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Abstract 

In medical studies, we usually are interested in comparing the treatment effects 

of the drug according to the difference of two median survival times. In this paper, 

based on the estimating equation estimator (Chen et al., 2002) and the maximum 

likelihood estimator (Zeng and Lin, 2006, Chen, 2009), we propose two methods for 

constructing conditional confidence interval for the difference of two median survival 

times given the covariates under the semiparametric transformation models. The 

effectiveness of the associated coverage probability and the average length of the 

interval are investigated via a simulation study. An application of the proposed 

method is illustrated with a real data set. 

 

Key words: Confidence interval; Median survival time; Estimating equation; 

Maximum likelihood; Weighted Breslow; Semiparametric transformation mode
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1. Introduction 

In medical studies, Cox proportional hazards model (Cox, 1972) is the most 

commonly used method to analyze the survivor function of patients when the 

right-censored survival data are accompanied with covariates which are associated 

with patients’ physiological conditions. Although the estimated survival function can 

be used to identify covariates that affect survival times when expressing the results of 

clinical trials, it would be better to consider the hazard ratio together with a measure 

of time, such as median (or quantile) survival time, which provides the additional 

information regarding the point at which half the subjects have experienced the event. 

Thus, when one is assessing the treatment effects of a drug, how to construct the 

confidence intervals for the median survival time is essential. Under the Cox 

proportional hazards model (Cox, 1972), many methods have been proposed to 

construct confidence intervals of median/mean survival time. Dabrowska and Doksum 

(1989) considered a confidence-interval estimation of a conditional median survival 

time given a value of covariate vector. Burr and Doss (1993) constructed confidence 

bands for the median survival time as a function of the covariates. For comparing two 

survival functions, Zucker (1998) proposed the statistical tests for comparing two 

treatments based on the difference between two restricted means with covariates 

adjusted based on the stratified Cox model, under which the ratio of hazards or 

cumulative hazards for subjects with the same covariates in two treatment groups 

would be independent of the covariates. Kim (2001) suggested two confidence 

intervals for the difference of median survival times, one is constructed only for the 

patients with baseline covariates and the other is developed with covariates adjusted. 

Chen and Chang (2007) extended the work in Su and Wei (1993) and suggested 

covariates-dependent confidence intervals for the difference or ratio of two median 
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lifetimes under both stratified and treatment-specific Cox models. Chen et al. (2015) 

further developed confidence bands for the difference between two median   

survival times as a function of the associated covariates under the stratified and 

treatment-specific Cox models, respectively. 

The proportionality assumption of the Cox model can be violated in practice. The 

class of semiparametric transformation model, which includes Cox and proportional 

odds model (Bennett, 1983) as special cases and allows various nonproportional 

hazard structures, have received tremendous recent attention (e.g. Cheng et al., 1995, 

1997; Murphy et al., 1997; Scharfstein et al., 1998; Cai et al., 2002; Chen et al., 2002; 

Tsodikov, 2003; Kosorok et al., 2004; Lu and Ying, 2004; Lu and Tsiatis, 2006; Zeng 

and Lin, 2006, 2007). Cheng et al. (1995) proposed and justified a general estimation 

method for linear transformation models with right-censored data. The method was 

further developed in Cheng et al. (1997), Fine et al. (1998) and Cai et al. (2000). A 

key step in their approach is the estimation of the survival function for the censoring 

variable by the Kaplan–Meier estimator, which relies on the assumption that the 

censoring variable is independent of the covariates. In practice, however, the 

independent assumption is often too restrictive, even for randomized clinical trials. 

Unlike Cox’s partial likelihood approach, this estimation method fails when the 

independence assumption is violated. Chen et al.’s (2002) estimator is valid under the 

assumption that failure time is conditionally independent of censoring time given 

covariates and it is the same as the Cox partial likelihood estimator in the case of 

proportional hazards model. Chen et al.’s (2002) estimator is obtained through the 

estimating equations (EE) and its asymptotic variance has a closed-form expression 

even though it is not efficient. Using the nonparametric maximum likelihood methods, 

Zeng and Lin (2006) proposed an efficient estimation of a broad class of 
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transformation models which can accommodate time-varying covariates and recurrent 

events. Chen (2009) further showed that intruding weights into the Breslow type 

estimator can lead to nonparametric maximum likelihood estimation (MLE) of Zeng 

and Lin (2006) and the weighted Breslow-type estimator suggests an iterative 

reweighting algorithm for nonparametric maximum likelihood estimation. Chen et al. 

(2012) introduced time-dependent residuals for semiparametric transformation models 

and used the cumulative sums of the residuals to construct graphical and numerical 

procedures for model checking. 

In this paper, we consider the problem of constructing the conditional confidence 

interval given the associated covariates for the difference of two median survival   

times under the semiparametric transformation models. Based on the conditional 

confidence intervals, we can identify the possible range of covariates over which the 

two groups would provide different median survival times. 

In Section 2, based on the EE estimator (Chen et al., 2002) and the MLE (Zeng 

and Lin, 2006, Chen, 2009), we consider construction of the conditional confidence 

interval for the difference of two median survival times given the covariates under the 

semiparametric transformation model. In Section 3, a simulation study is conducted to 

investigate the coverage probability and the expected length of the conditional 

intervals. In Section 4, the proposed method is illustrated using a data set in a two-arm 

lung cancer study (Ying et al., 1995). Conclusions and discussions on the application 

of the confidence intervals are finally given in Section 5. 
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2. The proposed confidence intervals 

2.1  Semiparametric transformation model 

Let {(𝑇𝑖, 𝐶𝑖), 𝑖 = 1,… , 𝑛} be failure time and censoring time of the 𝑛 patients. 

Denote the associated 𝑞 × 1 covariates vector 𝑍𝑖 = [𝑧1𝑖, 𝑧2𝑖, … , 𝑧𝑞𝑖]
𝑇. Without loss   

of generality, let 𝑧1𝑖 = 0, 1, denote two treatment groups. Assume that failure time 

and censoring time are conditionally independent given the covariate 𝑍𝑖 . The 

observed right-censored lifetime data are (𝑇̃𝑖, 𝛿𝑖 , 𝑍𝑖), where 𝑇̃𝑖 = min(𝑇𝑖, 𝐶𝑖), and 

𝛿𝑖 = 𝐼(𝑇𝑖 ≤ 𝐶𝑖), 𝑖 = 1, … , 𝑛.  

