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Abstract

We analyze left-truncated and right-censored (LTRC) data using an additive-

multiplicative Cox-Aalen model proposed by Scheike and Zhang (2002), that

extends the Cox regression model as well as the additive Aalen model. Based on

the conditional likelihood function, we derive the weighted least squared (WLS)

estimators for the regression parameters and cumulative intensity functions of

the model. The estimators are shown to be consistent and asymptotically nor-

mal. A simulation study is conducted to investigate the performance of the

proposed estimators.

Key Words: Left truncation, Aalen model, Cox regression, survival analysis,

time-varying effect.
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1 Introduction

Left-truncated and right-censored (LTRC) data often arise in epidemiology

and individual follow-up studies (see Wang, 1991). Left truncation is a biased

sampling plan as subjects with shorter survival times tend to be excluded from

the sample such that individuals with larger survival times are oversampled.

An example is the common use of prevalent cohort study, where a group of

diseased individuals are recruited for a prospective study. The main target of

a research project is to study the natural history of the disease for individuals

who developed the disease during the calendar time period (τ0, τ), τ0 < τ . Under

a prevalent cohort design, also refereed as cross-sectional sampling, individuals

who have experienced a first event (e.g. diagnosed as having chronic diseases or

HIV infection) between τ0 and τ and have not experienced a second event (e.g.

death or AIDS) are recruited at the time τ for a prospective follow-up study.

Suppose that the initial time of the first event, denoted by Ts, can be quite

accurately determined, such as HIV infection resulting from blood transfusion.

Let T denote the time from Ts to the second event’s endpoint. Let V denote the

time from Ts to τ . Thus, left truncation occurs since those individuals who have

experienced the second event, i.e., T ≤ V , are not included in the study. Suppose

that the follow-up study is terminated at τ ∗ (τ ∗ > τ). Let C1 = V +τ ∗−τ denote

the time from the first event to the end of study and C2 denote the time from

the first event to drop-out. Thus, T is left-truncated by V and right-censored

by C = min(C1, C2). Figure 1 highlights all the different times for LTRC data

as described above.

Figure 1: Schematic depiction of LTRC data
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The proportional hazards regression model (Cox (1972)) specifies that the

hazard function takes the form

λ(t|Z(t)) = λ(t) exp(Z(t)Tβ)

, where Z(t) is a p × 1 vector of covariates, β is a p × 1 vector of unknown

regression parameters and λ(t) as an arbitrary baseline hazard function. The

model may be extended by allowing the regression coefficients to be time-varying:

λ(t|Z(t)) = λ(t) exp(Z(t)Tβ(t))

(see, e.g. Murphy and Sen (1991), Huang (1999), Martinussen et al. (2001)).

One problem with the extended Cox models is that the choice of a smoothing-

parameter is needed for estimating the non-parametric terms. An alterna-

tive to proportional hazard models is the Aalen additive hazard model (Aalen

(1980,1989); McKeague (1988); Huffer and McKeague (1991)), in which it is

assumed that

λ(t|W (t)) = W (t)Tα(t)

, whereW (t) is a q×1 vector of covariates and α(t) is a q×1 vector of time-varying

regression parameters. One major advantage of the Aalen additive models is that

time-varying effects are easy to estimate, and that no smoothing parameter needs

to be chosen. Proportional and Additive hazard models postulate a different

relationship between the hazard function and covariates and the two models

can be used to complement each other. Scheike and Zhang (2002) proposed a

new model, called the Cox-Aalen model, that combines the multiplicative and

additive model. The hazard density function of the Cox-Aalen model is given as

λ(t|W (t), Z(t)) = W (t)Tα(t) exp(Z(t)Tβ). (1.1)

Under model (1.1), covariates W (t) work additively on the risk and have non-

parametric time-varying effects while covariates Z(t) have multiplicative effect.

The Cox-Aalen model provides a flexible class of models, which extends the

Cox model by allowing the baseline intensity to depend on covariates through
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the additive Aalen model. For right-censored data, Scheike and Zhang (2002)

proposed approximate maximum likelihood estimators of the baseline intensity

functions and the relative risk parameters of the Cox model and established the

large sample properties of the estimators. Scheike and Zhang (2003) showed

how the Cox-Aalen model can lead to simple formulae for predicted probabili-

ties and their standard errors. Kraus (2004) studied goodness-of-fit tests for the

Cox-Aalen model based on the stratified martingale residual process.

