
東海大學

資訊工程研究所

碩士論文

指導教授: 楊朝棟博士

整合共享儲存系統透過 Ceph 分散式檔案系統和
Rados 閘道用於巨量資料存取

The Integration of Shared Storages with the CephFS and

Rados Gateway for Big Data Accessing

研究生: 翁嘉佑

中華民國一零六年七月

1

摘 要

最近幾年，高可用性共享存儲將成為受歡迎的資訊產業發展方向。現在資訊

產業降低高風險數據需求並提高存儲性能，讀寫，能越來越重要。Ceph 是一

種分散式檔案系統提供高效能、可靠性及擴充性。因此，本文的研究主要應用

Ceph 存儲與大數據性能測試，以求最佳的讀寫速度性能和數據備份。本系統

從 Hadoop 操作啟動。將資料儲存在 Hadoop 分散式檔案系統 (HDFS) 並複製

到 Alluxio 記憶體空間。通過 Map Reduce 處理的數據得到結果，輸出將儲存到

Alluxio 記憶體空間。對於第一個實驗，我們使用 Ceph API 組件的 S3 API 和

Rados Gateway 作為 Alluxio 和物件儲存裝置 (OSD) 之間的橋樑。第二個實驗

與第一個環境相同，但是 Map Reduce的輸出將使用 Ceph File System(CephFS)

直接連接到物件儲存裝置 (OSD)。數據在 Ceph 中比在 Alluxio 中更安全，因

為 OSD 可以用對象存儲級別備份數據。我們還可以使用 S3 瀏覽器 (GUI) 來維

護 OSD 的數據，例如：授權訪問，保存文件夾，創建用戶帳戶，移動數據位置

等。最後我們使用 Inkscope 監控來所有系統，如果系統出現任何問題，系統將

回復錯誤或向用戶發出警告提示。

關鍵字: 巨量數據，高可用性，共享儲存，Ceph 儲存系統

i

Abstract

In recent years, high availability shared storage will become a popular information

technology industry development orientation. Currently, information technology

industries emphasize to reduce high risk data requirements and improve read and

write performance of data storage. Therefore, the main purpose of this work is to

improve read and write performance with the best way on Ceph Storage Cluster. In

this system, the data is stored on Hadoop Distributed File System (HDFS), and the

data stored in-memory virtual distributed store system that mentioned as Alluxio

automatically. Then, the data would be processed through Hadoop Map Reduce

method and the output would be inserted into Hadoop Distributed File System

and Alluxio environment. The first experiment is to use S3 as application program

interface that will connect to RADOS Gateway stored data into Object Storage

Daemon (OSD). The second experiment is based on the first out experiment would

be through Ceph File System (CephFS) connected to Object Storage Daemon

directly. The data is saved in Ceph environment more secure than in Alluxio as

in-memory storage system because OSD can be used for data backup based on

object storage level. We can use S3 browser (GUI) to maintain data like grant

access, maintain folders maintance, create user accounts, move data location etc.

The last one, we used Inkscope monitors all system. If there is any problem,system

will give warning or error responds to users automatically.

Keywords: Big Data, High Availability, Share Storage, Ceph Storage System

ii

致謝詞

這兩年在東海大學的研究生活讓我受益良多，在研究所的課程幫助下，讓我對

於研究的領域更加精進，透過雲端技術與分散式檔案系統的深入研究，能實際

將這些技術應用於生活當中，並完成一篇論文與系統。

能完成這篇論文必須感謝很多人，首先，非常感謝我的指導教授楊朝棟教

授，從大學部跟著楊老師作專題，到研究所作研究，一路上不斷傳授雲端技術

以及分散式檔案的知識，除了研究的方面的教導，楊老師教了我更多平常作人

處事的態度，有了這些東西才能讓我完成這篇論文，謝謝老師這幾年的指導，

雖然在研究上常常碰到瓶頸，但因為老師的鼓勵與幫忙，使我能找到解決的辦

法繼續作下去。

特別感謝口試委員張玉山教授、詹毓偉教授、伍朝欽教授以及江輔政教授特

地撥空前來參加我的論文口試，在論文口試時提出很多論文的盲點和非常多寶

貴的意見，讓我能將論文修改得更加完整，學生衷心感謝。我也要感謝我實驗

室的學長姐、學弟妹以及最重要的同學們，尤其是陳彩進學長，總是不厭其煩

地鼓勵我，並且在技術方面指導我，這兩年的生活一路走來，如果不是大家互

相幫忙，要完成這麼多事情是不太可能的，因為有大家的陪伴，讓我在這兩年

的生活中，增添許多快樂。

最後要感謝我的家人，如果沒有他們的支持我沒辦法完研究所的學業，因

為有你們對我的關心與幫助，讓我的研究得以成功，由衷感謝一路陪伴的所有

人。

東海大學資訊工程學系 高效能計算實驗室 翁嘉佑 106 年 07 月

iii

Table of Contents

摘要 i

Abstract ii

致謝詞 iii

Table of Contents vi

List of Figures vi

List of Tables viii

1 Introduction 1
1.1 Motivation . 1
1.2 Contributions . 2
1.3 Thesis Organization . 3

2 Backgroud Review and Related Works 4
2.1 Background . 4

2.1.1 Ceph Storage System . 4
2.1.2 Alluxio . 7
2.1.3 Hadoop . 7
2.1.4 Map Reduce . 9
2.1.5 HDFS . 10
2.1.6 Gluster File System . 12

2.2 Related Works . 13

3 System Design and Implementation 15
3.1 System Architecture . 15
3.2 System Implementation . 17

3.2.1 Ceph Storage Service Deployment 17
3.2.2 HDFS Deployment . 17
3.2.3 Alluxio Deployment . 18
3.2.4 Rados Gateway Deployment 20
3.2.5 Ceph File System Deployment 21
3.2.6 User Services . 25

iv

TABLE OF CONTENTS v

4 Experimental Results 26
4.1 Experimental Environment . 26
4.2 Experimental Results . 29

4.2.1 MapReduce Input and Output 29
4.2.2 Inkscope Monitoring System 32
4.2.3 The Performance between Rados Gateway and CephFS Com-

parison . 37
4.2.4 The Performance among Rados Gateway, CephFS and Glus-

terFS Comparison . 42

5 Conclusions and Future Work 45
5.1 Concluding Remarks . 45
5.2 Future Work . 46

References 47

Appendix 50

A Ceph Installation 50

B Rados Gateway Installation 53

C Hadoop Installation 55

D Alluxio Installation 59

E CephFS Installation 61

F Inkscope Installation 63

List of Figures

2.1 General Ceph Architecture . 5
2.2 Alluxio Architecture . 7
2.3 Map Reduce Architecture . 9
2.4 HDFS architecture . 11

3.1 Hadoop, Alluxio and Ceph integration architecture 16
3.2 Ceph environment . 18
3.3 Ceph Osd tree . 18
3.4 Add a hard drive . 19
3.5 HDFS environment . 19
3.6 Hadoop jps . 20
3.7 Alluxio environment . 20
3.8 Alluxio instances . 21
3.9 Output state before . 21
3.10 Output state after . 21
3.11 OSD space saved data . 22
3.12 Rados Gateway environment . 22
3.13 Rados Gateway instances . 23
3.14 Ceph File System instances . 23
3.15 CephFS spatial changes . 23
3.16 Alluxio WebUI before upload . 24
3.17 Alluxio WebUI after upload . 24
3.18 Inkscope environment . 25

4.1 Hardware environment . 27
4.2 Data Source in Alluxio . 29
4.3 Map Reduce Output 1 . 29
4.4 Map Reduce Output 2 . 30
4.5 Ceph OSD Output . 31
4.6 Inkscope Ceph Login Page . 32
4.7 Inkscope Ceph cluste hosts . 32
4.8 Inkscope Ceph status . 33
4.9 Inkscope Ceph Pools Management 34
4.10 Inkscope Ceph osd page . 35
4.11 Inkscope Ceph osd map . 36
4.12 Inkscope Ceph Pools Management2 36

vi

LIST OF FIGURES vii

4.13 Speed Performance Test with S.Read/Write for each OSD and
CephFS . 38

4.14 Speed Performance Test with Randomize Read/Write for each OSD
and CephFS . 38

4.15 Speed Performance Test with S.Read/Write(30%) for each OSD
and CephFS . 38

4.16 Speed Performance Test Randomize Read/Write(30%) for each OSD
and CephFS . 39

4.17 IOPS Performance Test with S.Read/Write for each OSD and CephFS 41
4.18 IOPS Performance Test with Randomize Read/Write for each OSD

and CephFS . 41
4.19 IOPS Performance Test with S.Read/Write(30%) for each OSD and

