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摘 要 

 

隨著物聯網科技的蓬勃發展，現今無所不在的電能資料可以透過網路被存取並提供監測

需求作即時的資料分析。隨著時間的增長，如此大量的電能資料可以累積到將近

Terabytes 的大小。為了達到更即時的電能監測平台，在這篇論文中設計開發了一個有效

率且新穎的資料處理技術，並成為本論文中的研究核心。基於多個巨量資料處理軟體的

階層整合方法，本論文由下至上提出一個由 Hadoop Ecosystem、Spark 以及 Cloudera 

Impala 建置的電能巨量資料處理平台架構。本論文採用實務的電能資料為數據基礎，這

些大數據源自實際配置於企業內部工廠中的「智慧電表」，接著以 Spark 作為電能資料的

資料擷取、轉換和載入工具，Hive 用以建置巨量資料倉儲系統，Impala 則作為前端巨量

資料搜尋引擎。在系統測試方面，本論文以 Hive、Spark 和 Impala 三種軟體來實作巨量

資料叢集之資料搜尋及資料 ETL (Extract-Transform-Load)的效能測試，這兩種實驗皆使

用了同樣的模組來進行。本論文的核心貢獻著重在兩個部分: 第一，採用多層軟體模組

化(Software Modules)架構，設計建置了一個高效率的即時電能監測平台，具有高可行性

及低成本的特性;第二，各實驗測試項目，經過實務實驗的測試，驗證了本系統的資料處

理回應效率，確實頗具有改善實證，是有效率的，低成本的兼具可行性的，可以作為日

後相關研究的參考依據。 

 

關鍵字: 物聯網，巨量資料倉儲系統，智慧電表，資料 ETL，即時資料處理。 
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Abstract 

 

With the flourishing of Internet of Things (IoT) technology, ubiquitous power data can be linked 

to the Internet and be analyzed for real-time monitoring requirement. Numerous power data 

would be accumulated to even Terabyte level as the time goes. To approach a real-time power 

monitoring platform on them, an efficient and novel implementation techniques has been 

developed and formed to be the kernel material of this thesis. Based on the integration of 

multiple software subsystems in a layered manner, the proposed data-accessing platform has 

been established and is composed of Apache Hadoop (as storage subsystem), Apahe Spark (as 

data ETL tool), Apache Hive (as big data warehouse), and Cloudera Impala (as big data real-

time search engine) from bottom to top. The generic power-data source is provided by the so-

called smart meters equipped inside factories located in an enterprise practically. The data 

collection and storage are handled by the Hadoop subsystem and the data ingestion to Hive data 

warehouse is conducted by the Spark unit. On the aspect of system verification, under single-

record query, these software modules: Apache Hive, Apache Spark, and Impala had been tested 

in terms of query-response efficiency. And for the performance exploration on the statistical 

query function and data ETL processing. The relevant experiments have been conducted on the 

same three software modules as well. The kernel contributions of this research work can be 

highlighted by two parts: (1) Multi-layer software modules are adopted to design and implement 

the real-time power-monitoring platform embedded with some excellent characteristics of high 

efficiency, high feasibility and low cost. (2) The rudimental experiments are conducted to verify 

the query-response efficiency, and performance evaluations for the proposed real-time power-

monitoring platform, which reveals the high feasibility for the target research goals. 

 

Keywords: Internet of Things, Big data warehouse, Smart meter, Data ETL, Real-time 

processing. 
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Chapter 1 

Introduction 

With the widespread tides of Internet of Things and smart-electricity environment, the need to 

explore more efficient management on the electrical equipment and energy consumption 

attracts more attention. Basically, the records (or log files) of electrical loads are everyday data 

and the growth patterns on such day-by-day data source would be accommodated so steadily 

that the data volumes may be quite huge, even up to Terabytes levels. As the amount of data is 

expanding rapidly, the effectiveness of the traditional data storage system appears to be hard to 

handle them efficiently. In order to store raw data, long-term historical data, and processed data 

to facilitate future analysis of electricity consumption behavior, we used the concept of big data 

warehouse system to enhance system scalability, data integrity, and query speed. In terms of 

data querying, we choose Impala as SQL (Sequence Query Language) engine for processing 

the data that is sitting inside of Hive and then compare query efficiency among Apache HiveQL, 

Apache Spark SQL, and Impala SQL in different parameter. 

 

1.1 Motivation 

By deploying a large amount of smart meters and environmental sensors on campus, it already 

has accumulated a lot of historical log data. Those sensors deployed on campus which returns 

log data in every two seconds, thus, the volume of processed data is growing quickly. It already 

causes a burden to the traditional relational database and previous storage system. The 

performance of original relational database gradually cannot meet the system requirement 

because the data volume would be growing to hundreds of gigabytes as the time pass by. In 

order to avoid the drawbacks of the traditional relational database, and to effectively process 

the status monitoring data of the electrical equipment, this research proposed a multi-layer 

software architecture for the real-time power-monitoring platform embedded with some 

excellent characteristics of high efficiency, high feasibility, and low cost. 

 

    Hadoop is an open-source framework that allows to store and process big data in a 

distributed environment across clusters of computers using simple programming models. It has 

been built to scale up from single servers to thousands of machines, each offering local 
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computation and storage. 

 

    Hadoop has been the mainstream framework of the cloud computing technology, which 

HDFS and MapReduce is the two core technologies. Hadoop manages the data by breaking up 

the files into blocks and distributes them to the nodes of the Hadoop cluster. In general, Hadoop 

has better scalability, reliability, and usage efficiency of equipment than traditional data 

processing. Hive is a data warehouse system tool built on the top of Hadoop that can be used to 

handle structured and semi-structured data. After changing the overall storage architecture, the 

data stored in HDFS can be managed more easily. 

 

    Apache Hive is a component of Hortonworks Data Platform (HDP). Hive provides a SQL-

like interface to data stored in HDP. In the previous tutorial, we used Pig, which is a scripting 

language with a focus on data flows. Hive provides a database query interface to Apache 

Hadoop. Moreover, Apache Hive is data warehouse infrastructure built on top of Apache 

Hadoop for providing data summarization, ad-hoc query, and analysis of large datasets. It 

provides a mechanism to project structure onto the data in Hadoop and to query that data using 

a SQL-like language called HiveQL (HQL). 

 

    In order to extract the meaningful content, we have to process the raw data and aggregate 

them, find out the correlation among them, and then store into data warehouse. In spite of Hive 

provided a SQL-like data manipulation language called HiveQL to process data, yet it gets Hive 

query converted to MapReduce program whenever it carries out query work. It will spend a lot 

of time on querying, because it follows the process model of Hadoop needs to read/write from 

the disk very frequently. The process interval will relatively spend more. On the contrary, in 

this work we use Spark distributed computing framework to deal with real-time power data. 

Spark is a general-purpose data processing engine, suitable for use in a wide range of 

circumstances. Its in-memory data processing engine can minimize the read times while 

accessing to the data on disk. Spark also provides high-level processing tools, such as SQL 

queries, spark machine learning library and streaming processing, and so on. 

