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Abstract

In medical studies, we usually are interested in comparing the treatment effects
of the drug according to the difference of two median survival times. In this paper,
based on the estimating equation estimator (Chen et al., 2002) and the maximum
likelihood estimator (Zeng and Lin, 2006, Chen, 2009), we propose two methods for
constructing conditional confidence interval for the difference of two median survival
times given the covariates under the semiparametric transformation models. The
effectiveness of the associated coverage probability and the average length of the
interval are investigated via a simulation study. An application of the proposed

method is illustrated with a real data set.

Key words: Confidence interval, Median survival time; Estimating equation;

Maximum likelihood; Weighted Breslow; Semiparametric transformation mode



Contents

N 011 1 = 0! SRRSO I
R 14 oo (1 Tox £ o] o 1TSS 1
2. The proposed confidence intervals...........cccccoveviiiiinii e, 4
2.1  Semiparametric transformation model ...........c.cccoeeveiiiiinnnnnn, 4
2.2 The method based on the estimator of Chen et al. (2002)......... 5
2.3 The methods based on the MLE ...........cccoiviiiiiiiiinicceee, 7
2.4 Model SElECtION ........eoviiiiiiee e 10
3. SIMUIAtION STUAIES .....eevieciieie e 11
4., Data analySiS.......cooueiiriiiiieeiee e 17
5. Discussions and CONCIUSIONS.........cccovveiieiieiieeie e 21

R O EINCES ...ttt e e e e e e e et e e e e e e e e e re s 22



1. Introduction

In medical studies, Cox proportional hazards model (Cox, 1972) is the most
commonly used method to analyze the survivor function of patients when the
right-censored survival data are accompanied with covariates which are associated
with patients’ physiological conditions. Although the estimated survival function can
be used to identify covariates that affect survival times when expressing the results of
clinical trials, it would be better to consider the hazard ratio together with a measure
of time, such as median (or quantile) survival time, which provides the additional
information regarding the point at which half the subjects have experienced the event.
Thus, when one is assessing the treatment effects of a drug, how to construct the
confidence intervals for the median survival time is essential. Under the Cox
proportional hazards model (Cox, 1972), many methods have been proposed to
construct confidence intervals of median/mean survival time. Dabrowska and Doksum
(1989) considered a confidence-interval estimation of a conditional median survival
time given a value of covariate vector. Burr and Doss (1993) constructed confidence
bands for the median survival time as a function of the covariates. For comparing two
survival functions, Zucker (1998) proposed the statistical tests for comparing two
treatments based on the difference between two restricted means with covariates
adjusted based on the stratified Cox model, under which the ratio of hazards or
cumulative hazards for subjects with the same covariates in two treatment groups
would be independent of the covariates. Kim (2001) suggested two confidence
intervals for the difference of median survival times, one is constructed only for the
patients with baseline covariates and the other is developed with covariates adjusted.
Chen and Chang (2007) extended the work in Su and Wei (1993) and suggested

covariates-dependent confidence intervals for the difference or ratio of two median



lifetimes under both stratified and treatment-specific Cox models. Chen et al. (2015)
further developed confidence bands for the difference between two median
survival times as a function of the associated covariates under the stratified and
treatment-specific Cox models, respectively.

The proportionality assumption of the Cox model can be violated in practice. The
class of semiparametric transformation model, which includes Cox and proportional
odds model (Bennett, 1983) as special cases and allows various nonproportional
hazard structures, have received tremendous recent attention (e.g. Cheng et al., 1995,
1997; Murphy et al., 1997; Scharfstein et al., 1998; Cai et al., 2002; Chen et al., 2002;
Tsodikov, 2003; Kosorok et al., 2004; Lu and Ying, 2004; Lu and Tsiatis, 2006; Zeng
and Lin, 2006, 2007). Cheng et al. (1995) proposed and justified a general estimation
method for linear transformation models with right-censored data. The method was
further developed in Cheng et al. (1997), Fine et al. (1998) and Cai et al. (2000). A
key step in their approach is the estimation of the survival function for the censoring
variable by the Kaplan—Meier estimator, which relies on the assumption that the
censoring variable is independent of the covariates. In practice, however, the
independent assumption is often too restrictive, even for randomized clinical trials.
Unlike Cox’s partial likelihood approach, this estimation method fails when the
independence assumption is violated. Chen et al.’s (2002) estimator is valid under the
assumption that failure time is conditionally independent of censoring time given
covariates and it is the same as the Cox partial likelihood estimator in the case of
proportional hazards model. Chen et al.’s (2002) estimator is obtained through the
estimating equations (EE) and its asymptotic variance has a closed-form expression
even though it is not efficient. Using the nonparametric maximum likelihood methods,

