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Abstract

With the flourishing of Internet of Things (IoT) technology, ubiquitous power data can be linked
to the Internet and be analyzed for real-time monitoring requirement. Numerous power data
would be accumulated to even Terabyte level as the time goes. To approach a real-time power
monitoring platform on them, an efficient and novel implementation techniques has been
developed and formed to be the kernel material of this thesis. Based on the integration of
multiple software subsystems in a layered manner, the proposed data-accessing platform has
been established and is composed of Apache Hadoop (as storage subsystem), Apahe Spark (as
data ETL tool), Apache Hive (as big data warehouse), and Cloudera Impala (as big data real-
time search engine) from bottom to top. The generic power-data source is provided by the so-
called smart meters equipped inside factories located in an enterprise practically. The data
collection and storage are handled by the Hadoop subsystem and the data ingestion to Hive data
warehouse is conducted by the Spark unit. On the aspect of system verification, under single-
record query, these software modules: Apache Hive, Apache Spark, and Impala had been tested
in terms of query-response efficiency. And for the performance exploration on the statistical
query function and data ETL processing. The relevant experiments have been conducted on the
same three software modules as well. The kernel contributions of this research work can be
highlighted by two parts: (1) Multi-layer software modules are adopted to design and implement
the real-time power-monitoring platform embedded with some excellent characteristics of high
efficiency, high feasibility and low cost. (2) The rudimental experiments are conducted to verify
the query-response efficiency, and performance evaluations for the proposed real-time power-

monitoring platform, which reveals the high feasibility for the target research goals.

Keywords: Internet of Things, Big data warehouse, Smart meter, Data ETL, Real-time

processing.
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Hadoop distribution. It includes all the leading Hadoop ecosystem components to store,
process, discover, model, and serve unlimited data, and it's engineered to meet the highest
enterprise standards for stability and reliability.

® ETL (Extract-Transform-Load): ETL is a process in data warehousing responsible for
pulling data out of the source systems and placing it into a data warehouse.

® HDFS (Hadoop Distributed File System): HDFS is a distributed file system of Hadoop
which is designed to run on commodity hardware.

® HBase: HBase is distributed database on HDFS architecture, and is non-relational database.
It is modelled with reference of Google’s BigTable, programmed in Java, and fault-tolerant
for storing massive sparse data.

® HiveQL (Hive Query Language): HiveQL is a primary query language for Hive data
warehouse to process data.

® [P Cam (IP Camera): IP Cam is a type of digital video camera commonly employed for
surveillance, and which can send and receive data via a computer network and the Internet.

® JDBC (Java Database Connectivity): JDBC is an application programming interface (API)
for the programming language Java, which defines how a client may access a database.
MySQL: MySQL is an open-source relational database management system (RDBMS).
MEMS (Microelectromechanical Systems): MEMS is the technology of microscopic
devices, particularly those with moving parts.

® M2M (Machine to Machine): M2M refers to direct communication between devices using
any communications channel which including wired and wireless.

® NoSQL (Not only SQL): NoSQL database provides a mechanism for storage and retrieval
of data which is modeled in means other than the tabular relations used in relational
databases.

® ODBC (Open Database Connectivity): ODBC is a standard application programming

interface (API) for accessing database management systems (DBMS).
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RDBMS (Relational Database Management System): RDBMS is a database management
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RFID (Radio Frequency IDentification): RFID is a wireless communication technology
that uses electromagnetic fields to automatically identify and track tags attached to objects.
Solr: Solr is an open source enterprise search platform, written in Java. Its major features
include full-text search, faceted search, real-time indexing, dynamic clustering, database
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SQL (Structured Query Language): SQL is a domain-specific language used in
programming and designed for managing data held in a relational database management
system (RDBMS).
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wireless communication standards based on the IEEE 802.16 set of standards.
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Chapter 1

Introduction

With the widespread tides of Internet of Things and smart-electricity environment, the need to
explore more efficient management on the electrical equipment and energy consumption
attracts more attention. Basically, the records (or log files) of electrical loads are everyday data
and the growth patterns on such day-by-day data source would be accommodated so steadily
that the data volumes may be quite huge, even up to Terabytes levels. As the amount of data is
expanding rapidly, the effectiveness of the traditional data storage system appears to be hard to
handle them efficiently. In order to store raw data, long-term historical data, and processed data
to facilitate future analysis of electricity consumption behavior, we used the concept of big data
warehouse system to enhance system scalability, data integrity, and query speed. In terms of
data querying, we choose Impala as SQL (Sequence Query Language) engine for processing
the data that is sitting inside of Hive and then compare query efficiency among Apache HiveQL,
Apache Spark SQL, and Impala SQL in different parameter.

1.1 Motivation

By deploying a large amount of smart meters and environmental sensors on campus, it already
has accumulated a lot of historical log data. Those sensors deployed on campus which returns
log data in every two seconds, thus, the volume of processed data is growing quickly. It already
causes a burden to the traditional relational database and previous storage system. The
performance of original relational database gradually cannot meet the system requirement
because the data volume would be growing to hundreds of gigabytes as the time pass by. In
order to avoid the drawbacks of the traditional relational database, and to effectively process
the status monitoring data of the electrical equipment, this research proposed a multi-layer
software architecture for the real-time power-monitoring platform embedded with some

excellent characteristics of high efficiency, high feasibility, and low cost.

Hadoop is an open-source framework that allows to store and process big data in a
distributed environment across clusters of computers using simple programming models. It has

been built to scale up from single servers to thousands of machines, each offering local
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computation and storage.

Hadoop has been the mainstream framework of the cloud computing technology, which
HDFS and MapReduce is the two core technologies. Hadoop manages the data by breaking up
the files into blocks and distributes them to the nodes of the Hadoop cluster. In general, Hadoop
has better scalability, reliability, and usage efficiency of equipment than traditional data
processing. Hive is a data warehouse system tool built on the top of Hadoop that can be used to
handle structured and semi-structured data. After changing the overall storage architecture, the

data stored in HDFS can be managed more easily.

Apache Hive is a component of Hortonworks Data Platform (HDP). Hive provides a SQL-
like interface to data stored in HDP. In the previous tutorial, we used Pig, which is a scripting
language with a focus on data flows. Hive provides a database query interface to Apache
Hadoop. Moreover, Apache Hive is data warehouse infrastructure built on top of Apache
Hadoop for providing data summarization, ad-hoc query, and analysis of large datasets. It
provides a mechanism to project structure onto the data in Hadoop and to query that data using
a SQL-like language called HiveQL (HQL).

In order to extract the meaningful content, we have to process the raw data and aggregate
them, find out the correlation among them, and then store into data warehouse. In spite of Hive
provided a SQL-like data manipulation language called HiveQL to process data, yet it gets Hive
query converted to MapReduce program whenever it carries out query work. It will spend a lot
of time on querying, because it follows the process model of Hadoop needs to read/write from
the disk very frequently. The process interval will relatively spend more. On the contrary, in
this work we use Spark distributed computing framework to deal with real-time power data.
Spark is a general-purpose data processing engine, suitable for use in a wide range of
circumstances. Its in-memory data processing engine can minimize the read times while
accessing to the data on disk. Spark also provides high-level processing tools, such as SQL

queries, spark machine learning library and streaming processing, and so on.