 

    In terms of SQL-on-Hadoop, HiveQL and Spark SQL have provided a great efficiency on 

querying big data yet still far from Cloudera Impala. Cloudera Impala [1] is an massively 
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parallel processing SQL query engine for processing the data stored in HDFS, Hive, and HBase. 

Impala can interoperate with data stored in Hive, and tracks metadata about schema objects 

such as tables and columns. Impala does not work without the metastore database. Unlike Hive, 

Impala does not translate the queries into MapReduce jobs but executes them natively. However, 

Impala is memory intensive and does not run effectively for heavy data operations like joins 

because it is not possible to push in everything into the memory. That is why choose Impala as 

our specialized back-end query engine. 

 

    Above all, monitoring the whole status of the system includes hardware, software, and 

clusters, is also an essential factor to enterprises. Cloudera Manager [2] provides a fast way to 

deploy cluster, no matter what the scale or the deployment environment, complete with 

intelligent default settings based on your system. Not only can it monitor all components across 

all clusters (including Cloudera Manager itself), it can also easily monitor jobs and query 

performance. Cloudera Manager has the industry's only customizable dashboard, with the 

ability to create advanced charts for historical monitoring and custom triggers and thresholds 

for the environment. 

 

1.2 Contributions 

The kernel contributions of this research work can be highlighted in two parts: (1) Multi-layer 

software modules are adopted to design and implement the real-time power-monitoring 

platform embedded with some excellent characteristics of high efficiency, high feasibility and 

low cost. A big data warehouse and ETL process of cleansing, customization, reformatting, 

integration, and insertion into our data warehouse. (2) The rudimental experiments are 

conducted to verify the query-response efficiency, and performance evaluations for the 

proposed real-time power-monitoring platform, which reveals the high feasibility for the target 

research goals. 

 

1.3 Thesis Organization 

 

The remainder of this thesis is stated as follows. Chapter 2 describes background materials and 

relevant research work, including Internet of Things, Cloud Computing, Big Data, Hadoop 
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Ecosystem, and In-memory processing frameworks like Apache Spark and Cloudera Impala. 

Chapter 3 demonstrates the proposed system architecture which includes rudimental functions 

like extraction feature, data transformation, and load data processing function. The related 

performance evaluation and experimental results with analysis are presented in Chapter 4. 

Chapter 5 gives a discussion and summary to the proposed system and future works. 
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Chapter 2 

Background and Related Works 

2.1 IoT and Big Data 

2.1.1 The Internet of Things (IoT) 

Internet of Things (IoT) [3] is about every object, including the general items, animals and even 

people are equipped with a UID (Unique Identifiers). The data and information of objects 

hooked up on any computer networks, like wired-LAN or Wireless LAN, can be shared directly 

through the Internet. It is no longer to rely on the interaction between people or people and 

machines. The future will be the world of machine-to-machine (M2M), directly by the machine 

to complete a variety of work on the machine. From a practical point of view, the concept on 

IOT can be divided into three-tier architecture, from the bottom to the upper layer are 

respectively sensing layer, network layer, and application layer as shown in Figure 2.1. 

 

 Perception (Sensing) layer: Perception layer is composed of devices that can sense the 

signal and monitor physical or environmental conditions of the field. 

 

 Network layer: Network layer includes wireless or cable Internet and cloud technology to 

provide reliable network transmission so that each object can connect to Internet by 

specific connections and IP address. 

 

 Application layer: Application layer is the kernel of IoT. It receives information from the 

Middleware layer and provides global management of the application presenting that 

information. 
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Figure 2.1: IoT 3-tiers 

 

2.1.2 Cloud Computing 

The term Cloud Computing comes from Google CEO Eric Schmidt who presented the idea for 

the first time on August 9, 2006 at the SES San Jose. According to the definition from National 

Institute of Standards and Technology (NIST) on Cloud Computing in May 2012: cloud 

computing is a model that provides ubiquitous, convenience, on-demand, and share resource 

that can be rapidly provisioned and released with minimal management effort or service 

provider interaction. It is composed of five essential characteristics, three service models and 

four deployment models as shown in Figure 2.2. 

 

Five essential characteristics: 

 On-demand self-service. 

 Anytime, anywhere access by any network device. 
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 Resource pooling. 

 Quick redeployment. 

 Can be monitored and measured. 

 

Three service models: 

 Infrastructure as a Service (IaaS): IaaS is the way that users can use the computing 

resources, such as processor, storage capacity, and network through renting to cloud 

service providers but not buy hardware and build their own infrastructure. 

 Platform as a Service (PaaS): PaaS is a cloud computing service to deliver hardware 

and software tools for those customers are needed for application development. 

 Software as a Service (SaaS): Consumers use software deployed or data stored in the 

cloud but without managing cloud infrastructure and programming execution 

environment. No longer do customers need to install software on their computer, 

therefore reducing maintenance works and software support issues. 

 

Four deployment models: 

 Public Cloud: Public cloud services are available to users through the Internet and 

third-party service providers. Public cloud providers typically have some access 

control mechanisms for users. 

 Private Cloud: Private cloud has the advantages of many public cloud environments, 

such as flexibility and appropriate for providing services. The difference between 

private cloud and public cloud is that the private cloud manages data and programs by 

themselves and is not affected by network bandwidth, security concerns, and 

regulatory restrictions. 

 Hybrid Cloud: The hybrid cloud combines the benefit of public and private cloud, in 

which users typically outsource unimportant enterprise information and handle it on 

the public cloud, at the same time, still control the main enterprise services and 

information. 

 Community Cloud: Community cloud is shared by several organizations to support a 

particular community that having common concerns. 
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Figure 2.2: Definition of Cloud Computing 

 

2.1.3 Big Data 

Big data [4][5] is a term that has been in use since 1990s. As the data volume grows explosively 

and ubiquitously, the traditional techniques on data processing applications are inadequate to 

deal with ever-growing data volumes. Almost 90 percent of the data in the world was generated 

during the past two years. According to International Data Corporation (IDC), in 2013 there are 

4.4 zettabytes data in the world, and they predict it will soon reach 44 zettabytes in 2020. Big 

Data is also a way to deal with a great volume of the structured, semi-structured and 

unstructured data. The development of big data has four directions as shown in Figure 2.3 [6]. 

 Volume: A large amount of data would be generated, processed, and stored. 

 Velocity: The speed of data in and out. 

 Variety: Variability refers to as the source of information is extraordinary inclusive 

and diverse of data type, including text, video, pictures, web index, data stream, 

astronomical data, and other unstructured data. Both of them are difficult to be 

processed in the structure of traditional relational data field. 

 Veracity: The less being mentioned characteristic of big data, it means the uncertainty 
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of data. By analyzing and filtering the data which are deviation, forgery and 

abnormality to prevent these "dirty data" from compromising the integrity of the data 

system and then affecting decision making. 

 

 

Figure 2.3: The 4V's of Big Data 

 

While the term "Big Data" is relatively new, as we can see the act of gathering and 

storing large amounts of data for eventual analysis is ages old. 

