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Abstract

We analyze left-truncated and right-censored (LTRC) data using an additive-
multiplicative Cox-Aalen model proposed by Scheike and Zhang (2002), that
extends the Cox regression model as well as the additive Aalen model. Based on
the conditional likelihood function, we derive the weighted least squared (WLS)
estimators for the regression parameters and cumulative intensity functions of
the model. The estimators are shown to be consistent and asymptotically nor-
mal. A simulation study is conducted to investigate the performance of the

proposed estimators.

Key Words: Left truncation, Aalen model, Cox regression, survival analysis,

time-varying effect.
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1 Introduction

Left-truncated and right-censored (LTRC) data often arise in epidemiology
and individual follow-up studies (see Wang, 1991). Left truncation is a biased
sampling plan as subjects with shorter survival times tend to be excluded from
the sample such that individuals with larger survival times are oversampled.
An example is the common use of prevalent cohort study, where a group of
diseased individuals are recruited for a prospective study. The main target of
a research project is to study the natural history of the disease for individuals
who developed the disease during the calendar time period (79, 7), 790 < 7. Under
a prevalent cohort design, also refereed as cross-sectional sampling, individuals
who have experienced a first event (e.g. diagnosed as having chronic diseases or
HIV infection) between 7y and 7 and have not experienced a second event (e.g.
death or AIDS) are recruited at the time 7 for a prospective follow-up study.
Suppose that the initial time of the first event, denoted by T, can be quite
accurately determined, such as HIV infection resulting from blood transfusion.
Let T denote the time from 7 to the second event’s endpoint. Let V' denote the
time from T to 7. Thus, left truncation occurs since those individuals who have
experienced the second event, i.e., T" < V, are not included in the study. Suppose
that the follow-up study is terminated at 7* (7% > 7). Let C} = V+7*—7 denote
the time from the first event to the end of study and C5 denote the time from
the first event to drop-out. Thus, T' is left-truncated by V' and right-censored
by C' = min(C1, Cs). Figure 1 highlights all the different times for LTRC data

as described above.

—x———F¥ —
To T(HIVH) T  drop—out AIDS T
C2
G

Figure 1: Schematic depiction of LTRC data



The proportional hazards regression model (Cox (1972)) specifies that the

hazard function takes the form

A(t|Z(t)) = A(t) exp(Z(1)" B)

, where Z(t) is a p x 1 vector of covariates, § is a p x 1 vector of unknown
regression parameters and A(t) as an arbitrary baseline hazard function. The

model may be extended by allowing the regression coefficients to be time-varying;:

At|Z () = A(t) exp(Z(1)" B(1))

(see, e.g. Murphy and Sen (1991), Huang (1999), Martinussen et al. (2001)).
One problem with the extended Cox models is that the choice of a smoothing-
parameter is needed for estimating the non-parametric terms. An alterna-
tive to proportional hazard models is the Aalen additive hazard model (Aalen
(1980,1989); McKeague (1988); Huffer and McKeague (1991)), in which it is
assumed that

AW (t)) = W (1) alt)

, where W (t) is a ¢x 1 vector of covariates and «(t) is a ¢x 1 vector of time-varying
regression parameters. One major advantage of the Aalen additive models is that
time-varying effects are easy to estimate, and that no smoothing parameter needs
to be chosen. Proportional and Additive hazard models postulate a different
relationship between the hazard function and covariates and the two models
can be used to complement each other. Scheike and Zhang (2002) proposed a
new model, called the Cox-Aalen model, that combines the multiplicative and

additive model. The hazard density function of the Cox-Aalen model is given as
AW (t), Z(t) = W ()" a(t) exp(Z(t)"B). (1.1)

Under model (1.1), covariates W (t) work additively on the risk and have non-
parametric time-varying effects while covariates Z(t) have multiplicative effect.
The Cox-Aalen model provides a flexible class of models, which extends the

Cox model by allowing the baseline intensity to depend on covariates through



the additive Aalen model. For right-censored data, Scheike and Zhang (2002)
proposed approximate maximum likelihood estimators of the baseline intensity
functions and the relative risk parameters of the Cox model and established the
large sample properties of the estimators. Scheike and Zhang (2003) showed
how the Cox-Aalen model can lead to simple formulae for predicted probabili-
ties and their standard errors. Kraus (2004) studied goodness-of-fit tests for the

Cox-Aalen model based on the stratified martingale residual process.

