
東海大學

資訊工程研究所

碩士論文

指導教授: 楊朝棟博士

實作一個基於 Docker 具監控及自動部署的容器管理
平台

The Implementation of a Container Management Platform

with Monitoring and Self-Deployment on Docker

研究生: 江峻毅

中華民國一零六年七月

1

摘 要

近年來，虛擬化成為新一代資料中心最為關鍵的技術之一。不過虛擬化技術帶

來的麻煩是每個實例都需要運行客戶端作業系統以及其中的大量應用程式，因

此會產生沉重的負載，也會影響工作效率及性能表現。為了瞭解容器虛擬化是

否能夠解決傳統虛擬化碰到的問題，本論文研究跟評估了一些環境的效能表現

(裸機, Docker容器以及虛擬機器)來瞭解關於每一個環境的特點之間的比較。詳

細來說，我們透過工具來測量跟分析系統在每個環境中的性能。這些結果可以

幫助我們探討 Docker 會帶來多少影響與差異。另外，我們利用 Docker 將應用

服務容器化，並且結合 OpenStack實做一個管理 Docker容器的監控平台，在過

程中碰到 OpenStack 虛擬化發動時間過長的問題，因此我們利用 Nova-Docker

來解決這個問題。Hadoop 是解決大數據儲存和計算的高效工具。它帶來的高

效擴展、高容錯等優勢的同時，也增加了部署及維護的難度。Docker 以一處封

裝，隨處運行作為出發點，大幅降低複雜平台的部署和維護難度。利用 Docker

來部署 Hadoop，可以大幅度降低部署花費的時間，並且提高部署效率。然後透

過比較 Hadoop 有無結合 Docker 來驗證 Docker 是否能夠解決部署難度及花費

時間。

關鍵字: 虛擬化、雲端運算、容器虛擬化技術、Docker、Hadoop.

i

Abstract

In recent years, virtualization is one of the key to next generation of data center.

However, the problem of virtualization technology is each instance needs to run a

client operating system and a lot of applications. So, it will have a heavy load and

also affect the work efficiency and performance. In order to understand whether

container-based virtualization can solve the problems of traditional virtualization.

In this work, we study and evaluate the performance of these environments(bare-

metal, Docker container, and virtual machines) to understand the differences be-

tween the characteristics of each environment with another one. For more detail,

we measured and analyzed the system performances in each environment. These

results can help us explore how much impact of docker performance. In addi-

tion, we could build application containerization via Docker, and we combined

with OpenStack to implement a container management platform with monitoring

based on Docker. We used Nova-Docker as an integration platform because of

OpenStack virtualization is running too long. Besides that, Hadoop is an efficient

tool to solve Big Data platform, it provided an efficient expansion for high fault

tolerance and other advantages and also increased the difficulty of subordinates

and maintenance. We used Docker to deploy Hadoop, it can reduce the spend

time on deployment significantly and improve more effectively. Then, compare

between Hadoop integrates with Docker and without Docker to verify that Docker

is able to solve depoly difficulty and it’s time spend.

Keywords: Virtualization, Cloud Computing, Container-based virtualization,

Docker, Hadoop.

ii

致謝詞

經過兩年在東海研究所的磨練，還有學習研究所的課程過程中，讓我學習到很

多，在資訊工程領域上更加精進，研究過程中碰到許多困難跟挑戰，從這中間

不斷克服並且解決問題，也讓我增加許多過去大學沒有過的經驗。

能完成這篇論文必須感謝很多人，首先，最感謝我的指導教授楊朝棟教授，

從大學專題就一路跟著楊老師直到研究所的論文研究，過程中老師不斷傳授給

我及其他同學各種最新科技，讓我接觸各項新的事務，擴展我的視野及國際觀，

除了研究方面的教導，楊老師更教會我很多平常做人處事的態度以及應對，在

每週會報不斷的提點我、督促我，讓我有動力能夠繼續完成這篇論文，謝謝老

師在大學及研究所生涯的指導，雖然常在各方面上碰到瓶頸，但都是因為有老

師的鼓勵與幫忙，才能讓我在研究所生活順利進行下去。之後，也會努力遵循

老師給我的教誨。

特別感謝口試委員許慶賢教授、呂芳懌教授、賴冠州教授以及薛念林教授百

忙之中撥空前來參加我的論文口試，在論文口試時提出很多論文的盲點和非常

多寶貴的意見，讓我從各教授意見得到更多啟發，將論文變得更加完整，學生

衷心感謝。也還要感謝我的好朋友人豪、培倫、宗岳、學弟妹以及最重要的同

學們，這兩年的生活一路走來，在我有問題時，毫不吝嗇的幫助我、給我意見，

最後解決問題。

最後要感謝我的家人，在我的求學路上，讓我心無旁鶩，可以專心在學業

上，有了你們的叮嚀跟關心，讓我可以更堅定的走在這條人生道路上，並且讓

我的研究得以成功，由衷感謝一路陪伴的所有人。

東海大學資訊工程學系 高效能實驗室 江峻毅 106 年 07 月

iii

Table of Contents

摘要 i

Abstract ii

致謝詞 iii

Table of Contents iv

List of Figures vi

List of Tables viii

1 Introduction 1
1.1 Motivation . 2
1.2 Thesis Goal and Contributions . 3
1.3 Thesis Organization . 3

2 Backgroud Review and Related Works 4
2.1 Virtualization and Hypervisor . 4

2.1.1 Docker . 5
2.1.2 Hypervisor . 7

2.2 Hadoop Ecosystem . 9
2.2.1 Hadoop . 9
2.2.2 Apache Spark . 11

2.3 OpenStack . 11
2.3.1 OpenStack Componet . 12
2.3.2 OpenStack Conceptual Architecture 14

2.4 Power Distribution Units(PDU) . 16
2.5 Related Works . 17

3 System Design and Implementation 20
3.1 System Design Architecture . 20
3.2 System Implementation . 21

3.2.1 Status Monitoring . 23
3.2.2 Dockerize Hadoop . 24
3.2.3 Dockerize Spark . 26

iv

TABLE OF CONTENTS v

3.2.4 Assign Tasks . 26
3.2.5 User Services . 28

4 Experimental Results 30
4.1 Experimental Environments . 30
4.2 Boot-Time on OpenStack . 31
4.3 Docker and Virtual Machine Performance Comparison 32

4.3.1 CPU Utilization of Virtual Machine 32
4.3.2 File I/O Performance Comparison between Docker and KVM 33

4.4 Performance of Hadoop and Spark Comparison between Docker and
Virtual Machine . 36
4.4.1 Execution Time of Hadoop and Spark on Docker and Vir-

tual Machine . 37
4.4.2 Deploying Hadoop in Different Environments 38

4.5 Container Management Platform 38

5 Conclusions and Future Work 41
5.1 Concluding Remarks . 41
5.2 Future Work . 42

References 43

Appendix 47

A Hadoop Installation 47

B Spark Installation 51

C Docker Installation 53

D Nova-Docker Installation 55

E PDU Information program 57

List of Figures

2.1 Different between traditional architecture and virtual architecture . 5
2.2 Different between virtual architecture and Docker architecture . . . 6
2.3 Hosted hypervisor . 8
2.4 Bare-metal hypervisor . 9
2.5 The architecture of Hadoop . 10
2.6 The conceptual architecture of OpenStack 15
2.7 Raritan’s PDU . 17

3.1 The overview architecture of system 21
3.2 Web service . 22
3.3 OpenStack on Docker . 23
3.4 docker api1 . 23
3.5 docker api2 . 24
3.6 The process of Hadoop on Docker 25
3.7 Packaging Hadoop into image . 25
3.8 Spark Dockerfile . 26
3.9 The process of launch . 27
3.10 Assign tasks . 27
3.11 Send information back to web . 28