 

2.2 Hadoop Ecosystem 

2.2.1 Apache Hadoop 

Apache Hadoop [7] is an open-source software framework that being broadly used for big data 

processing nowadays. It came from the Google File System paper which was published in 

October 2003 and the paper of MapReduce. The Apache Hadoop framework is built on the top 

of Hadoop Distributed File System (HDFS), which supports a stable and automatic distributed 

processing system. Hadoop implements MapReduce [8] [9] programming framework which 

divided file into the same block size. Data fragments can be executed in parallel on any node in 
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the cluster. Hadoop is designed to provide parallel computing and scale up the processing ability 

from single server to thousands of machines. As Figure 2.4 can see, NameNode is responsible 

for the assignment of tasks to Task Trackers and assign data to DataNodes. 

 

 

Figure 2.4: Master/slave Architecture in Hadoop 

 

2.2.2 HDFS 

The Hadoop Distributed File System (HDFS) is a distributed file system designed to run on 

commodity hardware. The detection of faults and automated recovery is an important 

architectural goal of HDFS. HDFS has master-slave architecture with a single Name Node as 

the master server which manage the file system. In addition, there are a number of DataNodes, 

usually one per node in the cluster, which manage storage attached to the nodes that they run 

on. HDFS exposes a file system namespace and allows user data to be stored in files. Internally, 

a file is split into one or more blocks and these blocks are stored in a set of Data Nodes. The 

Name Node executes file system namespace operations like opening, closing, and renaming 

files and directories. It also determines the mapping of blocks to DataNodes. The Data Nodes 

are responsible for serving read and write requests from the file system clients. HDFS ensures 
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input distribution and provides the user with an interface whose role is to provide chunks of 

data files to cluster nodes. Among its chief advantages, the Hadoop Distributed File System 

provides input locality by enabling nodes hosting input shards to apply their processing on such 

chunks, rather than on remotely stored data. Figure 2.5 shows the architecture of HDFS [10] 

[11]. 

 

 

Figure 2.5: The Architecture of HDFS 

 

2.2.3 Apache Hive 

Apache Hive [12] is a data warehouse solution that has been developed by Apache software 

foundation to integrate data storage and querying and managing large datasets. Hive as a data 

warehouse application on top of Hadoop MapReduce, and it allows users to handle the data 

stored in it as if it was stored in a regular database. Hive provides a mechanism to project 

structure onto this data and query the data using a SQL-like language called HiveQL. Hive 

enables user who have experience using traditional RDBMS to fun familiar queries on 
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MapReduce [13]. Hive’s advantages are as follows: 

 Very powerful at big data storing 

 Easy to learn and understand 

 Portable, Multiple data views 

 Used with and DBMS system with vendor 

 Well defined standards exist and used relational databases 

 High Speed, Integrates with Java 

    Figure 2.6 shows the relation between Hadoop and Hive. 

 

 

Figure 2.6: Relation between Hadoop and Hive 

 

2.2.4 Apache Sqoop 

Sqoop [14] [15] is a tool for SQL to Hadoop. Sqoop is a convenient tool that moves data 

between traditional relational database and NoSQL. Sqoop takes advantage of Hadoop 

MapReduce parallel feature that accelerates data migration by batch processing. Sqoop is an 

import tool that supports data migration from relation database to Hive, HDFS, and HBase; it 

also supports full table import and incremental table import. Figure 2.7 shows the basic 

workflow of Sqoop. When Sqoop imports table data from RDB, it depends on different split-

by values to split data; next it lets segmented blocks assigned in different map, and each map 

will process its block data. Finally, it stores data in the Hadoop distributed storage system. There 

are three features of Sqoop below: 
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Figure 2.7: Sqoop Workflow 

 

2.3 In-memory processing framework 

2.3.1 Apache Spark 

Apache Spark [16] is an open-source cluster computing framework originally developed in the 

AMPLab at UC Berkeley. In contrast to the two-stage disk-based MapReduce paradigm of 

Hadoop, Spark in-memory primitives provide performance up to 100 times faster for certain 

applications. By allowing user programs to load data into a memory of cluster and query it 

repeatedly, Spark is well suited to machine learning algorithms. Spark requires a cluster 

manager and a distributed storage system. For cluster management, Spark supports standalone 

(native Spark cluster), Hadoop YARN, or Apache Mesos. For distributed storage, Spark can 

interface with a wide variety, including HDFS, Cassandra, OpenStack Swift, and Amazon S3. 

Spark also supports a pseudo distributed local mode, usually used only for development or 

testing purposes, where distributed storage is not required and the local file system can be used 

instead; in this scenario, Spark is running on a single machine with one executor per CPU core. 

Spark has over 465 contributors in 2014, making it the most active project in the Apache 

Software Foundation and among big data open source projects. 
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2.3.2 Spark SQL 

Like Apache Spark in general, Spark SQL [17] in particular is all about distributed in-memory 

computations. One use of Spark SQL is to execute SQL queries. Spark SQL can also be used to 

reading data from an existing Hive installation. For more on how to configure this feature, 

please refer to the Hive tables section. When running SQL statement from within another 

programming language the results will be returned as a Dataset/DataFrame. You can also 

interact with the SQL interface using the command-line or over JDBC/ODBC. 

 

2.3.3 Impala 

Impala [18] is a real-time SQL query engine that brings scalable parallel database technology 

for the Hadoop ecosystem. It allows user use SQL to query Petabytes of data stored in HDFS 

and HBase without data movement or transformation. Impala uses Hive metastore, and it can 

be used to querying data from Hive tables directly. Unlike Hive, Impala SQL does not translate 

the queries into MapReduce jobs but executes them natively. However, Impala is memory 

intensive and does not run effectively for heavy data operations like joins because it is not 

possible to push in everything into the memory. The role of Impala played in Cloudera 

environment as shown in Figure 2.8. 

 



 

15 
 

 

Figure 2.8: Impala in Cloudera Environment 

 

2.4 Related Works 

Smart meter data are typically bundled with social economic data in analytics, such as meter 

geographic locations, weather conditions and user information, which makes the data sets very 

sizable and the analytics complex. In Xiufeng Liu et al. [19] 2016, they proposed a solution to 

offer an information integration pipeline for ingesting data from smart meters, a scalable 

platform for processing and mining big data sets, and a web portal for visualizing analytics 

results. The implemented system has a hybrid architecture of using Spark or Hive for big data 

processing, and using the machine learning toolkit, MADlib, for doing in-database data 

analytics in PostgreSQL database. 

 

    Extract-Transform-Load (ETL) tools are pieces of software responsible for the extraction 

of data from several sources, its cleansing, customization, reformatting, integration, and 
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insertion into a data warehouse. Building the ETL process is potentially one of the biggest tasks 

of building a warehouse; In Shaker H. Ali El-Sappagh et al. [20], they proposed a model which 

can be used to designing ETL scenarios, and document, customize, and simplify the tracing of 

the mapping between the data source attributes and its corresponding in data warehouse. 

 

Beyond the benefits of Spark is compatible with Hadoop HDFS, and using in-memory 

distributed memory technology, it allows data repeatedly calculated by cache data in memory 

since Spark in-memory primitives provide performance up to 100 times faster for certain 

applications. According to the thesis that, Spark has a higher speed than Hadoop processing 

capability, and access to data on the YARN. Chao-Tung Yang et al, [21] 2015., the experimental 

results of this paper show the Spark processing speed is faster than Hadoop, so we use Spark as 

our process tool. 