When truncation is present, Pan and Chappell (2002) considered the non-
parametric maximum likelihood estimate (NPMLE) of the regression coefficient
for the Cox proportional hazards model with LTRC data. Shen (2014) analyzed
LTRC data using Aalen’s additive hazard models. Shen (2016) demonstrated
Gandy and Jensen (2005)’s goodness-of-fit tests for Aalen’s model can be ex-
tended to LTRC data and doubly censored data. In Section 2, based on the
conditional likelihood function, we derive the weighted least squared (WLS)
estimators for the regression parameters and cumulative intensity functions of
model (1.1) with LTRC data. The proposed estimators are shown to be consis-
tent and asymptotically normal. In Section 3, a simulation study is conducted

to investigate the performance of the proposed estimators.



L=

2 The Proposed Estimators

We assume that given W (t) and Z(t), T and (V, C') are independent of each
other but V' and C are dependent with P(C' > V) = 1. For LTRC data, one
can observe nothing if 7' < V' and observe (X, V,0, W (t), Z(t)), with § = Ijrc
and X = min(7,C), if T > V. Suppose that the left and right endpoints of
T are independent of W (t) and Z(t). Let I, @ and G denote the cumulative
distribution functions of 7', C' and V', respectively. Let ar and br denote the
left and right endpoints of 7', and similarly, define (ag,bg) and (ag,bs) as the
left and right endpoint of C', and V', respectively. Throughout this article, for

identifiabilities of F, we assume that ag = ap = ag = 0, b < min(bp, bg).
Let (X;, Vi, 05, Wi(t), Z;(t)) (i =1,...,n) be the observed truncated sample.
Let Y;(t) == I[Vz'StSXi] and Nl(t) = [[Xigt,éizl]-

Let F(t) denote the complete o-field generated by
{‘/h ‘/I/Z(l'), Zz(m)a K(ﬂf), I[%SX,]? 5i[[‘/;;<Xi§t]7 I[V¢<X¢§x]7 z S t7 i = 17 teey n}

Let

M1 / Yi()Wi(s) a(s) exp(Zi(s)T B)ds

Since E[dN;(t)|F(t—)] = Y;(&)Wi(t)Ta(t) exp(Z;(t)T'3), M;(t) is a martingale
process with respect to F(t).

Let 7. be some constant such that 7. < bg. In practice, the value of 7. is set
at the largest values of X;’s with § = 1. Consider the counting process on [0, 7.].

This gives the following likelihood:

n n

8; 1-6;
[I{arcxim, zoaconi-Qeeil/n p <[[{d@xvoacwol-Fxw.2))in}

i=1 i=1



We decompose L into three factors yielding

)

x H{ 1= QUGVIIAQU VI | = LulaLa,

where Ly, Ly and L3 represent the likelihoods in the first, second and third
braces. We do not consider the maximization of L3 since the estimator of Ls

does not involve F'(-|Z;). Thus, the likelihood is proportional to

= [Iv: T v [(Wi) " dAn) exo(Zi(6)" )™ ]

t<tc

prz o = [ Do) oo explzi B)ds |,

where A(t) = [ a(s)ds, pi = [, exp{—A|Wi(-), Zi()) }dG(v), Aw[Wi(-), Zi() =
Iy f[Xz-zs]Wz'(S)TOé( )exp(Zi(s)"B)ds.

We wish to estimate the cumulative intensity function A(t) as well as the

true value of the relative risk parameter 8. Notice that L(3, A) can be factorized

L(B, A) = Ln(B, A) x Lo(B, A), where
sz exp{ / g Wils)! <>exp<zz-<s>%>ds}

and

= [T [0 aawespiz) 9)"™ )

=1 t<7¢

X eXp{— /O " Yi(t) eXp(Zi(t)TB)VVz‘(t)TdA(t)}y

where L,,(8, A) and L.(3, A) are the marginal likelihood for V; and conditional
likelihood for X; given V.

The following Lemma shows that when W;(¢) and Z;(t) are discrete and

independent of time it suffices to maximize L..



Lemma 1. When W;(¢) and Z;(t) are discrete and independent of time, maxi-

mizing L.(S, A) is equivalent to maximizing the full likelihood L(f, A).