Semiparametric transformation models specify the corresponding cumulative 

intensity of 𝑇𝑖, given the covariate 𝑍𝑖, as  

Λ(𝑡|𝑍𝑖) = 𝐺{Λ(𝑡)exp(𝛽𝑇𝑍𝑖)},                    (1) 

where Λ(∙) is an unspecified increasing function, 𝛽 is a 𝑞 × 1 vector of regression 

parameters and 𝐺  is a specified transformation function that is continuously 

differentiable and strictly increasing with 𝐺(0) = 0, 𝐺′(0) > 0 and 𝐺(∞) = ∞.  

The Box-Cox transformation model is the most commonly used model: 

𝐺(𝑥) = {(1 + 𝑥)𝜌 − 1} 𝜌⁄   (𝜌 ≥ 0) 

with 𝜌 = 0 corresponding to 𝐺(𝑥) = log (1 + 𝑥). The other model is the class of 

logarithmic transformations:  

𝐺(𝑥) = log(1 + 𝑟𝑥) 𝑟⁄   (𝑟 ≥ 0)   

with 𝑟 = 0 corresponding to 𝐺(𝑥) = 𝑥. The choice of 𝜌 = 1 or 𝑟 = 0 yields the 

proportional hazards model; while the choice of 𝜌 = 0 or 𝑟 = 1 yields the 

proportional odds model. 

Under model (1), the conditional survival function can be written as 

𝑆(𝑡|𝑍𝑖) = exp(−Λ(𝑡|𝑍𝑖)). 

Let 𝑆(𝑡|𝑧1𝑖 = 𝑘, 𝑥𝑖), 𝑘 =  0, 1, denote the survival function of the treatment group 𝑘, 
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given covariate 𝑥𝑖 = (𝑧2𝑖 , 𝑧3𝑖, … , 𝑧𝑞𝑖). The 100𝑝th percentile of the treatment 𝑘 is 

given by 

𝜉𝑝
𝑘(𝑥𝑖) = sup{𝑡: 𝑆(𝑡|𝑧1𝑖 = 𝑘, 𝑥𝑖) ≥ 1 − 𝑝}, 𝑘 = 0, 1. 

When 𝑝 = 0.5, 𝜉0.5
𝑘 (𝑥𝑖)  is the median survival time for treatment 𝑘 . For 

conveniences, we use 𝜉𝑘(𝑥𝑖) to represent the median survival time for treatment 𝑘  

in the whole article. Therefore, given the covariate 𝑥𝑖, the 100(1 − 𝛼)% conditional 

confidence intervals for ∆(𝑥𝑖) = 𝜉0(𝑥𝑖) − 𝜉1(𝑥𝑖) can be constructed. 

2.2  The method based on the estimator of Chen et al. (2002) 

First, we consider constructing confidence intervals based on EE estimator of Chen et 

al.’s (2002). Note that model (1) is equivalent to  

𝐻(𝑡) = −𝛽𝑇𝑍𝑖 + 𝜀𝑖 , 𝑖 = 1,… , 𝑛, 

where 𝐻(𝑡) = logΛ(𝑡) , 𝜀𝑖 = log𝐺−1(−log 𝑈)  is independent of 𝑍𝑖 , 𝑈  has a 

uniform distribution on (0, 1). Let 𝑌𝑖(𝑡) = 𝐼(𝑇̃𝑖 ≥ 𝑡) denote the at-risk process and 

𝑁𝑖(𝑡) = 𝐼(𝑇̃𝑖 ≤ 𝑡, 𝛿𝑖 = 1) be the observed counting process. For a random sample of 

𝑛  subjects, the data consist of {𝑁𝑖(𝑡), 𝑌𝑖(𝑡), 𝑍𝑖: 𝑖 = 1,… , 𝑛, 0 ≤ 𝑡 ≤ 𝜏} , where 𝜏 

denotes the end point of the study. Let λ𝜀(∙) and Λ𝜀(∙) be the known hazard and 

cumulative hazard function of 𝜀, respectively. Following the usual counting process 

notation, let 

𝑀𝑖(𝑡) = 𝑁𝑖(𝑡) − ∫ 𝑌𝑖(𝑢)𝑑Λ𝜀{𝛽
𝑇𝑍𝑖 + 𝐻(𝑢)}

𝑡

0

, 

where Λ𝜀(𝑡) = 𝐺(𝑒𝑡). The 𝛽 and 𝐻 are evaluated at their true values when the 

assumed model holds. Under model (1), 𝑀𝑖(𝑡) is a martingale process. The EE 

proposed by Chen et al. (2002) are 

𝑈(𝛽,𝐻) ≡ ∑ ∫ 𝑍𝑖[𝑑𝑁𝑖(𝑡) − 𝑌𝑖(𝑡)𝑑Λ𝜀{𝛽
𝑇𝑍𝑖 + 𝐻(𝑡)}]

∞

0
𝑛
𝑖=1 = 0,      (2) 

and 
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∑ [𝑑𝑁𝑖(𝑡) − 𝑌𝑖(𝑡)𝑑Λ𝜀{𝛽
𝑇𝑍𝑖 + 𝐻(𝑡)}]

𝑛
𝑖=1 = 0   (𝑡 ≥ 0),          (3) 

where 𝐻  is a nondecreasing function satisfying 𝐻(0) = −∞ . This requirement 

ensures that Λ{𝑎 + 𝐻(0)} = 0 for any finite 𝑎 . Let 𝛽̂  and 𝐻̂(𝑡, 𝛽̂ ) denote the 

solutions of (2) and (3). Note that 𝐻̂(𝑡, 𝛽̂) is a step functions in 𝑡 that jumps only at 

the observed failure times 𝑡∗. 

