B R U RE L

BELE B ks ki Ceph A3 M % & B
Rados Riig * **E € Tl 135
The Integration of Shared Storages with the CephFS and

Rados Gateway for Big Data Accessing

£ &

BT E BV PR GRESIIEDDTAAEFE > p c RAEFT R
AEEMIRGEBTRIAB FRML F B WAAKARER o Ceph £-
AR HE fARER N T AME AR T > A HF L AR R
Ceph FREE ~ Hedp it Bl WA Gad B RN fodkdp & > o & J &t
€_Hadoop # (Tx# o #-F #1555 & Hadoop 4 473 46 % & 5t (HDFS) ©4F @
7] Alluxio =R 88 3 & - i 3 Map Reduce aJd® ificdy 5 3 % 5% %] SHE e NS
Alluxio 7z ¥ 2 - {3t % - BF % > 2@ * Ceph API & i+ 7 S3 API {v
Rados Gateway %% Alluxio fr4~ # &3 %% (OSD) 2 @& rﬂi}% o % - BF %
By - BRBEAAF 0 2 E Map Reduce mﬁg?] d1#-i¢ * Ceph File System(CephFS)
EERAEIF EEFEE (OSD) o #edp & Ceph ® & Alluxio ® { % 2 > 7]
5 OSD ¥ ri % $F % 3w if Py o AR v * S3HFTE (GUI) ka
FE OSD ehlicdf » bilde @ R 2 32 2 & o AlE* SRS BREp R

o B fs A * Inkscope B4y R ATF kAo 4ok KA T PR AL > kAL
TS e S EL T o

MéEF: Ex 8 37+ XX > Ceph 8575 4 50

Abstract

In recent years, high availability shared storage will become a popular information
technology industry development orientation. Currently, information technology
industries emphasize to reduce high risk data requirements and improve read and
write performance of data storage. Therefore, the main purpose of this work is to
improve read and write performance with the best way on Ceph Storage Cluster. In
this system, the data is stored on Hadoop Distributed File System (HDF'S), and the
data stored in-memory virtual distributed store system that mentioned as Alluxio
automatically. Then, the data would be processed through Hadoop Map Reduce
method and the output would be inserted into Hadoop Distributed File System
and Alluxio environment. The first experiment is to use S3 as application program
interface that will connect to RADOS Gateway stored data into Object Storage
Daemon (OSD). The second experiment is based on the first out experiment would
be through Ceph File System (CephFS) connected to Object Storage Daemon
directly. The data is saved in Ceph environment more secure than in Alluxio as
in-memory storage system because OSD can be used for data backup based on
object storage level. We can use S3 browser (GUI) to maintain data like grant
access, maintain folders maintance, create user accounts, move data location etc.
The last one, we used Inkscope monitors all system. If there is any problem,system

will give warning or error responds to users automatically.

Keywords: Big Data, High Availability, Share Storage, Ceph Storage System

ii

A

R

TR EAL A ARG A EEALE S Ay e T o A Y
}«Eﬂwmégfg\iét’ffxﬁa HiE T EEE L FN A i.@iﬁﬂiﬂ?)\ﬁﬂi" - A

LSECE YL SRR R S R

ok
SN WL ©

RRFEhW T CRARSE A A YR HA DA RRFI K
Feo B FWPFY OB DI LAY 0 - B ETBR T H PN
A SRR AR T L G R R AL ST F R
EFDER G T RERTARERAR I RW Y MRS E DR
B G Y ¥ K ALTIALTE 0 e T A KRR {0 R AR TR

-

FolE BT Rd B R LR BRI s T AR R L R

2w R S AT v R Al v EERE RSB rf‘J‘F'] gz‘l:.'fr'?'i_" 5 F

=
3
3

FAORL > BANMRY BRE L RE FL RO NS REHAT R
FOFEL FHHNEIAER DR P AL A MPET L B3 RET
BB A E T B 6 5 B 0 55l R AR ek 7 A RS
Wﬁk’iﬁdzaﬁ THEA AT RS Fat 2 johR e AA higa &
4 X

@- ﬁ

VA I RA o ek LG B P AR 2T e

7

i A
TP

5

%?ﬁW$HKﬂM~*§W4“i“ﬂW”““u*ﬁ’v*i&ﬁ‘ B

LarFFa1md s Fraaz B 9%z &£ 106 # 072

iii

Table of Contents

&
Abstract

&

Table of Contents

List of Figures

List of Tables

1 Introduction

1.TQMotRalian .0 Gl .~ —. . . A4 WA §J & = . . .
1.2 Contributions
1.3 Thesis Organization

2 Backgroud Review and Related Works

2.1 Background
2.1.1 Ceph Storage System
2.1.2 Alluxio
2.1.3 Hadoop
2.1.4 Map Reduceo
2.1.5 HDFES
2.1.6 Gluster File System