CephFS . 41
4.20 IOPS Performance Test with Randomize Read/Write(30%) for each

OSD and CephFS . 42
4.21 Performance Test with read for Rados Gateway, CephFS and Glus-

terFS . 43
4.22 Performance Test with write for Rados Gateway, CephFS and Glus-

terFS . 44

List of Tables

3.1 Software Specification . 17

4.1 Experimental hardware description 28
4.2 Experimental hardware specifications 28
4.3 Performance Comparison Test with Read, Write, Randomize for

each OSDs . 37
4.4 Performance Comparison Test with Read, Write, Randomize for

CephFS . 37
4.5 IOPS Performance Test with Read, Write and Randomize for each

OSDs . 40
4.6 IOPS Performance Comparison Test with Read, Write, Randomize

for CephFS . 40

viii

Chapter 1

Introduction

In recent years the importance of continuous delivery will continue to remove the

development and needs, requirements, availability and scalability. The tool must

be highly available so that engineers can provide new software. Many companies

need an auto-expand the shared storage system [1] and its services remain available

even when the component services failed. The data can be stored in a database and

file system or any other content, but eventually will be stored in a storage device

such as SSD [2] or hard drive. It requires high availability shared storage, reduces

the risk of device disruption, file system corruption, and the system connected

to the device may be interrupted.In order to avoid interruption, it would like to

have all of the components of the multiple instances. If an error occurs, other

components may reference the automatically takes over and copy and distribute

all data.Users do not need to worry if any disruption occurs.

1.1 Motivation

As Big Data has become so widespread, global industry have invested much capital

and research on it. They want to use Bid Data technology to analyze data that is

to huge to be easily handled. By using big data technology such as data mining

to obtain valuable information, it is desired to alleviate issues of expanding data

1

Chapter 1 Introduction 2

currently facing with us. The tool must be highly available so that engineers can

provide new software. Many companies need to automatically extend the shared

storage system to solve the problem. Therefore, we propose a high availability, an

open source, scalable, software-defined monitoring storage system.

Ceph [3] is an open source, scalable, software-defined storage system that can

run on merchandise hardware. Ceph from the outset has been developed in a self-

management and self-healing with no single point of failure on a single software

platform provides object, block and file system storage [4,5]. Because of its highly

scalable software defined storage architecture, Ceph of traditional storage systems

is also ideal replacement for cloud computing environment object and block storage

the powerful storage solutions.

To achieve these goals, We store the data in the Hadoop Distributed File

System (HDFS) and use Alluxio as a bridge to copy to Alluxio memory space.

The result is processed by Map Reduce, and the output is stored in the Alluxio

memory space. Ceph itself has two ways of passing, and we will compare the

performance between the two. The first is Ceph RADOS Gateway, we use the

Ceph API component S3 API and Rados Gateway as a bridge between Alluxio

and Object Storage (OSD). The second is the Ceph File System [6], which is the

same as the RADOS Gateway [7] environment, but the output of Map Reduce will

be directly connected to the object storage device (OSD) using Ceph File System

(CephFS).

1.2 Contributions

In this paper, we Integration a highly scalable, highly available, distributed dis-

tributed storage system. We use Ceph Storage , Alluxio [8], and Apache Hadoop

[9, 10] integrate technology into a complete system. We have encountered many

problems, such as the lack of OSD memory space. We try many different ways

to link each other big data tools, and finally we use Alluxio, Amazon S3 and

Chapter 1 Introduction 3

Hadoop. The most important thing is that we overcome the version of the prob-

lem. Each big data tool we have tried three different versions to test whether it

can be successfully linked. And we Integration Hadoop Distributed File System

(HDFS) to speed up processing of files, using Alluxio’s memory-centric architec-

ture allows data access several times faster than existing traditional solutions. We

use Inkscope monitors all system. We can clearly see the space configuration, if

there are any problems with the system will respond to error or warning to users.

1.3 Thesis Organization

In Chapter 2, we will introduce some background information, Ceph Storge Sys-

tem, Apache Hadoop, Alluxio and Gluster File System. Chapter 3 shows system

architecture. Chapter 4 shows the experimental environment and experimental

results. Finally, In Chapter 5 we discuss and summarize our study for future

work.

Chapter 2

Backgroud Review and Related

Works

2.1 Background

2.1.1 Ceph Storage System

Ceph [11] is an extensible, open source, software-defined storage system that runs

on commodity hardware. It Is designed to provide decentralized object storage and

archiving systems for performance, reliability and scale. Ceph [12] has developed

from scratch to store objects, blocks and file systems in a single software platform

that is self-managing, self-healing, and without single points of failure. Ceph

was made possible by a global community of enthusiastic storage engineers and

researchers. It is open source and freely-available. Ceph [13] software runs on

commodity hardware. The system is designed to be both self-healing and self-

managing and strives to cut both administrator and budget costs. Figure 2.1

shows the architecture of Ceph.

It is RADOS (Reliable Autonomic Distributed Object Store) as the main de-

sign of the decentralized storage platform, so the ability to expand horizontally

very powerful. He can expand thousands of nodes horizontally, and thus provide

4

Chapter 2 Backgroud Review and Related Works 5

PB, or even EB-level storage space. Because of its highly scalable software-defined

storage architecture, Ceph is an ideal replacement for traditional storage [14] sys-

tems and a powerful storage solution for objects and block storage for cloud com-

puting environments.

Figure 2.1: General Ceph Architecture

Ceph [4] consists of three component services, that are Object Storage, Block

Device and CephFS.

• Object Storage: Ceph is a distributed object storage and file system designed

to provide superior performance, reliability and scalability. Its software li-

brary to client applications provide direct access to reliable autonomous

distributed object storage (RADOS) object storage system and some of the

advanced features of the Ceph provides the basis, including RADOS block

device (RBD), and the Ceph RADOS Gateway File System software library

for the librados C, C, java, python and applications written in PHP. RA-

DOS Gateway object storage will also be open to restful interface that can

be used as a local Amazon S3 Display. Librados library provides advanced

features, including:

–Snapshots

–Object level key-value mappings

–Partial or complete reads and writes

Chapter 2 Backgroud Review and Related Works 6

–Atomic transactions with features like append, truncate and clone range

• Block Storage: Ceph’s object storage system allows the user to use the

Ceph installed as a low configuration of block device. The Ceph RADOS

block device (RBD) can access the entire storage cluster in the striped and

replicated block device image. When an application uses the block device

to write data to the Ceph ceph automatically set the data in the striped

and replication. The Ceph RADOS block device provides a block device

and can be used as a system of block device is formatted and installed, can

also offer QEMU and KVM virtual machines.Ceph RBD interfaces with the

same Ceph object storage system that provides the librados interface and the

CephFS file system, and it stores block device images as objects. Since RBD

is built on top of librados, RBD inherits librados’s capabilities, including

read-only snapshots and revert to snapshot. Ceph’s object storage system

is not bounded to native binding or RESTful APIs. User can mount Ceph

as a thinly provisioned block device. When write data to Ceph using a

block device, Ceph automatically stripes and replicates the data across the

cluster. By striping images across the cluster, Ceph increases read access

performance for large block device images.

• File System: Ceph’s file system (CephFS) to provide object storage and

block device interface of the same object storage systems. Ceph provides

a POSIX-compliant network file system that aims for high performance,

large data storage, and maximum compatibility with legacy applications.

Compared to many object storage systems available today Ceph’s object

storage system offers a significant feature: a traditional file system interface

with POSIX semantics. Object Storage System is an important innovation,

but they complement rather than replace traditional file system. The Ceph

metadata server cluster provides a service that maps the directories and file

names of the file system to objects stored within RADOS clusters. The

metadata server cluster can expand, contract, and dynamically rebalance

the file system to distribute data evenly among cluster hosts. As storage

Chapter 2 Backgroud Review and Related Works 7

requirements grow for legacy applications, organizations can configure their

legacy applications to use the Ceph file system. This means user can run

one storage cluster for object, block and file-based data storage. This en-

sures high performance and prevents heavy loads on specific hosts within

the cluster.