For the special case of the Cox model, λ𝜀(𝑡) = exp(𝑡) and it then follows from 

(2) and (3) that the estimate of 𝛽̂ satisfies the following equation: 

∑∫ {𝑍𝑖 −
∑ 𝑍𝑗𝑌𝑗(𝑡)
𝑛
𝑗=1 exp(𝛽𝑇𝑍𝑗)

∑ 𝑌𝑗
𝑛
𝑗=1 (𝑡)exp(𝛽𝑇𝑍𝑗)

}
∞

0

𝑛

𝑖=1

𝑑𝑁𝑖(𝑡) = 0, 

which is precisely the Cox partial likelihood score equation for right-censored data. 

Equations (2) and (3) suggest the following iterative algorithms for computing 𝛽̂ and 

𝐻̂(𝑡, 𝛽̂): 

Step 0: Choose an initial value of 𝛽̂ denoted by 𝛽̂(0). 

Step 1: Let 𝑡1 < 𝑡2 < ⋯ < 𝑡𝐷 denote the order failure time. We obtain 𝐻̂(0)(𝑡1, 𝛽̂
(0)) 

by solving 

∑𝑌𝑖(𝑡1)Λ𝜀{𝛽
𝑇𝑍𝑖 + 𝐻(𝑡1)}

𝑛

𝑖=1

= 1, 

with 𝛽 = 𝛽̂(0). Then, obtain 𝐻̂(0)(𝑡𝑘), for 𝑘 = 2,… , 𝐷, one-by-one by solving the 

equation  

𝐻(𝑡𝑘) = 𝐻(𝑡𝑘 −) +
1

∑ 𝑌𝑖(𝑡𝑘)λ𝜀{𝛽𝑇𝑍𝑖 + 𝐻(𝑡𝑘 −)}
𝑛
𝑖=1

, 

with 𝛽 = 𝛽̂(0). 

Step 2: Obtain a new estimate of 𝛽 by solving (2) with 𝐻(𝑡𝑘) = 𝐻̂(0)(𝑡1, 𝛽̂
(0)). 

Step 3: Set 𝛽̂(0) to be the estimate obtained in Step 2 and repeat Step 1 and 2 until 

prescribed coverage criteria are met. 

Let 𝛽̂ and 𝐻̂(𝑡, 𝛽̂) be the estimators of 𝛽 and 𝐻(𝑡, 𝛽). Also let 
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𝜉1𝑘(𝑥𝑖, 𝛽̂, 𝐻̂) = 𝜉1𝑘(𝑥𝑖) = sup{𝑡: 𝑆̂1(𝑡|𝑧1𝑖 = 𝑘, 𝑥𝑖) ≥ 1 − 𝑝}, 𝑘 = 0, 1, 

where 𝑥𝑖 = (𝑧2𝑖, 𝑧3𝑖 , … , 𝑧𝑞𝑖), and 

𝑆̂1(𝑡|𝑍𝑖) = exp (−Λ̂1(𝑡|𝑍𝑖)) 

with Λ̂1(𝑡|𝑍𝑖) = Λ𝜀{𝛽̂
𝑇𝑍𝑖 + 𝐻̂(𝑡)}. Therefore, a natural estimator of Δ(𝑥𝑖) is then 

obtained as Δ̂1(𝑥𝑖) = 𝜉10(𝑥𝑖) − 𝜉11(𝑥𝑖). 

Since it is difficult to derive the asymptotic variance of the estimated median  

𝜉1𝑘(𝑥𝑖),  𝑘 = 0, 1 , we consider using the nonparametric bootstrap method. The 

validity of bootstrap method for estimating variance of the median was justified by 

Reid (1981). The bootstrap procedure is as follows 

Let 𝑈𝑖 = {(𝑇̃𝑖, 𝛿𝑖, 𝑍𝑖), 𝑖 = 1,… , 𝑛}  

1. Choose 𝑛 sample points, 𝑈𝑖
∗ by sampling with replacement from 𝑈𝑖. 

2. Calculate the 𝛽̂∗ and 𝐻̂∗(𝑡) using equations (2) and (3), and derive the estimated 

medians 𝜉1𝑘
∗ (𝑥𝑖), 𝑘 = 0, 1, and then obtain Δ̂1

∗(𝑥𝑖) = 𝜉10
∗ (𝑥𝑖) − 𝜉11

∗ (𝑥𝑖). 

3. Repeat step 1 and step 2 𝐵 times, we then have Δ̂1(1)
∗ (𝑥𝑖), … , Δ̂1(𝐵)

∗ (𝑥𝑖). Let 𝑑1(𝛼) 

be the 100(1 − 𝛼)% of the |Δ̂1(𝑥𝑖) − Δ(𝑥𝑖)|, and the corresponding estimate is 

𝑑̂1(𝛼), which is the 100(1 − 𝛼)% of {|Δ̂1(1)
∗ (𝑥𝑖) − ∆̂(𝑥𝑖)|,… , |Δ̂1(𝐵)

∗ (𝑥𝑖) − ∆̂(𝑥𝑖)|}. 

Therefore, the 100(1 − 𝛼)% confidence interval for ∆(𝑥𝑖) is given by 

𝐶𝐼1(𝑥𝑖): Δ̂1(𝑥𝑖) ± 𝑑̂1(𝛼).                      (4) 

2.3  The methods based on the MLE 

Next, we consider constructing confidence intervals using the MLE (Zeng and Lin, 

2006, Chen, 2009). Based on the model (1), the unspecified parts of the model include 

the vector of regression coefficients 𝛽, and the increasing function Λ, both are to be 

estimated based on the observed data. Denote by 𝑑Λ(𝑡∗) the jump size of Λ at some 

observed event time 𝑡∗, and {𝑑Λ} the set of the jump sizes of Λ at the observed 
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event time. Let 𝑔𝑖(𝑡;  𝛽, Λ) = 𝑔{𝜉𝑖(𝑡;  𝛽, Λ)} and 𝜓𝑖(𝑡;  𝛽, Λ) = 𝜓{𝜉𝑖(𝑡;  𝛽, Λ)}, with 

𝑔(𝑡) = 𝐺′(𝑡) ≡ 𝑑𝐺(𝑡) 𝑑𝑡⁄ , 𝜓(𝑡) = 𝑔′(𝑡)/𝑔(𝑡) = 𝐺"(𝑡) 𝐺′(𝑡) ⁄ , and 

𝜉𝑖(𝑡;  𝛽, Λ) = Λ(𝑡)exp(𝛽𝑇𝑍𝑖). 