When truncation is present, Pan and Chappell (2002) considered the non-

parametric maximum likelihood estimate (NPMLE) of the regression coefficient

for the Cox proportional hazards model with LTRC data. Shen (2014) analyzed

LTRC data using Aalen’s additive hazard models. Shen (2016) demonstrated

Gandy and Jensen (2005)’s goodness-of-fit tests for Aalen’s model can be ex-

tended to LTRC data and doubly censored data. In Section 2, based on the

conditional likelihood function, we derive the weighted least squared (WLS)

estimators for the regression parameters and cumulative intensity functions of

model (1.1) with LTRC data. The proposed estimators are shown to be consis-

tent and asymptotically normal. In Section 3, a simulation study is conducted

to investigate the performance of the proposed estimators.
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2 The Proposed Estimators

We assume that given W (t) and Z(t), T and (V,C) are independent of each

other but V and C are dependent with P (C ≥ V ) = 1. For LTRC data, one

can observe nothing if T < V and observe (X, V, δ,W (t), Z(t)), with δ = I[T<C]

and X = min(T,C), if T ≥ V . Suppose that the left and right endpoints of

T are independent of W (t) and Z(t). Let F , Q and G denote the cumulative

distribution functions of T , C and V , respectively. Let aF and bF denote the

left and right endpoints of T , and similarly, define (aQ, bQ) and (aG, bG) as the

left and right endpoint of C, and V , respectively. Throughout this article, for

identifiabilities of F , we assume that aG = aF = aQ = 0, bG ≤ min(bF , bQ).

Let (Xi, Vi, δi,Wi(t), Zi(t)) (i = 1, . . . , n) be the observed truncated sample.

Let Yi(t) = I[Vi≤t≤Xi] and Ni(t) = I[Xi≤t,δi=1].

Let F(t) denote the complete σ-field generated by

{Vi,Wi(x), Zi(x), Yi(x), I[Vi≤Xi], δiI[Vi<Xi≤t], I[Vi<Xi≤x], x ≤ t; i = 1, . . . , n}.

Let

Mi(t) = Ni(t)−
∫ t

0

Yi(s)Wi(s)
Tα(s) exp(Zi(s)

Tβ)ds.

Since E[dNi(t)|F(t−)] = Yi(t)Wi(t)
Tα(t) exp(Zi(t)

Tβ), Mi(t) is a martingale

process with respect to F(t).

Let τc be some constant such that τc < bF . In practice, the value of τc is set

at the largest values of Xi’s with δ = 1. Consider the counting process on [0, τc].

This gives the following likelihood:

L =
n∏
i=1

{
dF (Xi|Wi, Zi)dG(Vi)[1−Q(Xi|Vi)]/pi

}δi
×

n∏
i=1

{
dQ(Xi|Vi)dG(Vi)[1−F (Xi|Wi, Zi)]/pi

}1−δi
.
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We decompose L into three factors yielding

L =
n∏
i=1

{
[dF (Xi|Wi, Zi)]

δi [1− F (Xi|Wi, Zi)]
1−δi

1− F (Vi − |Wi, Zi)

} n∏
i=1

{
dG(Vi)[1− F (Vi − |Wi, Zi)]

pi

}

×
n∏
i=1

{
[1−Q(Xi|Vi)]δi [dQ(Xi|Vi)]1−δi

}
= L1L2L3,

where L1, L2 and L3 represent the likelihoods in the first, second and third

braces. We do not consider the maximization of L3 since the estimator of L3

does not involve F (·|Zi). Thus, the likelihood is proportional to

L(β,A) =
n∏
i=1

p−1i
∏
t≤τc

Yi(t)
[(
Wi(t)

TdA(t) exp(Zi(t)
Tβ)
)dNi(t)]

×
n∏
i=1

p−1i exp

{
−
∫ τc

0

I[Xi≥s]Wi(s)
Tα(s) exp(Zi(s)

Tβ)ds

}
,

whereA(t) =
∫ t
0
α(s)ds, pi =

∫ bG
aG

exp{−Λ(v|Wi(·), Zi(·))}dG(v), Λ(v|Wi(·), Zi(·)) =∫ v
0
I[Xi≥s]Wi(s)

Tα(s) exp(Zi(s)
Tβ)ds.

We wish to estimate the cumulative intensity function A(t) as well as the

true value of the relative risk parameter β. Notice that L(β,A) can be factorized

as L(β,A) = Lm(β,A)× Lc(β,A), where

Lm(β,A) =
n∏
i=1

p−1i exp

{
−
∫ Vi

0

I[Xi≥s]Wi(s)
Tα(s) exp(Zi(s)

Tβ)ds

}

and

Lc(β,A) =
n∏
i=1

∏
t≤τc

Yi(t)
[(
Wi(t)

TdA(t) exp(Zi(t)
Tβ)
)dNi(t)]

× exp

{
−
∫ τc

0

Yi(t) exp(Zi(t)
Tβ)Wi(t)

TdA(t)

}
,

where Lm(β,A) and Lc(β,A) are the marginal likelihood for Vi and conditional

likelihood for Xi given Vi.