Zeng and Lin (2006) proposed an efficient estimation of a broad class of



transformation models which can accommodate time-varying covariates and recurrent
events. Chen (2009) further showed that intruding weights into the Breslow type
estimator can lead to nonparametric maximum likelihood estimation (MLE) of Zeng
and Lin (2006) and the weighted Breslow-type estimator suggests an iterative
reweighting algorithm for nonparametric maximum likelihood estimation. Chen et al.
(2012) introduced time-dependent residuals for semiparametric transformation models
and used the cumulative sums of the residuals to construct graphical and numerical
procedures for model checking.

In this paper, we consider the problem of constructing the conditional confidence
interval given the associated covariates for the difference of two median survival
times under the semiparametric transformation models. Based on the conditional
confidence intervals, we can identify the possible range of covariates over which the
two groups would provide different median survival times.

In Section 2, based on the EE estimator (Chen et al., 2002) and the MLE (Zeng
and Lin, 2006, Chen, 2009), we consider construction of the conditional confidence
interval for the difference of two median survival times given the covariates under the
semiparametric transformation model. In Section 3, a simulation study is conducted to
investigate the coverage probability and the expected length of the conditional
intervals. In Section 4, the proposed method is illustrated using a data set in a two-arm
lung cancer study (Ying et al., 1995). Conclusions and discussions on the application

of the confidence intervals are finally given in Section 5.



2. The proposed confidence intervals

2.1 Semiparametric transformation model

Let {(T;,C;), i =1,..,n} be failure time and censoring time of the n patients.
Denote the associated g x 1 covariates vector Z; = [z, Zy, ..., 24;]". Without loss
of generality, let z;; = 0,1, denote two treatment groups. Assume that failure time
and censoring time are conditionally independent given the covariate Z;. The
observed right-censored lifetime data are (Ti, Si,Zi), where T; = min(T;, C;), and
§;=I1(T;<C), i=1,..,n

Semiparametric transformation models specify the corresponding cumulative
intensity of T;, given the covariate Z;, as

A(t|Z) = G{A(texp(B7Z))}, (1)
where A(+) is an unspecified increasing function, f is a g x 1 vector of regression
parameters and G is a specified transformation function that is continuously
differentiable and strictly increasing with G(0) =0, G'(0) >0 and G(x) = .
The Box-Cox transformation model is the most commonly used model:
Gx)={1+x)’—-1}/p (p=0)
with p =0 corresponding to G(x) = log(1 + x). The other model is the class of
logarithmic transformations:
G(x) =log(1+rx)/r (r=0)

with r =0 corresponding to G(x) = x. The choice of p =1 or r =0 vyields the
proportional hazards model; while the choice of p=0 or r=1 yields the
proportional odds model.

Under model (1), the conditional survival function can be written as

S(t1Zy) = exp(—A(t]Z)).

Let S(t|zy; = k,x;), k = 0,1, denote the survival function of the treatment group k,
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given covariate x; = (zzl-,z3l-, ...,qu-). The 100pth percentile of the treatment k is
given by

& (x;) = sup{t: S(tlzy; = k,x;)) =1—-p}, k=0,1.
When p = 05, &¥.(x;) is the median survival time for treatment k. For
conveniences, we use &, (x;) to represent the median survival time for treatment k
in the whole article. Therefore, given the covariate x;, the 100(1 — a)% conditional

confidence intervals for A(x;) = &,(x;) — &;(x;) can be constructed.