2.1.2 Alluxio

Alluxio [15,16] (former known as Tachyon) is an Open Source Virtual Machine Al-

located Memory speed storage system. Alluxio is the world’s first memory-centric

virtual distributed storage system. It unified data access and bridge calculation

framework and the underlying storage system. The application only needs to con-

nection Alluxio to access storage on the ground floor of the data storage system. In

addition, Alluxio’s memory-centric architecture allows data to be accessed several

times faster than existing conventional solutions. Figure 2.2 is Alluxio Architec-

ture.

Figure 2.2: Alluxio Architecture

2.1.3 Hadoop

Apache Hadoop now is one of the most popular big data processing solution that

is the apache software foundation open source frameworks. Hadoop implementa-

tion is constructed in accordance with published Google MapReduce and Google

File System papers. The Hadoop framework transparently provides reliability

and data for applications. The Apache Hadoop frame-work is built on top of the

Chapter 2 Backgroud Review and Related Works 8

Hadoop Distributed File System (HDFS), which supports a stable and automatic

distributed processing system. HDFS integrates distributed storage resources into

a fault-tolerant, efficient and large-capacity storage environment. Hadoop imple-

ments the map reduce programming framework, composed by the map and reduce

the size of the input that allows the cluster the same as any of the nodes in the im-

plementation of the data pieces. Hadoop From single server scales to thousands of

machine and provides parallel computing and increase the number of computing.

The Apache Hadoop project consists of the following: The project includes

these modules:

• Hadoop Common: The Hadoop common contains the libraries and modules

of Hadoop.

• HDFS: HDFS is designed to provide high throughput access to very large

datasets.

• Hadoop MapReduce: MapReduce is composed of the map and reduce, of

which the input is divided into a plurality of blocks to be executed on each

node.

Hadoop ecosystem has very diverse tools to make Hadoop useful in many appli-

cations.

Composed of two roles, Name node and Data nodes:

• The Name node is responsible for the management and storage of informa-

tion (metadata, namespace) in each file attribute privilege in the file system.

• The Data node usually consists of hundreds of nodes, a data file will be

cut into several smaller blocks (Block) stored in a different Data node, each

block will also have several copies (Replica) stored in different nodes, so that

when one of the nodes damaged, the file system data can be saved.

Chapter 2 Backgroud Review and Related Works 9

The Name node also needs to record the location of each file, when the need to

access the file, the coordination Data node responsible for the response;When a

node is damaged, the Name node also automatically relocates and copies the data.

2.1.4 Map Reduce

MapReduce [17,18] is a decentralized programming framework that allows service

developers to write programs very easily, using a lot of computing resources to

speed up the processing of large amounts of information. A MapReduce [19, 20]

operation can be divided into two parts Map and Reduce, a lot of information at

the beginning of the operation, the system will be converted into a group (key,

value) of the order and automatically cut into many parts. There are passed to

different Mapper to deal with, Mapper processing is completed after the results of

the results will be sorted into a group (key, value) of the order, and then passed

to the Reducer integration of all Mapper results, and finally to the overall results.

Figure 2.3 shows the architecture of Map Reduce.

Figure 2.3: Map Reduce Architecture

Chapter 2 Backgroud Review and Related Works 10

2.1.5 HDFS

Hadoop Distributed File System(HDFS) is a distributed file system designed to

run on commodity hardware. The detection of faults and automated recovery

is an important architectural goal of HDFS. HDFS has master-slave architecture

with a single Name Node as the master server to manage the file system. Besides,

a number of DataNodes, usually one per node in the cluster, manage storage

attached to the nodes. HDFS describes a file system namespace and allows user

data stored in files. Internally, a file is split into one or more blocks that are

stored in a set of Data Nodes. The Name Node executes file system namespace

operations such as to open, close, and rename files and directories, and it controls

the mapping of blocks to Data Nodes as well. The Data Nodes are responsible

for responding read and write requests from clients of the file system. HDFS

ensures input distribution and provides the user with an interface whose role is

to provide chunks of data files to cluster nodes. Among its chief advantages,

HDFS provides input locality by enabling nodes hosting input shards to apply

their processing on such chunks, rather than on remotely stored data. Figure 2.4

shows the architecture of HDFS.

Chapter 2 Backgroud Review and Related Works 11

Figure 2.4: HDFS architecture

Chapter 2 Backgroud Review and Related Works 12

2.1.6 Gluster File System

GlusterFS is an open source distributed file system, it can be scattered storage

space together to form a virtual storage pool. It supports scale-out, through an

increased number of storage nodes to increase overall system capacity or perfor-

mance, storage capacity can scale to petabytes. GlusterFS In addition to support-

ing distributed storage (different files on different storage nodes). It also supports

the use of Replicated storage (the same file stored in more than two storage nodes)

and Stripped storage (a file is divided into multiple fixed-length data, scattered in

all storage nodes).

GlusterFS has the following advantages:

• GlusterFS supports TCP / IP and InfiniBand RDMA high-speed Internet

interconnection.

• The client can access the data through the native GlusterFS protocol. Other

terminals that are not running the GlusterFS client can access the data

through the storage gateway through the NFS / CIFS standard protocol

(the storage gateway provides flexible volume management and access agent

functions).

• Storage server mainly provides basic data storage function, the client makes

up the problem of no metadata server, take on more functions, including data

volume management, I / O scheduling, file location, data cache and other

functions, the use of FUSE (File System in User Space) module mounts

GlusterFS on top of the local file system for POSIX-compatible access to

system data.

Chapter 2 Backgroud Review and Related Works 13

2.2 Related Works

High Available share storage is very important issue for future development. X.

Zhang et al, [21] 2016. Ceph is a distributed file system that provides high per-

formance, reliability, and scalability. Maximize the Ceph intergovernmental data

and metadata management replaces the configuration table to virtual random data

distribution function designed for heterogeneous and dynamic clusters of unreli-

able OSDS. They use investigate the performance of Ceph on an Open Stack cloud

using well-known benchmarks. They use lot of banchmarks for example Bonnie+

+, DD (Read and Write), RADOS Bench (Read/Write), Iperf Benchmark, Netcat

Benchmark. They results show its good performance and scalability.

Moldoveanu Florica et al, [22] 2013. Cloud computing is becoming increasingly

popular, and due to scalability to support rapid economic growth and productivity,

its distributed data storage tier needs to be able to meet these requirements. The

Ceph storage system contains a large number of cluster nodes and a large number

of clients that interact with it. They proposed two acceleration mechanisms based

on multi-core network SoCs to maximize the performance of each cluster node.

Chih-Fong Tsai et al, [23] 2016. Parallel and cloud computing platform is

considered a very good solution for large data mining. There are two common

methods to resolve the data problems. The first is based on data parallel paradigm

distributed process in which a given large data sets can manually into n subset,

and for the corresponding subset of the n n algorithms are implemented. The

end result from n algorithm can be generated output combinations. The second

is based on the cloud computing platform mapreduce the process. The process

of mapping and the reduction process, of which the former perform filtering and

sorting and later the executive summary operation to produce the final result.

They are large-scale data-mining mapreduce method and accuracy and efficiency

in the performance difference. Lab uses four large data for data classification.

The result indicates that the program is based on the classification of mapreduce

performance is very stable, regardless of the number of computer nodes are better

Chapter 2 Backgroud Review and Related Works 14

than baseline standalone and distributed. Mapreduce process requires the least

cost to handle these large data sets.

Chapter 3

System Design and

Implementation

This section describes the system architecture and implementation of decentralized

storage systems. We storage the data in the Hadoop Distributed File System

(HDFS) and use Alluxio as a bridge to copy to Alluxio memory space. The result

is processed by Map Reduce, and the output is storage in the Alluxio memory

space.