4.1 Boot-time on OpenStack . 31
4.2 Average server boot time between KVM 32
4.3 Average server reboot time between KVM 33
4.4 Average server delete time between KVM 33
4.5 CPU utilization of virtual machine 34
4.6 Read speed comparison between Docker and KVM 34
4.7 Write speed comparison between Docker and KVM 35
4.8 Read and Write speed comparison between Docker and KVM . . . 35
4.9 Power usage during the experiment 36
4.10 Execution time of Hadoop in different workloads 37
4.11 Execution time of Spark in different workloads 37
4.12 Hadoop start-up time . 38
4.13 Container monitoring on the web site 39
4.14 Do actions on web site directly . 39
4.15 Remove images on web site directly 40
4.16 Remove volumes on web site directly 40

vi

LIST OF FIGURES vii

4.17 Users information . 40

List of Tables

2.1 KVM szie . 18
2.2 Docker szie . 18

3.1 Software & language Specification 28

4.1 Hardware specification . 30
4.2 Software specification . 31
4.3 The data of power usage . 36

viii

Chapter 1

Introduction

Cloud computing has a huge change for industry development after Internet. Not

only the IT industry which provide cloud computing technology, but also the

general using way of the government, enterprise and personal are getting some

change with the born of cloud computing. In the IT industry, cloud computing

is undoubtedly caused a comprehensive impact. From the most basic computer

components –processors, servers, storage devices, network equipment, informa-

tion security equipment, software, data centers, information services, even though

smart phone, tablet computer and other emerging mobile devices are unable to

break off relations from cloud computing. In recent years, cloud computing has be-

come one of the hottest topics. Cloud computing mainly combines virtualization,

service management automation and standardized technology. It provides flexible

computing ability and data analysis method with high performance. Companies

can run many kinds of service on the cloud platform without constructing data

center. This innovative computing and business model has attracted widespread

attention in industry and academia.

Cloud computing has become the most popular topic today; OpenStack and

Docker are the most popular undoubtedly. Easy management of the virtual ma-

chine of OpenStack combined with Docker that is light and fast becoming we want

to try, if combined with OpenStack and Docker can be spread, for cloud comput-

ing certainly is a great leap forward. Under the popularity of cloud computing, we

1

Chapter 1 Introduction 2

began to research for energy efficiency, how to achieve the highest resource uti-

lization and lowest energy is the issue they face of enterprise, schools, and other

places which need a lot of computing.

Docker is an open platform for developing, shipping, and running various ap-

plications in a faster way. Container technology is available through the operating

system. A container packages the application service or function with all of the

libraries, configuration files, dependencies and other necessary parts to operate.

Each container shares the services of one underlying operating system. Docker

has emerged as a de facto standard platform that allows users to quickly compose,

create, deploy, scale and oversee containers across Docker hosts. Docker allows

a high degree of portability so that users can register and share containers over

various hosts in private and public environments. Docker benefits include efficient

application development, lower resource use and faster deployment compared to

VMs.

1.1 Motivation

In recent years, many companies using the traditional way of one project and one

test environment, for different projects to establish a separate environment. The

advantage of this way is that the environment is built for projects and is used

in a single project environment where the cost is low and suitable for situations

where the number of test items are small, but as the business grows, the business

increases and the number of test items increase , the disadvantages of this kind

of way are gradually being apparent. So we think if we can improve the problem

with changing hypervisor will be effective, so we expect Docker that very popular

recently. If Docker as hypervisor, using the characteristics of Docker that light,

fast, and high utilization of resources, to explore the energy consumption, resource

utilization, and performance whether be improved during computing, and the

speed of deploy cluster whether be faster than KVM hypervisor.

Chapter 1 Introduction 3

1.2 Thesis Goal and Contributions

This work will implement a container management platform on Docker. Users will

see some information about container, such as how many containers are running

and when the user created it. There are also many features, you can pause, stop

and delete containers. We also compared the performance of some environments

to understand that about comparison between the characteristics of each envi-

ronment with one another. First, we will compare the time of turning on virtual

machines of Docker hypervisor and KVM hypervisor, it will turn on five virtual

machines at the same time to understand that the time of turning on multiple

virtual machines. Next, establish a Hadoop cluster on these five virtual machines

of Docker hypervisor and KVM hypervisor, allocating the same amount of re-

sources, measuring the power consumption and resources utilization. According

to the data we obtained, we wnat to know if Docker is faster than general virtual

environment. Finally, we provide a platform to manage containers.

1.3 Thesis Organization

In Chapter 2, we will describe some background information, including Virtual-

ization, Hypervisor, Docker, Mesos, Hadoop, OpenStack and related work. In

Chapter 3, we will introduce our experimental environment and the overall ar-

chitecture of our design. Chapter 4 shows the experimental results and analysis.

Chapter 5 provides conclusions and future work of this work.

Chapter 2

Backgroud Review and Related

Works

2.1 Virtualization and Hypervisor

In computing, virtualization [1–4] refers to the act of creating a virtual (rather

than actual) version of something, including (but not limited to) a virtual com-

puter hardware platform, operating system, storage device, or computer network

resources. With virtualization, the computer’s physical resources, such as servers,

network, memory, and storage, are abstractly presented after conversion, so that

users can apply those resources in a better way than the original configuration.

Simply put, virtualization is a technology that allows the user to transform hard-

ware into software, and it allows the user to run multiple operating systems simul-

taneously on a single computer. Virtual architecture is different from traditional

architecture, as shown in Figure 2.1. Traditional architecture can run single oper-

ating system on a single computer, but the virtual architecture can run multiple

operating systems on a single computer.

There are many benefits of virtualization, such as:

• Encapsulation - VMs can be described in a file.

4

Chapter 2 Backgroud Review and Related Works 5

• Enables running multiple operating systems.

• Resource management.

• High availability and disaster recovery.

• Create “Base Environment”.

• Safe testing of new software.

• Easy Management.

arch.bb
Figure 2.1: Different between traditional architecture and virtual architecture

2.1.1 Docker

Docker [5–8] is an open-source project that automates the deployment of appli-

cations inside software containers, by providing an additional layer of abstraction

and automation of operating-system-level virtualization on Linux. Docker uses the

resource isolation features of the Linux kernel such as cgroups and kernel names-

paces, and a union-capable filesystem such as aufs and others to allow independent

”containersto” run within a single Linux instance, avoiding the overhead of start-

ing and maintaining virtual machines. The Linux kernel‘s support for namespaces

mostly isolates an application‘s view of the operating environment, including pro-

cess trees, network, user IDs and mounted file systems, while the kernel‘s cgroups

Chapter 2 Backgroud Review and Related Works 6

provide resource limiting, including the CPU, memory, block I/O and network.

Since version 0.9, Docker includes the libcontainer library as its own way to di-

rectly use virtualization facilities provided by the Linux kernel, in addition to

using abstracted virtualization interfaces via libvirt, LXC [9–11] (Linux Contain-

ers) and systemd-nspawn. By using containers, resources can be isolated, services

restricted, and processes provisioned to have an almost completely private view of

the operating system with their own process ID space, file system structure, and

network interfaces. Multiple containers share the same kernel, but each container

can be constrained to only use a defined amount of resources such as CPU, memory

and I/O. Using Docker to create and manage containers may simplify the creation

of highly distributed systems by allowing multiple applications, worker tasks and

other processes to run autonomously on a single physical machine or across mul-

tiple virtual machines. This allows the deployment of nodes to be performed as

the resources become available or when more nodes are needed, allowing a plat-

form as a service (PaaS)-style of deployment and scaling for systems like Apache

Cassandra, MongoDB or Riak. Docker also simplifies the creation and operation

of task or workload queues and other distributed systems. Docker architecture is

different from virtual architecture, as shown in Figure 2.2.

arch.bb
Figure 2.2: Different between virtual architecture and Docker architecture

Chapter 2 Backgroud Review and Related Works 7

2.1.2 Hypervisor

A hypervisor [12, 13] or virtual machine monitor (VMM) is a piece of computer

software, firmware or hardware that creates and runs VMs. A computer on which

a hypervisor is running one or more VMs is defined as a host machine. Each VM

is called a guest machine. The hypervisor presents the guest operating systems

with a virtual operating platform and manages the execution of the guest oper-

ating systems. Multiple instances of a variety of operating systems may share

the virtualized hardware resources. Simply stated, a hypervisor creates a layer

of abstraction that isolates an OS and its associated applications from the un-

derlying computing hardware. The isolation effectively mitigates software from

its traditional reliance on hardware devices and their drivers. The implications

of this behavior are profound. A hypervisor allows OSes and their application

workloads to run on a broader array of hardware. Similarly, multiple OSes and

workloads, each a unique VM or VM instance, can reside on the same system to

simultaneously share computing resources. Each VM can be migrated between

computing platforms on demand with little (if any) processing disruption. The

result is better use of computing platforms with seamless workload migration and

backup capabilities. Hypervisors generally fall into two categories: hosted and

bare-metal. Both offer distinct benefits and drawbacks.

