使金屬氧化,形成金屬氧化物,空氣鍛燒後的觸 媒在程溫還原的反應中,由表 4.21 可知,當 TEOS 濃度越高,表示 殼層厚度越厚,還原的金屬含量就越少,由下圖 4.41 及 4.42 可知, 不同 TEOS 濃度所製備的觸媒約從 70°C開始還原,135°C~220°C會有 還原最高峰。由表 4.22 可知,當錫含量越多時,TPR 面積變大,表 示錫被還原。

已知金屬	面積	CuO(wt%)	Cu(mole)	TEOS	面積	PtSn(mole)
				0.047M	153159808	0.00011
			0.0235M	186907856	0.00013	
Cuo/7nO	Cuo/ZnO 1149651712 63.50%	62 500/	0.0157M	0.0157M	259155408	0.00018
		03.30%	0.000798	0.0118M	390374752	0.00027
				0.0078M	463065120	0.00032
			0.0059M	465092480	0.00032	

表 4.19 Pt-Sn@ SiO₂不同 TEOS 濃度之金屬比例(觸媒量 0.3g)

圖 4.41 不同 TEOS 濃度製備的觸媒之 TPR 圖

表 4.22 Pt-Sn@ SiO₂(0.0118M)不同合金比例之金屬比例(觸媒量 0.3g)

已知金屬	面積	CuO(wt%)	Cu(mole)	金屬比例	面積	PtSn(mole)
				1:0.5	269412703	0.000187
Cuo/ZnO	1149651712	63.50%	0.000798	1:1	390374752	0.000271
				1:2	543487680	0.000377

圖 4.42 不同合金比例製備的觸媒之 TPR 圖

4.6 動力學分析

進行脫氫反應時,將觸媒放置反應器中,通過反應氣體進行反應, 本節就以填充床的積分公式進行動力學的分析。由於脫氫反應壓力相 對較低及溫度需在高溫下,以下利用積分法推導出速率方程式如下所 示。

 $A \rightleftharpoons B + C....(1)$ 其中 A: C₃H₈ B: C₃H₆ C: H₂

根據莫耳平衡方程式推導:

4. Combine:

$$\Rightarrow r'_{A} = \frac{dF_{A}}{dW} = k_{1}a \left[C_{A} - \frac{C_{B}C_{C}}{K_{eq}} \right] = k_{1}a \left[C_{A0} \frac{1-X}{1+\varepsilon X} - \frac{C_{A0}^{2}X^{2}}{K_{eq}(1+\varepsilon X)^{2}} \right] \dots (7)$$
$$\therefore F_{A} = C_{A}V = \frac{C_{A0}(1-X)}{1+\varepsilon X}V \dots (8)$$

將(8)帶入(7)

$$\Rightarrow C_{A0} V \frac{d}{dW} \left(\frac{1-X}{1+\varepsilon X} \right) = k_1 a \left[C_{A0} \frac{1-X}{1+\varepsilon X} - \frac{C_{A0}^2 X^2}{K_{eq} (1+\varepsilon X)^2} \right] \dots (9)$$

$$\therefore a = e^{-k_d t} \dots (10)$$

其中ka為失活速率常數,將(10)帶入(9)

將(11)積分

⇒
$$\int \frac{-(1+\epsilon)}{(1-X)(1+\epsilon) - \frac{C_{A0}X^2}{K_{eq}}} dx = \frac{k_1 e^{-k_d t}}{v} dw$$

其中 $\tau = \frac{W}{v}$, W 為觸媒重(g), V 為總流量(ml/min)
⇒ $\ln(k_1\tau) - k_d t = \ln[\int \frac{1}{K_{eq}(1-X)(1+\epsilon X) - C_{A0}X^2} dX]$(12)
其中 K_{eq} 為平衡常數