In terms of SQL-on-Hadoop, HiveQL and Spark SQL have provided a great efficiency on

querying big data yet still far from Cloudera Impala. Cloudera Impala [1] is an massively



parallel processing SQL query engine for processing the data stored in HDFS, Hive, and HBase.
Impala can interoperate with data stored in Hive, and tracks metadata about schema objects
such as tables and columns. Impala does not work without the metastore database. Unlike Hive,
Impala does not translate the queries into MapReduce jobs but executes them natively. However,
Impala is memory intensive and does not run effectively for heavy data operations like joins
because it is not possible to push in everything into the memory. That is why choose Impala as

our specialized back-end query engine.

Above all, monitoring the whole status of the system includes hardware, software, and
clusters, is also an essential factor to enterprises. Cloudera Manager [2] provides a fast way to
deploy cluster, no matter what the scale or the deployment environment, complete with
intelligent default settings based on your system. Not only can it monitor all components across
all clusters (including Cloudera Manager itself), it can also easily monitor jobs and query
performance. Cloudera Manager has the industry's only customizable dashboard, with the
ability to create advanced charts for historical monitoring and custom triggers and thresholds

for the environment.

1.2 Contributions

The kernel contributions of this research work can be highlighted in two parts: (1) Multi-layer
software modules are adopted to design and implement the real-time power-monitoring
platform embedded with some excellent characteristics of high efficiency, high feasibility and
low cost. A big data warehouse and ETL process of cleansing, customization, reformatting,
integration, and insertion into our data warehouse. (2) The rudimental experiments are
conducted to verify the query-response efficiency, and performance evaluations for the
proposed real-time power-monitoring platform, which reveals the high feasibility for the target

research goals.

1.3 Thesis Organization

The remainder of this thesis is stated as follows. Chapter 2 describes background materials and

relevant research work, including Internet of Things, Cloud Computing, Big Data, Hadoop
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Ecosystem, and In-memory processing frameworks like Apache Spark and Cloudera Impala.
Chapter 3 demonstrates the proposed system architecture which includes rudimental functions
like extraction feature, data transformation, and load data processing function. The related
performance evaluation and experimental results with analysis are presented in Chapter 4.

Chapter 5 gives a discussion and summary to the proposed system and future works.



Chapter 2
Background and Related Works
2.1 IoT and Big Data

2.1.1 The Internet of Things (IoT)

Internet of Things (IoT) [3] is about every object, including the general items, animals and even
people are equipped with a UID (Unique Identifiers). The data and information of objects
hooked up on any computer networks, like wired-LAN or Wireless LAN, can be shared directly
through the Internet. It is no longer to rely on the interaction between people or people and
machines. The future will be the world of machine-to-machine (M2M), directly by the machine
to complete a variety of work on the machine. From a practical point of view, the concept on
IOT can be divided into three-tier architecture, from the bottom to the upper layer are

respectively sensing layer, network layer, and application layer as shown in Figure 2.1.

® Perception (Sensing) layer: Perception layer is composed of devices that can sense the

signal and monitor physical or environmental conditions of the field.

® Network layer: Network layer includes wireless or cable Internet and cloud technology to
provide reliable network transmission so that each object can connect to Internet by

specific connections and IP address.

® Application layer: Application layer is the kernel of IoT. It receives information from the
Middleware layer and provides global management of the application presenting that

information.



Application
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Figure 2.1: IoT 3-tiers

2.1.2 Cloud Computing

The term Cloud Computing comes from Google CEO Eric Schmidt who presented the idea for
the first time on August 9, 2006 at the SES San Jose. According to the definition from National
Institute of Standards and Technology (NIST) on Cloud Computing in May 2012: cloud
computing is a model that provides ubiquitous, convenience, on-demand, and share resource
that can be rapidly provisioned and released with minimal management effort or service
provider interaction. It is composed of five essential characteristics, three service models and

four deployment models as shown in Figure 2.2.

Five essential characteristics:
® On-demand self-service.

® Anytime, anywhere access by any network device.



® Resource pooling.
® (Quick redeployment.

® (Can be monitored and measured.

Three service models:

® Infrastructure as a Service (IaaS): [aaS is the way that users can use the computing
resources, such as processor, storage capacity, and network through renting to cloud
service providers but not buy hardware and build their own infrastructure.

® Platform as a Service (PaaS): PaaS is a cloud computing service to deliver hardware
and software tools for those customers are needed for application development.

® Software as a Service (SaaS): Consumers use software deployed or data stored in the
cloud but without managing cloud infrastructure and programming execution
environment. No longer do customers need to install software on their computer,

therefore reducing maintenance works and software support issues.

Four deployment models:

® Public Cloud: Public cloud services are available to users through the Internet and
third-party service providers. Public cloud providers typically have some access
control mechanisms for users.

® Private Cloud: Private cloud has the advantages of many public cloud environments,
such as flexibility and appropriate for providing services. The difference between
private cloud and public cloud is that the private cloud manages data and programs by
themselves and is not affected by network bandwidth, security concerns, and
regulatory restrictions.

® Hybrid Cloud: The hybrid cloud combines the benefit of public and private cloud, in
which users typically outsource unimportant enterprise information and handle it on
the public cloud, at the same time, still control the main enterprise services and
information.

® Community Cloud: Community cloud is shared by several organizations to support a

particular community that having common concerns.
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Figure 2.2: Definition of Cloud Computing

2.1.3 Big Data

Big data [4][5] is a term that has been in use since 1990s. As the data volume grows explosively

and ubiquitously, the traditional techniques on data processing applications are inadequate to

deal with ever-growing data volumes. Almost 90 percent of the data in the world was generated

during the past two years. According to International Data Corporation (IDC), in 2013 there are

4.4 zettabytes data in the world, and they predict it will soon reach 44 zettabytes in 2020. Big

Data is

also a way to deal with a great volume of the structured, semi-structured and

unstructured data. The development of big data has four directions as shown in Figure 2.3 [6].

Volume: A large amount of data would be generated, processed, and stored.

Velocity: The speed of data in and out.

Variety: Variability refers to as the source of information is extraordinary inclusive
and diverse of data type, including text, video, pictures, web index, data stream,
astronomical data, and other unstructured data. Both of them are difficult to be
processed in the structure of traditional relational data field.

Veracity: The less being mentioned characteristic of big data, it means the uncertainty



of data. By analyzing and filtering the data which are deviation, forgery and
abnormality to prevent these "dirty data" from compromising the integrity of the data

system and then affecting decision making.

(. Real-time \ ¢ Table A
* Near Real-time ¢ Database
e Periodic * Photo
e Batch ¢ Audio
. * Video
Variety . Sensor
e Mobile  /
Veracity  Volume )
* Noise ' e VIB
* Incomplete * GB
e Biased e TB
. Anomaly ‘ ” * PB )

Figure 2.3: The 4V's of Big Data

While the term "Big Data" is relatively new, as we can see the act of gathering and

storing large amounts of data for eventual analysis is ages old.

2.2 Hadoop Ecosystem

2.2.1 Apache Hadoop

Apache Hadoop [7] is an open-source software framework that being broadly used for big data
processing nowadays. It came from the Google File System paper which was published in
October 2003 and the paper of MapReduce. The Apache Hadoop framework is built on the top
of Hadoop Distributed File System (HDFS), which supports a stable and automatic distributed
processing system. Hadoop implements MapReduce [8] [9] programming framework which

divided file into the same block size. Data fragments can be executed in parallel on any node in
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the cluster. Hadoop is designed to provide parallel computing and scale up the processing ability
from single server to thousands of machines. As Figure 2.4 can see, NameNode is responsible

for the assignment of tasks to Task Trackers and assign data to DataNodes.