The following Lemma shows that when Wi(t) and Zi(t) are discrete and

independent of time it suffices to maximize Lc.
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Lemma 1. When Wi(t) and Zi(t) are discrete and independent of time, maxi-

mizing Lc(β,A) is equivalent to maximizing the full likelihood L(β,A).

Remark 1 : Notice that more efficient estimators can be obtained by maximizing

the full likelihood L. However, one difficulty arises in this approach since the

pi in Lm involves the unknown distribution function G(x). Further research

is required in this issue. In this article, we consider the conditional maximum

likelihood estimators based on Lc although Lemma 1 holds only for the special

case when covariates are discrete and independent of time.

The logarithm of Lc(β,A) can be written as

lc(β,A) =
∑
i

∫ τc

0

log
(
Yi(t)Wi(t)

TdA(t) exp(Zi(t)
Tβ)
)
dNi(t)

−
∑
i

∫ τc

0

Yi(t) exp(Zi(t)
Tβ)Wi(t)

TdA(t),

Let N(t) = (N1(t), . . . , Nn(t))T be an n-dimensional counting process,

M(t) = (M1(t), . . . ,Mn(t))T be an n-dimensional martingale.

Define a matrice Y (β, t) = (Y1(t) exp(Z1(t)
Tβ)W1(t) ,. . . ,Yn(t) exp(Zn(t)Tβ)Wn(t))T

and let Z̃(t) = (Z1(t), . . . , Zn(t))T

Now, we solve the joint score equations for β and α. Given A(t), taking

derivatives of the log-likelihood lc(β,A) with respect to β gives the score equation

for β

U(β|A(t)) =
∑
i

∫ τc

0

Yi(t)Zi(t)dNi(t)−
∑
i

∫ τc

0

Yi(t)Zi(t) exp(Zi(t)
Tβ)Wi(t)dA(t).

The score equation for α is given by

Uα(A(t)) = Y T (β, t)diag(1/λi(t))(dN(t)− Y (β, t)dA(t)),

where λi(t; β) = Wi(t)
Tα(t) exp(Zi(t)

Tβ).
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Given β, solving for Uα(A(t)) = 0 yields the Aalen-Huffer-McKeague esti-

mator Â(t, β)

Â(t, β) =

∫ t

0

Y −(β, s;D(s; β))dN(s),

where

Y −(β, s;D(s; β)) = [Y (β, s)TD(s; β)Y (β, s)]−1Y (β, s)TD(s; β),

D(s; β) = diag(di(s; β)) is a diagonal matrix with elements di(s; β) = Yi(s)/λi(s; β).

Similar to the argument of Sasieni (1992), we may interpret the estimator Â(t, β)

as a conditional maximum likelihood estimator for A(t), which is equivalent to

WLS.

To solve the score equations simultaneously we insert the Aalen-Huffer-

McKeague estimator Â(t, β) into the score for β and get

U(β, τc|D)

=
∑

i

∫ τc
0
Yi(t)Zi(t)dNi(t)−

∑
i

∫ τc
0
Yi(t)Zi(t) exp(Zi(t)

Tβ)Wi(t)Y
−(β, t;D(t))dN(t)

=
∫ τc
0

(Z̃T (t)− S(1)(β, t)Y −(β, t;D(t)))dN(t)

=
∫ τc
0

(Z̃T (t)− Z̃T (t)Y (β, t)Y −(β, t;D(t)))dN(t),

where S(k)(β, t) =
∑

i Z
⊗k
i (t)Yi(t) exp(Zi(t)

Tβ)Wi(t)
T , z⊗0 = 1, z⊗1 = z and

z⊗2 = zzT . The process U(β0, t|D) is a martingale in t since the compensator of

U(β0, t|D) is 0 for any weight matrix D(t). Thus, we can consider the estimating

equation for all the choices of D(t). Given D, we define β̂ as the solution to the

score equation U(β, τc|D) = 0. Following Scheike and Zhang (2002), we consider

weights of the form di(s) = di(s; β) = Yi(t) exp(−Zi(t)Tβ)/hi(t). Based on the

estimator β̂ we can estimate the cumulative intensity function A(t) by solving

Â(t, β̂) =

∫ t

0

Y −(β̂, s;D(s; β̂))dN(s), (2.1)

where D(s; β̂) = diag(di(s; β̂)) is a diagonal matrix with elements

di(s; β̂(D)) = Yi(s) exp(−Zi(s)T β̂)/hi(s). where hi(s) = Wi(s)
Tα(s).
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One simple choice of hi(t) is hi(t) = 1. Using hi(t) = 1, we can solve