 $\Rightarrow K_{eq} = \frac{C_{Be}C_{Ce}}{C_{Ae}}$

表4.24 為觸媒 Pt-Sn@ SiO₂(0.0118M TEOS)在不同溫度下進行動 力學分析所得之k₁值,再以阿瑞尼斯(Arrhenius)方程式求得活化能, 將 lnk₁與 1/T 作圖求得活化能 Ea。阿瑞尼斯方程式如下:

$$k_1 = Ae^{(-Ea/RT)}$$

 $\Rightarrow lnk = lnA - \frac{Ea}{R}(\frac{1}{T})$

其中 k1:反應速率常數 A:頻率因子

Ea:活化能 (J/mole) T:絕對溫度 (K)

R:理想氣體常數 8.314 (J/mole·K)

圖 4.44 中直線的斜率代表-Ea/R,截距為 lnA,進而計算反應之活化 能 Ea。

Time(min)	X(%)	$\int \frac{1}{K_{eq}(1-X)(1+\epsilon X) - C_{A0}X^2} dX$
30	69.43	1.2516
60	65.82	1.1213
90	65.23	1.1017
120	65.03	1.0952
150	62.30	1.0105
180	59.75	0.9380
210	58.17	0.8959
240	57.94	0.8899

表 4.23 以 Pt-Sn@ SiO₂(0.0118M) 觸媒在 600°C下進行動力學分析

圖 4.43 以 Pt-Sn@ SiO₂(0.0118M)觸媒在 600℃下進行動力學分析

圖 4.44 以 Pt-Sn@ SiO₂(0.0118M) 觸媒在不同溫度下進行動力學分析

表 4.24 以 Pt-Sn@ SiO₂(0.0118M) 觸媒在不同溫度下進行動力學分析

反應溫度(°C)	$k_1 \ (m^3/kg.h)$	Ea(kJ/mole)
500	1.963	
550	3.508	65.889
600	6.634	

圖 4.45 以 lnk 對 1/T 作圖求得活化能

由表 4.24 可知,圖 4.45 Pt-Sn@ SiO₂(0.0118M)觸媒催化丙烷脫 氫之活化能 Ea 為 65.889(kJ/mole),與文獻中提到利用 Pt-Sn /γ-Al₂O₃ 催化丙烷脫氫催化之活化能 Ea 為 62.70(kJ/mole),兩者相符合,因此 可證明本實驗所製備之 Pt-Sn@ SiO₂觸媒能有效地催化丙烷脫氫反應。

第五章 結論

本研究主要是使用以溶膠凝膠(stober method)方式所製備出的核 殼式觸媒來做丙烷脫氫反應之探討,並且依文獻之含浸法製備之觸媒 做比較。實驗中的反應物為丙烷,以氮氣來調整反應物濃度,及改變 反應參數,探討其對丙烷轉化率、丙烯產率及選擇率之影響。重要之 研究結果敘述如下:

- (1) 改變六種 TEOS 濃度所製備出的不同殼層厚度之觸媒,其催化 丙烷脫氫反應之 TEOS 濃度優先順序為 0.0118M > 0.0078M > 0.0235M > 0.047M > 0.0157M > 0.0059M 。Pt-Sn@ SiO₂(
 0.0118M TEOS)所得到之最高丙烯產率為 51.41%,丙烷轉化率 為 65.82%,丙烯選擇率為 78.11%。當殼層厚度越薄時,觸媒 表面積碳情況越嚴重,因此導致觸媒活性降低,催化丙烷脫氫 效果不佳。
- (2) 觸媒中合金比例影響觸媒之活性及衰退速率,金屬錫在觸媒中 扮演的角色為保護白金較不容易燒結。