A hosted hypervisor, as shown in Figure 2.3, runs within the OS and allows

additional OS and application instances to run on top of it. VMware Server and

Microsoft Virtual Server, as well as numerous endpoint-based virtualization plat-

forms like VMware Workstation, Microsoft Virtual PC and Parallels Workstation

are hosted hypervisors.

There are advantages of Hosted Hypervisor:

• Virtualization installs like application rather than like OS.

• Can run alongside conventional applications.

• Avoid code duplication–OS already has process scheduler, memory manage-

ment, device support etc.

Chapter 2 Backgroud Review and Related Works 8

• More suitable for personal users.

hypervisor.bb

Figure 2.3: Hosted hypervisor

Bare-metal hypervisor, as shown in Figure 2.4, is the most commonly deployed

type, and it can be installed directly onto the computing hardware. Its OS installs

and runs above the hypervisor. Major virtualization products that can be termed

as bare-metal hypervisors include Oracle VM, VMware ESXi, Microsoft Hyper-V

and Citrix XenServer.

There are advantages of Bare-Metal Hypervisor:

• Better performance with lower overhead.

• Highly efficient direct I/O pass-through architecture for network and disk.

• Complete control over hardware.

• Advanced features like live migration available.

• Suitable for production environments.

Chapter 2 Backgroud Review and Related Works 9

hypervisor.bb

Figure 2.4: Bare-metal hypervisor

2.2 Hadoop Ecosystem

2.2.1 Hadoop

Apache Hadoop [14–18], the most popular solutions for big data processing now,

is Apache Software Foundation open source framework. Hadoop implementation

is constructed in accordance with published Google MapReduce and Google File

System papers. The Apache Hadoop framework is built on top of the Hadoop Dis-

tributed File System (HDFS), and it supports a stable and automatic distributed

processing system. Hadoop implements the MapReduce programming framework,

which divides files into smaller file fragments of the same size, and allows file frag-

ments executed on any node in the cluster. Hadoop is designed to scale up from

a single server to thousands of machines, and provides parallel computing. The

architecture shown in Figure 2.5.

The Apache Hadoop project consists of the following:

The project includes these modules:

• Hadoop Common: The Hadoop common contains the libraries and modules

of Hadoop.

Chapter 2 Backgroud Review and Related Works 10

• HDFS: HDFS is designed to provide high throughput access to very large

datasets.

• Hadoop YARN: A framework for cluster resource management and task

scheduling.

• Hadoop MapReduce: MapReduce is composed of the map and reduce, of

which the input is divided into a plurality of blocks to be executed on each

node.

Figure 2.5: The architecture of Hadoop

Hadoop ecosystem has very diverse tools to make Hadoop useful in many ap-

plications, for example, tools such as Spark and Storm are useful for processing

real-time streaming data; in addition, the in-memory technology of Spark makes

it a good solution for machine learning; HBase is useful for NoSQL data storage,

and Sqoop is useful for data conversion between relational database and Apache

Hadoop.

Chapter 2 Backgroud Review and Related Works 11

2.2.2 Apache Spark

Apache Spark [19] is an open-source cluster computing framework originally de-

veloped in the AMPLab at UC Berkeley. Compared to the two-stage disk-based

MapReduce paradigm of Hadoop, Spark’s in-memory primitives provide perfor-

mance up to 100 times faster for certain applications. By permitting user pro-

grams to load data into memory of a cluster and repeatedly query it, Spark is well

suited for machine learning algorithms. Spark requires a cluster manager and a

distributed storage system. For cluster management, Spark supports standalone

(native Spark cluster), Hadoop YARN, or Apache Mesos. For distributed storage,

Spark can interface with a wide variety of systems, including Hadoop Distributed

File System (HDFS), Cassandra, OpenStack Swift, and Amazon S3. Spark also

supports a pseudo distributed local mode, usually used only for developing or test-

ing purposes, where distributed storage is not required and the local file system

can be used instead; in this scenario, Spark is running on a single machine with

one executor per CPU core. In 2014, Spark has more than 465 contributors, mak-

ing it the most vigorous project in the Apache Software Foundation and Big Data

open source projects.

2.3 OpenStack

OpenStack [20–25]is a free and open-source cloud computing software platform.

It began in 2010 as a joint project of Rackspace Hosting and NASA. Currently,

it is managed by the OpenStack Foundation, a non-profit which oversees both

development and community-building around the project. And OpenStack.org

released it under the terms of the Apache License. Users primarily deploy it as

an IaaS solution. The technology consists of a series of interrelated projects that

control pools of processing, storage, and networking resources throughout a data

center which users manage through a web-based dashboard, command-line tools,

or a RESTful API.

Chapter 2 Backgroud Review and Related Works 12

2.3.1 OpenStack Componet

OpenStack has a modular architecture with various code names for its components.

• Compute (Nova): OpenStack Compute (Nova) is a cloud computing fab-

ric controller, which is the main part of an IaaS system. It is designed

to manage and automate pools of computer resources and can work with

widely available virtualization technologies, as well as bare metal and high-

performance computing (HPC) configurations. KVM, VMware, and Xen

are available choices for hypervisor technology, together with Hyper-V and

Linux container technology such as LXC.

• Object Storage (Swift): OpenStack Object Storage (Swift) is a scalable re-

dundant storage system. Objects and files written to multiple disk drives

spread throughout servers in the data center, with the OpenStack software

responsible for ensuring data replication and integrity across the cluster.

Storage clusters scale horizontally simply by adding new servers. Should a

server or hard drive fail, OpenStack replicates its content from other active

nodes to new locations in the cluster. Because OpenStack uses software logic

to ensure data replication and distribution across different devices, inexpen-

sive commodity hard drives and servers can be used. The Total Cost of

Ownership (TCO) can be higher than using enterprise-class storage because

many copies require high availability

• Block Storage (Cinder): Cinder is a block storage service for OpenStack. It

is designed to allow the use of either a reference implementation (LVM) to

present storage resources to end users that can be consumed by the Open-

Stack Compute Project (Nova). The short description of Cinder is that it

virtualizes pools of block storage devices and provides end users with a self-

service API to request and consume those resources without requiring any

knowledge of where their storage is actually deployed or on what type of

device.

Chapter 2 Backgroud Review and Related Works 13

• Networking (Neutron): OpenStack Networking (Neutron, formerly Quan-

tum) is a system for managing networks and IP addresses. OpenStack Net-

working ensures the network is not a bottleneck or limiting factor in a cloud

deployment, and gives users self-service ability, even over network configu-

rations.

• Dashboard (Horizon): OpenStack Dashboard (Horizon) provides adminis-

trators and users a graphical interface to access, provision, and automate

cloud-based resources. The design accommodates third party products and

services, such as billing, monitoring, and additional management tools. The

dashboard can also be branded for service providers and other commercial

vendors who want to make use of it. The dashboard is one of several ways

users can interact with OpenStack resources. Developers can automate ac-

cess or build tools to manage resources using the native OpenStack API or

the EC2 compatibility API.