2.2 Related Works

3 System Design and Implementation

3.1 System Architecture L
3.2 System Implementation
3.2.1 Ceph Storage Service Deployment
3.2.2 HDFS Deployment
3.2.3 Alluxio Deployment
3.2.4 Rados Gateway Deployment
3.2.5 Ceph File System Deployment
3.2.6 User Services

iv

ii

iii

vi

vi

viii

TABLE OF CONTENTS A

4 Experimental Results 26
4.1 Experimental Environment00 26
4.2 Experimental Results 29

4.2.1 MapReduce Input and Output 29
4.2.2 Inkscope Monitoring System 32
4.2.3 The Performance between Rados Gateway and CephF'S Com-
parison . . oL ... oL 37
4.2.4 The Performance among Rados Gateway, CephF'S and Glus-
terFS Comparison 42

5 Conclusions and Future Work 45
5.1 Concluding Remarks 45
52 WFuturff Work . . dilgee gy, \. . - - .. 46

References 47

Appendix 50

A Ceph Installation 50

B Rados Gateway Installation 53

C Hadoop Installation 55

D Alluxio Installation 59

E CephFS Installation 61

F Inkscope Installation 63

List of Figures

2.1
2.2
2.3
24

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17
3.18

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12

General Ceph Architecture 5
Alluxio Architecture 7
Map Reduce Architecture 9
HDEFS architecture 11
Hadoop, Alluxio and Ceph integration architecture 16
Ceph environment o 18
Ceph Osd tree 18
Add a hard drive 19
HDFS environment 19
Hadoop jps o 20
Alluxio environment L 20
Alluxio instances 21
Output state before 21
Output state after 21
OSD space saved data 22
Rados Gateway environment 22
Rados Gateway instances 23
Ceph File System instances 23
CephF'S spatial changes 23
Alluxio WebUI before upload 24
Alluxio WebUTI after upload 24
Inkscope environment 25
Hardware environment 27
Data Source in Alluxio 29
Map Reduce Output 1, 29
Map Reduce Output 2, 30
Ceph OSD Output, 31
Inkscope Ceph Login Page 32
Inkscope Ceph cluste hosts 32
Inkscope Ceph status 33
Inkscope Ceph Pools Management 34
Inkscope Ceph osd page 35
Inkscope Ceph osd map, 36
Inkscope Ceph Pools Management2 36

vi

LIST OF FIGURES vii

4.13

4.14

4.15

4.16

4.17
4.18

4.19

4.20

4.21

4.22

Speed Performance Test with S.Read/Write for each OSD and
CephFS o 38
Speed Performance Test with Randomize Read/Write for each OSD
and CephFS 38
Speed Performance Test with S.Read/Write(30%) for each OSD
and CephFS 38
Speed Performance Test Randomize Read/Write(30%) for each OSD
and CephFS 39
IOPS Performance Test with S.Read/Write for each OSD and CephFS 41

IOPS Performance Test with Randomize Read/Write for each OSD
angCephld. 4 - @A 41
IOPS Performance Test with S.Read/Write(30%) for each OSD and
Wephli5 . .. [AN, - - - - A\ W - 41
IOPS Performance Test with Randomize Read /Write(30%) for each
OSD and CephFS 42
Performance Test with read for Rados Gateway, CephF'S and Glus-
(AU & 0 S N X _/ W T N 43
Performance Test with write for Rados Gateway, CephF'S and Glus-
t@rFS oo [W NN BN . . O A . . . 44

List of Tables

3.1

4.1
4.2
4.3
4.4
4.5

4.6

Software Specification

Experimental hardware description
Experimental hardware specifications
Performance Comparison Test with Read, Write, Randomize for
each OSDs
Performance Comparison Test with Read, Write, Randomize for
CephFS . B NS &' - .7
IOPS Performance Test with Read, Write and Randomize for each
Ds "o T i o § A . ..
IOPS Performance Comparison Test with Read, Write, Randomize
foR CopliF S, ety - A 9. . ™ ¥ Ny

viii

Chapter 1

Introduction

In recent years the importance of continuous delivery will continue to remove the
development and needs, requirements, availability and scalability. The tool must
be highly available so that engineers can provide new software. Many companies
need an auto-expand the shared storage system [1] and its services remain available
even when the component services failed. The data can be stored in a database and
file system or any other content, but eventually will be stored in a storage device
such as SSD [2] or hard drive. It requires high availability shared storage, reduces
the risk of device disruption, file system corruption, and the system connected
to the device may be interrupted.In order to avoid interruption, it would like to
have all of the components of the multiple instances. If an error occurs, other
components may reference the automatically takes over and copy and distribute

all data.Users do not need to worry if any disruption occurs.

1.1 Motivation

As Big Data has become so widespread, global industry have invested much capital
and research on it. They want to use Bid Data technology to analyze data that is
to huge to be easily handled. By using big data technology such as data mining

to obtain valuable information, it is desired to alleviate issues of expanding data

Chapter 1 Introduction 2

currently facing with us. The tool must be highly available so that engineers can
provide new software. Many companies need to automatically extend the shared
storage system to solve the problem. Therefore, we propose a high availability, an

open source, scalable, software-defined monitoring storage system.

Ceph [3] is an open source, scalable, software-defined storage system that can
run on merchandise hardware. Ceph from the outset has been developed in a self-
management and self-healing with no single point of failure on a single software
platform provides object, block and file system storage [4,5]. Because of its highly
scalable software defined storage architecture, Ceph of traditional storage systems
is also ideal replacement for cloud computing environment object and block storage

the powerful storage solutions.