2.2 The method based on the estimator of Chen et al. (2002)

First, we consider constructing confidence intervals based on EE estimator of Chen et
al.’s (2002). Note that model (1) is equivalent to
Ht)=-B"Z;+¢, i=1,..,n,

where H(t) = logA(t), & =logG 1(—logU) is independent of Z;, U has a
uniform distribution on (0, 1). Let Y;(t) = I(T; = t) denote the at-risk process and
N;(t) = I(T; < t,6; = 1) be the observed counting process. For a random sample of
n subjects, the data consist of {N;(t),Y:(t),Z;:i=1,..,n,0<t<t}, where t
denotes the end point of the study. Let A.(-) and A.(-) be the known hazard and
cumulative hazard function of &, respectively. Following the usual counting process

notation, let

t

M() = Ny() — f V) dAABZ: + HQw)},
0

where A.(t) = G(e'). The B and H are evaluated at their true values when the
assumed model holds. Under model (1), M;(t) is a martingale process. The EE

proposed by Chen et al. (2002) are
UBH) = 3, f, Z[dN;(t) — Y,()dA{BTZ; + H(DY] = 0, 2)

and



i=1[dN; () = Y;(O)dAABTZ; + HDN =0 (¢ 2 0), ©)
where H is a nondecreasing function satisfying H(0) = —o. This requirement
ensures that A{a+ H(0)} =0 for any finite a. Let f and H(t,) denote the
solutions of (2) and (3). Note that H(t,8) is a step functions in t that jumps only at
the observed failure times t..
For the special case of the Cox model, A.(t) = exp(t) and it then follows from
(2) and (3) that the estimate of £ satisfies the following equation:

zn:foo{z. _ 2= 450 eXp(p”zj)}dzv.(t) =0
Slo M Ty exp(p7z) )

which is precisely the Cox partial likelihood score equation for right-censored data.
Equations (2) and (3) suggest the following iterative algorithms for computing £ and
H(t, B):

Step 0: Choose an initial value of # denoted by S(.

Step 1: Let t; < t, < - < t,, denote the order failure time. We obtain H©(t;, )

by solving

D V(EDA{BTZ + H(E)Y = 1
i=1

with B = . Then, obtain H©(t,), for k = 2,..., D, one-by-one by solving the

equation

1
i YiCAABTZ + H(ty, )Y

H(t) = H(t, —) +
with g = g,
Step 2: Obtain a new estimate of £ by solving (2) with H(t,) = H® (t,, ).
Step 3: Set £ to be the estimate obtained in Step 2 and repeat Step 1 and 2 until
prescribed coverage criteria are met.

Let B and H(t, ) be the estimators of 8 and H(t, ). Also let
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Ene(xi B H) = &1 (x;) = supf{t: S, (tlzy; = k,x) 21 —p}, k=0,1,
where x; = (23, 234, ..., 24;), and
$1(t1Z;) = exp(=A4(t1Z)))
with A, (¢|Z) = A{BTZ; + H()}. Therefore, a natural estimator of A(x;) is then
obtained as A, (x;) = &0(x;) — &11(xy).

Since it is difficult to derive the asymptotic variance of the estimated median
&(x), k=0,1, we consider using the nonparametric bootstrap method. The
validity of bootstrap method for estimating variance of the median was justified by
Reid (1981). The bootstrap procedure is as follows
Let U; ={(T,,6,2;), i=1,..,n}

1. Choose n sample points, U;" by sampling with replacement from U;.
2. Calculate the 8* and H*(t) using equations (2) and (3), and derive the estimated
medians &, (x;), k = 0,1, and then obtain A% (x;) = &, (x;) — & (x)).
3. Repeat step 1 and step 2 B times, we then have A7.y)(xy), ..., A7z (x;). Let dy(a)
be the 100(1 — a)% of the |A,(x;) — A(xy)|, and the corresponding estimate is

d; (@), which is the 100(1 — a)% of {

Zj(l)(xl-) — E(.X'i)l, . Z;(B)(xl) - ﬁ(xl)l}
Therefore, the 100(1 — @)% confidence interval for A(x;) is given by

ClL(x): By (x) £ dy (@) (4)

2.3 The methods based on the MLE

Next, we consider constructing confidence intervals using the MLE (Zeng and Lin,
2006, Chen, 2009). Based on the model (1), the unspecified parts of the model include
the vector of regression coefficients £, and the increasing function A, both are to be
estimated based on the observed data. Denote by dA(t,) the jump size of A at some

observed event time t,, and {dA} the set of the jump sizes of A at the observed



event time. Let g;(¢; B,A) = g{&i(t; B, M)} and Y;(t; B, A) = P{Si(t; B, A)}, with
g(©) =G6'(t) =dG(0)/de, Y(©) =g'(©)/g9(t) =6"(©)/6' (1) , and