3.1 System Architecture

The first experiment, the system uses the word data to load mapping to reduce

environment. Data can be adjusted according to the user requirements. Here

we set three sample data size: 5GB, 10GB and 15GB. The value key through

the map, press the key sort [key, merge, [value-1, value-2, value-n]] algorithm is

used to send data to the memory speed Alluxio virtual storage systems. We also

RADOS through S3 and activate the Alluxio Gateway File Configuration API (S3

ceph components, data is also stored in the object store daemon (OSD).

For the second experiment, the system and the first system is the same as the

amount of data in the system and data not through S3 API and RADOS gateway

15

Chapter 3 System Design and Implementation 16

to store data to the object store daemon (OSD), the OSD is directly connected

to the Alluxio inserted. The second experiment reduces the S3 API and RADOS

gateway level. These environmental inkscope by monitoring system monitoring.

These environments have monitored by Inkscope monitoring system. Inkscope

monitor system in all ceph. If there is any expiration, Inkscope will display the

user’s alert. Figure 3.1 shows the integration architecture.

Figure 3.1: Hadoop, Alluxio and Ceph integration architecture

Chapter 3 System Design and Implementation 17

Table 3.1: Software Specification

No. Description Version
1 Apach Hadoop 2.7.3
2 Alluxio 1.4
3 Ceph 10.20(jewel)
4 Inkscope 1.1
5 Mongo DB 3.2
6 GlusterFS 3.6.9

3.2 System Implementation

In this work, we set up Apache Hadoop, Alluxio , Ceph , Inkscope , and GlusterFS.

Table 3.1 shows the specifications of used software.

3.2.1 Ceph Storage Service Deployment

Ceph is a free-software storage platform, implements distributed object storage

and file system, and provides interfaces for object-, block- and file-level storage.

It has excellent performance, reliability and scalability. To achieve the functions

above, Ceph has three kind of physical nodes: Object Storage Daemon (OSD),

Monitors (MON) and Metadata (MDS) service. Accroding to object storage deploy

requirements. We only need to install OSDs and MONs. The overview of our Ceph

architecture is show in Figure 3.2. The Figure 3.3 show the OSD work up. In the

first time we installed ceph, we encountered insufficient hard disk space, so we

have increased in the three OSD 20GB. As show in Figure 3.4. In the ceph version

we tried to use three different versions(Hammer, Infernalis, Jewel). We found that

using Hammer and Infernalis versions can not be integrated with Hadoop and

Alluxio. So we finally use the Jewel version.

3.2.2 HDFS Deployment

Hadoop has two kinds of nodes: master node and slave node. Master node uses

NameNode service to control DataNode service which is running on slave nodes.

Chapter 3 System Design and Implementation 18

Figure 3.2: Ceph environment

Figure 3.3: Ceph Osd tree

We built a HDFS architecture consisting of one master node and two slave nodes,

as shown in Figure 3.5 and Figure 3.6. The NameNode executes file system names-

pace operations and also determines the mapping of blocks DataNodes. DataNodes

are responsible for serving read and write requests from clients of file system. After

installing Hadoop and HDFS, we must set the S3 API in the Hadoop environment

and add the code in the core-site.xml.

3.2.3 Alluxio Deployment

Alluxio data storage and computing separation, two-part engine can be indepen-

dently extended. The calculation engine (Hadoop) can access data from different

data sources (Amazon S3). We deployment Alluxio in the Hadoop node, and then

through Alluxio as a bridge to access the S3 API and Rados Gateway. As show in

Chapter 3 System Design and Implementation 19

Figure 3.4: Add a hard drive

Figure 3.5: HDFS environment

Figure 3.7 and Figure 3.8. After integrating Hadoop and Alluxio, we use the Word

Count example to test, we see the Output state is NOT-PERSISTED as show the

Figure 3.9. After the data is transferred into the state becomes PERSISTED as

show the Figure 3.10. We can see the OSD space saved data in the Figure 3.11.

Chapter 3 System Design and Implementation 20

Figure 3.6: Hadoop jps

Figure 3.7: Alluxio environment

3.2.4 Rados Gateway Deployment

Also known as Ceph Object Storage. Provide RESTful API interface, compati-

ble with Amazon S3 cloud storage services, and OpenStack object storage Swift.

Through the Rados Gateway access to the Ceph storage cluster, mainly through

the LIBRGW this library, you can achieve direct access to the effect. As show in

3.12 and Figure 3.13.

Chapter 3 System Design and Implementation 21

Figure 3.8: Alluxio instances

Figure 3.9: Output state before

Figure 3.10: Output state after

3.2.5 Ceph File System Deployment

Ceph File System(CephFS) provides POSIX compatible file systems for users to

mount files or folders in two ways: access to CephFS’s core object, or the user

space under the file system (Filesystem in User Space) and use. First we build

CephFS mount up. Second we mount CephFS via Alluxio File System. As show

in Figure 3.14. We will put 1.5G files into CephFS, and then observe the CephFS

Chapter 3 System Design and Implementation 22

Figure 3.11: OSD space saved data

Figure 3.12: Rados Gateway environment

space changes, from the figure 3.15 you can see the CephFS space has indeed been

eaten. In the Alluxio WebUI to see if the file is passed. As show the Figure 3.16

and 3.17

Chapter 3 System Design and Implementation 23

Figure 3.13: Rados Gateway instances

Figure 3.14: Ceph File System instances

Figure 3.15: CephFS spatial changes

Chapter 3 System Design and Implementation 24

Figure 3.16: Alluxio WebUI before upload

Figure 3.17: Alluxio WebUI after upload

Chapter 3 System Design and Implementation 25

3.2.6 User Services

We deployment the Inkscope system to monitor Ceph environment. Inkscope

monitors all server hardware, networks, pools, and services. We also use MongoDB

to store real-time metrics and historical metrics. As show in Figure 3.18.

Figure 3.18: Inkscope environment

Chapter 4

Experimental Results

4.1 Experimental Environment

For the hardware specification of the computer that we use 6 servers for Ceph,

1 server for Inkscope, 1 server for Hadoop and Alluxio. These servers are the

physical machine. We use 64-bit Ubuntu 14.04 as our operating system because

this version is relatively stable relative to other versions. Figure 4.1 shows us the

environment. Table 4.1 and Table 4.2 shows the hardware specification of the

computer.

26

Chapter 4 Experimental Results 27

Figure 4.1: Hardware environment

Chapter 4 Experimental Results 28

Table 4.1: Experimental hardware description

Component Sub-Component Total server server

Ceph
Deploy 1Unit Deploy

Monitior 1Unit Mon1

OSD 3Unit
Osd1
Osd2
Osd3

Hadoop
Alluxio

Name Node
Master Node 1Unit namenode

Data Node
Worker Node 1Unit datanode

Inkscope Inkscope 1Unit inkscope

Gluster Gluster1
Gluster2 2Unit glusterfs1

glusterfs2

Table 4.2: Experimental hardware specifications

Hardware component
CPU Inter(R) Core(TM)i7-4770 CPU @3.40GHz 8Cores
RAM 16GB
HDD 1TB

OS Ubuntu14.04 LTS

Chapter 4 Experimental Results 29

4.2 Experimental Results

4.2.1 MapReduce Input and Output

We show real-time Map Reduce in the Hadoop environment. The source data is

stored in HDFS and then copied to the Alluxio memory space environment. The

data is stored in the path: alluxio/wordcount/myfile

Figure 4.2 show the Data Source in Alluxio.

Figure 4.2: Data Source in Alluxio

Figure 4.3 and Figure 4.4 is the output result stored in the Alluxio memory.

Figure 4.3: Map Reduce Output 1

Chapter 4 Experimental Results 30

Figure 4.4: Map Reduce Output 2

Chapter 4 Experimental Results 31

All the MapReduce data have been store in to the Ceph OSDs.Used S3 API

and Rados Gateway as the first way and directly CephFS for the second way.

Figure 4.5 show the Ceph OSD Output.

Figure 4.5: Ceph OSD Output

Chapter 4 Experimental Results 32

4.2.2 Inkscope Monitoring System

The following is the Inkscope monitoring system for the Ceph environment. Inkscope

monitors all server hardware, networks, pools, and services as follows: This page

you can see that are two hard drives as object storage daemon 10 pool, 136 config-

uration group (placement group). When the user data will be saved to the cluster,

each object must be mapped to a configuration group placement group and every

one configuration group placement group will be mapped to a OSD, OSD is one

of the other primary, is backup(replica). Figure 4.6, Figure 4.7, Figure 4.8 and

Figure 4.9 show the Inkscope Ceph status.