 

    Through the analysis of OLAP technology in big data environment, a kind of analytical 

platform of status monitoring big data of electric power equipment was designed. This platform 

includes relational on-line analysis base on Hive, relational on-line analysis base on Impala, 

and multi-dimensional on-line analysis based on HBase. Aiming to solve the problems of large 

cost of connection operation and low query speed of distributed relational analysis data model, 

Wang, Dewen, and Zhou. [22], presented a kind of data schema of state monitoring of power 

equipment which was based on not-join level-encoding technologies. In order to reduce the 

number of connection options to optimize performance, encoded the level information of 

dimension table, compressed to the fact table. 

 

    SQL is a special purpose programming language that have been used for many years to 

manage data in relational databases. Although SQL is not suitable for every data issue and it 

cannot be applied to a complicated analysis. It has been applied to many enterprise developers 

and business analysts because its availability. In Ilias Mavridis and Helen Karatza [23], they 

have investigated the distributed SQL-type querying with Apache Hive and Spark SQL in real 

Apache Web Server log files. After several experiments, they concluded that Spark SQL is much 

faster than Hive. That happens because Spark SQL has a set of techniques to prevent reads and 

writes to disk storage, caching of tables in memory and optimizing efficiency. 
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    For the final objective of a big data warehouse, a platform to present the results of Business 

Intelligent and data mining are quite essential. In Ren-Hao Liu and Chao-Tung Yang [24], they 

had built a cloud intelligent campus energy monitoring system and used big data technology to 

test the best processing and storage frameworks, including planning of hardware, build 

application platform, and big data processing (Apache Hadoop and Apache Spark) and big data 

storage (MySQL, Apache Hive, and Apache HBase) for power data. It also be the reason we 

built this data warehouse system: to make query processing more efficient, even the data volume 

is growing day by day. In the experiment of this paper, they measured the data process time of 

HDFS and MySQL in one of experiments, the subsection compared the data search speed of 

MySQL and Hive using Spark. They noticed that the response time of Hive through Spark is 

less than MySQL through Spark. The difference of response time is not very obvious when the 

test data is getting smaller. But when the data is 2GB, Hive is 100% faster than MySQL, so the 

response time difference of both will be increased by data size. 

 

    Yin-Zhen Yan and Chao-Tung Yang et al [25] 2016, they proposed a cloud green energy 

management system to settle the problem of oversize data and the computational efficiency of 

data analysis, they added the big data technology and cloud computing to upgrade the system 

performance. By building cloud infrastructure and distributed storage cluster, they adopt the 

open source framework, Hadoop, to implement the two main functions: storage and 

computation. Based on these two functions, the system they proposed speed up the analysis and 

processing of big data by using Hadoop MapReduce to access HBase. 

 

    The Smart grid can be made more intelligent by processing and deriving new information 

from these data in real time. In Bharathi Ganesh HB, Sachin Kumar S, and Shyam R et al. [26], 

this paper presented Apache spark as a unified cluster computing platform which is suitable for 

storing and performing Big Data analytics on smart grid data for applications like automatic 

demand response and real time pricing. In data science, the term data analysis, data mining and 

textmining refers to the same technique of deriving hidden information using various machine 

learning algorithms from the data acquired. 

 

    With the complexities and challenges involved in big data computing, the need for large 

computational infrastructure, expensive software, and effort are raised as well. In Hameeza 
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Ahmed and Muhammad Ali Ismail et al. [27] 2016, this paper deployed an Apache Spark cluster 

as a cloud service (SAAS) on OpenStack cloud. There are several benefits of providing Apache 

Spark as SAAS namely scalability, backup and restore facility, ease of use, high speed, 

increased throughput, lower cost and many others. The work being presented in this paper 

makes an in-depth analysis of the performance of Spark cluster as a SAAS. It does so by 

comparing the results of a Spark cluster configured as cloud service with the conventional one. 

The analytical query involves three benchmarks namely Hive Join, Scan and Hive Aggregate 

respectively. The final results clearly depict how apache Spark cluster deployed on OpenStack 

dominates the conventional cluster both in terms of speed and throughput. 

 

    Smart city is very important issue for future development. M. Mazhar Rathore et al, [28] 

2016. In order to solve the growing data generated by IoT, it must be resolved through big data 

processing architecture. They use the Hadoop ecosystem to assist in data processing and storage. 

The intelligent system must provide two data types, one is real-time data, the other is the 

historical data. Real-time data provided decision-makers to make decisions in a short time, the 

analysis of the historical data can provide the foundation of city or system planning. For data 

processing, in order to real-time data processing, it must through the MapReduce architecture. 

MapReduce is composed by the map and reduce, and the input is divided into a plurality of 

block, and then executed on each node. For data storage, they use HBase and Hive for managing 

Database. 
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Chapter 3 

System Design and Implementation 

In this section, we present the architecture of our proposed electric power data warehouse and 

the ETL service of data warehousing. In Subsection 3.1, the proposed system architecture would 

be introduced. In Subsection 3.2, we talk about the design of electric power data warehouse, 

and the transfer of old data from traditional database to Hadoop big data warehouse. Finally, 

the implementation of electric power data warehouse and data transferring application in sub-

section 3.3. 

 

3.1 System Architecture 

The proposed system needs to receive and process power data per second from sensors spreaded 

all over the campus for energy monitoring, early warning, analysis and other functions, thus the 

scalability and flexibility of the system are very important. Accordingly, the proposed system 

has multi-tier architecture, i.e., data generation and collection, data processing, and data 

analysis. This multi-tier architecture, as shown in Figure 3.1, can efficiently process and analyze 

the huge amount of power data, and its architecture introduced as follows: 

 

Figure 3.1: The Overview of System Architecture 
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    The bottom layer of Figure 3.1 is the computing and storage resources, including one 

master node with 10 processors and 128GB (Gigabyte) memory, and four slave nodes with 8 

processors and 16GB memory. Chapter 4 will explain the hardware specification in detail. The 

detail of hardware and network specification as shown in Figure 3.2. 

 

 

Figure 3.2: The Detail of Computing and Storage Resources Layer 

 

    In the second layer, Ubuntu Linux is our first choice operating system, and the version 

14.04 LTS which is more stable one.The third layer is the main core of the system architecture, 

which is composed of data ETL process, big data storage, and data search engine. The data 

source of ETL process includes old data stored in MySQL relational database and raw streaming 

data from smart meters. On the part of data ingestion, we adopted Spark SQL as task scheduling 

module to collect raw data on a regular basis; Apache Sqoop as transfer tool to directly ingest 

old data stored in operational databases from MySQL to Hive data warehouse. Basically, Hive 
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only defined the table schema and partition in the Hive Metastore, yet it does not store or 

process data. Hive is totally relying on HDFS and MapReduce to do data manipulation. 

Therefore, the action of ingesting data into Hive, in fact, it was being ingested into HDFS. 