Remark 1: Notice that more efficient estimators can be obtained by maximizing
the full likelihood L. However, one difficulty arises in this approach since the
pi in Ly, involves the unknown distribution function G(x). Further research
18 required in this issue. In this article, we consider the conditional maximum
likelthood estimators based on L. although Lemma 1 holds only for the special

case when covariates are discrete and independent of time.

The logarithm of L.(5, A) can be written as

-3 / log (Y:(t)W;(t)TdA(t) exp(Z:(t)T8)) AN (t)

-3 [ e w0 e,

Let N(t) = (Ny(t), ..., Nn(t))" be an n-dimensional counting process,
M(t) = (My(t), ..., M,(t))" be an n-dimensional martingale.

Define a matrice Y (3, ) = (Y1(t) exp(Z1(t)TB)Wi (1) ,. .. .Y, (t) exp(Z, ()T B)W,
and let Z(t) = (Zu(t), . .., Zn(t))T

Now, we solve the joint score equations for § and «. Given A(t), taking
derivatives of the log-likelihood [.(5, A) with respect to (5 gives the score equation
for g

U(EAm) =3 | v -3 | vz ep o swinae.

The score equation for « is given by

Ua(A(t)) = YT (8, t)diag(1/Xi(t)) (AN (t) — Y (B, t)dA(Y)),

where \;(t; 8) = W;(t)Ta(t) exp(Z: ()" B).

n(t)"



Given 3, solving for U, (A(t)) = 0 yields the Aalen-Huffer-McKeague esti-
mator A(t, )

AU»B)ILAtYUiS;DC$6»dN(@,

where

Y7(8,5:D(s;8)) = [Y(8,5)" D(s; B)Y (8,5)] 'Y (8, 5)" D(s; B),

D(s; 5) = diag(d;(s; 8)) is a diagonal matrix with elements d;(s; 5) = Y;(s)/\i(s; 5).
Similar to the argument of Sasieni (1992), we may interpret the estimator A(t, )

as a conditional maximum likelihood estimator for A(t), which is equivalent to

WLS.

To solve the score equations simultaneously we insert the Aalen-Huffer-

McKeague estimator /Al(t, B) into the score for § and get
U(B,7|D)

=22 Jo Yi) Zi(t)dNi(t) =32, [ Ya(t) Zi(t) exp(Zi(8)T B)Wi(t)Y (8,1 D(t))dN(t)

= [ (Z7(t) — SW(B, )Y (B,; D(t)))dN(t)

= [y (Z7(t) = Z" ()Y (B, )Y~ (8,1; D(1)))AN (1),

where S®)(B,t) = . ZEF()Yi(t) exp(Z;(8)T B)Wi(t)T, 28° = 1, 2% = 2 and
292 = 22T, The process U(f,t|D) is a martingale in ¢ since the compensator of
U(Bo, t|D) is 0 for any weight matrix D(t). Thus, we can consider the estimating
equation for all the choices of D(t). Given D, we define 3 as the solution to the
score equation U (3, 7.|D) = 0. Following Scheike and Zhang (2002), we consider
weights of the form d;(s) = d;(s; 8) = Yi(t) exp(—Z;(t)T8)/hi(t). Based on the

estimator § we can estimate the cumulative intensity function A(t) by solving
A A t A A
AB) = [ Y65 (s 9)aN (), (2.)
0

where D(s; 8) = diag(d;(s; 8)) is a diagonal matrix with elements

di(s;8(D)) = Yi(s) exp(—Zi(s)TB)/hi(s). where h;(s) = W;(s)Ta(s).



One simple choice of h;(t) is h;(t) = 1. Using h;(t) = 1, we can solve
U(B,1.|D) = 0 for obtaining an initial estimator B,. Based on f3,, we obtain
an estimator for A, denoted by A,(t,3,). Notice that no iteration is needed
when h;(t) = 1. We call 3, and A,(t, (3,) the ordinary least squared (OLS)
estimators. The other choice is to consider the conditional maximum likelihood
weights h;(t) = W;(t)Ta(t). Under this weight, the score for 3 reduces to the
score for partial likelihood in the case of Cox model with LTRC data, which
is asymptotically efficient. Using h;(¢) = 1, we can obtain an initial estimator
for A(t), denoted by A (t) = An(t, B,). Based on AO)(t), we obtain a kernel-

smoothed estimator of «;(t) by

o [Tl (t=uN ey a5
Q; (t) - h_K h dAJ (ua/@n)v J=1...,¢g (22)

F

where K (-) is a left-continuous function on (0, 1] such that f(o y K (u)du =1

h, is a positive bandwidth parameter that tends to 0 as n — oo.