§i(t; B, A) = A()exp(B"Z)).
The log-likelihood (Zeng and Lin, 2006, Chen, 2009) concerning the parameters

and A(-) isgiven by
LB, {dA) = X[ [T{B"Z; + logg,(t—; B, A) +logdA()}AN;(t) — Gi(B,A)], (5)

where

Gl(ﬁ’A) = G{Ei(‘[; ﬁ,A)} = A(t)exp(ﬁTZi)gi(t_; ﬁ:A)
To estimate {dA} for fixed B, we differentiate the log-likelihood function in
Equation (5) with respect to dA, = dA(t.), and then arrive at the following score

function for dA,:

— dNi(t*) Ty,
Uan, = Zia { s — wilts BY(e)ef 4gi(e.— B0}, (6)
where
: —1_ BN
Wl(t*: ﬁ) A) - 1 gi(t*—;ﬁ,A) (7)

Ki(t*; :Bi A) = d}i(u_; B'A) dMl(u);

t.+
with  dM;(t) = dN,(t) — Y;(t)eP" %ig;(t—; B,A)dA(t). Hence, we obtain the
weighted Breslow-type estimator for the jump size of A at t, from Equation (6),

which satisfies

21'1— dN(t*)
dA(t,) = SR : 8
(t.) " wi(ts BAY(t)eP Zigi(t—; B,A) ®

Note that, the weight w;(t,; B,A) in Equation (7) depends on the weighted
martingale residual ;(t,; B,A), and is determined by the function ¥ = g'/g. For
the proportional hazards model, ¥» =0 and hence w =1, so that the Equation (8)
reduces to the standard Breslow estimator (Breslow, 1974).

The score functions for B obtained by differentiating the log-likelihood function

8



in Equation (5) with respect to g is of the form
n T
Ty.
Up = Zf Z{dN; () — wi(t; B, MY, (t)ef Zig;(t—; B, A)dA(L)}.
i=1 "0

Replacing dA by the weighted Breslow-type estimator dA and A by A = [ dA(t)

in Ug, we obtain the profile likelihood score equation for 3:

0 n T Zn —~ ,),T . _
—1 f() { jn1 W]( ; ‘ ) ](t) je ]g](t 5 ﬁ;lk)
l l j=1 Wj(t;ﬁ,“)) ](t)e ]gj(t_ ‘.ﬁ’q)

} dN;(t). 9)

Equation (9) suggests the following iterative algorithms for nonparametric
maximum likelihood estimation in semiparametric transformation models. Starting
with initial weights w;(® =1 and the initial values for # and {dA}, e.g. S =0
and dA©® =1/n,for k=0,1, ...,
Step 1: the estimating equations (9) and the weighted Breslow estimator (8) are
solved to obtain (%D, dAK+D) with the weights fixed at w;®;
Step 2: the updated weighted w;**V are obtained from (7) with the newly solved
(Bk+D, RUe+D),
Let § and A be the estimators of 8 and A. Also let

Eaie(x0, B, R) = &3 (x)) = sup{t: S, (tlzy; = k,x) =1 —p}, k=0,1,
where x; = (zyi, 234, -+-» Zqi), and
S,(t1Z) = exp(—A,(t|Zy)).

with A,(t|1Z) = G{A(t)exp(BTZ;)}. Therefore, a natural estimator of A(x;) is then
obtained as A, (x;) = &(x;) — &1 (xy).

Since it is difficult to derive the asymptotic variance of the estimated median
& (x)), k=0,1, we consider again the nonparametric bootstrap method. The

description of procedure can be found in section 2.2. Let d,(a) be the 100(1 — @)%

of the |A,(x;) — A(x;)|, and the corresponding estimate is d,(a), which is the



100 (1 — )% of {

Nyy(x) —A(x))|, ..., |BS gy (x;) — A(x;)|}. Therefore, the
100(1 — @)% confidence interval for A(x;) is given by

Cly(x;): Z2 (x;) £ az(“)- (10)

2.4 Model Selection

The class of semiparametric transformation models as shown in (1) requires
specification of the transformation function G(x). Misspecifying any of these
components can result in erroneous inference and inaccurate prediction. For
right-censored data, Chen et al. (2012) introduced time-dependent martingale
residuals for semiparametric transformation models and used the cumulative sums
of the residuals for model assessment. The estimated martingale Ml-(t; B, K) is as

follow:
A~ t ~ —
M(t; B,R) = Ny(t) — G { f Yl-(s)exp(ﬁTzi)dA(s)},
0
and the cumulative sums of residuals over the argument of the transformation function
is:
—_ -1/2yn (¢ u AT x AR

Rer(w,t) = n~V2 3, [C1( [, Yi(s)exp(BTZ;)dA(s) < w)dM;(w; B,R), (11)
where w is a constant.