The log-likelihood (Zeng and Lin, 2006, Chen, 2009) concerning the parameters 𝛽 

and Λ(⋅) is given by 

𝑙(𝛽, {𝑑Λ}) = ∑ [∫ {𝛽𝑇𝑍𝑖 + log𝑔𝑖(𝑡−;  𝛽, Λ) + log𝑑Λ(𝑡)}𝑑𝑁𝑖(𝑡) − 𝐺𝑖(𝛽, Λ)
𝜏

0
]𝑛

𝑖=1 , (5) 

where 

𝐺𝑖(𝛽, Λ) = 𝐺{𝜉𝑖(𝜏;  𝛽, Λ)} = Λ(𝑡)exp(𝛽𝑇𝑍𝑖)𝑔𝑖(𝑡−;  𝛽, Λ). 

To estimate {𝑑Λ}  for fixed 𝛽 , we differentiate the log-likelihood function in 

Equation (5) with respect to 𝑑Λ∗ ≡ 𝑑Λ(𝑡∗), and then arrive at the following score 

function for 𝑑Λ∗: 

𝑈𝑑Λ∗ ≡ ∑ {
𝑑𝑁𝑖(𝑡∗)

𝑑Λ(𝑡∗)
− 𝑤𝑖(𝑡∗;  𝛽, Λ)𝑌𝑖(𝑡∗)𝑒

𝛽𝑇𝑍𝑖𝑔𝑖(𝑡∗−;  𝛽, Λ)}
𝑛
𝑖=1 ,      (6) 

where  

𝑤𝑖(𝑡∗;  𝛽, Λ) = 1 −
𝜅𝑖(𝑡∗; 𝛽,Λ)

𝑔𝑖(𝑡∗−; 𝛽,Λ)
                    (7) 

𝜅𝑖(𝑡∗;  𝛽, Λ) = ∫ 𝜓𝑖(𝑢−;  𝛽, Λ)
𝜏

𝑡∗+

𝑑𝑀𝑖(𝑢), 

with 𝑑𝑀𝑖(𝑡) = 𝑑𝑁𝑖(𝑡) − 𝑌𝑖(𝑡)𝑒
𝛽𝑇𝑍𝑖𝑔𝑖(𝑡−;  𝛽, Λ)𝑑Λ(𝑡).  Hence, we obtain the 

weighted Breslow-type estimator for the jump size of Λ at 𝑡∗ from Equation (6), 

which satisfies  

𝑑Λ(𝑡∗) =
∑ 𝑑𝑁𝑖(𝑡∗)
𝑛
𝑖=1

∑ 𝑤𝑖(𝑡∗; 𝛽,Λ)𝑌𝑖(𝑡∗)
𝑛
𝑖=1 𝑒𝛽

𝑇𝑍𝑖𝑔𝑖(𝑡−; 𝛽,Λ)
.               (8) 

Note that, the weight 𝑤𝑖(𝑡∗;  𝛽, Λ)  in Equation (7) depends on the weighted 

martingale residual 𝜅𝑖(𝑡∗;  𝛽, Λ), and is determined by the function 𝜓 = 𝑔′/𝑔. For 

the proportional hazards model, 𝜓 ≡ 0 and hence 𝑤 ≡ 1, so that the Equation (8) 

reduces to the standard Breslow estimator (Breslow, 1974). 

The score functions for 𝛽 obtained by differentiating the log-likelihood function 
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in Equation (5) with respect to 𝛽 is of the form  

𝑈𝛽 =∑∫ 𝑍𝑖{𝑑𝑁𝑖(𝑡) − 𝑤𝑖(𝑡;  𝛽, Λ)𝑌𝑖(𝑡)𝑒
𝛽𝑇𝑍𝑖𝑔𝑖(𝑡−;  𝛽, Λ)𝑑Λ(𝑡)}

𝜏

0

𝑛

𝑖=1

. 

Replacing 𝑑Λ by the weighted Breslow-type estimator 𝑑Λ̂ and Λ by Λ̂ = ∫𝑑Λ̂(𝑡) 

in 𝑈𝛽, we obtain the profile likelihood score equation for 𝛽: 

0 = ∑ ∫ {𝑍𝑖 −
∑ 𝑤𝑗(𝑡; 𝛽,Λ̂)𝑌𝑗(𝑡)𝑍𝑗𝑒

𝛽𝑇𝑍𝑗𝑔𝑗(𝑡−; 𝛽,Λ̂)
𝑛
𝑗=1

∑ 𝑤𝑗(𝑡; 𝛽,Λ̂)𝑌𝑗(𝑡)𝑒
𝛽𝑇𝑍𝑗𝑔𝑗(𝑡−; 𝛽,Λ̂)

𝑛
𝑗=1

}
𝜏

0
𝑛
𝑖=1  𝑑𝑁𝑖(𝑡).       (9) 

Equation (9) suggests the following iterative algorithms for nonparametric 

maximum likelihood estimation in semiparametric transformation models. Starting 

with initial weights 𝑤𝑖
(0) ≡ 1 and the initial values for 𝛽 and {𝑑Λ}, e.g. 𝛽(0) = 0 

and 𝑑Λ(0) = 1 𝑛⁄ , for 𝑘 = 0, 1, … , 

Step 1: the estimating equations (9) and the weighted Breslow estimator (8) are 

solved to obtain (𝛽̂(𝑘+1), 𝑑Λ̂(𝑘+1)) with the weights fixed at 𝑤𝑖
(𝑘); 

Step 2: the updated weighted 𝑤𝑖
(𝑘+1) are obtained from (7) with the newly solved 

(𝛽̂(𝑘+1), Λ̂(𝑘+1)). 