- (3) 在沒有觸媒存在下,丙烷脫氫反應還是會進行,但產率並不佳。 在觸媒存在下,丙烯產率大幅的提升,表示觸媒催化了丙烷脫 氫反應,改變觸媒添加量對於催化反應有很大的影響,0.5g及 1g之觸媒量之衰退速度明顯較0.25g少,表示較多之觸媒量可 以維持固定的丙烯速率。
- (4) 適當的煅燒溫度有助於觸媒的活性之提升,鍛燒溫度以 600°C 較優,鍛燒溫度過低,會使得觸媒中高分子無法完全燃燒,進 而降低觸媒活性。
- (5) 脫氫反應是一種強吸熱的反應,因此反應過程需在高溫下進行, 反應溫度以 600°C為最佳,過低的反應溫度,無法有效催化脫 氫反應;反之若反應溫度過高,則會使得觸媒表面積碳速率變 快,導致丙烯產率下降,伴隨著副產物的增加。
- (6) 反應過程中反應總流量影響了氣體在觸媒上滯留時間,流速越快,反應物與觸媒接觸之時間越短,造成觸媒未完全有效的催化反應,導致丙烯產降低。
- (7) 反應物丙烷濃度對於脫氫反應所產生的吸熱有很大的影響,濃度越高,代表脫氫反應吸熱越大,觸媒表面溫度會下降,但相

129

對的產生的丙烯量就會增加,在本實驗中主要以丙烷濃度為 10%來探討其他反應的變因。

- (8) 丙烷脫氫反應過程中觸媒的活性對於丙烯產率有很大的影響, 在本實驗中觸媒失活主要的原因為觸媒表面上有積碳的現象, 導致丙烯產率下降。以最佳觸媒 Pt-Sn@ SiO₂(0.0118M TEOS) 觸媒來探討觸媒衰退現象,可得觸媒失活速率常數為 0.0015 (min⁻¹),含浸法製備之觸媒失活速率常數為 0.0022(min⁻¹), 比照文獻上的失活速率常數 0.00028(min⁻¹) [15],由於文獻中 使用以H₂為稀釋的氣體,因此氫氣會使得反應後生的 C 經由氫 氣反應變成CH₄,導致觸媒較不宜有 Coke 現象產生而本實驗中 以N₂為稀釋的氣體,則會增加了 Coke 的反應,其失活活化能 為 54.88(kJ/mole)。
- (9) 經由動力學分析,丙烷脫氫反應為可逆之一級反應。在 Pt-Sn @
 Si O₂ (0.0118M TEOS) 觸媒中的丙烷脫氫反應活化能為
 65.889(kJ /mole),文獻中[22]利用 Pt-Sn /γ-Al₂O₃催化丙烷脫氫
 反應之活化能 Ea 為 62.7(kJ/mole),兩者相符合。

第六章 参考文獻

- 1. Market Study: Propylene , Ceresana Research(2017)
- K.A.Couch , J.P.Glavin , D.A. Wegerer , J.A. Qafisheh , "FCC Propylene Production", PTQ Q3 , p.33-43(2007)
- James J Spivey, Sanjay K Agarwal, "Catalytic Dehydrogenation of lower alkanes", Journal of Catalysis: Volume 11(Specialist Periodical Reports), p.407-409(1994)
- L.Låte, J.-1 Rundereim, E.A. Blekkan, "Selective Combustion of Hydrogen in the Presence of Hydrocarbons, Pt-based Catalyst", App. Cat. A, 262,p.53-61(2004)
- 5. D.E. Rsasco and G.L. Haller, "Catalyst Dehydrogenation of Lower Alkanes", Catalysis 11, p.379-382(1994)
- Joe Alper, "The Changing Landscape of Hydrocarbon Feedstocks for Chemical Production Implications for Catalysis", Volume 4,p.38(2016)
- Joe Alper, "The Changing Landscape of Hydrocarbon Feedstocks for Chemical Production Implications for Catalysis", Volume 4, p.39(2016)
- 8. Gerald Ondrey, "Making propylene 'on-purpose': the shift to ethane cracking in the U.S., and the availability of low-cost LPG is accelerating the construction of propane dehydrogenation plants", Chemical Engineering, Japan, p.13(2014)
- 9. H. Dyrbeck, "Selective Catalyst Oxidation of Hydrogen and Oxygen-assisted Conversion of Propane", NTNU,p.194(2007)
- P.L. De Cola, R. Gläser, J. Weitkamp, "Non-Oxidative Propane Dehydrogenation over Pt-Sn Containing Zeolite", App. Cat. A 306, p.85-97(2006)
- 11. 林上傑," 雙金屬觸媒 Pt-Sn/BN 在丙烷脫氫之研究"國立台灣大