To achieve these goals, We store the data in the Hadoop Distributed File
System (HDFS) and use Alluxio as a bridge to copy to Alluxio memory space.
The result is processed by Map Reduce, and the output is stored in the Alluxio
memory space. Ceph itself has two ways of passing, and we will compare the
performance between the two. The first is Ceph RADOS Gateway, we use the
Ceph API component S3 API and Rados Gateway as a bridge between Alluxio
and Object Storage (OSD). The second is the Ceph File System [6], which is the
same as the RADOS Gateway [7] environment, but the output of Map Reduce will
be directly connected to the object storage device (OSD) using Ceph File System
(CephFS).

1.2 Contributions

In this paper, we Integration a highly scalable, highly available, distributed dis-
tributed storage system. We use Ceph Storage , Alluxio [8], and Apache Hadoop
[9,10] integrate technology into a complete system. We have encountered many
problems, such as the lack of OSD memory space. We try many different ways

to link each other big data tools, and finally we use Alluxio, Amazon S3 and

Chapter 1 Introduction 3

Hadoop. The most important thing is that we overcome the version of the prob-
lem. Each big data tool we have tried three different versions to test whether it
can be successfully linked. And we Integration Hadoop Distributed File System
(HDFS) to speed up processing of files, using Alluxio’s memory-centric architec-
ture allows data access several times faster than existing traditional solutions. We
use Inkscope monitors all system. We can clearly see the space configuration, if

there are any problems with the system will respond to error or warning to users.

1.3 Thesis Organization

In Chapter 2, we will introduce some background information, Ceph Storge Sys-
tem, Apache Hadoop, Alluxio and Gluster File System. Chapter 3 shows system
architecture. Chapter 4 shows the experimental environment and experimental
results. Finally, In Chapter 5 we discuss and summarize our study for future

work.

Chapter 2

Backgroud Review and Related
Works

2.1 Background

2.1.1 Ceph Storage System

Ceph [11] is an extensible, open source, software-defined storage system that runs
on commodity hardware. It Is designed to provide decentralized object storage and
archiving systems for performance, reliability and scale. Ceph [12] has developed
from scratch to store objects, blocks and file systems in a single software platform
that is self-managing, self-healing, and without single points of failure. Ceph
was made possible by a global community of enthusiastic storage engineers and
researchers. It is open source and freely-available. Ceph [13] software runs on
commodity hardware. The system is designed to be both self-healing and self-
managing and strives to cut both administrator and budget costs. Figure 2.1

shows the architecture of Ceph.

It is RADOS (Reliable Autonomic Distributed Object Store) as the main de-
sign of the decentralized storage platform, so the ability to expand horizontally

very powerful. He can expand thousands of nodes horizontally, and thus provide

4

Chapter 2 Backgroud Review and Related Works 5

PB, or even EB-level storage space. Because of its highly scalable software-defined
storage architecture, Ceph is an ideal replacement for traditional storage [14] sys-
tems and a powerful storage solution for objects and block storage for cloud com-

puting environments.

Ceph RADOS Ceph Block Ceph File
Gateway Device System

FI1GURE 2.1: General Ceph Architecture

Ceph [4] consists of three component services, that are Object Storage, Block

Device and CephFS.

o Object Storage: Ceph is a distributed object storage and file system designed
to provide superior performance, reliability and scalability. Its software li-
brary to client applications provide direct access to reliable autonomous
distributed object storage (RADOS) object storage system and some of the
advanced features of the Ceph provides the basis, including RADOS block
device (RBD), and the Ceph RADOS Gateway File System software library
for the librados C, C, java, python and applications written in PHP. RA-
DOS Gateway object storage will also be open to restful interface that can
be used as a local Amazon S3 Display. Librados library provides advanced

features, including:

-Snapshots
-Object level key-value mappings

-Partial or complete reads and writes

Chapter 2 Backgroud Review and Related Works 6

-Atomic transactions with features like append, truncate and clone range

o Block Storage: Ceph’ s object storage system allows the user to use the
Ceph installed as a low configuration of block device. The Ceph RADOS
block device (RBD) can access the entire storage cluster in the striped and
replicated block device image. When an application uses the block device
to write data to the Ceph ceph automatically set the data in the striped
and replication. The Ceph RADOS block device provides a block device
and can be used as a system of block device is formatted and installed, can
also offer QEMU and KVM virtual machines.Ceph RBD interfaces with the
same Ceph object storage system that provides the librados interface and the
CephF'S file system, and it stores block device images as objects. Since RBD
is built on top of librados, RBD inherits librados’ s capabilities, including
read-only snapshots and revert to snapshot. Ceph’ s object storage system
is not bounded to native binding or RESTful APIs. User can mount Ceph
as a thinly provisioned block device. When write data to Ceph using a
block device, Ceph automatically stripes and replicates the data across the
cluster. By striping images across the cluster, Ceph increases read access

performance for large block device images.