U(β, τc|D) = 0 for obtaining an initial estimator β̃n. Based on β̃n, we obtain

an estimator for A, denoted by Ãn(t, β̃n). Notice that no iteration is needed

when hi(t) = 1. We call β̃n and Ãn(t, β̃n) the ordinary least squared (OLS)

estimators. The other choice is to consider the conditional maximum likelihood

weights hi(t) = Wi(t)
Tα(t). Under this weight, the score for β reduces to the

score for partial likelihood in the case of Cox model with LTRC data, which

is asymptotically efficient. Using hi(t) = 1, we can obtain an initial estimator

for A(t), denoted by Â
(0)
n (t) = Ãn(t, β̃n). Based on Â(0)(t), we obtain a kernel-

smoothed estimator of αj(t) by

α̂
(0)
j (t) =

∫ bF

aF

1

hn
K

(
t− u
hn

)
dÂ

(0)
j (u, β̃n), j = 1, . . . , q (2.2)

where K(·) is a left-continuous function on (0, 1] such that
∫
(0,1]

K(u)du = 1,

hn is a positive bandwidth parameter that tends to 0 as n→∞.

In the second step, the estimators α̂
(0)
j (t) (j = 1, . . . , q) are used to estimate

the weight function ĥ
(0)
i (t) = Wi(t)

T α̂(0)(t) to obtain a update estimator for β,

β̂
(1)
n . Based on (2.1), we obtain a update estimator for A(t), Ân(t, β̂

(1)
n ). Iterate

between solving score function U(β, τc|D) = 0, and (2.1), (2.2) until conver-

gence. Let β̂n and Ân(t, β̂n) denote the converged estimators. We call them

the weighted least squared (WLS) estimators with the conditional maximum

likelihood (cMLE) weights.

Next, we derive the asymptotic properties of the OLS and WLS estimators.

We denote the true value of β and A(t) as β0 and A0(t), respectively.

Let W̃i(β, t) = Yi(t) exp(Zi(t)
Tβ)Wi(t) and

S(k)(j)(β, t) =
∑
i

Z⊗ki (t)Yi(t)d
j
i (t)W̃

⊗j
i (β, t) exp(Zi(t)

Tβ)Wi(t)
T .

for k+j ≤ 2, and defined as for k+j = 2 with the convention that S(k) = S(k)(0),

and with an additional transpose for S(1)(1) such that the dimensions match. We

need the following conditions:
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(C1)
∫ τc
0
α(s)ds <∞.

(C2) There exists a compact neighbourhood B of β0, and functions s(k)(j),

for k + j ≤ 2 defined on B × [0, τc] such that

sup
β∈B,t∈[0,τc]

||n−1S(k)(j)(β, t)− s(k)(j)(β, t)|| p−→ 0

(C3) s(k)(j)(β, t), k + j ≤ 2 are uniformly continuous functions of β ∈ B and

t ∈ [0.τc] and bounded on B × [0, τc]. Let

φ(β) =

∫ τc

0

{s(1)(β0, u)− s(1)(β, u)(s(0)(1)(β, u))−1q(0)(β, u)}α(u)du,

where q(0)(β, u) is the limiting distribution of n−1[Y (β, u)TD(u)Y (β, u)].

Assume that there exists a root of φ(β) = 0 on B, and β0 is the only root

of φ(β) = 0. Assume that the following matrix is positive definite:

ΣI =

∫ τc

0

{s(2)(β0, u)− s(1)(β0, u)(s(0)(1)(β0, u))−1(s(1)(1)(β0, u)α(u))}du

(C4) With probability one, bothW (·) and Z(·) have bounded total variation in [0, τc]

We denote β̂ and Â(β̂, t) as the solutions based on some weight matrix D.

Theorem 1. Under conditions (C1)-(C4), it follows that n1/2(β̂−β0) converges

towards a normally distributed variable with mean 0 and a variance that may

be estimated consistently by Σ̂β = nI−1(β̂, τc)[Û(β̂n, ·)](τc)I−1(β̂, τc), where

[Û(β̂, ·)](τc) =

∫ τc

0

(ZT (t)−S(1)(β̂, t)Y −(β0, t))×diag(dN(t))(ZT (t)−S(1)(β̂, t)Y −(β̂, t))T

is the optional variation process of U(β0, τc) with β0 replaced by β̂.
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Remark 2 : For the cMLE weights the variance simplifies and I−1(β̂n, τc) es-

timate the variance of (β̂n − β0), where I(β, t) is the derivative of U(β, t) and

given as

I(β, t) = − ∂
∂β
U(β, t)

=
∫ τc
0
S(2)(β, t)Y −(β, t;D(t))dN(t)+

∫ τc
0
S(1)(β, t) ∂

∂β
Y −(β, t;D(t))dN(t)

=
∫ τc
0
Z̃T (t)diag(Y (β, t)Y −(β, t;D(t))dN(t)Z̃(t)

−
∫ τc
0
Z̃T (t)Y (β, t)Y −(β, t;D(t))diag(Y (β, t)Y −(β, t;D(t))dN(t))Z̃(t).