Figure 4.6: Inkscope Ceph Login Page

Figure 4.7: Inkscope Ceph cluste hosts

Chapter 4 Experimental Results 33

Figure 4.8: Inkscope Ceph status

Chapter 4 Experimental Results 34

Figure 4.9: Inkscope Ceph Pools Management

Chapter 4 Experimental Results 35

If the OSD server in all systems has insufficient space or any problems, the

Inkscope system will notify you. Figure 4.10, Figure 4.11 shows the osd status.

Figure 4.12 shows the notification interface.

Figure 4.10: Inkscope Ceph osd page

Chapter 4 Experimental Results 36

Figure 4.11: Inkscope Ceph osd map

Figure 4.12: Inkscope Ceph Pools Management2

Chapter 4 Experimental Results 37

Table 4.3: Performance Comparison Test with Read, Write, Randomize for
each OSDs

Osd1 Osd2 Osd3
5G 10G 15G 5G 10G 15G 5G 10G 15G

S.Read 1.8 1.9 1.9 2.2 2.0 2.1 2.0 2.1 1.9
S.Write 24.0 25.7 24.8 26.6 24.0 24.0 18.1 20.5 19.9

Rand.Read 1.3 1.1 1.0 1.2 1.2 1.1 1.3 1.1 1.1
Rand.Write 2.6 2.5 2.4 2.6 2.5 2.3 2.3 2.3 1.9

S.Read(30%) 2.0 2.1 2.1 2.1 2.0 3.4 6.4 6.7 5.8
S.Write(30%) 0.8 0.9 1.5 0.9 0.8 1.5 2.8 2.8 2.5

Rand.Read(30%) 1.1 1.0 0.9 1.1 1.0 0.9 1.1 0.9 0.9
Rand.Write(30%) 0.4 0.4 0.3 0.4 0.4 0.3 0.4 0.3 0.3

Table 4.4: Performance Comparison Test with Read, Write, Randomize for
CephFS

CephFS
5G 10G 15G

S.Read 19.8 1.9 1.9
S.Write 0.7 25.7 24.8

Rand.Read 16.1 16.9 16.9
Rand.Write 0.5 0.5 0.5

S.Read(30%) 1.2 1.3 1.3
S.Write(30%) 0.5 0.5 0.6

Rand.Read(30%) 1.1 0.9 0.7
Rand.Write(30%) 0.4 0.4 0.3

4.2.3 The Performance between Rados Gateway and CephFS

Comparison

We use FIO tool to benchmark. Using Rados Gateway and CephFS. Table 4.3

and Table 4.4 is our experimental result.The first way, three OSDs is using Rados

Gateway and S3 API way to store the data in to OSDs. The second way is through

CephFS stored the data to OSDs.According to experiment.

The Figure 4.13 shows the Osd and CephFS in sequential read and write access

comparison. We observe from the figure in terms of reading CephFS is better than

Osd. In terms of writing is different.

Chapter 4 Experimental Results 38

Figure 4.13: Speed Performance Test with S.Read/Write for each OSD and
CephFS

The Figure 4.14 shows the Osd and CephFS in random read and write access

comparison. We observe from the figure in terms of reading CephFS is apparently

excellent than Osd. In terms of writing is different.

Figure 4.14: Speed Performance Test with Randomize Read/Write for each
OSD and CephFS

The Figure 4.15 shows the Osd and CephFS in sequential read(30%) and

write(30%) access comparison. We observe from the figure that the osd Slightly

better than CephFS.

Figure 4.15: Speed Performance Test with S.Read/Write(30%) for each OSD
and CephFS

Chapter 4 Experimental Results 39

The Figure 4.16 shows the Osd and CephFS in random read(30%) and write(30%)

access comparison. We observe from the figure that no significant difference.

Figure 4.16: Speed Performance Test Randomize Read/Write(30%) for each
OSD and CephFS

Chapter 4 Experimental Results 40

Table 4.5: IOPS Performance Test with Read, Write and Randomize for each
OSDs

Osd1 Osd2 Osd3
5G 10G 15G 5G 10G 15G 5G 10G 15G

S.Read 118 112 121 137 127 134 125 132 120
S.Write 1504 1609 1552 1664 1545 1505 1132 1281 1246

Rand.Read 82 74 67 78 75 71 85 72 71
Rand.Write 166 158 150 163 157 149 144 132 124

S.Read(30%) 130 133 131 132 126 217 416 424 368
S.Write(30%) 54 56 94 55 53 94 176 179 157

Rand.Read(30%) 71 62 60 73 64 59 68 58 58
Rand.Write(30%) 28 25 24 29 25 24 27 21 23

Table 4.6: IOPS Performance Comparison Test with Read, Write, Randomize
for CephFS

CephFS
5G 10G 15G

S.Read 1238 2084 1260
S.Write 40 40 40

Rand.Read 1006 1058 1056
Rand.Write 31 29 27

S.Read(30%) 74 79 83
S.Write(30%) 30 32 34

Rand.Read(30%) 65 56 43
Rand.Write(30%) 26 22 17

As shown in the above Table 4.5 and Table 4.6. The first way, three OSDs is

using Rados Gateway and S3 API way to store the data in to OSDs. We measured

each OSD speed and got above result. The second way is through CephFS stored

the data to OSDs.According to experiment, we can conclude that the performance

of the CephFS than Rados Gateway and S3 API.The measurement results in IOPS

is the same. When the value, higher the better read and write performance.

The Figure 4.17 shows the Osd and CephFS in sequential read and write access

comparison. We observe from the figure as same as speed test,in terms of reading

CephFS is better than Osd. In terms of writing is different.

The Figure 4.18 shows the Osd and CephFS in random read and write access

comparison. We observe from the figure in terms of reading CephFS is significant

better than Osd.

Chapter 4 Experimental Results 41

Figure 4.17: IOPS Performance Test with S.Read/Write for each OSD and
CephFS

Figure 4.18: IOPS Performance Test with Randomize Read/Write for each
OSD and CephFS

The Figure 4.19 shows the Osd and CephFS in sequential read(30%) and

write(30%) access comparison. We observe from the figure in terms of reading

Osd is Slightly better than CephFS.

Figure 4.19: IOPS Performance Test with S.Read/Write(30%) for each OSD
and CephFS

The Figure 4.20 shows the Osd and CephFS in random read(30%) and write(30%)

access comparison. We observe from the figure in terms of reading and writing are

not significant difference.

Chapter 4 Experimental Results 42

Figure 4.20: IOPS Performance Test with Randomize Read/Write(30%) for
each OSD and CephFS

4.2.4 The Performance among Rados Gateway, CephFS

and GlusterFS Comparison

This experiment compares GlusterFS , Rados Gateway and CephFS three file

systems to record the time required for file access. In the client to create a single

file on the file size of 1MB, 2MB, 4MB, 8MB, 16MB, 32MB, 64MB, 128MB,

256MB, 512MB, 1GB, 2GB, 4GB, 8GB, 16GB, 32GB of access performance test.

The Figure 4.21 above is the time it takes for different sizes of files to be

uploaded from the client to the distributed file system. We observe from the

figure be clearly. When the file is less than 512MB, the time is no significant

difference. Starting from 512MB, it is significant that GlusterFS and OSD upload

time spent almost twice as much as CephFS, So this figure shows that CephFS is

superior to GlusterFS and OSD in file storage.

Chapter 4 Experimental Results 43

Figure 4.21: Performance Test with read for Rados Gateway, CephFS and
GlusterFS

Chapter 4 Experimental Results 44

The experiment in Figure 4.22 shows the time it takes for different sizes of

files to be downloaded from the distributed file system to the client. This figure

suggest at 2GB had a Slight difference. Starting from 4GB, CephFS had better

performance than Gluster and Osd.

Figure 4.22: Performance Test with write for Rados Gateway, CephFS and
GlusterFS

Chapter 5

Conclusions and Future Work

5.1 Concluding Remarks

Ceph is a high-performance, scalable storage, safe and stable management platform

management mode with simple and low cost and built in addition to significantly

reduce the build time and reduce system risk. Stable system architecture and

flexible virtual machine settings. Let the platform can provide high reliability.