In the second step, the estimators ozgo)( t) (j =1,...,q) are used to estimate
the weight function hi (t) = Wi(t)"a®(t) to obtain a update estimator for 3,
AV, Based on (2.1), we obtain a update estimator for A(t), A, (¢, B,(Il)). Iterate
between solving score function U(f,7./D) = 0, and (2.1), (2.2) until conver-
gence. Let @n and An(t, Bn) denote the converged estimators. We call them
the weighted least squared (WLS) estimators with the conditional maximum

likelihood (cMLE) weights.

Next, we derive the asymptotic properties of the OLS and WLS estimators.
We denote the true value of g and A(t) as By and Ay(t), respectively.

Let W;(8,t) = Y(t) exp(Z;(t)" B)Wi(t) and

S8, 1) =" ZPH YO d ()W (8, 1) exp(Zi(t) B)Wi(1)".
for k+j < 2, and defined as for k+j = 2 with the convention that S*) = S*)©)
and with an additional transpose for SM® such that the dimensions match. We

need the following conditions:



(C1) [ a(s)ds < oo.
(C2) There exists a compact neighbourhood B of 3, and functions s*)0),

for k + j < 2 defined on B x [0, 7] such that

sup  [[n 1 SWO(B1) — sPO (3, 1)]] 0
BEB,LE[0,7¢]

(C3) sWU)(B,1), k + j < 2 are uniformly continuous functions of 3 € B and

t € [0.7.] and bounded on B x [0, 7.]. Let

6(8) = / (D (B, u) — sV (B,u) (D (B, u)) g (8, w) }ax(us)

where ¢ (5, u) is the limiting distribution of n='[Y'(3,u)" D(u)Y (3, u)].
Assume that there exists a root of ¢(3) = 0 on B, and [ is the only root

of () = 0. Assume that the following matrix is positive definite:

Y= / {8 (o, u) = s (Bo, w) (s (B, w)) ™" (s (Bo, w)ar(w)) hdu
0
(C4) With probability one, both W (-) and Z(-) have bounded total variation in [0, 7]

We denote B and A(B ,t) as the solutions based on some weight matrix D.

Theorem 1. Under conditions (C1)-(C4), it follows that n'/2(5 — f,) converges
towards a normally distributed variable with mean 0 and a variance that may

be estimated consistently by S5 = nZ~ (3, 7.)[U(Bn, )(7e)Z (3, 7.), where
OB, ))(re) = /OTC(ZT(t)—S(l)(B,t)Y(5o,t)) x diag(dN (1)) (27 (t) = SW (5, 1)y~ (8,1))"

is the optional variation process of U(fy, 7.) with 3y replaced by B .



Remark 2: For the cMLE weights the variance simplifies and Ifl(/@n,n) es-
timate the variance of (Bn — Bo), where Z(B,t) is the derwative of U(fB,t) and

given as
Z(B,t) = — 55U (B, 1)
= Jo" SP(B, )Y (8, t; D(t))dN (t)+ [5* SN (B, 1) 45Y (8, t; D(t))dN (1)
= Jo© ZT(t)diag(Y' (8, )Y (8,8 D(t)) AN (£) Z(t)
= Jo" ZTOY (8,0Y (8,8 D(t))diag(Y (8,0)Y ~(8,1; D(1))AN (£)) Z(2).
Next, we investigate the asymptotic properties of the estimator A(f, t).

Theorem 2. Under conditions (C1)-(C4), it follows that n'/2(A(3,t) — A(t))
converges in distribution towards a Gaussian process with variance that be es-

timated consistently by

A

S4=n(n  HB ) SgH (B, 1) + [MaO)I(0) + H(B, )T (B, 4)[U (-, Ma(-)](2)

UG MaOIOZ (B, ) H (B, 1),

~

where H(f3,t) = g [5Y=(8,5)dN(s) and Ma(t) = [} Y (B, s)dM(s).
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3 Simulation Studies

We generate T" based on the hazard density function
AW (L), Z(t)) = (0.5 + Wit) exp(Z10.3 + Z2(—0.3))