Next, we investigate the asymptotic properties of the estimator Â(β̂, t).

Theorem 2. Under conditions (C1)-(C4), it follows that n1/2(Â(β̂, t) − A(t))

converges in distribution towards a Gaussian process with variance that be es-

timated consistently by

Σ̂Â = n(n−1H(β̂, t)T Σ̂β̂H(β̂, t) + [MA(·)](t) +H(β̂, t)TI−1(β̂, t)[U(·,MA(·)](t)

+[U(·,MA(·)](t)I−1(β̂, τc)H(β̂, t),

where H(β̂, t) = ∂

∂β̂

∫ t
0
Y −(β, s)dN(s) and MA(t) =

∫ t
0
Y −(β̂, s)dM(s).

10



3 Simulation Studies

We generate T based on the hazard density function

λ(t|W (t), Z(t)) = (0.5 +W1t) exp(Z10.3 + Z2(−0.3))

,where W1 is is a discrete uniform random variable on the integers 1, 2, . . . , 10

and independent of Z1 and Z2 that are independent standard normals. The left-

truncation variable V is generated from exponential distribution with mean µv

equal to 0.17, 0.25 and 0.33 such that the proportion of truncation rate is equal

to 0.25, 0.45 and 0.65, respectively. Right censoring variable C is generated from

V + d0, where d0 is chosen as 0.7 and 0.45 such that the proportion of censoring

P (δi = 0) is equal to 0.2 and 0.4, respectively. Sample size is n = 200, 400

and the replication time is 1000. The value of τc is set at the largest values

of Xi’s with δi = 1. For each simulated dataset, we obtain the ordinary least

squared (OLS) estimators β̃n = (β̃1n, β̃2n)T , Ãn(t, β̃n) = (Ã1n(t, β̃n), Ã2n(t, β̃n))T

and the weighted least squared (WLS) estimators with the cMLE weights β̂n =

(β̂1n, β̂2n)T , Ân(t, β̂n) = (Â1n(t, β̂n), Â2n(t, β̂n))T . The weights are obtained based

on Epanechnikov kernel with bandwidth h = 0.3, 0.35, 0.4, 0.45, 0.5 and h =

0.2, 0.2, 0.25, 0.3, 0.35 for n = 200 and n = 400, respectively. Using Σβ̃n
and

ΣÃn
, we calculated the estimated standard deviations of β̃n and Ãn. Similarly,

we calculated the estimated standard deviations of β̂n and Ân using Σβ̂n
and ΣÂn

.

Approximate 0.95 confidence intervals for β and A(t) are constructed using the

normal approximation. Table 1 shows the simulated biases, simulated standard

deviations (std), estimated standard deviations (estd), empirical coverage (cov)

of β̃n and β̂n and the ratio (denoted by ratio) of the root mean squared error

(rmse) of β̃in to that of β̂in. Table 1 also shows the proportion of left-truncation

(denoted by q) and right-censoring (denoted by pc = P (δi = 0)). Table 2 shows

the simulation results for Ã1n(t, β̃n) and Â2n(t, β̂n) at some selected points.
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Table 1 Simulated biases and std. of β̂n and β̃n
β̃1n β̂1n