Metadata opts

Name Node

Assign Datato ¢
Data Nodes .o"

*

Assign Task to
:o. Task Trackers

*

Data Write
Data Read

Slave Node Slave Node Slave Node

oo

"""
e B e

Figure 2.4: Master/slave Architecture in Hadoop

2.2.2 HDFS

The Hadoop Distributed File System (HDFS) is a distributed file system designed to run on
commodity hardware. The detection of faults and automated recovery is an important
architectural goal of HDFS. HDFS has master-slave architecture with a single Name Node as
the master server which manage the file system. In addition, there are a number of DataNodes,
usually one per node in the cluster, which manage storage attached to the nodes that they run
on. HDFS exposes a file system namespace and allows user data to be stored in files. Internally,
a file is split into one or more blocks and these blocks are stored in a set of Data Nodes. The
Name Node executes file system namespace operations like opening, closing, and renaming
files and directories. It also determines the mapping of blocks to DataNodes. The Data Nodes

are responsible for serving read and write requests from the file system clients. HDFS ensures
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input distribution and provides the user with an interface whose role is to provide chunks of
data files to cluster nodes. Among its chief advantages, the Hadoop Distributed File System
provides input locality by enabling nodes hosting input shards to apply their processing on such
chunks, rather than on remotely stored data. Figure 2.5 shows the architecture of HDFS [10]
[11].

Replication

| |
DataNodes

y

DataNodes

| Write | | Write |

Figure 2.5: The Architecture of HDFS

2.2.3 Apache Hive

Apache Hive [12] is a data warehouse solution that has been developed by Apache software
foundation to integrate data storage and querying and managing large datasets. Hive as a data
warehouse application on top of Hadoop MapReduce, and it allows users to handle the data
stored in it as if it was stored in a regular database. Hive provides a mechanism to project
structure onto this data and query the data using a SQL-like language called HiveQL. Hive

enables user who have experience using traditional RDBMS to fun familiar queries on
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MapReduce [13]. Hive’s advantages are as follows:

Very powerful at big data storing

® FEasy to learn and understand

Portable, Multiple data views
Used with and DBMS system with vendor
Well defined standards exist and used relational databases

High Speed, Integrates with Java

Figure 2.6 shows the relation between Hadoop and Hive.

Job Hadoop
_ / Tracker
e Execution /
Engine
[ ] Map Reduce
Ul Driver Operator Operator
T Tree Tree
_ HDES
Compiler Metastore Name
Node
Figure 2.6: Relation between Hadoop and Hive
2.2.4 Apache Sqoop

Sqoop [14] [15] is a tool for SQL to Hadoop. Sqoop is a convenient tool that moves data
between traditional relational database and NoSQL. Sqoop takes advantage of Hadoop
MapReduce parallel feature that accelerates data migration by batch processing. Sqoop is an
import tool that supports data migration from relation database to Hive, HDFS, and HBase; it
also supports full table import and incremental table import. Figure 2.7 shows the basic
workflow of Sqoop. When Sqoop imports table data from RDB, it depends on different split-
by values to split data; next it lets segmented blocks assigned in different map, and each map

will process its block data. Finally, it stores data in the Hadoop distributed storage system. There

are three features of Sqoop below:
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Figure 2.7: Sqoop Workflow

2.3 In-memory processing framework

2.3.1 Apache Spark

Apache Spark [16] is an open-source cluster computing framework originally developed in the
AMPLab at UC Berkeley. In contrast to the two-stage disk-based MapReduce paradigm of
Hadoop, Spark in-memory primitives provide performance up to 100 times faster for certain
applications. By allowing user programs to load data into a memory of cluster and query it
repeatedly, Spark is well suited to machine learning algorithms. Spark requires a cluster
manager and a distributed storage system. For cluster management, Spark supports standalone
(native Spark cluster), Hadoop YARN, or Apache Mesos. For distributed storage, Spark can
interface with a wide variety, including HDFS, Cassandra, OpenStack Swift, and Amazon S3.
Spark also supports a pseudo distributed local mode, usually used only for development or
testing purposes, where distributed storage is not required and the local file system can be used
instead; in this scenario, Spark is running on a single machine with one executor per CPU core.
Spark has over 465 contributors in 2014, making it the most active project in the Apache

Software Foundation and among big data open source projects.
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2.3.2 Spark SQL

Like Apache Spark in general, Spark SQL [17] in particular is all about distributed in-memory
computations. One use of Spark SQL is to execute SQL queries. Spark SQL can also be used to
reading data from an existing Hive installation. For more on how to configure this feature,
please refer to the Hive tables section. When running SQL statement from within another
programming language the results will be returned as a Dataset/DataFrame. You can also

interact with the SQL interface using the command-line or over JDBC/ODBC.

2.3.3 Impala

Impala [18] is a real-time SQL query engine that brings scalable parallel database technology
for the Hadoop ecosystem. It allows user use SQL to query Petabytes of data stored in HDFS
and HBase without data movement or transformation. Impala uses Hive metastore, and it can
be used to querying data from Hive tables directly. Unlike Hive, Impala SQL does not translate
the queries into MapReduce jobs but executes them natively. However, Impala is memory
intensive and does not run effectively for heavy data operations like joins because it is not
possible to push in everything into the memory. The role of Impala played in Cloudera

environment as shown in Figure 2.8.
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Figure 2.8: Impala in Cloudera Environment

2.4 Related Works

Smart meter data are typically bundled with social economic data in analytics, such as meter
geographic locations, weather conditions and user information, which makes the data sets very
sizable and the analytics complex. In Xiufeng Liu et al. [19] 2016, they proposed a solution to
offer an information integration pipeline for ingesting data from smart meters, a scalable
platform for processing and mining big data sets, and a web portal for visualizing analytics
results. The implemented system has a hybrid architecture of using Spark or Hive for big data
processing, and using the machine learning toolkit, MADIib, for doing in-database data

analytics in PostgreSQL database.

Extract-Transform-Load (ETL) tools are pieces of software responsible for the extraction

of data from several sources, its cleansing, customization, reformatting, integration, and
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insertion into a data warehouse. Building the ETL process is potentially one of the biggest tasks
of building a warehouse; In Shaker H. Ali El-Sappagh et al. [20], they proposed a model which
can be used to designing ETL scenarios, and document, customize, and simplify the tracing of

the mapping between the data source attributes and its corresponding in data warehouse.

Beyond the benefits of Spark is compatible with Hadoop HDFS, and using in-memory
distributed memory technology, it allows data repeatedly calculated by cache data in memory
since Spark in-memory primitives provide performance up to 100 times faster for certain
applications. According to the thesis that, Spark has a higher speed than Hadoop processing
capability, and access to data on the YARN. Chao-Tung Yang et al, [21] 2015., the experimental
results of this paper show the Spark processing speed is faster than Hadoop, so we use Spark as

our process tool.

Through the analysis of OLAP technology in big data environment, a kind of analytical
platform of status monitoring big data of electric power equipment was designed. This platform
includes relational on-line analysis base on Hive, relational on-line analysis base on Impala,
and multi-dimensional on-line analysis based on HBase. Aiming to solve the problems of large
cost of connection operation and low query speed of distributed relational analysis data model,
Wang, Dewen, and Zhou. [22], presented a kind of data schema of state monitoring of power
equipment which was based on not-join level-encoding technologies. In order to reduce the
number of connection options to optimize performance, encoded the level information of

dimension table, compressed to the fact table.