    In the sight of big data search engine, Cloudera Impala integrates with the Hive metastore 

database, to share databases and tables between both components. Impala provides high-

performance, low-latency SQL queries on data stored in Hadoop file formats, like Hive or 

HBase. The fast response for queries enables interactive exploration and fine-tuning of analytic 

queries, rather than batch jobs traditionally associated with SQL-on-Hadoop technologies. 

Besides, Impala also supports JDBC client to interact with it. So as to do further data analytics, 

like foresting, pattern discovery, power consumption time-series through high-performance, 

Impala become the principle choice for an OLAP service. 

 

3.2 Design of Data Warehouse and ETL Service 

As seen from the middle layer of Figure 3.1, Hive becomes a big data warehouse of the power 

data, and the data source of the system is conducted from the operational MySQL database and 

real-time smart meter data. The ETL processing of data warehousing had been done with Sqoop 

as a tool to extract operational databases from MySQL to Hive data warehouse and Spark as 

real-time data processing module to transform raw data to useful data. Finally, executing the 

Spark application periodically to make sure power data can be imported in a stable condition. 

 

3.2.1 Power Utilization Assessment 

In the section of power-sensing we used the WPM-100 Wireless Multifunction Power Meter to 

collect data, including: voltage, current, power, power factor, frequency, etc. In addition to this, 

it can be transmitted through the wireless means of sensing data for a broad range of energy 

data collection to reduce the work of wiring. These data will be returned to the electric power 

data warehouse immediately. 
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Figure 3.3: WPM-100 Wireless Multifunction Power Meter 

 

 

Figure 3.4: WPM-100 Wireless Multifunction Power Sensor 

 

    The power meter we used in the proposed system is developed by EverComm Opto Ltd. 

(ECO). ECO is a manufacturer of motor and generator, and vendor of system integration located 

in New Taipei City, Taiwan. It began offering the service of photoelectric, wireless 

communication and information system since March 26, 2015. ECO has products of energy 

management system, green energy management, street light management and landscape 

illumination. Besides, ECO has provided a cycle diagram for energy management system as 

shown below in Figure 3.5. 
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Figure 3.5: Energy Management System Diagram Proposed by ECO 

 

    The three portions of energy management system that proposed by ECO. 

 Application: Supply an energy saving and management service for client. 

 Control: Develop the application of wireless module, integrated control and sensor in 

green energy industry. 

 Platform: Building a neural network platform for information transmission on the P2P. 
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3.2.2 Power Utilization Assessment 

For the sake of assessing data volume more accurately. The data format of smart meter as shown 

in Table 3.1 below. The return data is presented in JSON format with 26 fields. 

Table 3.1: Smart Meter Data Format 

Field Description Example 

location Meter ID LIB-4 

time_stamp Datetime 1491818534115 

KW Current power of the meter 228 

total_KWH Accumulated power this hour 1026109 

ch1_pf CH1-PF 0.807 

ch1_voltage CH1-Voltage 121.6 

ch1_current CH1-Current 10.343 

ch1_hz CH1-Hz 1015 

ch2_pf CH2-PF 0.878 

ch2_voltage CH2-Voltage 122.2 

ch2_current CH2-Current 9.786 

ch2_hz CH2-Hz 1050 

ch3_pf CH3-PF 0.88 

ch3_voltage CH3-Voltage 121.8 

ch3_current CH3-Current 11.466 

ch3_hz CH3-Hz 1229 

voltage12  211.2 

voltage23  211.4 

voltage31  210.9 

ch1_THDi  1.60 

ch2_THDi  9.10 

ch3_THDi  2.00 

ch1_THDv  1.60 

ch2_THDv  1.70 

ch3_THDv  1.90 

total_pf Total PF 0.98 
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    The data collected per minute for each meter which means that each sensor will receive 

about 128 Bytes of data every two seconds. In the case of TungHai University, there are about 

40 dormitories, and administrative and academic building has equipped smart meter, based on 

one building with one meter. The density of the sensor in campus is about to reach 120, after 

deducing, one year will produce the following amount of data: 

 

128 (Bytes) × 43200 (Sec) × 365 (Days) × 120 (Sensors) ≒ 230976 MB ≒ 225.6 GB 

 

    In addition to smart meter sensing data, the environment of sensing area also causes an 

impact of electric power consumption. In environmental sensing, each environment has 20 

sensors detecting once in a second. The estimated volume of data will be as follow: 

 

100 (Bytes) × 86400 (Sec) × 365 (Days) × 20 (Sensors) ≒ 60150 MB ≒ 58.7 GB 

 

    According to the above calculation we can simulate the data volume would reach almost 

300 GB a year, besides, after built our campus energy management system, the volume of 

processed data is growing quickly as well. It already causes a burden to the traditional relational 

database and previous storage system. 

 

3.2.3 Transferring Operational Data from MySQL to Hive 

Database 

The transfer of historical meter data from the relational database to HDFS can be done through 

Apache Sqoop. Sqoop is a data transfer tool that can transfer data from a traditional relational 

database to a Hadoop storage system by using Hadoop MapReduce parallelism to speed up the 

process of data migration. It supports not only transfer data from MySQL to HDFS but also 

Hive and HBase. Figure 3.6 shows the workflow for operational data transfer. 
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Figure 3.6: Sqoop Workflow for Operational Data Transfer 

 

3.2.4 Data ETL Service 

Data ETL Service can be used to transferring raw data to the data warehouse via the ETL 

process. Raw data includes real-time data in data center and data of campus buildings and stable 

data writing is done by periodically executing Data ETL Service. Figure 3.8 shows the use case 

diagram of the data ETL service. As shown in Figure 3.7, we choose Spark SQL DataFrames 

API as data processing module to develop data ETL application. 

 

 

Figure 3.7: Spark SQL API 
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Figure 3.8: Use Case Diagram for Data ETL Service 

 

3.2.5 Periodic Statistical Service 

To achieve real-time presentation on front-end web user-interface, the process of calculating 

raw data to different kinds of processed data periodically is required. By the reason of the 

efficiency of Spark, Scala is our first choose to program the periodic processing application. 

There are several types of data that is needed to generate, such as accumulated power data in 

each minute, hour, day, month, and year. Another benefit of adopting spark as back-end 

processing is to reduce the burden of front-end. 
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3.3 System Implementation 

In this work, we have established the big data clusters through four physical machines, one 

node as master, three nodes as the computing node to set up Cloudera big data platform that 

including CDH (Cloudera Distribution Including Apache Hadoop), Apache Spark, Apache 

Sqoop2, Apache Hive, and Cloudera Impala. Table 3.2 shows the software specification of five 

cluster nodes. 