 File System: Ceph’ s file system (CephFS) to provide object storage and
block device interface of the same object storage systems. Ceph provides
a POSIX-compliant network file system that aims for high performance,
large data storage, and maximum compatibility with legacy applications.
Compared to many object storage systems available today Ceph’ s object
storage system offers a significant feature: a traditional file system interface
with POSIX semantics. Object Storage System is an important innovation,
but they complement rather than replace traditional file system. The Ceph
metadata server cluster provides a service that maps the directories and file
names of the file system to objects stored within RADOS clusters. The
metadata server cluster can expand, contract, and dynamically rebalance

the file system to distribute data evenly among cluster hosts. As storage

Chapter 2 Backgroud Review and Related Works 7

requirements grow for legacy applications, organizations can configure their
legacy applications to use the Ceph file system. This means user can run
one storage cluster for object, block and file-based data storage. This en-
sures high performance and prevents heavy loads on specific hosts within

the cluster.

2.1.2 Alluxio

Alluxio [15,16] (former known as Tachyon) is an Open Source Virtual Machine Al-
located Memory speed storage system. Alluxio is the world’s first memory-centric
virtual distributed storage system. It unified data access and bridge calculation
framework and the underlying storage system. The application only needs to con-
nection Alluxio to access storage on the ground floor of the data storage system. In
addition, Alluxio’s memory-centric architecture allows data to be accessed several

times faster than existing conventional solutions. Figure 2.2 is Alluxio Architec-

ture.
Map Reduce || Spark Storm Samza Flink
ALLUXIO
HDFS S3 Ceph EMC ECS Huawei

FIGURE 2.2: Alluxio Architecture

2.1.3 Hadoop

Apache Hadoop now is one of the most popular big data processing solution that
is the apache software foundation open source frameworks. Hadoop implementa-
tion is constructed in accordance with published Google MapReduce and Google
File System papers. The Hadoop framework transparently provides reliability
and data for applications. The Apache Hadoop frame-work is built on top of the

Chapter 2 Backgroud Review and Related Works 8

Hadoop Distributed File System (HDFS), which supports a stable and automatic
distributed processing system. HDFS integrates distributed storage resources into
a fault-tolerant, efficient and large-capacity storage environment. Hadoop imple-
ments the map reduce programming framework, composed by the map and reduce
the size of the input that allows the cluster the same as any of the nodes in the im-
plementation of the data pieces. Hadoop From single server scales to thousands of

machine and provides parallel computing and increase the number of computing.

The Apache Hadoop project consists of the following: The project includes

these modules:

» Hadoop Common: The Hadoop common contains the libraries and modules

of Hadoop.

« HDFS: HDFS is designed to provide high throughput access to very large

datasets.

o Hadoop MapReduce: MapReduce is composed of the map and reduce, of
which the input is divided into a plurality of blocks to be executed on each

node.

Hadoop ecosystem has very diverse tools to make Hadoop useful in many appli-

cations.

Composed of two roles, Name node and Data nodes:

o The Name node is responsible for the management and storage of informa-

tion (metadata, namespace) in each file attribute privilege in the file system.

e The Data node usually consists of hundreds of nodes, a data file will be
cut into several smaller blocks (Block) stored in a different Data node, each
block will also have several copies (Replica) stored in different nodes, so that

when one of the nodes damaged, the file system data can be saved.

Chapter 2 Backgroud Review and Related Works 9

The Name node also needs to record the location of each file, when the need to
access the file, the coordination Data node responsible for the response;When a

node is damaged, the Name node also automatically relocates and copies the data.

2.1.4 Map Reduce

MapReduce [17,18] is a decentralized programming framework that allows service
developers to write programs very easily, using a lot of computing resources to
speed up the processing of large amounts of information. A MapReduce [19, 20]
operation can be divided into two parts Map and Reduce, a lot of information at
the beginning of the operation, the system will be converted into a group (key,
value) of the order and automatically cut into many parts. There are passed to
different Mapper to deal with, Mapper processing is completed after the results of
the results will be sorted into a group (key, value) of the order, and then passed
to the Reducer integration of all Mapper results, and finally to the overall results.

Figure 2.3 shows the architecture of Map Reduce.

Input Data

Outpute Data

FI1GURE 2.3: Map Reduce Architecture

Chapter 2 Backgroud Review and Related Works 10

2.1.5 HDFS

Hadoop Distributed File System(HDFS) is a distributed file system designed to
run on commodity hardware. The detection of faults and automated recovery
is an important architectural goal of HDF'S. HDFS has master-slave architecture
with a single Name Node as the master server to manage the file system. Besides,
a number of DataNodes, usually one per node in the cluster, manage storage
attached to the nodes. HDFS describes a file system namespace and allows user
data stored in files. Internally, a file is split into one or more blocks that are
stored in a set of Data Nodes. The Name Node executes file system namespace
operations such as to open, close, and rename files and directories, and it controls
the mapping of blocks to Data Nodes as well. The Data Nodes are responsible
for responding read and write requests from clients of the file system. HDFS
ensures input distribution and provides the user with an interface whose role is
to provide chunks of data files to cluster nodes. Among its chief advantages,
HDEFS provides input locality by enabling nodes hosting input shards to apply
their processing on such chunks, rather than on remotely stored data. Figure 2.4

shows the architecture of HDF'S.