;where Wi is is a discrete uniform random variable on the integers 1,2,...,10
and independent of Z; and Z, that are independent standard normals. The left-
truncation variable V' is generated from exponential distribution with mean pu,
equal to 0.17, 0.25 and 0.33 such that the proportion of truncation rate is equal
to 0.25, 0.45 and 0.65, respectively. Right censoring variable C'is generated from
V' +dy, where dy is chosen as 0.7 and 0.45 such that the proportion of censoring
P(6; = 0) is equal to 0.2 and 0.4, respectively. Sample size is n = 200, 400
and the replication time is 1000. The value of 7. is set at the largest values
of X;’s with §; = 1. For each simulated dataset, we obtain the ordinary least
squared (OLS) estimators B, = (Bln, an)T, fln(t,Bn) = (A, (t, Bn), Aot Bn))T
and the weighted least squared (WLS) estimators with the ¢cMLE weights /3, =
(Bun, Bon)T, An(t, Br) = (Arn(t, By), Asn(t, 3,))T. The weights are obtained based
on Epanechnikov kernel with bandwidth A~ = 0.3,0.35,0.4,0.45,0.5 and h =
0.2,0.2,0.25,0.3,0.35 for n = 200 and n = 400, respectively. Using Yz and
%5, , we calculated the estimated standard deviations of Bn and A,. Similarly,
we calculated the estimated standard deviations of /3, and A,, using 5, and Xj .
Approximate 0.95 confidence intervals for 5 and A(t) are constructed using the
normal approximation. Table 1 shows the simulated biases, simulated standard
deviations (std), estimated standard deviations (estd), empirical coverage (cov)
of 8, and 3, and the ratio (denoted by ratio) of the root mean squared error
(rmse) of Bm to that of Bm Table 1 also shows the proportion of left-truncation
(denoted by ¢) and right-censoring (denoted by p. = P(9; = 0)). Table 2 shows

the simulation results for Ain(t, 8,) and Ayn(t, 3,) at some selected points.

11



Table 1 Simulated biases and std. of Bn and 3,

Bin Bin
De q n bias std  estd cov bias std estd cov ratio
0.2 0.25 200 -0.001 0.085 0.086 0.95 -0.001 0.084 0.086 0.95 1.02
0.2 0.25 400 0.006 0.055 0.059 0.95 0.006 0.055 0.059 0.95 1.00
0.2 045 200 0.007 0.087 0.086 0.93 0.006 0.086 0.086 0.93 1.02
0.2 045 400 0.004 0.065 0.060 0.94 0.003 0.064 0.059 0.94 1.01
0.2 0.65 200 0.017 0.085 0.087 0.95 0.015 0.084 0.087 0.95 1.02
0.2 0.65 400 0.008 0.062 0.061 0.95 0.007 0.062 0.061 0.95 1.01
0.4 045 200 0.017 0.093 0.099 0.97 0.017 0.094 0.099 0.97 1.00
0.4 045 400 0.012 0.070 0.067 0.94 0.012 0.070 0.067 0.94 1.00
0.4 0.65 200 0.012 0.103 0.098 0.94 0.012 0.102 0.097 0.94 1.00
0.4 0.65 400 0.011 0.069 0.067 0.95 0.011 0.069 0.067 0.95 1.01
Bon Ban
De q n bias std  estd cov bias std  estd cov ratio
0.2 0.25 200 0.003 0.082 0.085 0.95 0.003 0.081 0.085 0.95 1.01
0.2 0.25 400 -0.001 0.067 0.059 0.93 -0.001 0.067 0.059 0.93 1.00
0.2 045 200 -0.014 0.088 0.087 0.94 -0.013 0.087 0.087 0.94 1.01
0.2 0.45 400 -0.005 0.062 0.060 0.93 -0.005 0.062 0.059 0.93 1.00
0.2 0.65 200 -0.015 0.083 0.088 0.95 -0.014 0.082 0.087 0.95 1.01
0.2 0.65 400 -0.001 0.058 0.060 0.98 -0.001 0.058 0.060 0.98 1.00
0.4 045 200 0.007 0.109 0.099 0.92 0.007 0.108 0.100 0.92 1.00
0.4 045 400 -0.003 0.070 0.068 0.96 -0.003 0.070 0.068 0.96 1.01
0.4 0.65 200 -0.006 0.100 0.100 0.95 -0.005 0.099 0.099 0.95 1.02
0.4 0.65 400 -0.007 0.070 0.068 0.93 -0.007 0.070 0.068 0.93 1.00