pc q n bias std estd cov bias std estd cov ratio

0.2 0.25 200 -0.001 0.085 0.086 0.95 -0.001 0.084 0.086 0.95 1.02

0.2 0.25 400 0.006 0.055 0.059 0.95 0.006 0.055 0.059 0.95 1.00

0.2 0.45 200 0.007 0.087 0.086 0.93 0.006 0.086 0.086 0.93 1.02

0.2 0.45 400 0.004 0.065 0.060 0.94 0.003 0.064 0.059 0.94 1.01

0.2 0.65 200 0.017 0.085 0.087 0.95 0.015 0.084 0.087 0.95 1.02

0.2 0.65 400 0.008 0.062 0.061 0.95 0.007 0.062 0.061 0.95 1.01

0.4 0.45 200 0.017 0.093 0.099 0.97 0.017 0.094 0.099 0.97 1.00

0.4 0.45 400 0.012 0.070 0.067 0.94 0.012 0.070 0.067 0.94 1.00

0.4 0.65 200 0.012 0.103 0.098 0.94 0.012 0.102 0.097 0.94 1.00

0.4 0.65 400 0.011 0.069 0.067 0.95 0.011 0.069 0.067 0.95 1.01

β̃2n β̂2n

pc q n bias std estd cov bias std estd cov ratio

0.2 0.25 200 0.003 0.082 0.085 0.95 0.003 0.081 0.085 0.95 1.01

0.2 0.25 400 -0.001 0.067 0.059 0.93 -0.001 0.067 0.059 0.93 1.00

0.2 0.45 200 -0.014 0.088 0.087 0.94 -0.013 0.087 0.087 0.94 1.01

0.2 0.45 400 -0.005 0.062 0.060 0.93 -0.005 0.062 0.059 0.93 1.00

0.2 0.65 200 -0.015 0.083 0.088 0.95 -0.014 0.082 0.087 0.95 1.01

0.2 0.65 400 -0.001 0.058 0.060 0.98 -0.001 0.058 0.060 0.98 1.00

0.4 0.45 200 0.007 0.109 0.099 0.92 0.007 0.108 0.100 0.92 1.00

0.4 0.45 400 -0.003 0.070 0.068 0.96 -0.003 0.070 0.068 0.96 1.01

0.4 0.65 200 -0.006 0.100 0.100 0.95 -0.005 0.099 0.099 0.95 1.02

0.4 0.65 400 -0.007 0.070 0.068 0.93 -0.007 0.070 0.068 0.93 1.00
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Table 2. Simulated biases and std. of Ã1n(t, β̃n) and Â2n(t, β̂n)

Ã1n(t, β̃n) Â1n(t, β̂n)