 

Table 3.2: Software Specification 

 Version 

Cloudera Manager 5.10.1 

Hadoop 2.6.0-cdh5.10.1 

HDFS 2.6.0-cdh5.10.1 

Hive 1.1.0-cdh5.10.1 

YARN 2.6.0-cdh5.10.1 

Spark 2.1.0-cdh5.10.1 

Sqoop2 1.99.5-cdh5.10.1 

Impala 2.7.0-cdh5.10.1 

Hue 3.9.0-cdh5.10.1 

 

    In the big data processing platform construction, we used the newest version of CDH 

(Cloudera Distribution Including Apache Hadoop) as big data service platform. The reason we 

did not use native Hadoop is that CDH not only provides better stability than native Hadoop 

ecosystem but convenient platform monitoring and management, each node in the cluster can 

be monitored instantly via the web user interface in Cloudera Manager. In addition, Cloudera 

Manager allows developers add new cluster or host manually and choose custom services to 

deploy on it. 
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Figure 3.9: Cloudera Manager Web User Interface 

 

 

Figure 3.10: Nodes of Hadoop Cluster 

 

    By the visualization Hue web user interface, the thing of querying records inside the Hive 

table become much more intuitive. Hue not only supports to manipulate data in Apache Hadoop 

ecosystem, but also provides corresponding dynamical search dashboard with Solr. The most 

important is that it support interactive query of HiveQL and Impala. In Figure 3.11 and Figure 

3.12, we can see the visualization interface of Hue. 
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Figure 3.11: Hue Web User Interface 

 

 

Figure 3.12: Hue Job Browser 
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Chapter 4 

Evaluation and Experimental Results 

In this section, the experimental environment and results of the proposed cloud intelligent 

campus energy monitoring system are described. After building the proposed system, we have 

collected about 400GB of data. In order to make the evaluation and experiments easy to be 

measured, the data size has been divided into 10GB, 50GB, 100GB, and 200GB. In section 4.1, 

we introduce the experimental environment and implementation of the proposed system. 

Sections 4.2 to 4.5 show the performance tests for verifying the efficiency of the system. 

 

4.1 Experimental Environment 

This section presents our hardware and software environmental environment. The proposed 

system is implemented with eight physical servers connected by Gigabit Ethernet to build a 

computing cluster. Each physical server consists of Intel Core i7 CPU with 16 GB Memory and 

1TB HD. Besides, Ubuntu 14.04 LTS is adopted as our operating system. Also, the newest 

version of Hadoop 2.6.0-cdh5.10.1, Spark 2.1.0-cdh5.10.1, Sqoop 1.4.6-cdh5.10.1, Hive 1.1.0-

cdh5.10.1, and Impala 2.7.0-cdh5.10.1 in Cloudera Manager 5.10.1 are installed, as shown in 

Table 4.1 and Figure 4.1. 

 

Table 4.1: Experimental Environment 

ID CPU RAM HDD Num of Cores 

1 Intel®
 Core™ i7-4770@3.40GHz 16GB DDR3 1TB 8 

2 Intel®
 Core™ i7-4770@3.40GHz 16GB DDR3 1TB 8 

3 Intel®
 Core™ i7-4770@3.40GHz 16GB DDR3 1TB 8 

4 Intel®
 Core™ i7-4770@3.40GHz 16GB DDR3 1TB 8 

5 Intel®
 Core™ i7-4770@3.40GHz 16GB DDR3 1TB 8 

6 Intel®
 Core™ i7-4770@3.40GHz 16GB DDR3 1TB 8 

7 Intel®
 Core™ i7-4770@3.40GHz 16GB DDR3 1TB 8 

8 Intel®
 Core™ i7-6950X@3.00GHz 128GB DDR3 2TB 10 

 



 

32 
 

 

Figure 4.1: CDH Computing Cluster 

 

 

4.2 Performance Evaluation of Record Counting Speed 

between Table Created by Hive and Impala 

In the first experiment, we used two kinds of framework including Hive and Impala to figure 

out how performance-intensive a record counting would be, when table is created in Hive and 

Impala respectively. The difference of table being created in Hive and Impala is that Impala can 

do the file compression with a better way. For the certification perspective, we tested it with 

Impala SQL COUNT Function in tables with different number of record rows. The range of 

testing data number is from 56 to 1120 million. 
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Figure 4.2: Comparing Record Counting Speed of Table Being Created in Hive and Impala 

Respectively 

 

    After the evaluation, Figure 4.2 shows the result of record counting speed. As our expected, 

the processing time of table being created in Impala shows a better efficiency than table being 

created in Hive. Table which is created in Hive has spent more time than Impala in any number 

of records, due to it is using MapReduce as the hood of Hive. In contrast, Impala daemon 

processes are started at boot time, and each Impala node caches all of its metadata to reuse for 

future queries against the same table. Thus, Impala is always ready to execute a query. 

 

4.3 Performance Evaluation of Querying in a Single 

Condition among HiveQL, Spark SQL, and Impala SQL 

The response time of data search plays an important role on real-time power management 

system. Therefore, the efficiency of querying records in different conditions should be 

evaluated. In order to verify the performance among three modules in detail, a single condition 

query experiment was being derived from different scales of data. The comparison of HiveQL, 

Spark SQL and Impala SQL searching speed in a single condition query as shown in Figure 4.3. 

 



 

34 
 

 

Figure 4.3: Comparison of HiveQL, Spark SQL, and Impala SQL Searching Speed in a Single 

Condition Query 

 

    The result as shown in Figure 4.3, Impala SQL still have a numerous gap corresponding 

to HiveQL and Spark SQL. The essential difference of Impala SQL with HiveQL and Spark 

SQL is that Impala SQL generates less segment files than HiveQL and Spark SQL while running 

a query task in the same cluster. As a result, the process time of shuffle is going to spend less 

than the other modules. 

 

4.4 Execution Time of ETL Application 

For the efficiency of ETL process in data warehousing, the execution time of ETL application 

is crucial as well. The speed of data ETL will immediately affect the speed of data visualization. 

For the following experiment shown in Figure 4.4, we developed two ETL applications in Hive 

and Spark to extract data from data resource, transfer format, and load into Hive table. By 

intuitively comparing the execution time of each application to know the best efficient ETL tool 

is. 
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Figure 4.4: Execution Time of ETL Application between Hive and Spark 

 

    As Figure 4.4 can see, we noticed that Spark is quick more than sixteen times for ETL 

application. As a result, the latency while ingesting data would decrease to one minutes inside. 

 

 

Figure 4.5: Execution Time of ETL Application with Different Number of Processing Nodes 

    In order to highlight how the slave node number would cause processing time difference, 

we executed the same ETL application in the same cluster with different number of slave nodes. 

In Figure 4.5 can observe that with the number of processing node increasing, the more 
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execution time would be consumed. When Hadoop is getting data from external data resources, 

it used to take three copies in default before storing them into HDFS. It means Hadoop must 

split the data into more nodes to execute pipeline mission. The more slave node in cluster, the 

more time latency while connecting. 

 

4.5 Processing Time of Statistical Procedure 

In general, most of website would put calculating or statistical procedures at the website server 

and use several script languages to compute the information they need. As the purpose to 

achieve a rapid presentation on front-end website, those statistical procedures must be compute 

quickly in the background cluster. In the front-end website of the proposed system as shown in 

Figure 4.6, a history data collection service need to calculate power data in each minute, hour, 

day, month, and year. Thus, we compared the statistical procedure processing time of Hive and 

Spark on background cluster. In addition, we have measured the processing time in different 

numbers of computing node. 

 

 

Figure 4.6: Front-end Website of the Proposed System 
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Figure 4.7: Processing Time of Statistical Procedure in Different Numbers of Processing 

Nodes 

 

    Figure 4.7 shows the processing time of statistical procedure using different numbers of 

computing hosts. We noticed that processing time of Spark is gradually approaching a stable 

status in three computing resource, however, Hive is still dropping down and spent far more 

time than Spark. 