Let 𝛽̂ and Λ̂ be the estimators of 𝛽 and Λ. Also let 

𝜉2𝑘(𝑥𝑖 , 𝛽̂, Λ̂) = 𝜉2𝑘(𝑥𝑖) = sup{𝑡: 𝑆̂2(𝑡|𝑧1𝑖 = 𝑘, 𝑥𝑖) ≥ 1 − 𝑝}, 𝑘 = 0, 1, 

where 𝑥𝑖 = (𝑧2𝑖, 𝑧3𝑖 , … , 𝑧𝑞𝑖), and 

𝑆̂2(𝑡|𝑍𝑖) = exp (−Λ̂2(𝑡|𝑍𝑖)).    

with Λ̂2(𝑡|𝑍𝑖) =  𝐺{Λ̂(𝑡)exp(𝛽̂𝑇𝑍𝑖)}. Therefore, a natural estimator of Δ(𝑥𝑖) is then 

obtained as Δ̂2(𝑥𝑖) = 𝜉20(𝑥𝑖) − 𝜉21(𝑥𝑖). 

Since it is difficult to derive the asymptotic variance of the estimated median   

𝜉2𝑘(𝑥𝑖),  𝑘 = 0, 1 , we consider again the nonparametric bootstrap method. The 

description of procedure can be found in section 2.2. Let 𝑑2(𝛼) be the 100(1 − 𝛼)% 

of the |Δ̂2(𝑥𝑖) − ∆(𝑥𝑖)|, and the corresponding estimate is 𝑑̂2(𝛼), which is the 
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100 (1 − 𝛼)%  of {|Δ̂2(1)
∗ (𝑥𝑖) − ∆̂(𝑥𝑖)|, … , |Δ̂2(𝐵)

∗ (𝑥𝑖) − ∆̂(𝑥𝑖)|}.  Therefore, the 

100(1 − 𝛼)% confidence interval for ∆(𝑥𝑖) is given by 

𝐶𝐼2(𝑥𝑖): Δ̂2(𝑥𝑖) ± 𝑑̂2(𝛼).                      (10) 

2.4  Model Selection  

The class of semiparametric transformation models as shown in (1) requires 

specification of the transformation function 𝐺(𝑥).  Misspecifying any of these 

components can result in erroneous inference and inaccurate prediction. For 

right-censored data, Chen et al. (2012) introduced time-dependent martingale 

residuals for semiparametric transformation models and used the cumulative sums   

of the residuals for model assessment. The estimated martingale 𝑀𝑖(𝑡; 𝛽̂, Λ̂) is as 

follow: 

𝑀𝑖(𝑡; 𝛽̂, Λ̂) = 𝑁𝑖(𝑡) − 𝐺 {∫ 𝑌𝑖(s)exp(𝛽̂
𝑇𝑍𝑖)𝑑Λ̂( )

𝑡

0

}, 

and the cumulative sums of residuals over the argument of the transformation function 

is: 

 𝑡 ( , 𝑡) = 𝑛−1 2⁄ ∑ ∫ 𝐼(∫ 𝑌𝑖(s)exp(𝛽̂
𝑇𝑍𝑖)𝑑Λ̂( )

 

0
≤  )𝑑𝑀𝑖(𝑢; 𝛽̂, Λ̂)

𝑡

0
𝑛
𝑖=1 ,   (11) 

where   is a constant. 

Chen et al. (2012) showed that the residual process converges weakly to a 

zero-mean Gaussian process and suggested conducting goodness-of-fit test based on 

the p-value of a supremum test, which can be obtained by using Monte Carlo 

procedure. Here, in real data analysis, we select the best-fit model according to the 

criteria sup𝜔,𝑡| 𝑡 ( , 𝑡)| and sup𝜔| 𝑡 ( ,∞)|. 
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3. Simulation studies 

In this section, a simulation study was conducted to investigate the coverage 

probability and expected length of the proposed 100(1 − 𝛼)% intervals 𝐶𝐼1(𝑥) (4) 

and 𝐶𝐼2(𝑥)  (10), for the difference between two median survival times. We 

simulated the survival time using the logarithmic transformation with cumulative 

intensity 

Λ(𝑡|𝑧1, 𝑧2) = log[1 + 𝑟{Λ(𝑡)𝑒𝛽1𝑧1+𝛽2𝑧2}]/𝑟,  

where Λ(𝑡) = 𝑡 and 𝑟 = 0, 0.5, 1 or 2. Note that the proportional hazards and 

proportional odds models correspond to 𝑟 = 0 and 𝑟 = 1. Two covariates 𝑧1 and 𝑧2 

are generated from the Bernoulli distribution with success probability 0.5, and the 

uniform distribution over (0, 1), respectively. The censoring time is independent of the 

covariates and follows the uniform distribution over (𝑐1, 𝑐2). The values of 𝑐1 and 

𝑐2 are chosen such that the censoring proportion is equal to 20%. We consider the 

sample size 𝑛 = 100 and 200, the number of bootstrap repetitions 𝐵 = 200, and all 

simulations are based on 1000 replications.  

The values of parameters are set as (𝛽1, 𝛽2) = (0.5, 0.5), (0, 0.5), (0.5, -0.5) and 

(-0.5, 0.5). For each simulated dataset, we first obtain the estimators of 𝛽 and Λ. 

Given 𝑧2 = 0.5 and 𝑧2 = 0.8, we then calculate the 95% and 90% confidence 

intervals for the difference of two median survival times given the covariates. The 

estimated coverage probabilities are obtained by calculating the proportion of the 

1000 confidence intervals which cover the true difference of median survival times. 

Tables 1 and 2 show the results for 𝑛 = 100 and 200, respectively. We also obtain the 

expected length of the confidence intervals by calculating the average length of the 

1000 confidence intervals. The results are reports in Tables 3 and 4. 

    The results in Table 1 show that when the sample size are small, all the 
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confidence intervals 𝐶𝐼1(0.5), 𝐶𝐼1(0.8), 𝐶𝐼2(0.5) and 𝐶𝐼2(0.8), are slightly higher 

than their nominal levels. When the sample size increases, the results in Table 2 show 

that for the case of 𝑟 = 0, most of the confidence intervals hold their nominal level. 

Note that, the coverage probabilities of both 𝐶𝐼1 and 𝐶𝐼2 increase as 𝑟 increases. 