Chen et al. (2012) showed that the residual process converges weakly to a
zero-mean Gaussian process and suggested conducting goodness-of-fit test based on
the p-value of a supremum test, which can be obtained by using Monte Carlo

procedure. Here, in real data analysis, we select the best-fit model according to the

criteria sup, ¢|Rer(w, t)| and sup,, Ry (w, 00)].
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3. Simulation studies

In this section, a simulation study was conducted to investigate the coverage
probability and expected length of the proposed 100(1 — a)% intervals CI,(x) (4)
and CI,(x) (10), for the difference between two median survival times. We
simulated the survival time using the logarithmic transformation with cumulative
intensity
A(t)zy, z,) = log[1 + r{A(D)ePrzrthez2}| /r,

where A(t) =t and r =0, 0.5, 1 or 2. Note that the proportional hazards and
proportional odds models correspond to » =0 and r = 1. Two covariates z; and z,
are generated from the Bernoulli distribution with success probability 0.5, and the
uniform distribution over (0, 1), respectively. The censoring time is independent of the
covariates and follows the uniform distribution over (c,,c,). The values of ¢; and
c, are chosen such that the censoring proportion is equal to 20%. We consider the
sample size n =100 and 200, the number of bootstrap repetitions B = 200, and all
simulations are based on 1000 replications.

The values of parameters are set as (f,,52) = (0.5, 0.5), (0, 0.5), (0.5, -0.5) and
(-0.5, 0.5). For each simulated dataset, we first obtain the estimators of g and A.
Given z, = 0.5 and z, = 0.8, we then calculate the 95% and 90% confidence
intervals for the difference of two median survival times given the covariates. The
estimated coverage probabilities are obtained by calculating the proportion of the
1000 confidence intervals which cover the true difference of median survival times.
Tables 1 and 2 show the results for n = 100 and 200, respectively. We also obtain the
expected length of the confidence intervals by calculating the average length of the
1000 confidence intervals. The results are reports in Tables 3 and 4.

The results in Table 1 show that when the sample size are small, all the

11



confidence intervals CI,(0.5), CI;(0.8), CI,(0.5) and CI,(0.8), are slightly higher
than their nominal levels. When the sample size increases, the results in Table 2 show
that for the case of r =0, most of the confidence intervals hold their nominal level.
Note that, the coverage probabilities of both CI; and CI, increase as r increases.

Table 3 and 4 indicate that the expected lengths of the interval CI;(0.5) and
CI1,(0.8), are almost the same as that of CI,(0.5) and CI,(0.8), for r =0. When r
is large, the expected lengths of the interval CI1,(0.5) and CI,(0.8), are slightly
shorter than that of CI,(0.5) and CI,(0.8). Moreover, the expected lengths of CI,
and CI, decrease when the sample size increases from 100 to 200.

To sum up, when the sample sizes are small, most of the confidence intervals are
unable to reach the specified nominal level. However, when sample size increases to
n = 200, the confidence intervals CI, reach the specified level for the case of r = 0.

In terms of coverages, the confidence intervals CI, perform better than

confidence intervals CI; and have a shorter expected lengths compared to CI,.
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Table 1. The estimated coverage probability of 100(1 — a)% confidence interval for
the difference between two median survival times for n = 100.

n =100

Model B B 1-«a Cl(x) Cl,(x)

x =0.5 x =0.8 x =0.5 x =0.8

r=0 0.5 0.5 0.95 0.966 0.969 0.966 0.971
0.90 0.910 0.928 0.920 0.934

0 0.5 0.95 0.971 0.984 0.979 0.981

0.90 0.940 0.947 0.939 0.937

0.5 -0.5 0.95 0.968 0.973 0.958 0.969

0.90 0.924 0.930 0.919 0.931

-0.5 0.5 0.95 0.967 0.963 0.970 0.964

0.90 0.914 0.918 0.915 0.923

r=0.5 0.5 0.5 0.95 0.973 0.978 0.977 0.973
0.90 0.937 0.932 0.943 0.936

0 0.5 0.95 0.977 0.979 0.974 0.980

0.90 0.936 0.937 0.940 0.928

0.5 -0.5 0.95 0.965 0.978 0.971 0.969

0.90 0.916 0.930 0.920 0.927

-0.5 0.5 0.95 0.971 0.970 0.971 0.971

0.90 0.919 0.939 0.926 0.930

r=1 0.5 0.5 0.95 0.975 0.983 0.976 0.980
0.90 0.931 0.951 0.941 0.947
0 0.5 0.95 0.987 0.985 0.983 0.988