• Identity Service (Keystone): OpenStack Identity (Keystone) provides a cen-

tral directory of users mapped to the OpenStack services they can access. It

acts as a common authentication system across the cloud operating system

and can integrate with existing backend directory services like LDAP. It

supports multiple forms of authentication including standard username and

password credentials, token-based systems and AWS-style (i.e. Amazon Web

Services) logins. Additionally, the catalog provides a list of all of the services

deployed in an OpenStack cloud in a single registry. Users and third-party

tools can determine which resources they can access by programs.

• Image Service (Glance): OpenStack Image Service (Glance) provides dis-

covery, registration, and delivery services for disk and server images. Stored

images can be used as a template. It can also be used to store and cat-

alog an unlimited number of backups. The Image Service can store disk

and server images in a variety of back-ends, including OpenStack Object

Storage. The Image Service API provides a standard REST interface for

Chapter 2 Backgroud Review and Related Works 14

querying information about disk images and lets clients stream the images

to new servers.

• Telemetry (Ceilometer): OpenStack Telemetry Service (Ceilometer) pro-

vides a single point of contact for billing systems, providing all the counters

they need to establish customer billing, across all current and future Open-

Stack components. The delivery of counters is traceable and auditable, the

counters must be easily extensible to support new projects, and agents doing

data collections should be independent of the overall system.

• Orchestration (Heat): Heat is the main project in the OpenStack Orches-

tration program. It implements an orchestration engine to launch multiple

composite cloud applications based on templates in the form of text files

that can be treated like code. A native Heat template format is evolving,

but Heat also attempts to provide compatibility with the AWS CloudFor-

mation template format, so that many existing CloudFormation templates

can be launched on OpenStack. Heat provides both an OpenStack-native

ReST API and a CloudFormation-compatible Query API.

• Database (Trove): Trove is Database as a Service for OpenStack. It is de-

signed to run entirely on OpenStack, with the goal of letting users to quickly

and easily utilize the features of a relational or non-relational database with-

out the burden of handling complex administrative tasks. Cloud users and

database administrators can offer and manage multiple database instances

as needed. Initially, the service will focus on providing resource isolation

at high performance while automating complex administrative tasks such as

deployment, configuration, patching, backups, restores, and monitoring.

2.3.2 OpenStack Conceptual Architecture

Launching a VM or instance involves many interactions among several services.

Figure 2.6 provides the conceptual architecture of a typical OpenStack environ-

ment. In this work, we use version IceHouse. We just use Nova, Glance, Keystone

Chapter 2 Backgroud Review and Related Works 15

and Horizon in our model.

Figure 2.6: The conceptual architecture of OpenStack

Chapter 2 Backgroud Review and Related Works 16

2.4 Power Distribution Units(PDU)

A Power Distribution Unit (PDU) [26,27], as shown in Figure 2.7, is a device used

in datacenters to distribute AC power to multiple servers and other equipment.

Power distribution units (PDUs) range from simple 120v power strips to units

that break out 120 volts from 240v and three-phase power. Advanced units are

managed remotely via the SNMP management protocol or from a Web browser or

other management console, causing outlets to be turned on and off at prescribed

times and in a proper sequence for shutting down and powering up equipment.

The growing complexity of IT environments, from wiring closets and server rooms

to data centers of all sizes, has increased the need for reliable power distribution

to the rack level. Eliminating power management issues is essential for IT and

Facilities managers to maintain system availability of increasing higher density

equipment. Power Distribution Units are an essential element in managing power

capacity and functionality for critical network, server and data center equipment.

• Basic PDU: The most basic PDU is a large power strip without surge pro-

tection. It is designed to provide standard electrical outlets for data center

equipment and has no monitoring or remote access capabilities. The floor-

mounted and rack-mounted PDUs can be more sophisticated, providing data

that can be used for power usage effectiveness (PUE) calculations.

• Floor-mounted PDU: A floor-mounted PDU, sometimes called a main dis-

tribution unit (MDU), provides an important management bridge between a

building’s primary power and various equipment racks within a data center

or network operations center (NOC). Each PDU can handle larger amounts

of energy than an ordinary power strip (300 kilovolt-amps and higher de-

pending on the manufacturer and model) and typically provides power to

multiple equipment racks.

• Rack-mountable PDU: A rack-mountable PDU mounts directly to an equip-

ment rack so it can control and monitor power to specific servers, switches

Chapter 2 Backgroud Review and Related Works 17

and other data center devices and assist in balancing power loads. Rack-

mountable PDAs are known by several different names, including smart

PDUs and intelligent PDUs. Such PDUs include three-phase displays for

devices sharing power well as remote management tools that use the Simple

Network Management Protocol (SNMP) to provide administrators with the

ability to adjust and monitor power demands from offsite locations.

Figure 2.7: Raritan’s PDU

2.5 Related Works

In the recent years, there are many research about Docker with OpenStack, con-

tainer, power consumption. We choose some research about them to discussion.

Preeth E N et al. [28] in 2015, evaluated the performance of these Docker

containers based on their system performance. That is based on system resource

utilization. Different benchmarking tools are used for this. Performance based on

file system is evaluated using Bonnie++. Detail results obtained from all these

tests are also included in this paper. The results include CPU utilization, memory

utilization, CPU count, CPU times, Disk partition, network I/O counter etc.

Kyoung-Taek Seo et al. [29] in 2014, tested the average boot-time of Docker and

KVM, as shown in Table 2.1 and Table 2.2, VM of KVM uses Full-Virtualization,

and specifies the size when it is generated. They need resources more than 8GB

Chapter 2 Backgroud Review and Related Works 18

when they use Ubuntu-Desktop, so it is hard to generate more than 50 virtual ma-

chines on 500GB Hard-Disk. Docker containers do not contain OS, only installed

software resources, so their size are smaller than VM’s. Because of Ubuntu 14.04

image of Docker only have basic software, it just uses half of the same 500GB

HDD and 177MB of resources to generate more than 100 containers.

Table 2.1: KVM szie

Scale 10GB 20GB 40GB

Number of VMs 45 22 11

Table 2.2: Docker szie

Number of containers 100+

P. China Venkanna Varma et al. [30] in 2016, studied the working of Docker

networks, various factors of CPU context switch latency and how network IO

throughput will be impacted with the number of live Docker containers. A Hadoop

cluster environment built and executed benchmarks such as TestDFSIO-write and

TestDFSIO-read against varying number of the live containers. They observed

that Hadoop throughput is not linear with increasing number of live container

nodes sharing the same system CPU.

Javier Conejero et al. [31] in 2016, measured the power consumption of Hadoop.

In order to understand the power consumption of the Cloud, they devised some

experiments that consider three aspects:

• Basic Power Consumption: monitoring the power consumption of the run-

ning cluster. It involves analyzing the power demand when turning on and

off the Cardiff Cloud testbed system without any workload. The power con-

sumption profile is particularly high when the server is switched on and off

and stable once it has booted. There is a peak in power consumption during

the server starting up, which stabilizes after the operating system finishes

loading all services (at 105W). To stop the server requires power to stop all

the services. When the server is stopped, a power consumption of 10W is

observed because the standby state of the server.

Chapter 2 Backgroud Review and Related Works 19

• power Consumption Range: this aspect is focus on measuring the maximum

and minimum power consumption of a cluster. In order to measure the

maximum power consumption, it has to choose a workload that fully stresses

all the physical hardware (CPU, memory, and disk) available on the server.

They use the Message-Digest Algorithm (MD5)[29] to fully the physical

hardware. The power consumption is proportional with the CPU utilization,

and they reach the top with 16 threads. The maximum power consumption

is 268W.