Table 3 and 4 indicate that the expected lengths of the interval 𝐶𝐼1(0.5) and 

𝐶𝐼1(0.8), are almost the same as that of 𝐶𝐼2(0.5) and 𝐶𝐼2(0.8), for 𝑟 = 0. When 𝑟 

is large, the expected lengths of the interval 𝐶𝐼2(0.5) and 𝐶𝐼2(0.8), are slightly 

shorter than that of 𝐶𝐼1(0.5) and 𝐶𝐼1(0.8). Moreover, the expected lengths of 𝐶𝐼1 

and 𝐶𝐼2 decrease when the sample size increases from 100 to 200. 

To sum up, when the sample sizes are small, most of the confidence intervals are 

unable to reach the specified nominal level. However, when sample size increases to 

𝑛 = 200, the confidence intervals 𝐶𝐼2 reach the specified level for the case of 𝑟 = 0.  

In terms of coverages, the confidence intervals 𝐶𝐼2  perform better than 

confidence intervals 𝐶𝐼1 and have a shorter expected lengths compared to 𝐶𝐼1. 
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Table 1. The estimated coverage probability of 100(1 − α)% confidence interval for 

the difference between two median survival times for 𝑛 = 100. 

Model 𝛽1 𝛽2 1 − 𝛼 

𝑛 = 100 

𝐶𝐼1(𝑥) 𝐶𝐼2(𝑥) 

𝑥 = 0.5 𝑥 = 0.8 𝑥 = 0.5 𝑥 = 0.8 

𝑟 = 0 

 

0.5 

 

0.5 

 

0.95 0.966 0.969 0.966 0.971 

0.90 0.910 0.928 0.920 0.934 

 

 

0 0.5 0.95 0.971 0.984 0.979 0.981 

  0.90 0.940 0.947 0.939 0.937 

 

 

0.5 

 

-0.5 

 

0.95 0.968 0.973 0.958 0.969 

0.90 0.924 0.930 0.919 0.931 

 

 

-0.5 

 

0.5 

 

0.95 0.967 0.963 0.970 0.964 

0.90 0.914 0.918 0.915 0.923 

𝑟 = 0.5 

 

0.5 

 

0.5 

 

0.95 0.973 0.978 0.977 0.973 

0.90 0.937 0.932 0.943 0.936 

 

 

0 

 

0.5 

 

0.95 0.977 0.979 0.974 0.980 

0.90 0.936 0.937 0.940 0.928 

 

 

0.5 

 

-0.5 

 

0.95 0.965 0.978 0.971 0.969 

0.90 0.916 0.930 0.920 0.927 

 

 

-0.5 

 

0.5 

 

0.95 0.971 0.970 0.971 0.971 

0.90 0.919 0.939 0.926 0.930 

𝑟 = 1 

 

0.5 

 

0.5 

 

0.95 0.975 0.983 0.976 0.980 

0.90 0.931 0.951 0.941 0.947 

 

 

0 

 

0.5 

 

0.95 0.987 0.985 0.983 0.988 

0.90 0.938 0.952 0.940 0.954 

 

 

0.5 

 

-0.5 

 

0.95 0.977 0.982 0.977 0.982 

0.90 0.934 0.938 0.929 0.932 

 

 

-0.5 

 

0.5 

 

0.95 0.979 0.983 0.979 0.982 

0.90 0.940 0.940 0.945 0.948 

𝑟 = 2 

 

0.5 

 

0.5 

 

0.95 0.984 0.989 0.979 0.985 

0.90 0.949 0.948 0.947 0.949 

 

 

0 

 

0.5 

 

0.95 0.986 0.993 0.987 0.991 

0.90 0.957 0.959 0.954 0.961 

 

 

0.5 

 

-0.5 

 

0.95 0.983 0.983 0.982 0.984 

0.90 0.945 0.950 0.952 0.957 

 

 

-0.5 

 

0.5 

 

0.95 0.983 0.982 0.983 0.987 

0.90 0.944 0.955 0.946 0.953 
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Table 2. The estimated coverage probability of 100(1 − α)% confidence interval for 

the difference between two median survival times for 𝑛 = 200. 

Model 𝛽1 𝛽2 1 − 𝛼 

𝑛 = 200 

𝐶𝐼1(𝑥) 𝐶𝐼2(𝑥) 

𝑥 = 0.5 𝑥 = 0.8 𝑥 = 0.5 𝑥 = 0.8 

𝑟 = 0 

 

0.5 

 

0.5 

 

0.95 0.960 0.952 0.959 0.956 

0.90 0.916 0.917 0.905 0.904 

 

 

0 

 

0.5 

 

0.95 0.958 0.967 0.955 0.965 

0.90 0.909 0.918 0.909 0.924 

 

 

0.5 

 

-0.5 

 

0.95 0.949 0.948 0.950 0.946 

0.90 0.894 0.898 0.896 0.902 

 

 

-0.5 

 

0.5 

 

0.95 0.953 0.958 0.956 0.955 

0.90 0.891 0.903 0.895 0.899 

𝑟 = 0.5 

 

0.5 

 

0.5 

 

0.95 0.962 0.964 0.961 0.961 

0.90 0.913 0.925 0.910 0.914 

 

 

0 

 

0.5 

 

0.95 0.956 0.970 0.953 0.969 

0.90 0.905 0.918 0.919 0.924 

 

 

0.5 

 

-0.5 

 

0.95 0.958 0.963 0.957 0.963 

0.90 0.913 0.909 0.908 0.916 

 

 

-0.5 

 

0.5 

 

0.95 0.954 0.963 0.960 0.965 

0.90 0.905 0.911 0.908 0.913 

𝑟 = 1 

 

0.5 

 

0.5 

 

0.95 0.967 0.972 0.960 0.972 

0.90 0.914 0.922 0.919 0.921 

 

 

0 

 

0.5 

 

0.95 0.969 0.981 0.968 0.977 

0.90 0.928 0.941 0.931 0.938 

 

 

0.5 

 

-0.5 

 

0.95 0.959 0.960 0.962 0.961 

0.90 0.911 0.922 0.915 0.912 

 

 

-0.5 

 

0.5 

 

0.95 0.958 0.968 0.955 0.957 

0.90 0.902 0.922 0.920 0.920 

𝑟 = 2 

 

0.5 

 

0.5 

 

0.95 0.975 0.984 0.971 0.961 

0.90 0.932 0.935 0.925 0.929 

 

 

0 

 

0.5 

 

0.95 0.979 0.984 0.984 0.986 

0.90 0.932 0.946 0.945 0.957 

 

 

0.5 

 

-0.5 

 

0.95 0.964 0.966 0.973 0.975 

0.90 0.919 0.922 0.926 0.932 

 

 

-0.5 

 

0.5 

 

0.95 0.971 0.974 0.971 0.974 

0.90 0.937 0.929 0.937 0.944 
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Table 3. The estimated average length of 100(1 − α)% confidence interval for the 

difference between two median survival times for 𝑛 = 100. 