SQL is a special purpose programming language that have been used for many years to
manage data in relational databases. Although SQL is not suitable for every data issue and it
cannot be applied to a complicated analysis. It has been applied to many enterprise developers
and business analysts because its availability. In Ilias Mavridis and Helen Karatza [23], they
have investigated the distributed SQL-type querying with Apache Hive and Spark SQL in real
Apache Web Server log files. After several experiments, they concluded that Spark SQL is much
faster than Hive. That happens because Spark SQL has a set of techniques to prevent reads and

writes to disk storage, caching of tables in memory and optimizing efficiency.

16



For the final objective of a big data warehouse, a platform to present the results of Business
Intelligent and data mining are quite essential. In Ren-Hao Liu and Chao-Tung Yang [24], they
had built a cloud intelligent campus energy monitoring system and used big data technology to
test the best processing and storage frameworks, including planning of hardware, build
application platform, and big data processing (Apache Hadoop and Apache Spark) and big data
storage (MySQL, Apache Hive, and Apache HBase) for power data. It also be the reason we
built this data warehouse system: to make query processing more efficient, even the data volume
is growing day by day. In the experiment of this paper, they measured the data process time of
HDFS and MySQL in one of experiments, the subsection compared the data search speed of
MySQL and Hive using Spark. They noticed that the response time of Hive through Spark is
less than MySQL through Spark. The difference of response time is not very obvious when the
test data is getting smaller. But when the data is 2GB, Hive is 100% faster than MySQL, so the

response time difference of both will be increased by data size.

Yin-Zhen Yan and Chao-Tung Yang et al [25] 2016, they proposed a cloud green energy
management system to settle the problem of oversize data and the computational efficiency of
data analysis, they added the big data technology and cloud computing to upgrade the system
performance. By building cloud infrastructure and distributed storage cluster, they adopt the
open source framework, Hadoop, to implement the two main functions: storage and
computation. Based on these two functions, the system they proposed speed up the analysis and

processing of big data by using Hadoop MapReduce to access HBase.

The Smart grid can be made more intelligent by processing and deriving new information
from these data in real time. In Bharathi Ganesh HB, Sachin Kumar S, and Shyam R et al. [26],
this paper presented Apache spark as a unified cluster computing platform which is suitable for
storing and performing Big Data analytics on smart grid data for applications like automatic
demand response and real time pricing. In data science, the term data analysis, data mining and
textmining refers to the same technique of deriving hidden information using various machine

learning algorithms from the data acquired.

With the complexities and challenges involved in big data computing, the need for large

computational infrastructure, expensive software, and effort are raised as well. In Hameeza
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Ahmed and Muhammad Ali Ismail et al. [27] 2016, this paper deployed an Apache Spark cluster
as a cloud service (SAAS) on OpenStack cloud. There are several benefits of providing Apache
Spark as SAAS namely scalability, backup and restore facility, ease of use, high speed,
increased throughput, lower cost and many others. The work being presented in this paper
makes an in-depth analysis of the performance of Spark cluster as a SAAS. It does so by
comparing the results of a Spark cluster configured as cloud service with the conventional one.
The analytical query involves three benchmarks namely Hive Join, Scan and Hive Aggregate
respectively. The final results clearly depict how apache Spark cluster deployed on OpenStack

dominates the conventional cluster both in terms of speed and throughput.

Smart city is very important issue for future development. M. Mazhar Rathore et al, [28]
2016. In order to solve the growing data generated by IoT, it must be resolved through big data
processing architecture. They use the Hadoop ecosystem to assist in data processing and storage.
The intelligent system must provide two data types, one is real-time data, the other is the
historical data. Real-time data provided decision-makers to make decisions in a short time, the
analysis of the historical data can provide the foundation of city or system planning. For data
processing, in order to real-time data processing, it must through the MapReduce architecture.
MapReduce is composed by the map and reduce, and the input is divided into a plurality of
block, and then executed on each node. For data storage, they use HBase and Hive for managing

Database.
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Chapter 3

System Design and Implementation

In this section, we present the architecture of our proposed electric power data warehouse and
the ETL service of data warehousing. In Subsection 3.1, the proposed system architecture would
be introduced. In Subsection 3.2, we talk about the design of electric power data warehouse,
and the transfer of old data from traditional database to Hadoop big data warehouse. Finally,
the implementation of electric power data warehouse and data transferring application in sub-

section 3.3.

3.1 System Architecture

The proposed system needs to receive and process power data per second from sensors spreaded
all over the campus for energy monitoring, early warning, analysis and other functions, thus the
scalability and flexibility of the system are very important. Accordingly, the proposed system
has multi-tier architecture, i.e., data generation and collection, data processing, and data
analysis. This multi-tier architecture, as shown in Figure 3.1, can efficiently process and analyze

the huge amount of power data, and its architecture introduced as follows:

@

Power Meters

Big Data Analytics
Power Consumption
Pattern Discovery Time-series

Big Data Processing cloudera opec

« Client 5

Data EIL Process) Big Data Search Engine l ! }_
S Data Processing Query Coordinator € Query Planner [/
IMPALA
APACHE N ,\ﬁ‘
Spor -SQL Big Data Warehouse\ 8
Metastore DB SSUIVE

Data Ingestion

$
My _.:_ - OCDOOQ | Distributed File System .“* F’%EF_ Ef@ﬂﬁ

ubuntu®

Operating System 14.04 LTS

| Daa | Computing and Storage Resources E E E °°°°

Figure 3.1: The Overview of System Architecture
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The bottom layer of Figure 3.1 is the computing and storage resources, including one
master node with 10 processors and 128GB (Gigabyte) memory, and four slave nodes with 8
processors and 16GB memory. Chapter 4 will explain the hardware specification in detail. The

detail of hardware and network specification as shown in Figure 3.2.

Master

Intel® Core™ i7-6950X
RAM: 128 Gigabytes

HDD: 2 Terabytes

LAN: 1 Gigabytes

Public IP: 140.128.101.10
Netmask: 255.255.255.0
Gateway: 140.128.101.250

Slave 7

Intel® Core™ i7-4770 Intel” Core™ i7-4770 Intel” Core™i7-4770
RAM: 128 Gigabytes RAM: 128 Gigabytes RAM: 128 Gigabytes
HDD: 1 Terabytes HDD: 1 Terabytes HDD: 1 Terabytes

LAN: 1 Gigabytes LAN: 1 Gigabytes LAN: 1 Gigabytes

1P: 192.168.0.1/24 IP: 192.168.0.2/24 IP: 192.168.0.7/24
MNetmask: 255.255.255.0 MNetmask: 255.255.255.0 Netmask: 255.255.255.0
Gateway: 192,168.0.254 Gateway: 192.168.0.254 Gateway: 192.168.0.254

Figure 3.2: The Detail of Computing and Storage Resources Layer

In the second layer, Ubuntu Linux is our first choice operating system, and the version
14.04 LTS which is more stable one.The third layer is the main core of the system architecture,
which is composed of data ETL process, big data storage, and data search engine. The data
source of ETL process includes old data stored in MySQL relational database and raw streaming
data from smart meters. On the part of data ingestion, we adopted Spark SQL as task scheduling
module to collect raw data on a regular basis; Apache Sqoop as transfer tool to directly ingest

old data stored in operational databases from MySQL to Hive data warehouse. Basically, Hive
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only defined the table schema and partition in the Hive Metastore, yet it does not store or
process data. Hive is totally relying on HDFS and MapReduce to do data manipulation.
Therefore, the action of ingesting data into Hive, in fact, it was being ingested into HDFS.