pc q t n bias std estd cov bias std estd cov ratio

0.2 0.25 0.3 200 -0.004 0.129 0.142 0.95 -0.006 0.118 0.127 0.90 1.09

0.2 0.25 0.6 200 -0.019 0.208 0.204 0.94 -0.021 0.190 0.181 0.91 1.09

0.2 0.25 0.9 200 -0.031 0.364 0.358 0.96 -0.019 0.314 0.309 0.93 1.16

0.2 0.25 0.3 400 0.008 0.139 0.146 0.97 0.007 0.108 0.149 0.93 1.28

0.2 0.25 0.6 400 0.004 0.178 0.180 0.97 0.008 0.140 0.176 0.97 1.27

0.2 0.25 0.9 400 -0.005 0.269 0.276 0.95 0.010 0.232 0.253 0.94 1.16

0.2 0.45 0.3 200 0.006 0.143 0.137 0.92 0.002 0.138 0.129 0.85 1.04

0.2 0.45 0.6 200 -0.003 0.202 0.202 0.94 -0.007 0.189 0.185 0.93 1.07

0.2 0.45 0.9 200 -0.005 0.336 0.323 0.96 -0.006 0.309 0.309 0.92 1.09

0.2 0.45 0.3 400 -0.008 0.102 0.099 0.93 -0.009 0.093 0.092 0.88 1.10

0.2 0.45 0.6 400 -0.009 0.146 0.144 0.95 -0.012 0.134 0.130 0.93 1.09

0.2 0.45 0.9 400 -0.011 0.240 0.230 0.93 0.001 0.211 0.202 0.93 1.14

0.2 0.65 0.3 200 -0.020 0.147 0.149 0.94 -0.018 0.132 0.142 0.83 1.11

0.2 0.65 0.6 200 -0.011 0.215 0.218 0.95 -0.012 0.197 0.207 0.91 1.09

0.2 0.65 0.9 200 0.000 0.339 0.324 0.96 0.005 0.289 0.292 0.94 1.17

0.2 0.65 0.3 400 0.004 0.127 0.126 0.92 -0.001 0.118 0.116 0.87 1.07

0.2 0.65 0.6 400 -0.014 0.169 0.168 0.94 -0.012 0.150 0.152 0.90 1.12

0.2 0.65 0.9 400 -0.010 0.250 0.234 0.94 -0.008 0.211 0.207 0.94 1.19

0.4 0.45 0.3 200 0.002 0.131 0.131 0.93 -0.001 0.122 0.123 0.91 1.08

0.4 0.45 0.6 200 -0.011 0.214 0.214 0.94 -0.003 0.199 0.330 0.92 1.08

0.4 0.45 0.9 200 0.036 0.472 0.430 0.95 0.024 0.448 0.477 0.91 1.05

0.4 0.45 0.3 400 -0.004 0.104 0.099 0.92 -0.008 0.097 0.093 0.88 1.07

0.4 0.45 0.6 400 -0.003 0.157 0.152 0.94 -0.008 0.145 0.138 0.94 1.08

0.4 0.45 0.9 400 0.017 0.282 0.292 0.96 0.009 0.270 0.260 0.93 1.05

0.4 0.65 0.3 200 -0.011 0.163 0.160 0.91 -0.015 0.153 0.146 0.86 1.06

0.4 0.65 0.6 200 -0.012 0.228 0.230 0.96 -0.022 0.210 0.207 0.93 1.08

0.4 0.65 0.9 200 -0.058 0.379 0.375 0.96 -0.043 0.320 0.327 0.93 1.19

0.4 0.65 0.3 400 -0.009 0.102 0.110 0.94 -0.013 0.098 0.102 0.92 1.04

0.4 0.65 0.6 400 -0.016 0.157 0.161 0.95 -0.017 0.145 0.146 0.93 1.09

0.4 0.65 0.9 400 -0.019 0.276 0.269 0.95 -0.033 0.255 0.234 0.89 1.08
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Table 2. Simulated biases and std. of Ã1n(t, β̃n) and Â2n(t, β̂n) (Continued)

Ã2n(t, β̃n) Â2n(t, β̂n)

pc q t n bias std estd cov bias std estd cov ratio

0.2 0.25 0.3 200 0.002 0.026 0.029 0.99 0.002 0.023 0.026 0.97 1.13

0.2 0.25 0.6 200 0.008 0.050 0.047 0.96 0.008 0.045 0.042 0.93 1.10

0.2 0.25 0.9 200 0.011 0.109 0.110 0.95 0.008 0.103 0.098 0.95 1.06

0.2 0.25 0.3 400 -0.002 0.022 0.023 0.96 -0.002 0.017 0.024 0.94 1.29

0.2 0.25 0.6 400 0.000 0.033 0.035 0.97 -0.001 0.027 0.034 0.99 1.24

0.2 0.25 0.9 400 0.007 0.073 0.080 0.96 0.003 0.066 0.073 0.96 1.11

0.2 0.45 0.3 200 -0.002 0.024 0.025 0.96 -0.001 0.024 0.024 0.92 1.02

0.2 0.45 0.6 200 -0.002 0.046 0.044 0.94 -0.001 0.042 0.041 0.95 1.08

0.2 0.45 0.9 200 0.004 0.105 0.097 0.92 0.003 0.094 0.092 0.93 1.11

0.2 0.45 0.3 400 0.002 0.020 0.019 0.95 0.002 0.018 0.017 0.93 1.09

0.2 0.45 0.6 400 0.003 0.035 0.032 0.94 0.003 0.032 0.029 0.92 1.07

0.2 0.45 0.9 400 0.006 0.077 0.069 0.93 0.002 0.069 0.061 0.92 1.12

0.2 0.65 0.3 200 0.001 0.029 0.028 0.96 0.001 0.026 0.027 0.93 1.09

0.2 0.65 0.6 200 -0.001 0.044 0.048 0.98 -0.001 0.042 0.046 0.96 1.05

0.2 0.65 0.9 200 -0.001 0.100 0.094 0.94 -0.002 0.087 0.085 0.96 1.15

0.2 0.65 0.3 400 0.000 0.021 0.022 0.97 0.001 0.020 0.021 0.96 1.07

0.2 0.65 0.6 400 0.003 0.035 0.036 0.94 0.002 0.031 0.033 0.97 1.15

0.2 0.65 0.9 400 0.003 0.071 0.065 0.96 0.002 0.061 0.059 0.96 1.17

0.4 0.45 0.3 200 0.000 0.024 0.025 0.93 0.001 0.024 0.023 0.94 1.02

0.4 0.45 0.6 200 0.007 0.051 0.050 0.94 0.005 0.049 0.080 0.94 1.04

0.4 0.45 0.9 200 -0.004 0.150 0.138 0.91 0.001 0.147 0.151 0.93 1.02

0.4 0.45 0.3 400 -0.001 0.019 0.019 0.94 0.000 0.018 0.017 0.95 1.05

0.4 0.45 0.6 400 -0.002 0.035 0.034 0.95 -0.001 0.032 0.031 0.96 1.10

0.4 0.45 0.9 400 -0.013 0.082 0.090 0.94 -0.011 0.079 0.082 0.95 1.04

0.4 0.65 0.3 200 -0.001 0.029 0.030 0.96 0.000 0.028 0.027 0.93 1.04

0.4 0.65 0.6 200 -0.003 0.049 0.051 0.95 -0.001 0.046 0.046 0.94 1.06

0.4 0.65 0.9 200 0.008 0.126 0.114 0.92 0.002 0.108 0.101 0.94 1.17

0.4 0.65 0.3 400 0.000 0.019 0.020 0.95 0.001 0.019 0.019 0.95 1.00

0.4 0.65 0.6 400 0.001 0.036 0.036 0.94 0.001 0.033 0.032 0.95 1.07

0.4 0.65 0.9 400 0.003 0.082 0.081 0.94 0.008 0.078 0.073 0.93 1.05
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Based on the results of Table 1 and 2, we have the following conclusions:

(i) The standard deviations of all the estimators increase as the proportion of

left-truncation q or right censoring (pc) increase. The standard deviations of β̂n

and Ân(t, β̂n) are smaller than that of β̃n and Ãn(t) for all the cases considered.