Model 𝛽1 𝛽2 1 − 𝛼 

𝑛 = 100 

𝐶𝐼1(𝑥) 𝐶𝐼2(𝑥) 

𝑥 = 0.5 𝑥 = 0.8 𝑥 = 0.5 𝑥 = 0.8 

𝑟 = 0 

 

0.5 

 

0.5 

 

0.95 0.526 0.479 0.527 0.483 

0.90 0.427 0.386 0.430 0.388 

 

 

0 

 

0.5 

 

0.95 0.633 0.562 0.633 0.563 

0.90 0.511 0.452 0.514 0.452 

 

 

0.5 

 

-0.5 

 

0.95 0.904 1.133 0.901 1.136 

0.90 0.732 0.906 0.732 0.908 

 

 

-0.5 

 

0.5 

 

0.95 0.901 0.818 0.902 0.819 

0.90 0.733 0.665 0.736 0.667 

𝑟 = 0.5 

 

0.5 

 

0.5 

 

0.95 0.841 0.776 0.827 0.777 

0.90 0.673 0.616 0.671 0.613 

 

 

0 

 

0.5 

 

0.95 0.999 0.909 0.982 0.901 

0.90 0.805 0.724 0.799 0.718 

 

 

0.5 

 

-0.5 

 

0.95 1.383 1.768 1.366 1.754 

0.90 1.107 1.395 1.092 1.388 

 

 

-0.5 

 

0.5 

 

0.95 1.364 1.265 1.343 1.242 

0.90 1.101 1.005 1.082 0.989 

𝑟 = 1 

 

0.5 

 

0.5 

 

0.95 1.290 1.228 1.231 1.171 

0.90 1.024 0.956 0.981 0.900 

 

 

0 

 

0.5 

 

0.95 1.576 1.473 1.507 1.384 

0.90 1.258 1.143 1.203 1.082 

 

 

0.5 

 

-0.5 

 

0.95 2.193 2.889 2.126 2.801 

0.90 1.728 2.232 1.674 2.144 

 

 

-0.5 

 

0.5 

 

0.95 2.195 2.107 2.140 2.036 

0.90 1.734 1.636 1.691 1.574 

𝑟 = 2 

 

0.5 

 

0.5 

 

0.95 3.178 3.252 2.893 2.852 

0.90 2.430 2.402 2.202 2.088 

 

 

0 

 

0.5 

 

0.95 3.819 3.876 3.434 3.344 

0.90 2.952 2.890 2.639 2.514 

 

 

0.5 

 

-0.5 

 

0.95 5.416 7.342 5.063 6.687 

0.90 4.139 5.483 3.850 5.046 

 

 

-0.5 

 

0.5 

 

0.95 5.298 5.413 4.914 4.874 

0.90 4.041 4.059 3.701 3.604 
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Table 4. The estimated average length of 100(1 − α)% confidence interval for the 

difference between two median survival times for 𝑛 = 200. 

Model 𝛽1 𝛽2 1 − 𝛼 

𝑛 = 200 

𝐶𝐼1(𝑥) 𝐶𝐼2(𝑥) 

𝑥 = 0.5 𝑥 = 0.8 𝑥 = 0.5 𝑥 = 0.8 

𝑟 = 0 

 

0.5 

 

0.5 

 

0.95 0.352 0.317 0.352 0.314 

0.90 0.292 0.261 0.292 0.260 

 

 

0 

 

0.5 

 

0.95 0.410 0.362 0.411 0.364 

0.90 0.337 0.295 0.338 0.297 

 

 

0.5 

 

-0.5 

 

0.95 0.601 0.732 0.598 0.733 

0.90 0.496 0.605 0.494 0.602 

 

 

-0.5 

 

0.5 

 

0.95 0.589 0.528 0.589 0.529 

0.90 0.488 0.436 0.488 0.435 

𝑟 = 0.5 

 

0.5 

 

0.5 

 

0.95 0.541 0.489 0.535 0.490 

0.90 0.445 0.399 0.440 0.400 

 

 

0 

 

0.5 

 

0.95 0.641 0.567 0.622 0.549 

0.90 0.526 0.464 0.510 0.449 

 

 

0.5 

 

-0.5 

 

0.95 0.891 1.089 0.878 1.089 

0.90 0.732 0.891 0.723 0.885 

 

 

-0.5 

 

0.5 

 

0.95 0.875 0.796 0.865 0.782 

0.90 0.725 0.653 0.716 0.641 

𝑟 = 1 

 

0.5 

 

0.5 

 

0.95 0.810 0.755 0.785 0.725 

0.90 0.663 0.609 0.641 0.583 

 

 

0 

 

0.5 

 

0.95 0.976 0.890 0.916 0.833 

0.90 0.798 0.718 0.749 0.671 

 

 

0.5 

 

-0.5 

 

0.95 1.353 1.728 1.293 1.641 

0.90 1.104 1.377 1.052 1.314 

 

 

-0.5 

 

0.5 

 

0.95 1.349 1.243 1.278 1.162 

0.90 1.101 1.004 1.047 0.942 

𝑟 = 2 

 

0.5 

 

0.5 

 

0.95 1.819 1.727 1.571 1.466 

0.90 1.464 1.357 1.259 1.159 

 

 

0 

 

0.5 

 