Chapter 2 Backgroud Review and Related Works 11

NameNode

/

‘ Metadata ops ‘

Client ‘ Block ops ‘

DataNodes \ DataNodes

\ Write \ \ Write \

N/

Client

FIGURE 2.4: HDFS architecture

Chapter 2 Backgroud Review and Related Works 12

2.1.6 Gluster File System

GlusterF'S is an open source distributed file system, it can be scattered storage
space together to form a virtual storage pool. It supports scale-out, through an
increased number of storage nodes to increase overall system capacity or perfor-
mance, storage capacity can scale to petabytes. GlusterF'S In addition to support-
ing distributed storage (different files on different storage nodes). It also supports
the use of Replicated storage (the same file stored in more than two storage nodes)
and Stripped storage (a file is divided into multiple fixed-length data, scattered in

all storage nodes).

GlusterFS has the following advantages:

o GlusterFS supports TCP / IP and InfiniBand RDMA high-speed Internet

interconnection.

o The client can access the data through the native GlusterF'S protocol. Other
terminals that are not running the GlusterFS client can access the data
through the storage gateway through the NFS / CIFS standard protocol
(the storage gateway provides flexible volume management and access agent

functions).

» Storage server mainly provides basic data storage function, the client makes
up the problem of no metadata server, take on more functions, including data
volume management, I / O scheduling, file location, data cache and other
functions, the use of FUSE (File System in User Space) module mounts
GlusterF'S on top of the local file system for POSIX-compatible access to

system data.

Chapter 2 Backgroud Review and Related Works 13

2.2 Related Works

High Available share storage is very important issue for future development. X.
Zhang et al, [21] 2016. Ceph is a distributed file system that provides high per-
formance, reliability, and scalability. Maximize the Ceph intergovernmental data
and metadata management replaces the configuration table to virtual random data
distribution function designed for heterogeneous and dynamic clusters of unreli-
able OSDS. They use investigate the performance of Ceph on an Open Stack cloud
using well-known benchmarks. They use lot of banchmarks for example Bonnie+
+, DD (Read and Write), RADOS Bench (Read/Write), Iperf Benchmark, Netcat

Benchmark. They results show its good performance and scalability.

Moldoveanu Florica et al, [22] 2013. Cloud computing is becoming increasingly
popular, and due to scalability to support rapid economic growth and productivity,
its distributed data storage tier needs to be able to meet these requirements. The
Ceph storage system contains a large number of cluster nodes and a large number
of clients that interact with it. They proposed two acceleration mechanisms based

on multi-core network SoCs to maximize the performance of each cluster node.

Chih-Fong Tsai et al, [23] 2016. Parallel and cloud computing platform is
considered a very good solution for large data mining. There are two common
methods to resolve the data problems. The first is based on data parallel paradigm
distributed process in which a given large data sets can manually into n subset,
and for the corresponding subset of the n n algorithms are implemented. The
end result from n algorithm can be generated output combinations. The second
is based on the cloud computing platform mapreduce the process. The process
of mapping and the reduction process, of which the former perform filtering and
sorting and later the executive summary operation to produce the final result.
They are large-scale data-mining mapreduce method and accuracy and efficiency
in the performance difference. Lab uses four large data for data classification.
The result indicates that the program is based on the classification of mapreduce

performance is very stable, regardless of the number of computer nodes are better

Chapter 2 Backgroud Review and Related Works 14

than baseline standalone and distributed. Mapreduce process requires the least

cost to handle these large data sets.

Chapter 3

System Design and

Implementation

This section describes the system architecture and implementation of decentralized
storage systems. We storage the data in the Hadoop Distributed File System
(HDFS) and use Alluxio as a bridge to copy to Alluxio memory space. The result
is processed by Map Reduce, and the output is storage in the Alluxio memory

space.

3.1 System Architecture

The first experiment, the system uses the word data to load mapping to reduce
environment. Data can be adjusted according to the user requirements. Here
we set three sample data size: 5GB, 10GB and 15GB. The value key through
the map, press the key sort [key, merge, [value-1, value-2, value-n]] algorithm is
used to send data to the memory speed Alluxio virtual storage systems. We also
RADOS through S3 and activate the Alluxio Gateway File Configuration API (S3

ceph components, data is also stored in the object store daemon (OSD).

For the second experiment, the system and the first system is the same as the
amount of data in the system and data not through S3 API and RADOS gateway
15

Chapter 3 System Design and Implementation 16

to store data to the object store daemon (OSD), the OSD is directly connected
to the Alluxio inserted. The second experiment reduces the S3 API and RADOS
gateway level. These environmental inkscope by monitoring system monitoring.
These environments have monitored by Inkscope monitoring system. Inkscope
monitor system in all ceph. If there is any expiration, Inkscope will display the

user’s alert. Figure 3.1 shows the integration architecture.

“'amazon |§ 3> //\ ALLUXIO

I
@ceph |
Monitor | ABD | ’W E ' ‘

| CephFs J

The RADOS object store and storage nodes | | Secondary Nade [Name Node
F h
¥) I . ‘_T /\
| MsG I_ | MSG I_ | MSG I | MSG | | Data Node | Data Node

| 0sD2 | | 0sD3
rere s (sl firs | [reoc [vs @hadaap

e 1 Lt T | S| S Adrin- HEF
Node
rfrefref reflrafre)l e [s re

F1GURE 3.1: Hadoop, Alluxio and Ceph integration architecture

Chapter 3 System Design and Implementation 17

TABLE 3.1: Software Specification

No. | Description Version
1 | Apach Hadoop 2.7.3
2 Alluxio 1.4
3 Ceph 10.20(jewel)
4 Inkscope 1.1
5 Mongo DB 3.2
6 GlusterF'S 3.6.9

3.2 System Implementation

In this work, we set up Apache Hadoop, Alluxio , Ceph , Inkscope , and GlusterF'S.