12



Table 2. Simulated biases and std. of Ayn(t, 8,) and Ayn(t, 5,)

Pec

q

t

n

bias

Ap(t

std

75”1)

estd

cov  bias

Aln(t7 Bn)

std

estd

cov ratio

0.2
0.2
0.2

0.25
0.25
0.25

0.3
0.6
0.9

200
200
200

-0.004
-0.019
-0.031

0.129
0.208
0.364

0.142
0.204
0.358

0.95 -0.006
0.94 -0.021
0.96 -0.019

0.118
0.190
0.314

0.127
0.181
0.309

0.90
0.91
0.93

1.09
1.09
1.16

0.2
0.2
0.2

0.25
0.25
0.25

0.3
0.6
0.9

400
400
400

0.008
0.004
-0.005

0.139
0.178
0.269

0.146
0.180
0.276

0.97 0.007
0.97 0.008
0.95 0.010

0.108
0.140
0.232

0.149
0.176
0.253

0.93
0.97
0.94

1.28
1.27
1.16

0.2
0.2
0.2

0.45
0.45
0.45

0.3
0.6
0.9

200
200
200

0.006
-0.003
-0.005

0.143
0.202
0.336

0.137
0.202
0.323

0.92 0.002
0.94 -0.007
0.96 -0.006

0.138
0.189
0.309

0.129
0.185
0.309

0.85
0.93
0.92

1.04
1.07
1.09

0.2
0.2
0.2

0.45
0.45
0.45

0.3
0.6
0.9

400
400
400

-0.008
-0.009
-0.011

0.102
0.146
0.240

0.099
0.144
0.230

0.93 -0.009
0.95 -0.012
0.93 0.001

0.093
0.134
0.211

0.092
0.130
0.202

0.88
0.93
0.93

1.10
1.09
1.14

0.2
0.2
0.2

0.65
0.65
0.65

0.3
0.6
0.9

200
200
200

-0.020
-0.011
0.000

0.147
0.215
0.339

0.149
0.218
0.324

0.94 -0.018
0.95 -0.012
0.96 0.005

0.132
0.197
0.289

0.142
0.207
0.292

0.83
0.91
0.94

1.11
1.09
1.17

0.2
0.2
0.2

0.65
0.65
0.65

0.3
0.6
0.9

400
400
400

0.004
-0.014
-0.010

0.127
0.169
0.250

0.126
0.168
0.234

0.92 -0.001
0.94 -0.012
0.94 -0.008

0.118
0.150
0.211

0.116
0.152
0.207

0.87
0.90
0.94

1.07
1.12
1.19

0.4
0.4
0.4

0.45
0.45
0.45

0.3
0.6
0.9

200
200
200

0.002
-0.011
0.036

0.131
0.214
0.472

0.131
0.214
0.430

0.93 -0.001
0.94 -0.003
0.95 0.024

0.122
0.199
0.448

0.123
0.330
0.477

0.91
0.92
0.91

1.08
1.08
1.05

0.4
0.4
0.4

0.45
0.45
0.45

0.3
0.6
0.9

400
400
400

-0.004
-0.003
0.017

0.104
0.157
0.282

0.099
0.152
0.292

0.92 -0.008
0.94 -0.008
0.96 0.009

0.097
0.145
0.270

0.093
0.138
0.260

0.88
0.94
0.93

1.07
1.08
1.05

0.4
0.4
0.4

0.65
0.65
0.65

0.3
0.6
0.9

200
200
200

-0.011
-0.012
-0.058

0.163
0.228
0.379

0.160
0.230
0.375

0.91 -0.015
0.96 -0.022
0.96 -0.043

0.153
0.210
0.320

0.146
0.207
0.327

0.86
0.93
0.93

1.06
1.08
1.19

0.4
0.4
0.4

0.65
0.65
0.65

0.3
0.6
0.9

400
400
400

-0.009
-0.016
-0.019

0.102
0.157
0.276

0.110
0.161
0.269

0.94 -0.013
0.95 -0.017
0.95 -0.033

0.098
0.145
0.255

0.102
0.146
0.234

0.92
0.93
0.89

1.04
1.09
1.08
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Table 2. Simulated biases and std. of Ayn(t, 8,) and Ayn(t, ,) (Continued)