 

    Finally, after the previous experiments we observed that the number of processing node 

will directly affect the processing of data ETL and statistical query. Thus, we also compared the 

performance trend between read/write manipulation on Hive and Spark, the result is as shown 

in Figure 4.8 below. 
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Figure 4.8: Performance Trend between Read/Write manipulation on Hive and Spark 

 

    In Figure 4.8, we can figure that the processing time of write manipulation is keeping on 

rising as the number of processing node increasing. That is because the more processing node 

will cause the requirement to build pipeline to each DataNode. In contrast, read manipulation 

do not have this problem, the more computing resource cluster has, the less processing time 

spend. 

 

4.6 Resource Utilization 

 

In the second experiment, we tested the query speed in a single condition among HiveQL, Spark 

SQL, and Impala SQL. In terms of resource utilization, the processing time of multiple 

condition query is long enough for presenting the resource utilization of cluster. Besides, Spark 

and Impala are both memory intensive framework. Thus, we compared the memory usage of 

these two frameworks, by presenting the experimental utilization results for the same 

manipulation statement in both frameworks. 
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Figure 4.9: Memory Utilization 

 

In Figure 4.9, we see the KiloBytes of memory needed for current workload in relation to the 

total amount of memory. In this way, we can clearly see that Impala does better memory usage 

than Spark does. As we mentioned before Impala uses more effectively the main memory and 

achieves better performance. 
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Chapter 5 

Conclusions and Future Works 

5.1 Concluding Remarks 

In this work, we built a big data warehouse of power data and ETL processing for data 

warehousing with several big data modules. The proposed system includes Hadoop (as storage 

subsystem), Hive (as data warehouse), Spark (as data ETL tool), and Impala (as big data search 

engine) from bottom to top. The generic power-data source is provided by the so-called smart 

meters equipped in real field. The data collection and storage are handled by the Hadoop 

subsystem and the data ingestion to Hive data warehouse is conducted by the Spark unit. In 

order to evaluate the query-response performance of our data warehouse, several tests had been 

done in different data volume. 

 

    The major contributions of this research can be concluded by two aspects: (1) The open 

and non-proprietary multi-layer software modules are selected systematically. The design goal 

had been approached by constituting the real-time power-monitoring platform embedded with 

some excellent characteristics of high efficiency, high feasibility and low cost. Moreover, a big 

data warehouse and ETL process of cleansing, customization, reformatting, integration, and are 

inserted into the proposed data warehouse. (2) The requisite experiments had been conducted 

to verify the query-response efficiency, and performance evaluations for the proposed power 

data processing platform, which reveals the high feasibility for the target research goals. 

 

5.2 Future Works 

In the future work, we are going to finish the ODBC connection between front-end website and 

the data warehouse that we had built in this work. In that way, an integral real-time power data 

analytic platform we proposed can be fully achieved. Besides, we will also improve the system 

by adding different categories of data, such as semi-structure data (like system logs or service 

logs). Finally, to confirm the system's scalability we will add more hosts and observe the 

condition of each hosts to prevent additional incident happened. 

 

    To enrich the proposed design work, it is expected that several system parameters like the 

crowd movement, temperature, and humidity of the target building can be sensed and collected 

to proceed similar processing. After integrating and analyzing these system parameters together, 
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it is anticipated that more practical and accurate results would be approached other than just 

using only parameter, the power(load).  
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Appendix A 

Cloudera Manager Installation and Configuration of 

CDH Environment 

I. Download the newest version of Cloudera Manager from official website. 

# wget http://archive.cloudera.com/cm5/installer/latest/cloudera-manager-installer.bin 

II. Modify the authority of Installation file, and start to install. 

# sudo chmod 775 cloudera-manager-installer.bin 

# sudo ./cloudera-manager-installer.bin 

III. Set up NTP server on Linux 

# sudo apt-get install –y ntp 

# ntpdate –s ntp.ubuntu.com pool.ntp.org 

IV. Open up any explore and type http://masterIP:7180 in address bar to go to Cloudera 

Manager User Interface Website(Login with default username and password) 

V. Specify hosts(with hostname or IP address) for CDH cluster 

VI. Make sure it have got the situation of hosts 

VII. Choose CDH version (Basically recommend default setting) and additional parcels 

VIII. Providing SSH login credentials with sudoer user of master node 

# sudo vim /etc/sudoer 

IX. Choose the CDH services that you want to install on cluster 

X. After finishing installation process, the status of each cluster will be monitored on the 

Cloudera Manager website by logging in with the same username, password, and port. 

 

  

http://archive.cloudera.com/cm5/installer/latest/cloudera-manager-installer.bin
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Appendix B 

Transferring Data from Relational Database to 

Hadoop by Using Apache Sqoop 

As Figure 2.7 shows the data flow of Apache Sqoop, an application for transferring data 

between relational databases and Hadoop. 

XI. Deploy mysql JDBC connector. 

Download mysql-connector from the following address. 

# wget https://dev.mysql.com/get/Downloads/Connector-J/mysql-connector-java-5.1.41.tar.gz 

Uzip it into sqoop directory. 

# tar -zxf mysql-connector-java-5.1.41.tar.gz 

# sudo cp mysql-connector-java-5.1.41/mysql-connector-java-5.1.41-bin.jar 

/opt/cloudera/parcels/CDH-5.10.1-1.cdh5.10.1.p0.10/lib/sqoop/lib/ 

XII. Try to print a table with Sqoop command. 

Table A.1 Sqoop Arguments 

Command Function 

--connect [jdbc-uri] Jdbc connect URL  

--username [mysql-username] MySQL login username 

--P MySQL password 

--table [mysql-table-name] MySQL table 

--hive-import Import to Hive 

--hive-table [table-name] Choose hive table to import to 

--target-dir Target Hive diretory  

--split-by [column-name] Split by column name 

-m Split into how many Map processes 

 

# sqoop list-databases --connect jdbc:mysql://MySQL_DB_IP:3306/power --username hpc –P 
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Figure A.1: List All Database in MySQL Database Using Sqoop 

 

XIII. Transferring table from relational database in MySQL to Hive data warehouse, and store 

as another table with same content 

# sqoop import --connect jdbc:mysql://MySQL_DB_IP:3306/power --username hpc -P --table 

PowerDaily --hive-import --hive-table PowerDaily --target-dir 

/user/hive/warehouse/PowerDaily --split-by no -m 1 

 

Figure A.2: Importing Data from MySQL to Hive Database Using Sqoop MapReduce Process 



 

48 
 

 

Figure A.3: Successfully Importing Data to Hive DB 

XIV. Getting into Hive to check if the data has been imported. 

# hive 

# SELECT * FROM table; 

 

Figure A.4: Full Table Scan Test 
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Appendix C 