Table 3.1 shows the specifications of used software.

3.2.1 Ceph Storage Service Deployment

Ceph is a free-software storage platform, implements distributed object storage
and file system, and provides interfaces for object-, block- and file-level storage.
It has excellent performance, reliability and scalability. To achieve the functions
above, Ceph has three kind of physical nodes: Object Storage Daemon (OSD),
Monitors (MON) and Metadata (MDS) service. Accroding to object storage deploy
requirements. We only need to install OSDs and MONs. The overview of our Ceph
architecture is show in Figure 3.2. The Figure 3.3 show the OSD work up. In the
first time we installed ceph, we encountered insufficient hard disk space, so we
have increased in the three OSD 20GB. As show in Figure 3.4. In the ceph version
we tried to use three different versions(Hammer, Infernalis, Jewel). We found that
using Hammer and Infernalis versions can not be integrated with Hadoop and

Alluxio. So we finally use the Jewel version.

3.2.2 HDFS Deployment

Hadoop has two kinds of nodes: master node and slave node. Master node uses

NameNode service to control DataNode service which is running on slave nodes.

Chapter 3 System Design and Implementation 18

/ Ceph \

Ceph-Deploy Ceph-Mon Ceph-Osd1 Ceph-0sd2 Ceph-Osd3
Control Client Storage Storage Storage
Deploy Monitor QSD 0osD osD

AN - /

FiGURE 3.2: Ceph environment

up 1

up 1 1

up 1 1

FIGURE 3.3: Ceph Osd tree

We built a HDFS architecture consisting of one master node and two slave nodes,
as shown in Figure 3.5 and Figure 3.6. The NameNode executes file system names-
pace operations and also determines the mapping of blocks DataNodes. DataNodes
are responsible for serving read and write requests from clients of file system. After
installing Hadoop and HDFS, we must set the S3 API in the Hadoop environment

and add the code in the core-site.xml.

3.2.3 Alluxio Deployment

Alluxio data storage and computing separation, two-part engine can be indepen-
dently extended. The calculation engine (Hadoop) can access data from different
data sources (Amazon S3). We deployment Alluxio in the Hadoop node, and then
through Alluxio as a bridge to access the S3 API and Rados Gateway. As show in

Chapter 3 System Design and Implementation 19

an
W

/run

fays/is/cgroup
frun/

Fruny:

Jrun s

L]
+

Jmnt fosd

FIGURE 3.4: Add a hard drive

/ HDFS I

Hadoop-master Hadoop-nodel

Master Storage

NameNode DataNode

p /

FIGURE 3.5: HDFS environment

Figure 3.7 and Figure 3.8. After integrating Hadoop and Alluxio, we use the Word
Count example to test, we see the Output state is NOT-PERSISTED as show the
Figure 3.9. After the data is transferred into the state becomes PERSISTED as
show the Figure 3.10. We can see the OSD space saved data in the Figure 3.11.

Chapter 3 System Design and Implementation 20

FiGure 3.6: Hadoop jps

/ Alluxio \

Ceph Hadoop
S3 Compatible API NameNode
RADOS Gateway DataNode1l DataNode2
O0SD1 = 0SD2 = OSD3 HDES

¥, L y
F. N I

FIGURE 3.7: Alluxio environment

3.2.4 Rados Gateway Deployment

Also known as Ceph Object Storage. Provide RESTful API interface, compati-
ble with Amazon S3 cloud storage services, and OpenStack object storage Swift.
Through the Rados Gateway access to the Ceph storage cluster, mainly through
the LIBRGW this library, you can achieve direct access to the effect. As show in
3.12 and Figure 3.13.

Chapter 3 System Design and Implementation

21

A\ ALLuxio | Ovemiew | Browse Configuraton Workers In-MemoryData Logs Melrics Enable Auto-Refresh

Alluxio Summary Cluster Usage Summary

Master Address: localhost/127.0.0.1:19998

Workers Capacity:
Started: 06-14-2017 10:42:52:702 Workers Free / Used:
Uptime: 8 day(s), 3 hour(s), 57 minute(s), and 16 second(s) UnderF's Capacity:
Version: 120 UnderFs Free / Used:
Running Workers: 1

Storage Usage Summary

Storage Alias

Space Capacity Space Used
MEM 2634.00MB 0.00B
Ficure 3.8: Alluxio instances
1 & L L
¥ s
Fll= Mame Sae Biz=ck Sige In-Mempry Perslsterce Siate Pin Cresson Time
& il 134908 S200ME B PERSSTED R 0903300 1T IR 5ER
& gt HOT FERSISTED| RO 0903300 1T:80-20c530
Wiew Settings
. b L 5] ¥
FiGURE 3.9: Output state before
|:':'-\'. ol B e o v - [
gl o
Fi= Mams Sirs Block Sows Indemeary Feruni=nce Sbals Fin Creaticm Tims
W rrrgfils 1AaRa D3R 507 OMAB [Rl FER SIS TED R Q-0 26 10
& ousput RO DR SHE 17:60:50:600
Wi Bethinge