學化學工程學系碩士論文 (2006)

- 12. 楊家維, "Ru@SiO₂核殼式觸媒催化苯部分氫化反應之研究"私立 東海大學化學工程學系碩士論文 (2010)
- 13. 賴岳生," 奈米銀/鈀微粒之化學合成與其特性分析之研究"國立 清華大學化學工程學系碩士論文(2003)
- 14. Jong-Gil Oh, Hansung Kim, "Synthesis of core-shell nanoparticles with a Pt nanoparticle core and silica shell", Dept. of Chemical and Biomolecular Engineering, Yonsei University(2013)
- 15. 許朝翔,"以粒狀觸媒氧化甲苯之研究"國立中山大學環境工程 學系碩士論文(2007)
- 16. Farnaz Tahriri Zangeneh, Abbas Taeb, Khodayar Gholivand, Saeed Sahebdelfar, "Kinetic study of propane dehydrogenation and catalyst deactivation over Pt-Sn/Al₂O₃ catalyst", Journal of Energy Chemistry 22,p.726-732(2013)
- 17. 劉怡辰,"觸媒改變對琥珀酸酯氫解產物之影響"私立東海大學化 學工程學系碩士論文 (2016)
- Edd Anders Blekkan, Andrey Volynin, Ilya Gorelkin, "Catalytic Dehydrogenation of Propane", Norwegian University of Science and Technology(2012)
- Odd A. Bariås, Anders Holmen, and Edd A. blekkan, "Propane Dehydrogenation over Supported Pt and Pt-Sn Catalysts: Catalyst Preparation, Characterization", Activity Measurements, Journal of Catalysis 158, p.1-12(1996)
- 20. Jeffrey C.S. Wu, Shang-Jie Lin, "Novel BN supported bi-metal catalyst for oxydehydrogenation of propane", Department of chemical Engineering, National Taiwan University(2008)
- 21. Bao Khanh Vu, Myoung Bok Song, In Young Ahn, Young-Woong Suh, Dong Jin Suh, Won-Il Kim, Hyoung-Lim Koh, Young Gyo Choi, Eun Woo Shin "Pt-Sn alloy phases and coke mobility over

Pt-Sn/ Al_2O_3 and Pt-Sn/ $ZnAl_2O_4$ catalysts for propane dehydrogenation", Applied Catalysis A:General 400, p.25-33(2011)

- 22. 劉淑鶴,方向晨,張喜文,張海娟,"丙烷脫氫催化反應機理及動力學研究發展",遼寧石油化工大學與材料科學學院,化工進展,第28卷第2期(2009)
- 23. Xiaodong Wang, Lena Altmann, Jörg Stöver, Volkmar Zielasek, Marcus Bäumer, Katharina Al-Shamery, Holger Borchert, Jürgen Parisi, and Joanna Kolny-Olesiak, "Pt/Sn Intermetallic, Core/Shell and Alloy Nanoparticles: Colloidal Synthesis and Structure Control", Energy and semiconductor Research Laboratory, Department of Physics, University of Oldenburg(2003)
- 24. Zhufang Liu, Greg S. Jackson, and Bry W.Eichhorn, "PtSn Intermetallic, Core-Shell, and Alloy Nanoparticles as CO-Tolerant Electrocatalysts for H₂", Angew. Chem. Int. Ed.,p.3173-3176(2010)
- 25. Jong-Gil Oh, Hansung Kim, "Synthesis of Core-Shell nanoparticles with a Pt nanoparticle core and a silica shell", Department of Chemical and Biomolecular Engineering, Yonsei University, p.120-749 (2013)