• Virtualization and Power Consumption: this aspect involves monitoring the

power consumption with different virtualized workloads executed on a single

node Cloud environment. It focuses on analyzing the behavior of the system

under a realistic Hadoop workload, performed across different VCs.

The number of worker nodes and their characteristics are not the same, and

keeping constant the number of resources allocated to all the VCs. With more

worker nodes, the power consumption is increase when the Cluster is idle state.

So the size of cluster also impact on power consumption, even if not performing

any Hadoop application.

Chapter 3

System Design and

Implementation

The main goal of our thesis is to figure out that how to combine Docker with

OpenStack. Then we build a platform contains a variety of functions, Users can

see many information about containers on this platform, In this section, we will

introduce our system architecture. Finally, we will show our user interface.

3.1 System Design Architecture

In the proposed system architecture shown in Figure 3.1. OpenStack had adopted

as the basis in order to achieve storage virtualization and unified management.

The architecture consists of a controller node and two computing nodes. Several

major OpenStack services are running on the Controller node, such as Identity

service, Image service, Networking service, Nova service, and Dashboard. Two

compute nodes had connected to the PDU for monitoring and recording their

energy consumption.

20

Chapter 3 System Design and Implementation 21

of system.bb

Figure 3.1: The overview architecture of system

3.2 System Implementation

In this thesis, we will use the Docker api and PHP to write some automatic pro-

gram, including the state monitoring program which can monitor the information

of containers, energy consumption record program which can monitor the power

consumption. The following is a detailed description of the programs.

We implement a website for users to connect with OpenStack api. First, users

can run what their need by our web service. The process shown is Figure 3.2.

Chapter 3 System Design and Implementation 22

Figure 3.2: Web service

• First, users enter the requirements they needs from web service.

• Then, controller node will arranges tasks

• Finally, compute node will assigns tasks, then build up virtual machine.

In order to make the service faster, reduce the time to launch the virtual ma-

chine can increase the speed rate. KVM and QEMU on OpenStack because of

the complete virtualization led to launch time too long, docker based on Linux

container technology can solve the problem effectively. Applications and virtual-

ization are more lightweight and faster.

Chapter 3 System Design and Implementation 23

Figure 3.3: OpenStack on Docker

3.2.1 Status Monitoring

We monitored the status of each container via web user interface. If we want

to present information about containers on the site, we need to get it through

Docker official api shown in Figure 3.4 and 3.5, and then sort out the data we

need, we information visualization on the user interface finally. By the web user

interface we can see which container is running, when the container been created.

Through these monitoring data, we can also observe the status of the images on

each container. The status monitoring function was developed by the Docker api

to obtain status data. The monitoring data includes the utilization of CPU and

memory.

Figure 3.4: docker api1

Chapter 3 System Design and Implementation 24

Figure 3.5: docker api2

3.2.2 Dockerize Hadoop

Figure 3.6 shows the process of Hadoop on Docker. At first, client download

Ubuntu from the Registry and then create container. Second, run the container,

they will install jdk and Hadoop, then package the information in the container

into an image. The client creates the container for the master and slave, and then

creates an association between master and slave, after all, run Hadoop.

Chapter 3 System Design and Implementation 25

on docker.bb
Figure 3.6: The process of Hadoop on Docker

Hadoop on Docker is mainly package Hadoop and jdk into an image, when

the client needs to build or expand Hadoop, just pulling the image, and do some

simple configuration.

docker.bb
Figure 3.7: Packaging Hadoop into image

Chapter 3 System Design and Implementation 26

3.2.3 Dockerize Spark

First deploy Spark cluster as Docker container spanning multiple physical host,

then automate Spark service configuration inside containers to facilitate cluster

cloning. Finally, container storage is always ephemeral. Persistent storage is

external.

• Base.

• Master container runs all Spark services(master, worker, jupyter, zeppelin)

• Worker container runs Spark worker

And we use Dockerfile to build up Spark cluster, Figure 3.8 shown in below.

Figure 3.8: Spark Dockerfile

3.2.4 Assign Tasks

We can launch a container with Hadoop environment directly on the platform

to provide us the experiment environment. Here is the process of launch, after

received command from the web user interface, system will use OpenStack api to

deploy the basic environment.

Chapter 3 System Design and Implementation 27

Figure 3.9: The process of launch

When the basic environment is completed, the host of task will start to as-

signing tasks to Docker vm. Then we can do some experiment by this way.

tasks.bb

Figure 3.10: Assign tasks

When Docker vm finished tasks, tasks will be send back to the host of task,

after the host of task sorts out the information, it will send to web service to

present information to users. The process is shown in Figure 3.11.

Chapter 3 System Design and Implementation 28

Figure 3.11: Send information back to web

3.2.5 User Services

In order to present status about containers,we designed a web site as our manage-

ment platform. Because the web services is compatible with a variety of platform

such as PC, mobile and tablet. We adopted Nginx, Nginx is free and open source

software, it’s a web server, which can also be used as a reverse proxy, load balancer

and HTTP cache. Also, we used several techniques to help us build our platform,

shown in Table 3.1.

Table 3.1: Software & language Specification

Software & language Version

Nginx 1.13.1

Golang 1.8.3

Bootstrap 3.3.6

Python 2.7.6

Chapter 3 System Design and Implementation 29

In order to make site more beautiful, we use Bootstrap as our website frame-

work. Bootstrap is a powerful front-end framework for faster and easier web

development. It includes HTML ans CSS based on design templates for common

user interface components.

Chapter 4

Experimental Results

In this chapter, we show the experimental environment and the experimental

results. In section 4.1, we describe our experimental environment including hard-

ware specification and software specification. The experimental results are shown

in section 4.2.

4.1 Experimental Environments

The experimental environment consists of three computers and their hardware

specifications had listed in Table 4.1. The first physical machine consist of 12-core

CPU, 30 GB memory, 2 TB disk and with Ubuntu 14.04 as the operating system.

The hardware specification of No.2 and No.3 physical machine is the same: 32-core

CPU, 64 GB memory, 4 TB disk and with Ubuntu 14.04 as the operating system.

All experiments were measured on No.2 and No.3.

Table 4.1: Hardware specification

No. CPU RAM HDD OS

1 Intel(R) Core(TM) i7 CPU X 990 30GB 2TB Ubuntu 14.04

2 AMD Opteron(TM) Processor 6274 64GB 2TB Ubuntu 14.04

3 AMD Opteron(TM) Processor 6274 64GB 2TB Ubuntu 14.04

30

Chapter 4 Experimental Results 31

Software specifications had listed in Table 4.2 . The Docker version is 1.13

The KVM version is 2.6.20.

Table 4.2: Software specification

Software Docker Sysbench KVM Hadoop Spark

version 1.13 0.4.12 2.6.20 2.7.1 1.6.0

4.2 Boot-Time on OpenStack

We test the time of opening five VMs of KVM and Docker, the hypervisor of

compute1 is Docker, the hypervisor of compute2 is KVM, OS is ubuntu14.04.

Shown as Figure 4.1, it spent 55.54 seconds to turn on five VMs, but Docker

only spent 9.7 seconds, it shows that time of deploy VMs of Docker is much less

than KVM. If Docker use in the environment that need more amount of VMs, it

definitely saved more time.

on OpenStack.bb

Figure 4.1: Boot-time on OpenStack

Chapter 4 Experimental Results 32

4.3 Docker and Virtual Machine Performance Com-

parison

Here we measured Docker and KVM performance on server boot time, reboot time

and delete time. First of all is average server boot time. First we boot VM, then

wait for VM to become active and repeat the above steps for a total of 15 VMs.

Finally we delete all VMs. The result is shown in Figure 4.2 .

Figure 4.2: Average server boot time between KVM

About reboot time and delete time, we boot a VM and wait it to become

active, then reboot the VM and wait it to become active, we repeat at reboot a

total of 5 times. Next we delete VM and repeat the above for a total of 5 VMs.