Toier Weberie | linar daing L | L U —

FiGURE 3.10: Output state after

3.2.5 Ceph File System Deployment

2634.00MB
2634.00MB / 0.00B
UNKNOWN

UNKNOWN / UNKNOWN

Space Usage
SN v~ S|

Modification Time
AEQF 26 V72032 3
AEQT- PG VT 6067 56

Modilicabon Time
AR-03-2018 1T 2R304
ARAF-2G TSN REE

Ceph File System(CephFS) provides POSIX compatible file systems for users to

mount files or folders in two ways: access to CephFS’s core object, or the user

space under the file system (Filesystem in User Space) and use. First we build

CephFS mount up. Second we mount CephFS via Alluxio File System. As show

in Figure 3.14. We will put 1.5G files into CephF'S, and then observe the CephF'S

Chapter 3 System Design and Implementation

22

FIGURE 3.11: OSD space saved data

OSD OSD OSsD
RADOS
Node
File File File
system system system
Hard Hard Hard

\disk disk

disk/

N

OSD: Object Storage Daemons
File system: htrfs - XFS - ext4
M: Monitor

RADOS L] L] L] M

Cluster

M

FiGURE 3.12: Rados Gateway environment

space changes, from the figure 3.15 you can see the CephF'S space has indeed been

eaten. In the Alluxio WebUI to see if the file is passed. As show the Figure 3.16

and 3.17

Chapter 3 System Design and Implementation

Thas EML file does not appear to have anv stvle mftrmanon associated with 11, The docvment twes 15 shovwn below.

ListpallMyBucketsResult xmlne="http://c3.amazonaws. com/doc/ 2@@E-03-21,/" >
<O
.'I'f‘..chn_nl'r*n._p.."l'f‘.
<DisplayMame >
JDuners
(Buckets/>
=tAl IMyBucketsRes

Ficure 3.13: Rados Gateway instances

, N

CephFS
Coph
/mnt/mycephfs
)] mount ’
Alluxio [Alluxio File)

System j

FI1GURE 3.14: Ceph File System instances

FIGURE 3.15: CephF'S spatial changes

Chapter 3 System Design and Implementation

24

Persistence
Owner Group State

reot root PERSISTED

Pin Creation Time

NO 02-16-2017
10:48:51:462

Progect Websie | User Maling LET | User Survey | Resaurces

F1cUre 3.16: Alluxio WebUI before upload

ﬁ\’h ALLUXIO
root cephts
File Block In-
Hame Size Size Memory Mode
] 1675.84ME 512.00ME 0% -I-r—
1.5G txt r-
View Sattings
(fﬁ}. ALLUXIO
it cephfs
Fil= Block In-
Name Size Size Memaory Mode
E 1575.84ME 512.00MB 0% TW=T=
1.5G.txt r—
[Z9756TME 512.00MB 0% -TV-T—-
tmp.5G -
View Settings

Persistence
Owner Group State Pin Creation Time
root root PERSISTED NO 02-16-2017
10:48:51:462
root root PERSISTED NO 02-16-2017
11:00:25:039

Project Websile | User Maling List | User Survey | Resources

FIGURE 3.17:

Alluxio WebUT after upload

Medification Time

02-18-2017
10:48:51:462

Modification Time

02-16-2017
10:48:51:462

02-168-2017
11:00:25:039

Chapter 3 System Design and Implementation 25

3.2.6 User Services

We deployment the Inkscope system to monitor Ceph environment. Inkscope
monitors all server hardware, networks, pools, and services. We also use MongoDB

to store real-time metrics and historical metrics. As show in Figure 3.18.

@ ceph Ceph Cluster
Ceph-mon node Ceph-osd node
Ceph-rest-api || Cephprobe sysprobe
. mongoDB
inkfcope * *
Inkscope-admviz Inkscope-monitior
r Iy
Inkscope client Supervision
(browser) framework

FIGURE 3.18: Inkscope environment

Chapter 4

Experimental Results

4.1 Experimental Environment

For the hardware specification of the computer that we use 6 servers for Ceph,
1 server for Inkscope, 1 server for Hadoop and Alluxio. These servers are the
physical machine. We use 64-bit Ubuntu 14.04 as our operating system because
this version is relatively stable relative to other versions. Figure 4.1 shows us the
environment. Table 4.1 and Table 4.2 shows the hardware specification of the

computer.

26

Chapter 4 Experimental Results

27

FIGURE 4.1: Hardware environment

Chapter 4 Experimental Results

TABLE 4.1: Experimental hardware description

Component | Sub-Component | Total server server
Deploy 1Unit Deploy
Ceph Monitior 1Unit Monl
Osd1
OSD 3Unit Osd2
Osd3
Hadoop o Ll 1Unit namenode
Alluxio Master Node
A 1Unit datanode
Worker Node
Inkscope Inkscope 1Unit inkscope
Glusterl . glusterfsl
| sty Gluster2 R glusterfs2

TABLE 4.2: Experimental hardware specifications

Hardware component

CPU | Inter(R) Core(TM)i7-4770 CPU @3.40GHz 8Cores

RAM 16GB

HDD 1TB

OS Ubuntul4.04 LTS

Chapter 4 Experimental Results 29

4.2 Experimental Results

4.2.1 MapReduce Input and Output

We show real-time Map Reduce in the Hadoop environment. The source data is
stored in HDF'S and then copied to the Alluxio memory space environment. The
data is stored in the path: alluxio/wordcount/myfile

Figure 4.2 show the Data Source in Alluxio.