0.90 0.938 0.952 0.940 0.954
0.5 -0.5 0.95 0.977 0.982 0.977 0.982
0.90 0.934 0.938 0.929 0.932
-0.5 0.5 0.95 0.979 0.983 0.979 0.982
0.90 0.940 0.940 0.945 0.948

r=2 0.5 0.5 0.95 0.984 0.989 0.979 0.985
0.90 0.949 0.948 0.947 0.949
0 0.5 0.95 0.986 0.993 0.987 0.991

0.90 0.957 0.959 0.954 0.961
0.5 -0.5 0.95 0.983 0.983 0.982 0.984
0.90 0.945 0.950 0.952 0.957
-0.5 0.5 0.95 0.983 0.982 0.983 0.987
0.90 0.944 0.955 0.946 0.953
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Table 2. The estimated coverage probability of 100(1 — a)% confidence interval for
the difference between two median survival times for n = 200.

n =200

Model b1 B, 1-a Cl;(x) Cl,(x)

x=0.5 x =0.8 x =0.5 x =0.8

r=0 0.5 0.5 0.95 0.960 0.952 0.959 0.956
0.90 0.916 0.917 0.905 0.904

0 0.5 0.95 0.958 0.967 0.955 0.965

0.90 0.909 0.918 0.909 0.924

0.5 -0.5 0.95 0.949 0.948 0.950 0.946

0.90 0.894 0.898 0.896 0.902

-0.5 0.5 0.95 0.953 0.958 0.956 0.955

0.90 0.891 0.903 0.895 0.899

r=0.5 0.5 0.5 0.95 0.962 0.964 0.961 0.961
0.90 0.913 0.925 0.910 0.914

0 0.5 0.95 0.956 0.970 0.953 0.969

0.90 0.905 0.918 0.919 0.924

0.5 -0.5 0.95 0.958 0.963 0.957 0.963

0.90 0.913 0.909 0.908 0.916

-0.5 0.5 0.95 0.954 0.963 0.960 0.965

0.90 0.905 0.911 0.908 0.913

r=1 0.5 0.5 0.95 0.967 0.972 0.960 0.972
0.90 0.914 0.922 0.919 0.921

0 0.5 0.95 0.969 0.981 0.968 0.977

0.90 0.928 0.941 0.931 0.938

0.5 -0.5 0.95 0.959 0.960 0.962 0.961

0.90 0.911 0.922 0.915 0.912

-0.5 0.5 0.95 0.958 0.968 0.955 0.957

0.90 0.902 0.922 0.920 0.920

r=2 0.5 0.5 0.95 0.975 0.984 0.971 0.961
0.90 0.932 0.935 0.925 0.929

0 0.5 0.95 0.979 0.984 0.984 0.986

0.90 0.932 0.946 0.945 0.957

0.5 -0.5 0.95 0.964 0.966 0.973 0.975

0.90 0.919 0.922 0.926 0.932

-0.5 0.5 0.95 0.971 0.974 0.971 0.974

0.90 0.937 0.929 0.937 0.944
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Table 3. The estimated average length of 100(1 — a)% confidence interval for the
difference between two median survival times for n = 100.

n =100

Model B B 1-«a Cl(x) Cl,(x)

x =0.5 x =0.8 x =0.5 x =0.8

r=0 0.5 0.5 0.95 0.526 0.479 0.527 0.483
0.90 0.427 0.386 0.430 0.388

0 0.5 0.95 0.633 0.562 0.633 0.563

0.90 0.511 0.452 0.514 0.452

0.5 -0.5 0.95 0.904 1.133 0.901 1.136

0.90 0.732 0.906 0.732 0.908

-0.5 0.5 0.95 0.901 0.818 0.902 0.819

0.90 0.733 0.665 0.736 0.667

r=0.5 0.5 0.5 0.95 0.841 0.776 0.827 0.777
0.90 0.673 0.616 0.671 0.613

0 0.5 0.95 0.999 0.909 0.982 0.901

0.90 0.805 0.724 0.799 0.718

0.5 -0.5 0.95 1.383 1.768 1.366 1.754

0.90 1.107 1.395 1.092 1.388

-0.5 0.5 0.95 1.364 1.265 1.343 1.242

0.90 1.101 1.005 1.082 0.989

r=1 0.5 0.5 0.95 1.290 1.228 1.231 1.171
0.90 1.024 0.956 0.981 0.900
0 0.5 0.95 1.576 1.473 1.507 1.384