The result is shown in Figure 4.3 4.4.

4.3.1 CPU Utilization of Virtual Machine

In the VM performance experiment, we tried to find at what setting of the VMs

vCPU utilization. In this experiment, we execute VMs by the High Performance

Linpack (HPL). HPL has characteristic of a distribution system and use MPI to

compute some data and finally it will produce a score. The resource of these ten

VMs are all the same, 4-core CPU, 4GB memory, and 20GB disk. When the five

VMs of KVM running HPL, the CPU utilization of compute2 is 61.4.

Chapter 4 Experimental Results 33

Figure 4.3: Average server reboot time between KVM

Figure 4.4: Average server delete time between KVM

4.3.2 File I/O Performance Comparison between Docker

and KVM

When we deploying Hadoop cluster on Docker, we should make sure that read and

write performance isn’t less than the existing virtual machine technology, because

Hadoop clusters need to storing and processing big data, it have high expectations

for read and write performance. In order to verify the performance of the container

and KVM, we did some experiment about it.

Sysbench is a scriptable multi-threaded benchmark tool based on LuaJIT. It

is most frequently used for file I/o benchmarks, because the file is random read

Chapter 4 Experimental Results 34

utilization.bb
Figure 4.5: CPU utilization of virtual machine

and write, in order to achieve better results, the value of /sys/block/sda/queue/

scheduler is set as deadline because of its minimum time-consuming. We randomly

read and write 10GB file. Size is 10GB*1, 1.25GB*8, 0.625GB*16, 0.312GB*32.

The result is shown in Figure 4.6 4.7 4.8. We also measured power usage during

this experiment and the result is shown in Figure 4.9 and Table 4.3.

read.bb
Figure 4.6: Read speed comparison between Docker and KVM

Chapter 4 Experimental Results 35

write.bb
Figure 4.7: Write speed comparison between Docker and KVM

speed.bb

Figure 4.8: Read and Write speed comparison between Docker and KVM

From the experimental results we can see that Docker in I/O read and write

performance is better than KVM. Therefore, in the same experiment, Docker

performance will be close to virtual machine or even better.

Chapter 4 Experimental Results 36

Figure 4.9: Power usage during the experiment

Table 4.3: The data of power usage

Thread Bare-metal KVM Docker

0 45.31w 45.71w 45.35w

8 138.22w 140.09w 142.11w

16 149.37w 152.54w 152.47w

32 183.51w 183.53w 183.6w

4.4 Performance of Hadoop and Spark Compar-

ison between Docker and Virtual Machine

In this test, we use HiBench to evaluate the performance of typical distributed

data processing systems, We select two benchmarks, including WordCount and

TeraSort as our workloads.

We introduce these two benchmarks as follows:

• WordCount: WordCount is a classical MapReduce workload, which counts

the number of occurrences for each word in input text. In our test, the input

data is 10GB and generated by RandomWriter and RandomTextWriter in

Hadoop distribution.

Chapter 4 Experimental Results 37

• TeraSort: TeraSort is a classical workload also, which sorts massive data

as fast as possible. In our test, the input data is 10GB and generated by

TeraGen in Hadoop distribution.

4.4.1 Execution Time of Hadoop and Spark on Docker and

Virtual Machine

Figure 4.10 and Figure 4.11 shows the results of Hadoop and Spark system in

different environment respectively. As you can see, running Hadoop directly on

Docker could gain more efficacy than running in VM.

exe time.bb
Figure 4.10: Execution time of Hadoop in different workloads

exe time.bb
Figure 4.11: Execution time of Spark in different workloads

Chapter 4 Experimental Results 38

4.4.2 Deploying Hadoop in Different Environments

Deploy Hadoop in docker container and VM, then record each the time they took.

The result is shown in Figure 4.12.

Figure 4.12: Hadoop start-up time

After all experiments, we understand that it will reduce deploying time by

using Docker, and we also know Docker performance will be close to Bare-metal.

According to the experimental result, we found that Docker won’t saving power,

it cost as much as other environments like bare-metal and virtual machine. So we

provide these results to users to know more about Docker.

4.5 Container Management Platform

It’s the main page of platform, Figure 4.17 shows the interface of container man-

agement platform on web site, it shows many status about containers, such as

which container is running and what time you created it.

Users can do some actions to containers on web site directly, some actions

like start the container, stop the container, restart it and remove it. More details

shown in Figure 4.14.

Also, users can pull images, remove images, remove network, and remove vol-

umes on web site directly.

Chapter 4 Experimental Results 39

Figure 4.13: Container monitoring on the web site

Figure 4.14: Do actions on web site directly

Finally, the web site shows information about users machine. For example, it

shows how much containers or images did users create and how much memory of

these containers or images took up.

Chapter 4 Experimental Results 40

Figure 4.15: Remove images on web site directly

Figure 4.16: Remove volumes on web site directly

Figure 4.17: Users information

Chapter 5

Conclusions and Future Work

This work is stated for the concluding remarks and the future work of this work.

5.1 Concluding Remarks

In this work, we implemented a container management platform based on Docker,

including container’s status monitoring. Hadoop can take full advantage of dis-

tributed clusters, is the way to solve Big data storage and computing. Big data

will be related to the distribution of physical nodes, how to deploy and manage

these nodes quickly is also need to focus on this issue. Container-based technology

reduce the complexity of deployment and improves deployment and maintenance

efficiency. In addition, experimental results proves that Docker really can reduce

the complexity of the process of its deployment and also save time.

So the combination with Docker must be able to provide a new way for Hadoop,

or even other tools related to cloud services. We think containers can replace older

simulation techniques, because it’s lighter, faster and less hardware required.

41

Chapter 5 Conclusions and Future Work 42

5.2 Future Work

The platform still have some work to do. On the website, We plan to have more

functions on it, such as deploying more open source technologies on the website

directly and more detail information about container. In the future work, we

hope that we can packaging applications into a container on by one, then these

containers make up a system just like microservice, to provide a convenient service

to more users through this way.

References

[1] Rajkumar Buyya, Christian Vecchiola, and Thamarai Selvi. Mastering Cloud

Computing: Chapter 3–Virtualization. MORGAN KAUFMANN, 2013.

[2] Xiaofei Liao, Hai Jin, Shizhan Yu, and Yu Zhang. A novel memory allocation

scheme for memory energy reduction in virtualization environment. Journal

of Computer and System Sciences, pages 3 – 15, 2015.

[3] Yaozu Dong, Xiantao Zhang, Jinquan Dai, and Haibing Guan. Hyvi: A hybrid

virtualization solution balancing performance and manageability. Parallel and

Distributed Systems, pages 2332 – 2341, 2014.

[4] Ben Pfaff, Justin Pettit, Teemu Koponen, and Scott Shenker. Extending

networking into the virtualization layer. Extending Networking into the Vir-

tualization Layer, 2009.

[5] František Špaček, Radomír Sohlich, and Tomáš Dulík. Docker as platform for

assignments evaluation. Energy Procedia, pages 1665–1671, 2015.

[6] Build, ship and run any app, anywhere, 2015. https://www.docker.com/.

[7] Docker (software), 2015. http://en.wikipedia.org/wiki/Docker%

28software%29.

[8] Di Liu and Libin Zhao. The research and implementation of cloud computing

platform based on docker. Wavelet Active Media Technology and Information

Processing (ICCWAMTIP), 2014 11th International Computer Conference

on, pages 475–478, 2014.

43

https://www.docker.com/
http://en.wikipedia.org/wiki/Docker%28software%29
http://en.wikipedia.org/wiki/Docker%28software%29

References 44

[9] Wes Felter, Alexandre Ferreira, Ram Rajamony, and Juan Rubio. An updated

performance comparison of virtual machines and linux containers. Perfor-

mance Analysis of Systems and Software (ISPASS), 2015 IEEE International

Symposium on, pages 171–172, 2015.