In the sight of big data search engine, Cloudera Impala integrates with the Hive metastore
database, to share databases and tables between both components. Impala provides high-
performance, low-latency SQL queries on data stored in Hadoop file formats, like Hive or
HBase. The fast response for queries enables interactive exploration and fine-tuning of analytic
queries, rather than batch jobs traditionally associated with SQL-on-Hadoop technologies.
Besides, Impala also supports JDBC client to interact with it. So as to do further data analytics,
like foresting, pattern discovery, power consumption time-series through high-performance,

Impala become the principle choice for an OLAP service.

3.2 Design of Data Warehouse and ETL Service

As seen from the middle layer of Figure 3.1, Hive becomes a big data warehouse of the power
data, and the data source of the system is conducted from the operational MySQL database and
real-time smart meter data. The ETL processing of data warehousing had been done with Sqoop
as a tool to extract operational databases from MySQL to Hive data warehouse and Spark as
real-time data processing module to transform raw data to useful data. Finally, executing the

Spark application periodically to make sure power data can be imported in a stable condition.

3.2.1 Power Utilization Assessment

In the section of power-sensing we used the WPM-100 Wireless Multifunction Power Meter to
collect data, including: voltage, current, power, power factor, frequency, etc. In addition to this,
it can be transmitted through the wireless means of sensing data for a broad range of energy
data collection to reduce the work of wiring. These data will be returned to the electric power

data warehouse immediately.
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Figure 3.3: WPM-100 Wireless Multifunction Power Meter

S1 (white): connect
to K terminal

S2 (black): connect
to L terminal

Figure 3.4: WPM-100 Wireless Multifunction Power Sensor

The power meter we used in the proposed system is developed by EverComm Opto Ltd.
(ECO). ECO is a manufacturer of motor and generator, and vendor of system integration located
in New Taipei City, Taiwan. It began offering the service of photoelectric, wireless
communication and information system since March 26, 2015. ECO has products of energy
management system, green energy management, street light management and landscape
illumination. Besides, ECO has provided a cycle diagram for energy management system as

shown below in Figure 3.5.
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Application

Platform

Figure 3.5: Energy Management System Diagram Proposed by ECO

The three portions of energy management system that proposed by ECO.
® Application: Supply an energy saving and management service for client.
® Control: Develop the application of wireless module, integrated control and sensor in
green energy industry.

® Platform: Building a neural network platform for information transmission on the P2P.
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3.2.2 Power Utilization Assessment

For the sake of assessing data volume more accurately. The data format of smart meter as shown

in Table 3.1 below. The return data is presented in JSON format with 26 fields.
Table 3.1: Smart Meter Data Format

Field Description Example
location Meter ID LIB-4
time_stamp Datetime 1491818534115
KW Current power of the meter 228
total KWH Accumulated power this hour 1026109
chl pf CHI-PF 0.807
chl voltage CHI1-Voltage 121.6
chl_current CH1-Current 10.343
chl hz CHI1-Hz 1015
ch2 pf CH2-PF 0.878
ch2 voltage CH2-Voltage 122.2
ch2_current CH2-Current 9.786
ch2 hz CH2-Hz 1050
ch3 pf CH3-PF 0.88
ch3 voltage CH3-Voltage 121.8
ch3_current CH3-Current 11.466
ch3 hz CH3-Hz 1229
voltage12 211.2
voltage23 2114
voltage31 210.9
chl THDi 1.60
ch2 THDi 9.10
ch3_THDi 2.00
chl_THDv 1.60
ch2 THDv 1.70
ch3 THDv 1.90
total pf Total PF 0.98
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The data collected per minute for each meter which means that each sensor will receive
about 128 Bytes of data every two seconds. In the case of TungHai University, there are about
40 dormitories, and administrative and academic building has equipped smart meter, based on
one building with one meter. The density of the sensor in campus is about to reach 120, after

deducing, one year will produce the following amount of data:

128 (Bytes) x 43200 (Sec) x 365 (Days) x 120 (Sensors) = 230976 MB = 225.6 GB

In addition to smart meter sensing data, the environment of sensing area also causes an
impact of electric power consumption. In environmental sensing, each environment has 20

sensors detecting once in a second. The estimated volume of data will be as follow:
100 (Bytes) x 86400 (Sec) x 365 (Days) x 20 (Sensors) = 60150 MB = 58.7 GB

According to the above calculation we can simulate the data volume would reach almost
300 GB a year, besides, after built our campus energy management system, the volume of
processed data is growing quickly as well. It already causes a burden to the traditional relational

database and previous storage system.

3.2.3 Transferring Operational Data from MySQL to Hive

Database

The transfer of historical meter data from the relational database to HDFS can be done through
Apache Sqoop. Sqoop is a data transfer tool that can transfer data from a traditional relational
database to a Hadoop storage system by using Hadoop MapReduce parallelism to speed up the
process of data migration. It supports not only transfer data from MySQL to HDFS but also

Hive and HBase. Figure 3.6 shows the workflow for operational data transfer.
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3.2.4 Data ETL Service

Data ETL Service can be used to transferring raw data to the data warehouse via the ETL
process. Raw data includes real-time data in data center and data of campus buildings and stable
data writing is done by periodically executing Data ETL Service. Figure 3.8 shows the use case
diagram of the data ETL service. As shown in Figure 3.7, we choose Spark SQL DataFrames
API as data processing module to develop data ETL application.

= import org.apache.spark.SparkConf
import org.apache.spark.SparkContext
import org.apache.spark.sql.SQLContext
import org.apache.spark.sqgl.SparkSession

-~ object sparksqlETL {
= def main(args: Array[String]l): Unit = {
val rootlLogger = Logger.getRootLogger()
rootLogger.setlLevel(Level .ERROR)
val spark = SparkSession
.builder()
.appNaome("Spark Hive Exomple™)
.config("spark.sql .warehouse.dir", "hdfs://master:9008/user/hive/warehouse")
.enableHiveSupport()
.getOrCreate()

import spark.implicits._
import spark.sql

sgl{"select * from powerdata")

Figure 3.7: Spark SQL API
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Figure 3.8: Use Case Diagram for Data ETL Service

3.2.5 Periodic Statistical Service

To achieve real-time presentation on front-end web user-interface, the process of calculating
raw data to different kinds of processed data periodically is required. By the reason of the
efficiency of Spark, Scala is our first choose to program the periodic processing application.
There are several types of data that is needed to generate, such as accumulated power data in
each minute, hour, day, month, and year. Another benefit of adopting spark as back-end

processing is to reduce the burden of front-end.
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3.3 System Implementation

In this work, we have established the big data clusters through four physical machines, one
node as master, three nodes as the computing node to set up Cloudera big data platform that
including CDH (Cloudera Distribution Including Apache Hadoop), Apache Spark, Apache
Sqoop2, Apache Hive, and Cloudera Impala. Table 3.2 shows the software specification of five

cluster nodes.