In term of rmse, β̂n and Ân outperform β̃n and Ãn. The ratio of root mean

squared error of β̃in to that of β̂in ranges from 1.00 to 1.02. The ratio of root

mean squared error of Ãin to that of Âin ranges from 1.00 to 1.29.

(ii) When n = 200, the estimated standard deviation underestimates the em-

pirical standard deviation, resulting in less-than-nominal coverage of confidence

intervals. However, when n = 400, the estimated standard deviation is close to

the empirical standard deviation and the coverages of 95% confidence intervals

based on the estimated standard deviations are close to nominal levels.

15



4 Application

To illustrate the proposed method, we consider the data of 103 heart trans-

plant patients taken from Kalbfleisch and Prentice (2002, pages 387-389). Ac-

cording to the description of Crowley and Hu (1977), the patients agreed to

participate in the Stanford program after a medical conference where it was

decided that they were unlikely to respond to the other therapies. This data

consist of 103 observations, 69 of whom received a transplant and from them

24 were still alive at the end of study. Although survival times were recorded

for all the patients, the other covariates except age were not recorded for those

who did not receive a transplant. Thus, to explore the relationship between

survival time and the other covariates, such as mismatch scores, we can only

use the truncated data consisting of 69 patients who received a transplant to fit

the Cox-Aalen model. The proportional part of the model contains number of

mismatches (Z1), HLA-A2 antigen indicator variable (Z2, presence=1) and mis-

match scores (Z3). The age of patients (W1) may be seen as an additional cause

of death at early stages and therefore seemed natural to include in the additive

part of the model. Due to small sample size, the estimates are computed using

the weights with hi(t) = 1, i.e. the OLS estimator. Table 3 lists the estimated

parameters β̃n for Z1, Z2 and Z3 and the estimated parameters Ãn(t, β̃n) for

some selected quartile points. For the proportional part, the mismatch score is

significant (p-value=0.043) and give a log-relative-risk increase at 0.684 per one

unit increase in mismatch score. Figure 2 shows the cumulative additive effects

of baseline and age estimate with 95% pointwise confidence bands. Both effects

are clearly insignificant.

16



Table 3. The estimated parameters β̃n and Ãn

the estimated parameters OLS (p-value)

β̃1n(number of mismatches) -0.134 (0.247)

β̃2n(HLA-A2 antigen) 0.047 (0.457)

β̃3n(mismatch scores) 0.684 (0.043)

Ã1n(38, β̃n) Ã2n(38, β̃n) 0.212 ( 0.300 ) -0.002 ( 0.386 )

Ã1n(65, β̃n) Ã2n(65, β̃n) 0.202 ( 0.306 ) 0.000 ( 0.485 )

Ã1n(77, β̃n) Ã2n(77, β̃n) 0.026 ( 0.474 ) 0.005 ( 0.258 )

Ã1n(109, β̃n) Ã2n(109, β̃n) -0.266 ( 0.241 ) 0.014 ( 0.033 )

Ã1n(206, β̃n) Ã2n(206, β̃n) -0.377 ( 0.156 ) 0.018 ( 0.010 )

Ã1n(339, β̃n) Ã2n(339, β̃n) -0.090 ( 0.435 ) 0.014 ( 0.104 )

Ã1n(514, β̃n) Ã2n(514, β̃n) -0.117 ( 0.415 ) 0.015 ( 0.085 )

Ã1n(732, β̃n) Ã2n(732, β̃n) -0.966 ( 0.077 ) 0.038 ( 0.007 )

Ã1n(1031, β̃n) Ã2n(1031, β̃n) -1.201 ( 0.055 ) 0.049 ( 0.002 )

Ã1n(1799, β̃n) Ã2n(1799, β̃n) -2.067 ( 0.047 ) 0.071 ( 0.013 )
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Figure 2: Cumulative risk for additive part of model
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5 Conclusion

Under the Cox-Aalen model with LTRC data, we have derived the estima-

tors of regression coefficients and cumulative intensities using the conditional

likelihood approach. Simulation results indicate that although the WLS esti-

mator is superior to the OLS estimator, we encountered only moderate gain in

efficiency. Bandwidth selection appears to have some room for improvement.

Further research is required in the area. To check the validity of the model

assumption, one can use the procedure based on the the stratified martingale

residual process proposed by Kraus (2004). In some situation, the distribution

of truncation variables G(x) can be parameterized as G(x; θ). A more efficient

estimator can be developed by incorporating the available information on the

distribution function of left truncation variable V .
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