Pec

q

t

n

bias

AQn(ta BTL)

std

estd

cov

bias

AQn(t7 Bn)

std

estd

cov ratio

0.2
0.2
0.2

0.25
0.25
0.25

0.3
0.6
0.9

200
200
200

0.002
0.008
0.011

0.026
0.050
0.109

0.029
0.047
0.110

0.99
0.96
0.95

0.002
0.008
0.008

0.023
0.045
0.103

0.026
0.042
0.098

0.97
0.93
0.95

1.13
1.10
1.06

0.2
0.2
0.2

0.25
0.25
0.25

0.3
0.6
0.9

400
400
400

-0.002
0.000
0.007

0.022
0.033
0.073

0.023
0.035
0.080

0.96
0.97
0.96

-0.002
-0.001
0.003

0.017
0.027
0.066

0.024
0.034
0.073

0.94
0.99
0.96

1.29
1.24
1.11

0.2
0.2
0.2

0.45
0.45
0.45

0.3
0.6
0.9

200
200
200

-0.002
-0.002
0.004

0.024
0.046
0.105

0.025
0.044
0.097

0.96
0.94
0.92

-0.001
-0.001
0.003

0.024
0.042
0.094

0.024
0.041
0.092

0.92
0.95
0.93

1.02
1.08
1.11

0.2
0.2
0.2

0.45
0.45
0.45

0.3
0.6
0.9

400
400
400

0.002
0.003
0.006

0.020
0.035
0.077

0.019
0.032
0.069

0.95
0.94
0.93

0.002
0.003
0.002

0.018
0.032
0.069

0.017
0.029
0.061

0.93
0.92
0.92

1.09
1.07
1.12

0.2
0.2
0.2

0.65
0.65
0.65

0.3
0.6
0.9

200
200
200

0.001
-0.001
-0.001

0.029
0.044
0.100

0.028
0.048
0.094

0.96
0.98
0.94

0.001
-0.001
-0.002

0.026
0.042
0.087

0.027
0.046
0.085

0.93
0.96
0.96

1.09
1.05
1.15

0.2
0.2
0.2

0.65
0.65
0.65

0.3
0.6
0.9

400
400
400

0.000
0.003
0.003

0.021
0.035
0.071

0.022
0.036
0.065

0.97
0.94
0.96

0.001
0.002
0.002

0.020
0.031
0.061

0.021
0.033
0.059

0.96
0.97
0.96

1.07
1.15
1.17

0.4
0.4
0.4

0.45
0.45
0.45

0.3
0.6
0.9

200
200
200

0.000
0.007
-0.004

0.024
0.051
0.150

0.025
0.050
0.138

0.93
0.94
0.91

0.001
0.005
0.001

0.024
0.049
0.147

0.023
0.080
0.151

0.94
0.94
0.93

1.02
1.04
1.02

0.4
0.4
0.4

0.45
0.45
0.45

0.3
0.6
0.9

400
400
400

-0.001
-0.002
-0.013

0.019
0.035
0.082

0.019
0.034
0.090

0.94
0.95
0.94

0.000
-0.001
-0.011

0.018
0.032
0.079

0.017
0.031
0.082

0.95
0.96
0.95

1.05
1.10
1.04

0.4
0.4
0.4

0.65
0.65
0.65

0.3
0.6
0.9

200
200
200

-0.001
-0.003
0.008

0.029
0.049
0.126

0.030
0.051
0.114

0.96
0.95
0.92

0.000
-0.001
0.002

0.028
0.046
0.108

0.027
0.046
0.101

0.93
0.94
0.94

1.04
1.06
1.17

0.4
0.4
0.4

0.65
0.65
0.65

0.3
0.6
0.9

400
400
400

0.000
0.001
0.003

0.019
0.036
0.082

0.020
0.036
0.081

0.95
0.94
0.94

0.001
0.001
0.008

0.019
0.033
0.078

0.019
0.032
0.073

0.95
0.95
0.93

1.00
1.07
1.05
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Based on the results of Table 1 and 2, we have the following conclusions:

(i) The standard deviations of all the estimators increase as the proportion of
left-truncation ¢ or right censoring (p.) increase. The standard deviations of Bn
and A, (t, 8,) are smaller than that of 3, and A, (t) for all the cases considered.
In term of rmse, Bn and A, outperform Bn and A,. The ratio of root mean
squared error of Bm to that of ﬁAm ranges from 1.00 to 1.02. The ratio of root

mean squared error of A, to that of Am ranges from 1.00 to 1.29.