Table 3.2: Software Specification

Version

Cloudera Manager 5.10.1
Hadoop 2.6.0-cdh5.10.1
HDFS 2.6.0-cdh5.10.1
Hive 1.1.0-cdh5.10.1
YARN 2.6.0-cdh5.10.1
Spark 2.1.0-cdn5.10.1
Sqoop2 1.99.5-cdh5.10.1
Impala 2.7.0-cdh5.10.1
Hue 3.9.0-cdh5.10.1

In the big data processing platform construction, we used the newest version of CDH
(Cloudera Distribution Including Apache Hadoop) as big data service platform. The reason we
did not use native Hadoop is that CDH not only provides better stability than native Hadoop
ecosystem but convenient platform monitoring and management, each node in the cluster can
be monitored instantly via the web user interface in Cloudera Manager. In addition, Cloudera
Manager allows developers add new cluster or host manually and choose custom services to

deploy on it.
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Figure 3.9: Cloudera Manager Web User Interface

Logged in as: dr.who

Nodes of the cluster

« Cluster Cluster Metrics
About Apps Apps Apps Apps Containers Memory Memory Memory VCores VCores VCores
Nodes Submitted Pending Running Completed Running Used Total Reserved Used Total Reserved
Applications 33 0 1 32 1 1GB 10.18GB 0B 1 30 0
NEW Cluster Nodes Metrics
NEW SAVING
SUBMITTED Active Nodes Decommissioning Nodes Decommissioned Nodes Lost Nodes Unhealthy Nodes Rebooted Nodes
ACCEPTED 4 0 0 0 0 0
RUNNING i
FINISHED User Metrics for drwho
FAILED Apps Apps Apps Apps Containers Containers Containers Memory Memory Memory VCores VCores VCores
KILLED Submitted Pending Running Completed  Running Pending Reserved Used Pending Reserved Used Pending Reserved
Scheduler 0 0 0 0 0 0 0 0B 0B 0B 0 0 0
Show 20 v entries Search:
» Tools
Node Mem  Mem
Rack Node Node Node HTTP = Lasthealth-  Health-  Containers . VCores VCores i A
Labelf * State ¢  Address ¢ Address < update ¢  report ¢ ¢ Usef Avall Used ¢ Avail ¢ eLsiong
/default RUNNING node01:8041 node01:8042 Sat Apr 08 0 0B 285 0 8 26.0-
17:04:34 GB cdh5.10.1
+0800 2017
/default RUNNING node02:8041 node02:8042 Sat Apr 08 1 1GB 185 1 7 26.0-
17:04:34 GB cdh5.10.1
+0800 2017
/default RUNNING node03:8041 node03:8042 Sat Apr 08 0 0B 328 0 8 26.0-
17:04:34 GB cdh5.10.1
+0800 2017
/default RUNNING node04:8041 node04:8042 Sat Apr 08 0 0B 121 0 6 26.0-
17:04:36 GB cdh5.10.1
+0800 2017

Showing 1 to 4 of 4 entries irs revious ext Las

Figure 3.10: Nodes of Hadoop Cluster

By the visualization Hue web user interface, the thing of querying records inside the Hive
table become much more intuitive. Hue not only supports to manipulate data in Apache Hadoop
ecosystem, but also provides corresponding dynamical search dashboard with Solr. The most
important is that it support interactive query of HiveQL and Impala. In Figure 3.11 and Figure

3.12, we can see the visualization interface of Hue.
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Figure 3.11: Hue Web User Interface
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Chapter 4

Evaluation and Experimental Results

In this section, the experimental environment and results of the proposed cloud intelligent
campus energy monitoring system are described. After building the proposed system, we have
collected about 400GB of data. In order to make the evaluation and experiments easy to be
measured, the data size has been divided into 10GB, 50GB, 100GB, and 200GB. In section 4.1,
we introduce the experimental environment and implementation of the proposed system.

Sections 4.2 to 4.5 show the performance tests for verifying the efficiency of the system.

4.1 Experimental Environment

This section presents our hardware and software environmental environment. The proposed
system is implemented with eight physical servers connected by Gigabit Ethernet to build a
computing cluster. Each physical server consists of Intel Core 17 CPU with 16 GB Memory and
1TB HD. Besides, Ubuntu 14.04 LTS is adopted as our operating system. Also, the newest
version of Hadoop 2.6.0-cdh5.10.1, Spark 2.1.0-cdh5.10.1, Sqoop 1.4.6-cdh5.10.1, Hive 1.1.0-
cdh5.10.1, and Impala 2.7.0-cdh5.10.1 in Cloudera Manager 5.10.1 are installed, as shown in
Table 4.1 and Figure 4.1.

Table 4.1: Experimental Environment

ID CPU RAM HDD | Num of Cores
1 | Intel® Core™ i7-4770@3.40GHz | 16GBDDR3 | 1TB 8
2 | Intel® Core™ i7-4770@3.40GHz | 16GBDDR3 | 1TB 8
3 | Intel® Core™i7-4770@3.40GHz | 16GBDDR3 | ITB 8
4 | Intel® Core™i7-4770@3.40GHz | 16GBDDR3 | 1TB 8
5 | Intel® Core™i7-4770@3.40GHz | 16GBDDR3 | 1TB 8
6 | Intel® Core™i7-4770@3.40GHz | 16GBDDR3 | 1TB 8
7 | Intel® Core™ i7-4770@3.40GHz | 16GBDDR3 | 1TB 8
8 | Intel® Core™ i7-6950X@3.00GHz | 128GB DDR3 | 2TB 10
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Figure 4.1: CDH Computing Cluster

4.2 Performance Evaluation of Record Counting Speed

between Table Created by Hive and Impala

In the first experiment, we used two kinds of framework including Hive and Impala to figure
out how performance-intensive a record counting would be, when table is created in Hive and
Impala respectively. The difference of table being created in Hive and Impala is that Impala can
do the file compression with a better way. For the certification perspective, we tested it with
Impala SQL COUNT Function in tables with different number of record rows. The range of
testing data number is from 56 to 1120 million.
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Figure 4.2: Comparing Record Counting Speed of Table Being Created in Hive and Impala
Respectively

After the evaluation, Figure 4.2 shows the result of record counting speed. As our expected,
the processing time of table being created in Impala shows a better efficiency than table being
created in Hive. Table which is created in Hive has spent more time than Impala in any number
of records, due to it is using MapReduce as the hood of Hive. In contrast, Impala daemon
processes are started at boot time, and each Impala node caches all of its metadata to reuse for

future queries against the same table. Thus, Impala is always ready to execute a query.

4.3 Performance Evaluation of Querying in a Single

Condition among HiveQL, Spark SQL, and Impala SQL

The response time of data search plays an important role on real-time power management
system. Therefore, the efficiency of querying records in different conditions should be
evaluated. In order to verify the performance among three modules in detail, a single condition
query experiment was being derived from different scales of data. The comparison of HiveQL,

Spark SQL and Impala SQL searching speed in a single condition query as shown in Figure 4.3.
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Figure 4.3: Comparison of HiveQL, Spark SQL, and Impala SQL Searching Speed in a Single
Condition Query

The result as shown in Figure 4.3, Impala SQL still have a numerous gap corresponding
to HiveQL and Spark SQL. The essential difference of Impala SQL with HiveQL and Spark
SQL is that Impala SQL generates less segment files than HiveQL and Spark SQL while running
a query task in the same cluster. As a result, the process time of shuffle is going to spend less

than the other modules.