Programming Code 

I. Power Data ETL Processing Code 

import org.apache.spark.SparkConf 

import org.apache.spark.SparkContext 

import org.apache.spark.sql.SQLContext 

import org.apache.spark.sql.SparkSession 

import java.util._ 

import java.text.SimpleDateFormat 

import org.json.JSONArray 

import org.json.JSONObject 

import scala.io.Source 

import org.apache.log4j.{Level, Logger} 

 

object CampusMinute { 

  case class UnderAgeException(message: String) extends Exception(message) 

  val rootLogger = Logger.getRootLogger() 

  rootLogger.setLevel(Level.ERROR) 

  val spark = SparkSession 

    .builder() 

    .appName("Campus power data in Minute") 

    .config("spark.sql.warehouse.dir", "hdfs://master:9000/user/hive/warehouse") 

    .enableHiveSupport() 

    .getOrCreate() 
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  import spark.implicits._ 

  import spark.sql 

 

  implicit def everyMin(f: () => Unit): TimerTask = { 

    return new TimerTask { 

      def run() = f() 

    } 

  } 

 

  def main(args: Array[String]): Unit = { 

    val timer = new Timer() 

    timer.schedule(everyMin(getPower), 1000L, 20000L) 

  } 

 

  def getPower() = { 

    try { 

      val url = Source.fromURL("Data Resource URL") 

      val urlString = url.mkString 

      val jArray = new JSONArray(urlString) 

      for (i <- 0 until jArray.length()) { 

        val jdata = jArray.getJSONObject(i) 

        val pid = jdata.get("location") 

        val P = jdata.get("KW").toString 

        val totalP_H = jdata.get("totalKWH").toString 

        val PF = jdata.get("total_pf").toString 
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        val ch1_current = jdata.get("ch1_current").toString().toFloat 

        val ch2_current = jdata.get("ch2_current").toString().toFloat 

        val ch3_current = jdata.get("ch3_current").toString().toFloat 

        val I = ch1_current + ch2_current + ch3_current 

        val ch1_voltage = jdata.get("ch1_voltage").toString().toFloat 

        val ch2_voltage = jdata.get("ch2_voltage").toString().toFloat 

        val ch3_voltage = jdata.get("ch3_voltage").toString().toFloat 

        val V = ch1_voltage + ch2_voltage + ch3_voltage 

        val ch1_hz = jdata.get("ch1_hz").toString().toFloat 

        val ch2_hz = jdata.get("ch2_hz").toString().toFloat 

        val ch3_hz = jdata.get("ch3_hz").toString().toFloat 

        val ch1_pf = jdata.get("ch1_pf").toString().toFloat 

        val ch2_pf = jdata.get("ch2_pf").toString().toFloat 

        val ch3_pf = jdata.get("ch3_pf").toString().toFloat 

        val v12 = jdata.get("voltage12").toString().toFloat 

        val v23 = jdata.get("voltage23").toString().toFloat 

        val v31 = jdata.get("voltage31").toString().toFloat 

        val ch1THDi = jdata.get("ch1_THDi").toString().toFloat 

        val ch2THDi = jdata.get("ch2_THDi").toString().toFloat 

        val ch3THDi = jdata.get("ch3_THDi").toString().toFloat 

        val ch1THDv = jdata.get("ch1_THDv").toString().toFloat 

        val ch2THDv = jdata.get("ch2_THDv").toString().toFloat 

        val ch3THDv = jdata.get("ch3_THDv").toString().toFloat     

         

        val timeStamp = jdata.get("time_stamp").toString 
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        val time = timeFormat(timeStamp) 

        val timeSplit = timeFormat(timeStamp).split(" |:|-") 

        val YMD = timeSplit(0)+"-"+timeSplit(1)+"-"+timeSplit(2) 

        val hour = timeSplit(3) 

        val min = timeSplit(4) 

        sql(s"INSERT INTO powerminute VALUES ('$YMD','$hour', '$min', '$pid', '$P')") 

        sql(s"INSERT INTO campuspowerraw VALUES ('$pid','$time', '$P', '$totalP_H', 

'$ch1_pf', '$ch1_voltage', '$ch1_current', '$ch1_hz', '$ch2_pf', '$ch2_voltage', '$ch2_current', 

'$ch2_hz', '$ch3_pf', '$ch3_voltage', '$ch3_current', '$ch3_hz', '$v12', '$v23', '$v31', '$ch1THDi', 

'$ch2THDi', '$ch3THDi', '$ch1THDv', '$ch2THDv', '$ch3THDv', '$PF')") 

      } 

      val today = Calendar.getInstance().getTime() 

      println("done! " + today) 

    } catch { 

      case UnderAgeException(msg) => msg 

    } 

  } 

 

  def timeFormat(time: String): String = { 

    var sdf: SimpleDateFormat = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss") 

    var date: String = sdf.format(new Date(time.toLong)) 

    date 

  } 

} 
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II. Periodic Statistical Service Code(Power Load in Every 

Hour and Day) 

def getHourPower() = { 

    try { 

      val df = spark.read.table("powerminute") 

      val today = Calendar.getInstance().getTime() // Current date 

      var sdf_d: SimpleDateFormat = new SimpleDateFormat("yyyy-MM-dd") //date format 

      val day: String = sdf_d.format(today) 

      val sdf_h: SimpleDateFormat = new SimpleDateFormat("hh") 

      val hour: String = sdf_h.format(today) 

      val url = 

Source.fromURL("http://140.128.197.129:8080/rest/buildingMeter/powerUsage/") // data 

resource 

      val urlString = url.mkString 

      val jArray = new JSONArray(urlString) 

      for (i <- 0 until jArray.length()) { 

        val jdata = jArray.getJSONObject(i) 

        val pid = jdata.get("location") 

        val avg = sql(s"SELECT AVG(p) FROM powerminute WHERE `date` = '$day' 

AND `hour` = '$hour' AND `meter_id` = '$pid'").head().getDouble(0) 

        sql(s"INSERT INTO powerhour VALUES ('$day','$hour', '$pid', round('$avg',2))") 

      } 

      println("done! " + day + " " + hour) 

    } catch { 
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      case UnderAgeException(msg) => msg 

    } 

  } 

 

def getDayPower() = { 

    try { 

      var sdf_d: SimpleDateFormat = new SimpleDateFormat("yyyy-MM-dd")     //date 

format 

      val day_start = Calendar.getInstance()    // Start date 

      day_start.add(Calendar.DATE, -1) 

      val yesterday: String = sdf_d.format(day_start.getTime()) 

      val day_stop = Calendar.getInstance()    // Start date 

      val today: String = sdf_d.format(day_stop.getTime()) 

      val url = 

Source.fromURL("http://140.128.197.129:8080/rest/buildingMeter/powerUsage/") 

      val urlString = url.mkString 

      val jArray = new JSONArray(urlString) 

      for (i <- 0 until jArray.length()) { 

        val jdata = jArray.getJSONObject(i) 

        val pid = jdata.get("location") 

        val avg = sql(s"SELECT date, p/1000 as P FROM powerhour WHERE `date` >= 

'$yesterday' AND `date` = '$today'").head().getDouble(0) 

 

        sql(s"INSERT INTO powerhour VALUES ('$today', round('$avg',2))") 

      } 
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      println("done! " + today) 

    } catch { 

      case UnderAgeException(msg) => msg 

    } 

  } 