High scalability and meet user demand of the user storage system.We also use

Inkscope to monitor the operation of the machine and the space usage. If the

machine has any problems we can clearly know through the web interface.

In the integration system often encounter version update and version does not

support each other’s problems, the occurrence of such problems will make us all

must be new, such as Ceph version we tried three Hammer, Infernalis, Jewel. We

found that the Jewel version is compatible with Hadoop and Alluxio. We also

encountered insufficient hardware space, lack of integration authority and OSD

tree can not start normally.

This paper use open source software components are Ceph, Alluxio and Hadoop

environment. Through this experiment, we get a few results as follows:

45

Chapter 5 Conclusions and Future Work 46

• High speed read/write storage and flexible expansion storage space with

NFS using the OSD other format.

• Ceph data is safer in Rados Gateway because of intermediate security.

• Hadoop operations can be saved directly to the OSD via the CephFS plugin.

In this way, access to data is more efficient than Rados Gateway.

• CephFS is significantly better than Rados Gateway at writing.

• CephFS, Rados Gateway and GlusterFS in the case of small data comparison

are no significant differences at writing.

• When the data starts from GB, CephFS is significantly better than the

others.

5.2 Future Work

In our system, due to the lack of hardware resources quantity. We hope to have

the opportunity to increase the number of OSD nodes. We hope to have the

opportunity to use more physical machine environment. We can store the entity

data on this system, such as the campus WIFI Log data. For the file storage

function, we hope to use erasure code to improve security and availability.

References

[1] P. Shu, R. Gu, Q. Dong, C. Yuan, and Y. Huang. Accelerating big data

applications on tiered storage system with various eviction policies. pages

1350–1357, 2016.

[2] H. Wu, L. Zhu, K. Lu, G. Li, and D. Wu. Stagefs: A parallel file system

optimizing metadata performance for ssd based clusters. pages 2147–2152,

2016.

[3] K. Zhan and A.H. Piao. Optimization of ceph reads/writes based on multi-

threaded algorithms. pages 719–725, 2016.

[4] D. Manini, M. Gribaudo, and M. Iacono. Modeling replication and erasure

coding in large scale distributed storage systems based on ceph. volume 18,

pages 273–284, 2016.

[5] S. Meyer and J.P. Morrison. Supporting heterogeneous pools in a single ceph

storage cluster. pages 352–359, 2015.

[6] M.A. Sevilla, N. Watkins, C. Maltzahn, I. Nassi, S.A. Brandt, S.A. Weil,

G. Farnum, and S. Fineberg. Mantle: A programmable metadata load bal-

ancer for the ceph file system. volume 15-20-November-2015, 2015.

[7] Z. Farkas, P. Kacsuk, and A. Hajnal. Connecting workflow-oriented science

gateways to multi-cloud systems. pages 40–46, 2015.

[8] Y. Huang, Y. Yesha, M. Halem, Y. Yesha, and S. Zhou. Yinmem: A dis-

tributed parallel indexed in-memory computation system for large scale data

analytics. pages 214–222, 2016.

47

References 48

[9] I. Mavridis and H. Karatza. Performance evaluation of cloud-based log file

analysis with apache hadoop and apache spark. Journal of Systems and

Software, 125:133–151, 2017.

[10] J. Pinto, P. Jain, and T. Kumar. Hadoop distributed computing clusters for

fault prediction. 2016.

[11] W. Kong and Y. Luo. Multi-level image software assembly technology based

on openstack and ceph. pages 307–310, 2016.

[12] M.D. Poat and J. Lauret. Performance and advanced data placement tech-

niques with ceph’s distributed storage system. Journal of Physics: Conference

Series, 762(1), 2016.

[13] L. Wang and Y. Wen. Design and implementation of ceph block device in

userspace for container scenarios. pages 383–386, 2016.

[14] P. Li and W. Xu. Optimizing hash-based distributed storage using client

choices. 2016.

[15] A. Ahmad, A. Paul, S. Din, M.M. Rathore, G.S. Choi, and G. Jeon. Mul-

tilevel data processing using parallel algorithms for analyzing big data in

high-performance computing. International Journal of Parallel Programming,

pages 1–20, 2017.

[16] D. Shankar, X. Lu, and D.K.D.K. Panda. Boldio: A hybrid and resilient

burst-buffer over lustre for accelerating big data i/o. pages 404–409, 2016.

[17] E.N.C. Wai, P.-W. Tsai, and J.-S. Pan. Hierarchical pso clustering on mapre-

duce for scalable privacy preservation in big data. Advances in Intelligent

Systems and Computing, 536:36–44, 2017.

[18] R.J. Commons, K. Thriemer, G. Humphreys, I. Suay, C.H. Sibley, P.J.

Guerin, and R.N. Price. The vivax surveyor: Online mapping database

for plasmodium vivax clinical trials. International Journal for Parasitology:

Drugs and Drug Resistance, 7(2):181–190, 2017.

References 49

[19] K. Matsuzaki. Functional models of hadoop mapreduce with application to

scan. International Journal of Parallel Programming, 45(2):362–381, 2017.

[20] B. Jena, M.K. Gourisaria, S.S. Rautaray, and M. Pandey. A survey work on

optimization techniques utilizing map reduce framework in hadoop cluster.

International Journal of Intelligent Systems and Applications, 9(4):61–68,

2017.

[21] X. Zhang, S. Gaddam, and A.T. Chronopoulos. Ceph distributed file system

benchmarks on an openstack cloud. pages 113–120, 2015.

[22] P.S. Andrei, M. Florica, M. Alin, A. Victor, and C.M. Claudiu. Hardware

acceleration in ceph distributed file system. pages 209–215, 2013.

[23] C.-F. Tsai, W.-C. Lin, and S.-W. Ke. Big data mining with parallel comput-

ing: A comparison of distributed and mapreduce methodologies. Journal of

Systems and Software, 122:83–92, 2016.

Appendix A

Ceph Installation

I. Modify hosts

sudo vim /etc/hosts

II. Modify hostname

sudo vim /etc/hostname

sudo service hostname start

III. Update and updrade

sudo apt-get update && sudo apt-get upgrade

IV. Install NTP

sudo apt-get install ntp openssh-server

V. Add userceph

sudo useradd -d /home/{username} -m {username}

sudo passwd {username}

echo "{username} ALL = (root) NOPASSWD:ALL" | sudo tee /etc/sudoers.d/{username}

50

Appendix 51

sudo chmod 0440 /etc/sudoers.d/{username}

VI. Create SSH authentication login

ssh-keygen

ssh-copy-id userceph@mon1

ssh-copy-id userceph@osd1

ssh-copy-id userceph@osd2

ssh-copy-id userceph@osd3

VII. Modify config

sudo vim ~/.ssh/config

Host mon1

Hostname mon1

User userceph

Host osd1

Hostname osd1

User userceph

Host osd2

Hostname osd2

User userceph

Host osd3

Hostname osd3

User userceph

VIII. Download release key

wget -q -O- 'https://download.ceph.com/keys/release.asc' | sudo apt-key add -

echo deb http://download.ceph.com/debian-jewel/ $(lsb_release -sc) main | sudo tee /etc/apt/sources.list.d/ceph.list

sudo apt-get update && sudo apt-get install ceph-deploy

IX. Create cluster

mkdir ~/ceph && cd ~/ceph

ceph-deploy new {mon-nodes}

sed -i '$a osd pool default size = 3' ceph.conf

X. Install Ceph

Appendix 52

ceph-deploy install {deploy-node} {mon-nodes} {osd-nodes}

ceph-deploy mon create-initial

ceph-deploy osd prepare osd1:/mnt/{osd0; osd1; osd2}

ceph-deploy osd activate osd1:/mnt/{osd0; osd1; osd2}

ceph-deploy admin {all nodes}

sudo chmod +r /etc/ceph/ceph.client.admin.keyring

XI. Use ceph health to see running program

cd /ceph/

ceph health

ceph osd tree

Appendix B

Rados Gateway Installation

I. Install Ceph Object Gateway

ceph-deploy install --rgw mon1

II. Create Rados Gateway

ceph-deploy rgw create mon1

III. Rados Gateway website

mon1:7480

IV. Create Gateway Rados user account for S3 access

sudo radosgw-admin user create --uid="testuser" --display-name="First User"