(ii) When n = 200, the estimated standard deviation underestimates the em-
pirical standard deviation, resulting in less-than-nominal coverage of confidence
intervals. However, when n = 400, the estimated standard deviation is close to
the empirical standard deviation and the coverages of 95% confidence intervals

based on the estimated standard deviations are close to nominal levels.
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4 Application

To illustrate the proposed method, we consider the data of 103 heart trans-
plant patients taken from Kalbfleisch and Prentice (2002, pages 387-389). Ac-
cording to the description of Crowley and Hu (1977), the patients agreed to
participate in the Stanford program after a medical conference where it was
decided that they were unlikely to respond to the other therapies. This data
consist of 103 observations, 69 of whom received a transplant and from them
24 were still alive at the end of study. Although survival times were recorded
for all the patients, the other covariates except age were not recorded for those
who did not receive a transplant. Thus, to explore the relationship between
survival time and the other covariates, such as mismatch scores, we can only
use the truncated data consisting of 69 patients who received a transplant to fit
the Cox-Aalen model. The proportional part of the model contains number of
mismatches (Z;), HLA-A2 antigen indicator variable (Z5, presence=1) and mis-
match scores (Z3). The age of patients (W) may be seen as an additional cause
of death at early stages and therefore seemed natural to include in the additive
part of the model. Due to small sample size, the estimates are computed using
the weights with h;(¢) = 1, i.e. the OLS estimator. Table 3 lists the estimated
parameters Bn for Z1, Z5 and Z3 and the estimated parameters fln(t, Bn) for
some selected quartile points. For the proportional part, the mismatch score is
significant (p-value=0.043) and give a log-relative-risk increase at 0.684 per one
unit increase in mismatch score. Figure 2 shows the cumulative additive effects
of baseline and age estimate with 95% pointwise confidence bands. Both effects

are clearly insignificant.
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Table 3. The estimated parameters 3, and A,

-1.201
-2.067

0.055
0.047

0.049
0.071

0.002
0.013

the estimated parameters OLS (p-value)
B1n(number of mismatches) -0.134 (0.247)
Bon(HLA-A2 antigen) 0.047 (0.457)
(3, (mismatch scores) 0.684 (0.043)
A1, (38,53,)  A(38,3,) 0.212 (0.300) -0.002 ( 0.386 )
A1, (65,5,)  Agn(65,3,) 0.202 (0.306) 0.000 ( 0.485 )
A (77, 6,)  Asn(77,5,)  0.026 (0.474)  0.005 ( 0.258 )
A1, (109, 8,) A, (109, 3,) -0.266 ( 0.241 )  0.014 ( 0.033 )
A1,(206, 8,)  A2,(206,5,) -0.377 (0.156 )  0.018 ( 0.010 )
A1,(339,8,)  A2,(339,5,) -0.090 (0.435) 0.014 ( 0.104 )
A, (514, 3,)  Asn(514,3,) -0.117 (0.415) 0.015 ( 0.085)
A(732,58,)  Apn(732,53,) -0.966 ( 0.077 )  0.038 ( 0.007 )
) ) ( ) ( )
) ) ( ) ( )

baseline age

2

|
0.10

|

0.05
|

Cumulative coefficients
1
Cumulative coefficients
0.00
|

-0.05

-0.10

T T T T T T T T
0 500 1500 0 500 1500

Figure 2: Cumulative risk for additive part of model
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5 Conclusion

Under the Cox-Aalen model with LTRC data, we have derived the estima-
tors of regression coefficients and cumulative intensities using the conditional
likelihood approach. Simulation results indicate that although the WLS esti-
mator is superior to the OLS estimator, we encountered only moderate gain in
efficiency. Bandwidth selection appears to have some room for improvement.
Further research is required in the area. To check the validity of the model
assumption, one can use the procedure based on the the stratified martingale
residual process proposed by Kraus (2004). In some situation, the distribution
of truncation variables G(x) can be parameterized as G(z;6). A more efficient
estimator can be developed by incorporating the available information on the

distribution function of left truncation variable V.
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