4.4 Execution Time of ETL Application

For the efficiency of ETL process in data warehousing, the execution time of ETL application
is crucial as well. The speed of data ETL will immediately affect the speed of data visualization.
For the following experiment shown in Figure 4.4, we developed two ETL applications in Hive
and Spark to extract data from data resource, transfer format, and load into Hive table. By
intuitively comparing the execution time of each application to know the best efficient ETL tool

is.
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Figure 4.4: Execution Time of ETL Application between Hive and Spark

As Figure 4.4 can see, we noticed that Spark is quick more than sixteen times for ETL

application. As a result, the latency while ingesting data would decrease to one minutes inside.
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Figure 4.5: Execution Time of ETL Application with Different Number of Processing Nodes

In order to highlight how the slave node number would cause processing time difference,
we executed the same ETL application in the same cluster with different number of slave nodes.

In Figure 4.5 can observe that with the number of processing node increasing, the more
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execution time would be consumed. When Hadoop is getting data from external data resources,
it used to take three copies in default before storing them into HDFS. It means Hadoop must
split the data into more nodes to execute pipeline mission. The more slave node in cluster, the

more time latency while connecting.

4.5 Processing Time of Statistical Procedure

In general, most of website would put calculating or statistical procedures at the website server
and use several script languages to compute the information they need. As the purpose to
achieve a rapid presentation on front-end website, those statistical procedures must be compute
quickly in the background cluster. In the front-end website of the proposed system as shown in
Figure 4.6, a history data collection service need to calculate power data in each minute, hour,
day, month, and year. Thus, we compared the statistical procedure processing time of Hive and
Spark on background cluster. In addition, we have measured the processing time in different

numbers of computing node.
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Figure 4.6: Front-end Website of the Proposed System
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Figure 4.7: Processing Time of Statistical Procedure in Different Numbers of Processing

Nodes

Figure 4.7 shows the processing time of statistical procedure using different numbers of
computing hosts. We noticed that processing time of Spark is gradually approaching a stable
status in three computing resource, however, Hive is still dropping down and spent far more
time than Spark.

Finally, after the previous experiments we observed that the number of processing node
will directly affect the processing of data ETL and statistical query. Thus, we also compared the
performance trend between read/write manipulation on Hive and Spark, the result is as shown

in Figure 4.8 below.
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Figure 4.8: Performance Trend between Read/Write manipulation on Hive and Spark

In Figure 4.8, we can figure that the processing time of write manipulation is keeping on
rising as the number of processing node increasing. That is because the more processing node
will cause the requirement to build pipeline to each DataNode. In contrast, read manipulation
do not have this problem, the more computing resource cluster has, the less processing time
spend.

4.6 Resource Utilization

In the second experiment, we tested the query speed in a single condition among HiveQL, Spark
SQL, and Impala SQL. In terms of resource utilization, the processing time of multiple
condition query is long enough for presenting the resource utilization of cluster. Besides, Spark
and Impala are both memory intensive framework. Thus, we compared the memory usage of
these two frameworks, by presenting the experimental utilization results for the same

manipulation statement in both frameworks.
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Figure 4.9: Memory Utilization
In Figure 4.9, we see the KiloBytes of memory needed for current workload in relation to the
total amount of memory. In this way, we can clearly see that Impala does better memory usage

than Spark does. As we mentioned before Impala uses more effectively the main memory and

achieves better performance.
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Chapter 5
Conclusions and Future Works

5.1 Concluding Remarks

In this work, we built a big data warechouse of power data and ETL processing for data
warehousing with several big data modules. The proposed system includes Hadoop (as storage
subsystem), Hive (as data warehouse), Spark (as data ETL tool), and Impala (as big data search
engine) from bottom to top. The generic power-data source is provided by the so-called smart
meters equipped in real field. The data collection and storage are handled by the Hadoop
subsystem and the data ingestion to Hive data warehouse is conducted by the Spark unit. In
order to evaluate the query-response performance of our data warehouse, several tests had been

done in different data volume.

The major contributions of this research can be concluded by two aspects: (1) The open
and non-proprietary multi-layer software modules are selected systematically. The design goal
had been approached by constituting the real-time power-monitoring platform embedded with
some excellent characteristics of high efficiency, high feasibility and low cost. Moreover, a big
data warehouse and ETL process of cleansing, customization, reformatting, integration, and are
inserted into the proposed data warehouse. (2) The requisite experiments had been conducted
to verify the query-response efficiency, and performance evaluations for the proposed power

data processing platform, which reveals the high feasibility for the target research goals.

5.2 Future Works

In the future work, we are going to finish the ODBC connection between front-end website and
the data warehouse that we had built in this work. In that way, an integral real-time power data
analytic platform we proposed can be fully achieved. Besides, we will also improve the system
by adding different categories of data, such as semi-structure data (like system logs or service
logs). Finally, to confirm the system's scalability we will add more hosts and observe the

condition of each hosts to prevent additional incident happened.
To enrich the proposed design work, it is expected that several system parameters like the

crowd movement, temperature, and humidity of the target building can be sensed and collected

to proceed similar processing. After integrating and analyzing these system parameters together,
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it is anticipated that more practical and accurate results would be approached other than just

using only parameter, the power(load).
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Appendix A
Cloudera Manager Installation and Configuration of

CDH Environment

I.  Download the newest version of Cloudera Manager from official website.

# wget http://archive.cloudera.com/cm5/installer/latest/cloudera-manager-installer.bin

Il.  Modify the authority of Installation file, and start to install.

# sudo chmod 775 cloudera-manager-installer.bin

# sudo ./cloudera-manager-installer.bin

I1l. Set up NTP server on Linux

# sudo apt-get install —y ntp

# ntpdate —s ntp.ubuntu.com pool.ntp.org

IV. Open up any explore and type http://master[P:7180 in address bar to go to Cloudera
Manager User Interface Website(Login with default username and password)

V. Specify hosts(with hostname or IP address) for CDH cluster

VI. Make sure it have got the situation of hosts

VII. Choose CDH version (Basically recommend default setting) and additional parcels

VIIl.Providing SSH login credentials with sudoer user of master node

# sudo vim /etc/sudoer

IX. Choose the CDH services that you want to install on cluster

X. After finishing installation process, the status of each cluster will be monitored on the

Cloudera Manager website by logging in with the same username, password, and port.
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Appendix B
Transferring Data from Relational Database to

Hadoop by Using Apache Sqoop

As Figure 2.7 shows the data flow of Apache Sqoop, an application for transferring data
between relational databases and Hadoop.

Xl. Deploy mysql JDBC connector.

Download mysql-connector from the following address.

# wget https://dev.mysql.com/get/Downloads/Connector-J/mysql-connector-java-5.1.41.tar.gz
Uzip it into sqoop directory.

# tar -zxf mysql-connector-java-5.1.41.tar.gz

# sudo cp mysql-connector-java-5.1.41/mysql-connector-java-5.1.41-bin.jar
/opt/cloudera/parcels/CDH-5.10.1-1.cdh5.10.1.p0.10/lib/sqoop/lib/

XIl. Try to print a table with Sqoop command.