0.90 1.258 1.143 1.203 1.082
0.5 -0.5 0.95 2.193 2.889 2.126 2.801
0.90 1.728 2.232 1.674 2.144
-0.5 0.5 0.95 2.195 2.107 2.140 2.036
0.90 1.734 1.636 1.691 1.574

r=2 0.5 0.5 0.95 3.178 3.252 2.893 2.852
0.90 2.430 2.402 2.202 2.088
0 0.5 0.95 3.819 3.876 3.434 3.344

0.90 2.952 2.890 2.639 2.514
0.5 -0.5 0.95 5.416 7.342 5.063 6.687
0.90 4.139 5.483 3.850 5.046
-0.5 0.5 0.95 5.298 5.413 4,914 4.874
0.90 4.041 4.059 3.701 3.604
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Table 4. The estimated average length of 100(1 — a)% confidence interval for the
difference between two median survival times for n = 200.

n =200

Model B B 1-«a Cl(x) Cl,(x)

x =0.5 x =0.8 x =0.5 x =0.8

r=0 0.5 0.5 0.95 0.352 0.317 0.352 0.314
0.90 0.292 0.261 0.292 0.260

0 0.5 0.95 0.410 0.362 0.411 0.364

0.90 0.337 0.295 0.338 0.297

0.5 -0.5 0.95 0.601 0.732 0.598 0.733

0.90 0.496 0.605 0.494 0.602

-0.5 0.5 0.95 0.589 0.528 0.589 0.529

0.90 0.488 0.436 0.488 0.435

r=0.5 0.5 0.5 0.95 0.541 0.489 0.535 0.490
0.90 0.445 0.399 0.440 0.400

0 0.5 0.95 0.641 0.567 0.622 0.549

0.90 0.526 0.464 0.510 0.449

0.5 -0.5 0.95 0.891 1.089 0.878 1.089

0.90 0.732 0.891 0.723 0.885

-0.5 0.5 0.95 0.875 0.796 0.865 0.782

0.90 0.725 0.653 0.716 0.641

r=1 0.5 0.5 0.95 0.810 0.755 0.785 0.725
0.90 0.663 0.609 0.641 0.583
0 0.5 0.95 0.976 0.890 0.916 0.833

0.90 0.798 0.718 0.749 0.671
0.5 -0.5 0.95 1.353 1.728 1.293 1.641
0.90 1.104 1.377 1.052 1.314
-0.5 0.5 0.95 1.349 1.243 1.278 1.162
0.90 1.101 1.004 1.047 0.942

r=2 0.5 0.5 0.95 1.819 1.727 1.571 1.466
0.90 1.464 1.357 1.259 1.159
0 0.5 0.95 2.185 2.078 1.870 1.738

0.90 1.757 1.639 1.506 1.371
0.5 -0.5 0.95 3.017 4.036 2.732 3.618
0.90 2.423 3.137 2.188 2.817
-0.5 0.5 0.95 3.018 2.916 2.727 2.578
0.90 2.409 2.282 2.172 2.025
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4. Data analysis

In a two-arm lung cancer study, as described in Ying et al. (1995), the standard
therapy is to use a combination of etoposide (E) and cisplatin (P); however, the
optimal sequencing and administration schedule have not been established. Thus,
121 patients with small cell lung cancer were randomly assigned to two treatment
groups, Arm A: P followed by E and Arm B: E followed by P. In addition to the
survival time, patient’s entry age was recorded. Note that there are only 8 patients
aged below 50. To avoid a possible misleading interpretation of the effect of age, we
illustrate the proposed methods by analyzing the data set involving 113 patients aged
50 or more. Among the 58 patients in Arm A, 15 had their survival times censored,
while among the 55 patients in Arm B, there were 7 censored survival times. In this
section, we explore the difference in median survival time between the two arms as a

function of the entry age when survival times are subject to random right-censorship.