V. Install python boto

sudo apt-get install -y python-boto

V. Create and modify py

53

Appendix 54

sudo vim s3test.py

import boto

import boto.s3.connection

access_key = 'I5WPD6S2BX6JKE2I4TU8 '

secret_key = '3WtojizD5CIGNsxl6lsubabQAPuOfHw7BnGhlrdg '

conn = boto.connect_s3(

aws_access_key_id = access_key,

aws_secret_access_key = secret_key,

host = '{hostname}', port = {port},

is_secure=False, calling_format = boto.s3.connection.OrdinaryCallingFormat(),

)

bucket = conn.create_bucket('my-new-bucket')

for bucket in conn.get_all_buckets():

print "{name} {created}".format(

name = bucket.name,

created = bucket.creation_date,

)

python s3test.py

scp -r tmp userceph@mon1:~

sudo vim s3ListObject.py

python s3ListObject.py

sudo vim s3ListObject.py

python s3ListObject.py

sudo vim s3generate.py

python s3generate.py

Appendix C

Hadoop Installation

I. Modify hosts

sudo vim /etc/hosts

II. Install JDK

sudo apt-get -y install openjdk-7-jdk

sudo ln -s /usr/lib/jvm/java-7-openjdk-amd64 /usr/lib/jvm/jdk

III. Creat SSH authentication login

ssh-keygen -t rsa -f ~/.ssh/id_rsa -P ''

cp ~/.ssh/id_rsa.pub ~/.ssh/authorized_keys

IV. Install hadoop

wget http://ftp.twaren.net/Unix/Web/apache/hadoop/common/hadoop -2.6.0/

hadoop -2.6.0.tar.gz

tar zxf hadoop -2.6.0.tar.gz

mv hadoop -2.6.0 hadoop

V. Modify .bashrc

55

Appendix 56

sudo vim .bashrc

export JAVA_HOME=/usr/lib/jvm/jdk/

export HADOOP_INSTALL=/home/userceph/hadoop

export PATH=$PATH:$HADOOP_INSTALL/bin

export PATH=$PATH:$HADOOP_INSTALL/sbin

export HADOOP_MAPRED_HOME=$HADOOP_INSTALL

export HADOOP_COMMON_HOME=$HADOOP_INSTALL

export HADOOP_HDFS_HOME=$HADOOP_INSTALL

export YARN_HOME=$HADOOP_INSTALL

source ~/.bashrc

VI. Set hadoop config

cd hadoop/etc/hadoop

vim hadoop-env.sh

export JAVA_HOME=/usr/lib/jvm/jdk/

vim core-site.xml

<property>

<name>fs.default.name</name>

<value>hdfs://hadoop-master:9000</value>

</property>

vim yarn-site.xml

<property>

<name>yarn.nodemanager.aux-services</name>

<value>mapreduce_shuffle </value>

</property>

<property>

<name>yarn.resourcemanager.hostname</name>

<value>hduser</value>

</property>

cp mapred-site.xml.template mapred-site.xml

vim mapred-site.xml

<property>

<name>mapreduce.framework.name</name>

<value>yarn</value>

</property>

mkdir -p ~/mydata/hdfs/namenode

Appendix 57

mkdir -p ~/mydata/hdfs/datanode

vim hdfs-site.xml

<property>

<name>dfs.replication </name>

<value>2</value>

</property>

<property>

<name>dfs.namenode.name.dir</name>

<value>/home/hduser/mydata/hdfs/namenode</value>

</property>

<property>

<name>dfs.datanode.data.dir</name>

<value>/home/hduser/mydata/hdfs/datanode</value>

</property>

vim slaves

hadoop

VII. Format HDFS

hdfs namenode -format

VIII. Start hadoop

start-all.sh

IX. Use jps to see java running program

jps

X. Hadoop environment set Ceph S3 API account

vim core-site.xml

<property>

<name>fs.default.name</name>

<value>hdfs://namenode:9000</value>

</property>

<property>

<name>fs.s3n.awsAccessKeyId </name>

Appendix 58

<value>BHA5B6APZUATJMMQ12UT </value>

</property>

<property>

<name>fs.s3n.awsSecretAccessKey </name>

<value>pXiRSF9fm3SSJxSGoYzNcHpC2Gm5N5G6UdeqdWhQ </value>

</property>

<property>

<name>fs.alluxio.impl</name>

<value>alluxio.hadoop.FileSystem </value>

<description>The Alluxio FileSystem (Hadoop 1.x and 2.x)</description>

</property>

<property>

<name>fs.alluxio-ft.impl</name>

<value>alluxio.hadoop.FaultTolerantFileSystem </value>

<description>The Alluxio FileSystem (Hadoop 1.x and 2.x) with fault tolerant

support</description>

</property>

<property>

<name>fs.AbstractFileSystem.alluxio.impl</name>

<value>alluxio.hadoop.AlluxioFileSystem </value>

<description>The Alluxio AbstractFileSystem (Hadoop 2.x)</description>

</property>

Appendix D

Alluxio Installation

I. Install Alluxio

wget http://downloads.alluxio.org/downloads/files/1.2.0/alluxio -1.2.0

-hadoop2.6-bin.tar.gz

tar xvfz alluxio -1.2.0-hadoop2.6-bin.tar.gz

bin/alluxio bootstrap-conf localhost local

II. Modify Alluxio

vim alluxio-env.sh

export ALLUXIO_UNDERFS_ADDRESS=s3n://my-new-bucket/test/

#ALLUXIO_UNDERFS_ADDRESS=${ALLUXIO_UNDERFS_ADDRESS:-"${ALLUXIO_HOME}/underFSStorage/"}

export ALLUXIO_WORKER_MEMORY_SIZE=${ALLUXIO_WORKER_MEMORY_SIZE:-1GB}

export ALLUXIO_JAVA_OPTS+="

-Dalluxio.user.file.writetype.default=CACHE_THROUGH

-Dlog4j.configuration=file:${CONF_DIR}/log4j.properties

-Dalluxio.worker.tieredstore.levels=1

-Dalluxio.worker.tieredstore.level0.alias=MEM

-Dalluxio.worker.tieredstore.level0.dirs.path=${ALLUXIO_RAM_FOLDER}

-Dalluxio.worker.tieredstore.level0.dirs.quota=${ALLUXIO_WORKER_MEMORY_SIZE}

-Dalluxio.underfs.address=${ALLUXIO_UNDERFS_ADDRESS}

-Dalluxio.worker.memory.size=${ALLUXIO_WORKER_MEMORY_SIZE}

-Dalluxio.master.hostname=${ALLUXIO_MASTER_ADDRESS}

-Dorg.apache.jasper.compiler.disablejsr199=true

-Djava.net.preferIPv4Stack=true

-Dfs.s3n.awsAccessKeyId=QINHSA7JD2MBEKN97F4A

-Dfs.s3n.awsSecretAccessKey=mbjd9H80AokLYFP2Yx44K64Jgy5JdXZIlrWRrcPn

59

Appendix 60

-Dalluxio.underfs.s3.disable.dns.buckets=true

-Dalluxio.underfs.s3.endpoint=mon1

-Dalluxio.underfs.s3.proxy.https.only=false

-Dalluxio.underfs.s3.endpoint.http.port=7480

"

export ALLUXIO_MASTER_JAVA_OPTS="${ALLUXIO_JAVA_OPTS}"

export ALLUXIO_WORKER_JAVA_OPTS="${ALLUXIO_JAVA_OPTS}"