Table A.1 Sqoop Arguments

Command Function
--connect [jdbc-uri] Jdbc connect URL
--username [mysql-username] MySQL login username
--P MySQL password
--table [mysql-table-name] MySQL table
--hive-import Import to Hive
--hive-table [table-name] Choose hive table to import to
--target-dir Target Hive diretory
--split-by [column-name] Split by column name
-m Split into how many Map processes

# sqoop list-databases --connect jdbc:mysql:/MySQL DB IP:3306/power --username hpc —P
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Figure A.1: List All Database in MySQL Database Using Sqoop

XIII. Transferring table from relational database in MySQL to Hive data warehouse, and store
as another table with same content

# sqoop import --connect jdbc:mysql://MySQL DB_1P:3306/power --username hpc -P --table

PowerDaily --hive-import --hive-table PowerDaily --target-dir

/user/hive/warehouse/PowerDaily --split-by no -m 1

Figure A.2: Importing Data from MySQL to Hive Database Using Sqoop MapReduce Process
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Figure A.3: Successfully Importing Data to Hive DB

XIV. Getting into Hive to check if the data has been imported.
# hive

# SELECT * FROM table;

o D

Figure A.4: Full Table Scan Test

48



Appendix C
Programming Code

|I. Power Data ETL Processing Code

import org.apache.spark.SparkConf
import org.apache.spark.SparkContext
import org.apache.spark.sql.SQLContext
import org.apache.spark.sql.SparkSession
import java.util.

import java.text.SimpleDateFormat
import org.json.JSONArray

import org.json.JSONODbject

import scala.io.Source

import org.apache.log4j.{Level, Logger}

object CampusMinute {
case class UnderAgeException(message: String) extends Exception(message)
val rootLogger = Logger.getRootLogger()
rootLogger.setLevel(Level. ERROR)
val spark = SparkSession
.builder()
.appName("Campus power data in Minute")
.config("spark.sql.warehouse.dir", "hdfs://master:9000/user/hive/warehouse")
.enableHiveSupport()
.getOrCreate()
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import spark.implicits.

import spark.sql

implicit def everyMin(f: () => Unit): TimerTask = {
return new TimerTask {

def run() = f()

def main(args: Array[String]): Unit = {
val timer = new Timer()

timer.schedule(everyMin(getPower), 1000L, 20000L)

def getPower() = {
try {
val url = Source.fromURL("Data Resource URL")
val urlString = url.mkString
val jArray = new JSONArray(urlString)
for (1 <- 0 until jArray.length()) {
val jdata = jArray.getJSONODbject(i)
val pid = jdata.get("location")
val P = jdata.get("KW").toString
val totalP_H = jdata.get("totalKWH").toString

val PF = jdata.get("total pf").toString
50



val chl current = jdata.get("chl current").toString().toFloat
val ch2_current = jdata.get(""ch2 current").toString().toFloat
val ch3 current = jdata.get("ch3 current").toString().toFloat
val I =chl current + ch2_current + ch3_current

val chl voltage = jdata.get("chl voltage").toString().toFloat
val ch2 voltage = jdata.get("ch2 voltage").toString().toFloat
val ch3 voltage = jdata.get("ch3_voltage").toString().toFloat
val V =chl voltage + ch2 voltage + ch3 voltage

val chl hz = jdata.get("chl hz").toString().toFloat

val ch2 hz = jdata.get(""ch2 hz").toString().toFloat

val ch3 hz = jdata.get("ch3 hz").toString().toFloat

val chl pf=jdata.get("chl pf").toString().toFloat

val ch2 pf=jdata.get("ch2 pf").toString().toFloat

val ch3 pf=jdata.get("ch3 pf").toString().toFloat

val v12 = jdata.get("voltage12").toString().toFloat

val v23 = jdata.get("voltage23").toString().toFloat

val v31 = jdata.get("voltage31").toString().toFloat

val ch1 THDi = jdata.get("chl THDi").toString().toFloat

val ch2THDi = jdata.get(""ch2 THDi").toString().toFloat

val ch3THDi1 = jdata.get("ch3 THDi").toString().toFloat

val chlTHDv = jdata.get("chl THDv").toString().toFloat
val ch2THDv = jdata.get("ch2 THDv").toString().toFloat

val ch3THDv = jdata.get("ch3 THDv").toString().toFloat

val timeStamp = jdata.get("time stamp").toString
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val time = timeFormat(timeStamp)
val timeSplit = timeFormat(timeStamp).split(" |:|-")
val YMD = timeSplit(0)+"-"+timeSplit(1)+"-"+timeSplit(2)
val hour = timeSplit(3)
val min = timeSplit(4)
sql(s"INSERT INTO powerminute VALUES ('$YMD','$hour', '$min', '$pid', '$P")")
sql(s"INSERT INTO campuspowerraw VALUES ('$pid','$time', '$P', 'StotalP H',
'Schl_pf, 'Schl_voltage', '$chl_current', '$Schl_hz', '$ch2 pf, '$ch2 voltage', '$ch2_current',
'$ch2_hz','$Sch3 pf','$ch3 voltage', '$ch3 current', '$ch3 hz', '$v12','$v23",'$v31', '$Sch1 THDI',
'$ch2THDA', '$ch3THD', '$ch1 THDV', '$ch2THDV', '$ch3THDV', '$PF")")
H
val today = Calendar.getInstance().getTime()
println("done! " + today)
} catch {

case UnderAgeException(msg) => msg

def timeFormat(time: String): String = {
var sdf: SimpleDateFormat = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss")
var date: String = sdf.format(new Date(time.toLong))

date
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I1. Periodic Statistical Service Code(Power Load in Every

Hour and Day)
def getHourPower() = {
try {
val df = spark.read.table("powerminute")
val today = Calendar.getInstance().getTime() // Current date
var sdf d: SimpleDateFormat = new SimpleDateFormat("yyyy-MM-dd") //date format
val day: String = sdf d.format(today)
val sdf h: SimpleDateFormat = new SimpleDateFormat("hh")
val hour: String = sdf h.format(today)
val url =
Source.fromURL("http://140.128.197.129:8080/rest/buildingMeter/powerUsage/") // data
resource
val urlString = url.mkString
val jArray = new JSONArray(urlString)
for (1 <- 0 until jArray.length()) {
val jdata = jArray.getJSONODbject(i)
val pid = jdata.get("location")
val avg = sql(s"SELECT AVG(p) FROM powerminute WHERE “date’ = '$day’
AND “hour' ='Shour' AND "meter_id" = '$pid"").head().getDouble(0)
sql(s"INSERT INTO powerhour VALUES ('$day','$hour’, '$pid', round('$avg',2))")
h
println("done! " + day + " " + hour)

} catch {
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case UnderAgeException(msg) => msg

def getDayPower() = {
try {
var sdf d: SimpleDateFormat = new SimpleDateFormat("yyyy-MM-dd") //date
format
val day_start = Calendar.getInstance() // Start date
day start.add(Calendar.DATE, -1)
val yesterday: String = sdf d.format(day_start.getTime())
val day_stop = Calendar.getInstance() // Start date
val today: String = sdf d.format(day_stop.getTime())
val url =
Source.fromURL("http://140.128.197.129:8080/rest/buildingMeter/powerUsage/")
val urlString = url.mkString
val jArray = new JSONArray(urlString)
for (1 <- 0 until jArray.length()) {
val jdata = jArray.getJSONODbject(i)
val pid = jdata.get("location")
val avg = sql(s"SELECT date, p/1000 as P FROM powerhour WHERE ‘date’ >=

'$yesterday' AND ‘date” = '$today").head().getDouble(0)

sql(s"INSERT INTO powerhour VALUES ('$today', round('$avg',2))")
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println("done! " + today)
} catch {

case UnderAgeException(msg) => msg

55