— AmA
= AmB

Survival Function

0 500 1000 1500 2000

Time (days)

Figure 1. The Kaplan—Meier estimates for patients with small cell lung cancer.
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The associated Kaplan—Meier (1958) estimates of the survival functions for patients in
different arms are given in Figure 1. Patients in Arm A have higher survival rate than
that in Arm B in general.

As noted in Ying et al. (1995) and Chen et al. (2015) that the Cox proportional
hazards model is not appropriate for the data set when both treatment indicator and
entry age are involved. Also, for each treatment group, the proportional hazards
assumption is violated, as shown in Figure 2, the plot of log(—logS(t)) vs. t.
Therefore, we consider fitting the semiparametric transformation model into the two

groups with entry age as the covariate.

Log-log survival
2

I I I I I I
200 400 600 800 1000 1200

Time (days)

Figure 2. The plot of log(—logS(t)) against time for the patients.

From Figures 3 and 4, under the semiparametric transformation model with
r =0, the proposed 95% (90%) confidence interval identifies the treatment difference
among persons aged 50, 51, 53 and 57 (50 to 61, 63 to 66, 72 and 77 to 79) years,
which details the information about the age-dependent difference between treatment
and control. The median of survival times in Arm A are larger than that in Arm B.

Under the semiparametric transformation model with r = 0.5, the proposed 95%
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(90%) confidence interval identifies the difference among persons aged from 50, 52 to

55, 57 to 61 and 66 (50 to 68, 70, 75 and 79) years.

Under the semiparametric transformation model with r =1, the proposed 95%

(90%) confidence interval identifies the difference among persons aged from 50 to 61,

63, 67, 68, 70 and 79 (50 to 71, 73, 74, 77 to 79) years, and the difference among

persons aged from 50, 52 to 62, 69, 73 and 79 (50 to 79) years under the model with

r=2.
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Figure 3. The confidence intervals for the difference in median survival time between
Arms A and B under the semiparametric transformation model with » =0 (left) and
r = 0.5 (right) for patients with small cell lung cancer.
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Figure 4. The confidence intervals for the difference in median survival time between
Arms A and B under the semiparametric transformation model with r» =1 (left) and
r = 2 (right) for patients with small cell lung cancer.
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To select appropriate models, we consider the logarithmic transformations model
with » =0, 0.5, 1, 2. Using Equation (11), we obtain the best fit model based on

SUP | Rer (@, t)| and supy,|Rer(w, ).

Table 5. The cumulative sum of residuals R;.(w,t) and R (w,o0) under the
logarithmic transformation model with » =0, 0.5, 1, 2.

Supw,thtr(w' ] supy|Re(w, )]

r=0 0.682 0.417
r=05 0.628 0.419
r= 0.581 0.410
r=2 0.581 0.508

Table 5 indicates that a semiparametric transformation model with r = 1, that is
the proportional odds model, fits the best among the four models considered. Fitting
the data to the proportional odds model, we obtain the estimates f; = 1.016 for
treatment group and £, = 0.026 for the effect of entry age, respectively, and the
estimate of the difference in median survival time between the two arms given
patients aged 60 is 262 days, which implies that patients in Arm A have higher

survival rate than that in Arm B.
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5. Discussions and conclusions

In this article, based on the EE estimator (Chen et al., 2002) and the MLE (Zeng and
Lin, 2006, Chen, 2009), we have constructed the conditional confidence intervals for
the difference of two median survival times given the covariates under semiparametric
transformation model. Simulation results indicate that, in terms of coverage
probabilities and interval lengths, the method based on the MLE performs better than
that based on the EE estimator. When the sample sizes are small, most of the
confidence intervals overestimate the nominal levels. As sample size increases, the
coverage improves and some of the confidence intervals based on the MLE reach
nominal level. The expected lengths of the intervals based on the MLE are slightly
shorter than that based on the EE estimator.

In data analysis, according to Equations (11), we select the best-fit model: the
semiparametric transformation model with r = 1. The 95% (90%) confidence
intervals suggest that given at age 50 to 61, 63, 67, 68, 70 and 79 (50 to 71, 73, 74, 77
to 79) years old, the median of survival times in Arm A are larger than that in Arm B.

The proposed method can be generalized to construct intervals for the difference
of two percentiles of survival times. In some situations, the survival time
can be subject to interval censoring/truncation and covariates can be subject to
mismeasurement errors. Further research is required to extent the propose method

to these complex situations.
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