[10] Gaku Nakagawa and Shuichi Oikawa. Behavior-based memory resource man-

agement for container-based virtualization. Proceedings - 4th International

Conference on Applied Computing and Information Technology, 3rd Interna-

tional Conference on Computational Science/Intelligence and Applied Infor-

matics, 1st International Conference on Big Data, Cloud Computing, Data

Science and Engineering, ACIT-CSII-BCD 2016, pages 213–217, 2017.

[11] Stephen Soltesz, Herbert Pötzl, Marc E. Fiuczynski, Andy Bavier, and

Larry Peterson. Container-based operating system virtualization: A scal-

able, high-performance alternative to hypervisors. Proceedings of the 2nd

ACM SIGOPS/EuroSys European Conference on Computer Systems 2007,

pages 275–287, 2007.

[12] Hypervisor, 2015. http://en.wikipedia.org/wiki/Hypervisor.

[13] Roberto Morabito, Jimmy Kjällman, and Miika Komu. Hypervisors vs.

lightweight virtualization: A performance comparison. pages 386–393, 2015.

[14] What is apache hadoop?, 2016. http://hadoop.apache.org/.

[15] Apache hadoop, 2016. http://wiki.apache.org/hadoop/.

[16] V. Starikovičiusa A. and Maknickasc M. Big data and hadoop-a study in

security perspective. Procedia Computer Science, pages 598–601, 2015.

[17] A. Kačeniauskas, R. Pacevič, V. Starikovičius, A. Maknickas, M. Staškūnienė,

and G. Davidavičius. Development of cloud services for patient-specific sim-

ulations of blood flows through aortic valves. Advances in Engineering Soft-

ware, pages 57–64, 2017.

[18] Aymen Jlassi and Patrick Martineau. Benchmarking Hadoop Performance

in the Cloud - An in Depth Study of Resource Management and Energy

http://en.wikipedia.org/wiki/Hypervisor
http://hadoop.apache.org/
http://wiki.apache.org/hadoop/

References 45

Consumption. In The 6th International Conference on Cloud Computing and

Services Science, ROME, Italy, April 2016.

[19] Spark, 2015. http://en.wikipedia.org/w/index.php?title=Spark&

oldid=654641608.

[20] Openstack open source cloud computing software, 2015. http://www.

openstack.org/.

[21] What is openstack?, 2015. http://opensource.com/resources/

what-is-openstack.

[22] Openstack, 2015. http://en.wikipedia.org/wiki/OpenStack.

[23] Zhaojun Li, Haijiang Li, Xicheng Wang, and Keqiu Li. A generic cloud

platform for engineering optimization based on openstack. Advances in En-

gineering Software, pages 42 – 57, 2014.

[24] Yoji Yamato, Masahito Muroi, Kentaro Tanaka, and Mitsutomo Uchimura.

Development of template management technology for easy deployment of vir-

tual resources on openstack. Journal of Cloud Computing, 3(1):1–12, 2014.

[25] Yoji Yamato, Yukihisa Nishizawa, Masahito Muroi, and Kentaro Tanaka. De-

velopment of resource management server for production iaas services based

on openstack. Journal of Information Processing, 23(1):58–66, 2015.

[26] Power distribution unit, 2015. http://en.wikipedia.org/wiki/Power_

distribution_unit.

[27] What is power distribution unit?, 2013. http://searchdatacenter.

techtarget.com/definition/power-distribution-unit-PDU.

[28] Preeth E N, Fr. Jaison Paul Mulerickal, Biju Paul, and Yedhu Sastri. Evalu-

ation of docker containers based on hardware utilization. Control Communi-

cation & Computing India (ICCC), 2015 International Conference on, pages

697–700, 2015.

http://en.wikipedia.org/w/index.php?title=Spark&oldid=654641608
http://en.wikipedia.org/w/index.php?title=Spark&oldid=654641608
http://www.openstack.org/
http://www.openstack.org/
http://opensource.com/resources/what-is-openstack
http://opensource.com/resources/what-is-openstack
http://en.wikipedia.org/wiki/OpenStack
http://en.wikipedia.org/wiki/Power_distribution_unit
http://en.wikipedia.org/wiki/Power_distribution_unit
http://searchdatacenter.techtarget.com/definition/power-distribution-unit-PDU
http://searchdatacenter.techtarget.com/definition/power-distribution-unit-PDU

References 46

[29] Kyoung-Taek Seo, Hyun-Seo Hwang, Il-Young Moon, Oh-Young Kwon, and

Byeong-Jun Kim. Performance comparison analysis of linux container and

virtual machine for building cloud. Advanced Science and Technology Let-

ters(ASTL), 2014 Networking and Communication, pages 105–111, 2014.

[30] P. China Venkanna Varma, K.V. Kalyan Chakravarthy, V. Valli Kumari, and

S. Viswanadha Raju. Analysis of network io performance in hadoop cluster

environments based on docker containers. Advances in Intelligent Systems

and Computing, pages 227–237, 2016.

[31] Javier Conejero, Omer Rana, Peter Burnap, Jeffrey Morgan, Blanca

Caminero, and Camen Carrión. Analyzing hadoop power consumption and

impact on application qos. Future Generation Computer Systems, pages 213–

223, 2016.

Appendix A

Hadoop Installation

I. Modify hosts

sudo vim /etc/hosts

II. Modify hostname

sudo vim /etc/hostname

sudo service hostname start

III. Install Java JDK

sudo apt-get -y install openjdk -7-jdk

sudo ln -s /usr/lib/jvm/java-7-openjdk -amd64 /usr/lib/jvm/jdk

IV. Add hadoop user

sudo addgroup hadoop

sudo adduser --ingroup hadoop hduser

sudo adduser hduser sudo

V. Creat SSH authentication login

47

Appendix 48

ssh-keygen -t rsa -f \~{}/.ssh/id_{}rsa -P ""