0.95 2.185 2.078 1.870 1.738 

0.90 1.757 1.639 1.506 1.371 

 

 

0.5 

 

-0.5 

 

0.95 3.017 4.036 2.732 3.618 

0.90 2.423 3.137 2.188 2.817 

 

 

-0.5 

 

0.5 

 

0.95 3.018 2.916 2.727 2.578 

0.90 2.409 2.282 2.172 2.025 
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4. Data analysis  

In a two-arm lung cancer study, as described in Ying et al. (1995), the standard 

therapy is to use a combination of etoposide (E) and cisplatin (P); however, the 

optimal sequencing and administration schedule have not been established. Thus,   

121 patients with small cell lung cancer were randomly assigned to two treatment 

groups, Arm A: P followed by E and Arm B: E followed by P. In addition to the 

survival time, patient’s entry age was recorded. Note that there are only 8 patients 

aged below 50. To avoid a possible misleading interpretation of the effect of age, we 

illustrate the proposed methods by analyzing the data set involving 113 patients aged 

50 or more. Among the 58 patients in Arm A, 15 had their survival times censored, 

while among the 55 patients in Arm B, there were 7 censored survival times. In this 

section, we explore the difference in median survival time between the two arms as a 

function of the entry age when survival times are subject to random right-censorship.  

 

Figure 1. The Kaplan–Meier estimates for patients with small cell lung cancer. 
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The associated Kaplan–Meier (1958) estimates of the survival functions for patients in 

different arms are given in Figure 1. Patients in Arm A have higher survival rate than 

that in Arm B in general. 

As noted in Ying et al. (1995) and Chen et al. (2015) that the Cox proportional 

hazards model is not appropriate for the data set when both treatment indicator and 

entry age are involved. Also, for each treatment group, the proportional hazards 

assumption is violated, as shown in Figure 2, the plot of log (−log𝑆̂(𝑡)) vs. 𝑡. 

Therefore, we consider fitting the semiparametric transformation model into the two 

groups with entry age as the covariate. 

 

Figure 2. The plot of log (−log𝑆̂(𝑡)) against time for the patients. 

From Figures 3 and 4, under the semiparametric transformation model with  

𝑟 = 0, the proposed 95% (90%) confidence interval identifies the treatment difference 

among persons aged 50, 51, 53 and 57 (50 to 61, 63 to 66, 72 and 77 to 79) years, 

which details the information about the age-dependent difference between treatment 

and control. The median of survival times in Arm A are larger than that in Arm B. 

Under the semiparametric transformation model with 𝑟 = 0.5, the proposed 95% 
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(90%) confidence interval identifies the difference among persons aged from 50, 52 to 

55, 57 to 61 and 66 (50 to 68, 70, 75 and 79) years. 

Under the semiparametric transformation model with 𝑟 = 1, the proposed 95% 

(90%) confidence interval identifies the difference among persons aged from 50 to 61, 

63, 67, 68, 70 and 79 (50 to 71, 73, 74, 77 to 79) years, and the difference among 

persons aged from 50, 52 to 62, 69, 73 and 79 (50 to 79) years under the model with 

𝑟 = 2.  

 

Figure 3. The confidence intervals for the difference in median survival time between 

Arms A and B under the semiparametric transformation model with 𝑟 = 0 (left) and   

𝑟 = 0.5 (right) for patients with small cell lung cancer. 

   

Figure 4. The confidence intervals for the difference in median survival time between 

Arms A and B under the semiparametric transformation model with 𝑟 = 1 (left) and 

𝑟 = 2 (right) for patients with small cell lung cancer.  
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To select appropriate models, we consider the logarithmic transformations model 

with 𝑟 = 0, 0.5, 1, 2. Using Equation (11), we obtain the best fit model based on 

sup𝜔,𝑡| 𝑡 ( , 𝑡)| and sup𝜔| 𝑡 ( ,∞)|. 

Table 5. The cumulative sum of residuals  𝑡 ( , 𝑡)  and  𝑡 ( ,∞)  under the 

logarithmic transformation model with 𝑟 = 0, 0.5, 1, 2. 

 sup𝜔,𝑡| 𝑡 ( , 𝑡)| sup𝜔| 𝑡 ( ,∞)| 

𝑟 = 0 0.682 0.417 

𝑟 = 0.5 0.628 0.419 

𝑟 = 1 0.581 0.410 

𝑟 = 2 0.581 0.508 

Table 5 indicates that a semiparametric transformation model with 𝑟 = 1, that is 

the proportional odds model, fits the best among the four models considered. Fitting 

the data to the proportional odds model, we obtain the estimates 𝛽̂1 = 1.016 for 

treatment group and 𝛽̂2 = 0.026 for the effect of entry age, respectively, and the 

estimate of the difference in median survival time between the two arms given 

patients aged 60 is 262 days, which implies that patients in Arm A have higher 

survival rate than that in Arm B. 
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5. Discussions and conclusions 

In this article, based on the EE estimator (Chen et al., 2002) and the MLE (Zeng and 

Lin, 2006, Chen, 2009), we have constructed the conditional confidence intervals for 

the difference of two median survival times given the covariates under semiparametric 

transformation model. Simulation results indicate that, in terms of coverage 

probabilities and interval lengths, the method based on the MLE performs better than 

that based on the EE estimator. When the sample sizes are small, most of the 

confidence intervals overestimate the nominal levels. As sample size increases, the 

coverage improves and some of the confidence intervals based on the MLE reach 

nominal level. The expected lengths of the intervals based on the MLE are slightly 

shorter than that based on the EE estimator. 

In data analysis, according to Equations (11), we select the best-fit model: the 

semiparametric transformation model with 𝑟 = 1. The 95% (90%) confidence 

intervals suggest that given at age 50 to 61, 63, 67, 68, 70 and 79 (50 to 71, 73, 74, 77 

to 79) years old, the median of survival times in Arm A are larger than that in Arm B.  

The proposed method can be generalized to construct intervals for the difference 

of two percentiles of survival times. In some situations, the survival time         

can be subject to interval censoring/truncation and covariates can be subject to 

mismeasurement errors. Further research is required to extent the propose method   

to these complex situations. 
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