III. Format Alluxio

./bin/alluxio format

./bin/alluxio-start.sh local

IV. Use jps to see Alluxio running program

jps

Appendix E

CephFS Installation

I. Create user

sudo useradd -d /home/{username} -m {username}

sudo passwd {username}

echo "{username} ALL = (root) NOPASSWD:ALL" | sudo tee /etc/sudoers.d/

{username}

sudo chmod 0440 /etc/sudoers.d/{username}

II. Install NTP

sudo apt-get install ntp openssh-server

III. Create SSH authentication login

ssh-copy-id {username}@{nodeIP}

IV. Install Ceph kit

ceph-deploy install client

ceph-deploy admin client

V. Update kernal

61

Appendix 62

sudo apt-get install linux-generic-lts-xenial

sudo reboot

VI. Create mount

sudo mkdir -p /mnt/mycephfs

sudo chmod 777 /mnt/mycephfs

VII. Check Ceph.client.admin.keyring

cd /etc/ceph

sudo cat ceph.client.admin.keyring

sudo mount -t ceph monIP:6789:/ /mnt/mycephfs -o name=admin,secret=cat

df -h

Appendix F

Inkscope Installation

I. Download InkScope-Admviz, InkScope-Common, InkScope-Cephrestapi and InkScope-

Monitoring

wget https://raw.githubusercontent.com/inkscope/inkscope-packaging/master/

DEBS/inkscope-admviz_1.4.0.2.deb

wget https://raw.githubusercontent.com/inkscope/inkscope-packaging/master/

DEBS/inkscope-common_1.4.0.2.deb

wget https://raw.githubusercontent.com/inkscope/inkscope-packaging/master/

DEBS/inkscope-monitoring_1.4.0.2.deb

wget https://raw.githubusercontent.com/inkscope/inkscope-packaging/master/

DEBS/inkscope-cephrestapi_1.4.0.2.deb

II. Download Common, Cephrestapi, Cephprobe and Sysprobe

Mon[node]

wget https://raw.githubusercontent.com/inkscope/inkscope-packaging/master/

DEBS/inkscope-common_1.4.0.2.deb

wget https://raw.githubusercontent.com/inkscope/inkscope-packaging/master/

DEBS/inkscope-cephrestapi_1.4.0.2.deb

wget https://raw.githubusercontent.com/inkscope/inkscope-packaging/master/

DEBS/inkscope-cephprobe_1.4.0.2.deb

wget https://raw.githubusercontent.com/inkscope/inkscope-packaging/master/

DEBS/inkscope-sysprobe_1.4.0.2.deb

III. Download Common and Sysprobe

63

Appendix 64

OSD[node]

wget https://raw.githubusercontent.com/inkscope/inkscope-packaging/master/

DEBS/inkscope-common_1.4.0.2.deb/inkscope-sysprobe_1.4.0.2.deb

wget https://raw.githubusercontent.com/inkscope/inkscope-packaging/master/

DEBS/inkscope-sysprobe_1.4.0.2.deb

IV. Download inkscope-admviz, inkscope-common and inkscope-monitoring

Inkscope

sudo dpkg -i inkscope-admviz_1.4.0.2.deb

sudo dpkg -i inkscope-common_1.4.0.2.deb

sudo dpkg -i inkscope-cephrestapi_1.4.0.2.deb

sudo dpkg -i inkscope-monitoring_1.4.0.2.deb

Mon[node]

sudo dpkg -i inkscope-common_1.4.0.2.deb

sudo dpkg -i inkscope-cephrestapi_1.4.0.2.deb

sudo dpkg -i inkscope-cephprobe_1.4.0.2.deb

sudo dpkg -i inkscope-sysprobe_1.4.0.2.deb

OSD[node]

sudo dpkg -i inkscope-common_1.4.0.2.deb

sudo dpkg -i inkscope-sysprobe_1.4.0.2.deb

V. Create ceph-rest-api user

MON[node]

sudo chmod 777 /etc/ceph

sudo ceph auth get-or-create client.restapi mds 'allow' osd 'allow *' mon

'allow *' > /etc/ceph/ceph.client.restapi.keyring

cd /etc/ceph

ls

VI. Added /etc/ceph/ceph.conf

vim /etc/ceph/ceph.conf

[client.restapi]

log_file = /dev/null

keyring = /etc/ceph/ceph.client.restapi.keyring

ceph-rest-api -i restapi

VII. Install kit

Appendix 65

sudo apt-get install python-pip apache2 libapache2-mod-wsgi mongodb python-ceph

cd ceph

radosgw-admin user create --uid=inkscope --display-name="Inkscope admin" --

access-key="inkscopeAccess" --secret="inkscopeSecret" --

caps="users=*;metadata=*;buckets=*"

VIII. Modify inkscope

sudo vim /opt/inkscope/etc/inkscope.conf

"ceph_conf": "/etc/ceph/ceph.conf",

"ceph_rest_api": "inkscope_host:inkscope_port",

"ceph_rest_api_subfolder": "ceph_rest_api",

"mongodb_host" : "mpongo_host",

"mongodb_set" : "mongodb0:27017,mongodb1:27017,mongodb2:27017",

"user": "inkscope", "access_key": "inkscopeAccess", "secret_key": "inkscopeSecret"

IX. Modify ports.conf

sudo vim /etc/apache2/ports.conf

X. Install flask-login simple-json

sudo pip install flask-login simple-json

XI. Start inkScope

sudo a2ensite inkScope\

sudo a2enmod proxy

sudo vim /etc/apache2/sites-enabled/inkScope.conf

ProxyPass /ceph-rest-api/ http://<inkscope_host >:<inkscope_port >/ceph_rest_api/

api/v0.1/

sudo service apache2 restart

\textbf{sudo vim /etc/mongodb.conf}

#　sudo service mongodb restart

XII. Modify and Install kit OSD[node]

Appendix 66

sudo vim /opt/inkscope/etc/inkscope.conf

"ceph_conf": "/etc/ceph/ceph.conf",

"ceph_rest_api": "inkscope_host:inkscope_port",

"ceph_rest_api_subfolder": "ceph_rest_api",

"mongodb_host" : "mpongo_host",

"mongodb_set" : "mongodb0:27017,mongodb1:27017,mongodb2:27017",

"user": "inkscope", "access_key": "inkscopeAccess", "secret_key": "inkscopeSecret"

sudo apt-get install lshw sysstat

sudo apt-get install python-pip python-dev

sudo pip install psutil==2.1.3

sudo pip install pymongo

sudo /etc/init.d/sysprobe start

sudo /etc/init.d/sysprobe status

XIII. Install MON[node]

sudo apt-get install python-dev python-pip

sudo pip install psutil==2.1.3

sudo vim /opt/inkscope/etc/inkscope.conf

"ceph_conf": "/etc/ceph/ceph.conf",

"ceph_rest_api": "inkscope_host:inkscope_port",

"ceph_rest_api_subfolder": "ceph_rest_api",

"mongodb_host" : "mpongo_host",

"mongodb_set" : "mongodb0:27017,mongodb1:27017,mongodb2:27017",

"user": "inkscope", "access_key": "inkscopeAccess", "secret_key": "inkscopeSecret"

sudo pip install pymongo

sudo /etc/init.d/sysprobe start

sudo /etc/init.d/cephprobe status

XIV. Carried out inkscope

sudo ceph-rest-api -i restapi

sudo service apache2 restart

cd /var/log

sudo nohup ceph-rest-api -i admin

	摘要
	Abstract
	致謝詞
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivation
	1.2 Contributions
	1.3 Thesis Organization

	2 Backgroud Review and Related Works
	2.1 Background
	2.1.1 Ceph Storage System
	2.1.2 Alluxio
	2.1.3 Hadoop
	2.1.4 Map Reduce
	2.1.5 HDFS
	2.1.6 Gluster File System

	2.2 Related Works

	3 System Design and Implementation
	3.1 System Architecture
	3.2 System Implementation
	3.2.1 Ceph Storage Service Deployment
	3.2.2 HDFS Deployment
	3.2.3 Alluxio Deployment
	3.2.4 Rados Gateway Deployment
	3.2.5 Ceph File System Deployment
	3.2.6 User Services

	4 Experimental Results
	4.1 Experimental Environment
	4.2 Experimental Results
	4.2.1 MapReduce Input and Output
	4.2.2 Inkscope Monitoring System
	4.2.3 The Performance between Rados Gateway and CephFS Comparison
	4.2.4 The Performance among Rados Gateway, CephFS and GlusterFS Comparison

	5 Conclusions and Future Work
	5.1 Concluding Remarks
	5.2 Future Work

	References
	Appendix
	A Ceph Installation
	B Rados Gateway Installation
	C Hadoop Installation
	D Alluxio Installation
	E CephFS Installation
	F Inkscope Installation