cp \~{}/.ssh/id_{}rsa.pub ~/.ssh/authorized_{}keys

scp –r ~/.ssh hduser:~/

VI. Download hadoop

cd ~

wget http://ftp.twaren.net/Unix/Web/apache/hadoop/common \\

/hadoop -2.6.0/hadoop -2.6.0.tar.gz

tar zxf hadoop -2.6.0.tar.gz

mv hadoop -2.6.0.tar.gz hadoop

VII. Add the environment variable

vim .bashrc

export JAVA_HOME=/usr/lib/jvm/jdk/

export HADOOP_INSTALL=/home/hduser/hadoop

export PATH=$PATH:$HADOOP_INSTALL/bin

export PATH=$PATH:$HADOOP_INSTALL/sbin

export HADOOP_MAPRED_HOME=$HADOOP_INSTALL

export HADOOP_COMMON_HOME=$HADOOP_INSTALL

export HADOOP_HDFS_HOME=$HADOOP_INSTALL

export YARN_HOME=$HADOOP_INSTALL

VIII. Set hadoop config

cd hadoop/etc/hadoop

vim hadoop-env.sh

export JAVA_HOME=/usr/lib/jvm/jdk/

vim core-site.xml

<property >

<name>fs.default.name</name>

<value>hdfs://hadoop-master:9000</value>

</property >

vim yarn-site.xml

<property >

Appendix 49

<name>yarn.nodemanager.aux-services </name>

<value>mapreduce_shuffle </value>

</property >

<property >

<name>yarn.resourcemanager.hostname </name>

<value>hduser </value>

</property >

cp mapred-site.xml.template mapred-site.xml

vim mapred-site.xml

<property >

<name>mapreduce.framework.name</name>

<value>yarn</value>

</property >

mkdir -p ~/mydata/hdfs/namenode

mkdir -p ~/mydata/hdfs/datanode

vim hdfs-site.xml

<property >

<name>dfs.replication </name>

<value >2</value>

</property >

<property >

<name>dfs.namenode.name.dir</name>

<value >/home/hduser/mydata/hdfs/namenode </value>

</property >

<property >

<name>dfs.datanode.data.dir</name>

<value >/home/hduser/mydata/hdfs/datanode </value>

</property >

vim slaves

hadoop-master

node01

node02

node03

node04

node05

node06

node07

node08

node09

node10

node11

node12

Appendix 50

IX. Copy hadoop to all nodes

scp -r /home/hduser/hadoop node01:/home/hduser

scp -r /home/hduser/hadoop node02:/home/hduser

scp -r /home/hduser/hadoop node03:/home/hduser

scp -r /home/hduser/hadoop node04:/home/hduser

scp -r /home/hduser/hadoop node05:/home/hduser

scp -r /home/hduser/hadoop node06:/home/hduser

scp -r /home/hduser/hadoop node07:/home/hduser

scp -r /home/hduser/hadoop node08:/home/hduser

scp -r /home/hduser/hadoop node09:/home/hduser

scp -r /home/hduser/hadoop node010:/home/hduser

scp -r /home/hduser/hadoop node011:/home/hduser

scp -r /home/hduser/hadoop node012:/home/hduser

X. Format HDFS

hdfs namenode -format

XI. Start hadoop

start-all.sh

XII. Use jps to see java running program

jps

XIII. MapReduce JobTracker monitoring website

hadoop-master:50030

Appendix B

Spark Installation

I. Download and Unzip Scala

#wget \\

http://ftp.twaren.net/Unix/Web/apache/spark/spark -1.4.1/spark -1.4.1-bin-hadoop2.6.tgz

#tar zxf spark -1.4.1-bin-hadoop2.6.tgz

#mv spark -1.4.1-bin-hadoop2.6 spark

#cd spark/conf

IV. Set Spark config

#vim spark-env.sh

export SCALA_HOME=/usr/lib/scala

export JAVA_HOME=/usr/lib/jvm/jdk

export SPARK_MASTER=master

export HADOOP_HOME=/home/hduser/hadoop

export SPARK_HOME=/home/hduser/spark

export SPARK_LIBARY_PATH=.:$JAVA_HOME/lib:$JAVA_HOME/jre/lib:$HADOOP_HOME/lib/native

export YARN_CONF_DIR=$HADOOP_HOME/etc/hadoop

#vim slaves

hadoop-master

node01

node02

node03

node04

node05

node06

51

Appendix 52

node07

node08

node09

node10

node11

node12

III. Copy spark to all nodes

scp -r /home/hduser/spark node01:/home/hduser

scp -r /home/hduser/spark node02:/home/hduser

scp -r /home/hduser/spark node03:/home/hduser

scp -r /home/hduser/spark node04:/home/hduser

scp -r /home/hduser/spark node05:/home/hduser

scp -r /home/hduser/spark node06:/home/hduser

scp -r /home/hduser/spark node07:/home/hduser

scp -r /home/hduser/spark node08:/home/hduser

scp -r /home/hduser/spark node09:/home/hduser

scp -r /home/hduser/spark node010:/home/hduser

scp -r /home/hduser/spark node011:/home/hduser

scp -r /home/hduser/spark node012:/home/hduser

bin/start-hbase.sh

Appendix C

Docker Installation

I. Update first

sudo apt-get update

II. Then Upgrade

sudo apt-get upgrade

III. Download Docker

curl -sSL https://get.docker.com/ubuntu/ | sudo sh

IV. Start up Docker

sudo service docker start

V. Check out the version of Docker

sudo docker version

VI. Verify that Docker is installed successfully

53

Appendix 54

sudo docker info

sudo ifconfig docker0

Appendix D

Nova-Docker Installation

I. Modify nova-compute.conf on compute node

[DEFAULT]

/#compute_driver=libvirt.LibvirtDriver

compute_driver=novadocker.virt.docker.DockerDriver

[libvirt]

/#virt_type=kvm

virt_type=docker

II. Install git

sudo apt-get install git

III. Get Nova-Docker by git clone

git clone -b stable/kilo https://github.com/stackforge/nova-docker.git

IV. Install pip

sudo apt-get install python-pip

V. Check out the version of Nova-Docker

55

Appendix 56

sudo pip list | grep nova-docker

V. Add docker.filters to rootwrap

sudo cp nova-docker/etc/nova/rootwrap.d/docker.filters

/etc/nova/rootwrap.d/

VI. Modify docker.sock

chmod 666 /var/run/docker.sock

VI. Nova-Docker restart

service nova-compute restart

Appendix E

PDU Information program

<?php

function get_server_info($host, $community , $objectid) {

$a = snmpget($host, $community , $objectid);

$tmp = explode(":", $a);

if (count($tmp) > 1) {

$a = trim($tmp[1]);

}

return $a;

}

$host="IP";

$community="public";

for($i=1;$i<=8;$i++){

$Power = get_server_info($host,$community ,".1.3.6.1.4.1.13742.4.1.2.2.1.7.".$i);

echo $i."-Power:".$Power."
";

$I = get_server_info($host,$community ,".1.3.6.1.4.1.13742.4.1.2.2.1.4.".$i);

echo $i."-I:".$I."
";

$V = get_server_info($host,$community ,".1.3.6.1.4.1.13742.4.1.2.2.1.6.".$i);

echo $i."-V:".$V."
";

$PF = get_server_info($host,$community ,".1.3.6.1.4.1.13742.4.1.2.2.1.9.".$i);

echo $i."-PF:".$PF."
";

$sql="INSERT INTO `ServerMonitor `.`Power` (`ID`, `TIME`, `SID`, `V`, `C`, `P`, `PF`) \\

VALUES (NULL, CURRENT_TIMESTAMP , '".$i."', '".$V."', '".$I."', '".$Power."','".$PF."')

;";

//echo $sql;

mysql_query($sql) or die('MySQL query error ');

$sql="UPDATE `ServerMonitor `.`PowerRealTime ` SET `TIME` = CURRENT_TIMESTAMP(), \\

57

Appendix 58

`V` = '".$V."', `C` = '".$I."', `P` = '".$Power."',\\

`PF` = '".$PF."' WHERE `PowerRealTime `.`ID` = ".$i.";";

mysql_query($sql) or die('MySQL query error ');

}

?>

	摘要
	Abstract
	致謝詞
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivation
	1.2 Thesis Goal and Contributions
	1.3 Thesis Organization

	2 Backgroud Review and Related Works
	2.1 Virtualization and Hypervisor
	2.1.1 Docker
	2.1.2 Hypervisor

	2.2 Hadoop Ecosystem
	2.2.1 Hadoop
	2.2.2 Apache Spark

	2.3 OpenStack
	2.3.1 OpenStack Componet
	2.3.2 OpenStack Conceptual Architecture

	2.4 Power Distribution Units(PDU)
	2.5 Related Works

	3 System Design and Implementation
	3.1 System Design Architecture
	3.2 System Implementation
	3.2.1 Status Monitoring
	3.2.2 Dockerize Hadoop
	3.2.3 Dockerize Spark
	3.2.4 Assign Tasks
	3.2.5 User Services

	4 Experimental Results
	4.1 Experimental Environments
	4.2 Boot-Time on OpenStack
	4.3 Docker and Virtual Machine Performance Comparison
	4.3.1 CPU Utilization of Virtual Machine
	4.3.2 File I/O Performance Comparison between Docker and KVM

	4.4 Performance of Hadoop and Spark Comparison between Docker and Virtual Machine
	4.4.1 Execution Time of Hadoop and Spark on Docker and Virtual Machine
	4.4.2 Deploying Hadoop in Different Environments

	4.5 Container Management Platform

	5 Conclusions and Future Work
	5.1 Concluding Remarks
	5.2 Future Work

	References
	Appendix
	A Hadoop Installation
	B Spark Installation
	C Docker Installation
	D Nova-Docker Installation
	E PDU Information program