A ALLuxio

Iwordcount/myfile: First 5KB from 0 in ASCII

The HDFS namespace is a hierarchy of files and directories. Files and directories are represented on the NameNode by inodes, which record attributes like
permissions, modification and access times, namespace and disk space quotas. The file

content is split into large blocks (typically 128 megabytes, but user selectable file-by-file) and each block of the file is independently replicated at multiple
DataNodes (typically three, but user selectable file-by-file). The NameNode maintains the namespace tree and the mapping of file blocks to DataNodes (the
physical location of file data). An HDFS client wanting to read a file first contacts the NameNode for the locations of data blocks comprising the file and then reads
block contents from the DataNode closest to the client. When writing data, the client requests the NameNode to nominate a suite of three DataNodes to host the
block replicas. The client then writes data to the DataNodes in a pipeline fashion. The current design has a single NameNode for each cluster. The cluster can
have thousands of DataNodes and tens of thousands of HDFS clients per cluster, as each DataNode may execute multiple application tasks concurrently.

HDFS keeps the entire namespace in RAM. The inode data and the list of blocks belonging to each file comprise the metadata of the name system called the

image. The persistent record of the image stored in the local host???s native files system is called a checkpoint. The NameNode also stores the modification log
of tha imana rallad tha inurnalin tha lncal haet222¢ natiua fila cuctam. FEar imnrnuad Adurahilihe. radundant caniac nf tha chacknaint and inurnal can ha mada at Fd

Display from byte offset | 0 relative to @ begin ¢, end GOI

Download

FIGURE 4.2: Data Source in Alluxio

Figure 4.3 and Figure 4.4 is the output result stored in the Alluxio memory.

ﬁ; ALLUXIO VETVITW Browse hguraton Work

File Name Size Block Size In-Memory Persistence State Pin Creation Time Modification Time

b _SUCCESS 0,008 512.00ME 8 100% PERSISTED NO 08-02-2016 17:50:57:555 08-02.2016 18:22:39:3T0

& part-r-00000 1437.00B8 512.00MB B 100% PERSISTED NO 08.02-2018 17:50:54:639 08-02-2016 18:22:39:601
View Settings

Proget Wenans

Liser Maming List | Usar

Survey | Retowrses

FIGURE 4.3: Map Reduce Output 1

Chapter 4 Experimental Results 30

at y
ttribut

FIGURE 4.4: Map Reduce Output 2

Chapter 4 Experimental Results 31

All the MapReduce data have been store in to the Ceph OSDs.Used S3 API
and Rados Gateway as the first way and directly CephFS for the second way.
Figure 4.5 show the Ceph OSD Output.

A ALLUXIO Overview | Drowse File System System Configuration Workers In-Memory Files og Files Enable Auto-Refresh Metrics
oot defautt_tests_flies

File Name Size Block Size In-Memory Persistence State Pin Creation Time Madification Time

& BasicNonByteBuffer_CACHE_ASYNC_THROUGH 84.00B 512.00MB & 100% PERSISTED NO 05-25-2016 02:16:15:948 05-25-2016 02:16:17:261
b BasicNonByteBuffer_CACHE_CACHE_THROUGH 84.00B 512.00MB & 100% PERSISTED NO 06-25-2016 02:16:13:881 05-25-2016 02:16:14:363
& BasicNonByteBuffer_CACHE_MUST_CACHE 84.00B 512.00MB & 100% NOT_PERSISTED NO 06-25-2016 02:16:13:243 05-25-2016 02:16:13:261
& BasicNonByteBuffer CACHE_PROMOTE_ASYNC_THROUGH 84.00B 512.00MB & 100% PERSISTED NO 05-25-2016 02:16:13:072 05-25-2016 02:16:14:262
b BasicNonByteBuffer_CACHE_PROMOTE_CACHE_THROUGH 84.00B 512.00MB & 100% PERSISTED NO 06-25-2016 02:16:10:046 05-25-2016 02:16:10:854
& BasicNonByteBuffer_CACHE_PROMOTE_MUST_CACHE 84,008 512.00MB & 100% NOT_PERSISTED NO 05-25-2016 02:16:08:612 05-25-2016 02:16:08:517
Bl BasicNonByteBuffer_CACHE_PROMOTE_THROUGH 84.00B 512.00MB & 100% PERSISTED NO 06-25-2016 02:16:11:955 05-25-2016 02:16:12:472
& BasicNonByteBuffer_CACHE_THROUGH 84.00B 512.00MB & 100% PERSISTED NO 05-25-2016 02:16:15:187 05-25-2016 02:16:16:701
ki BasicNonByteBuffer_NO_CACHE_ASYNC_THROUGH 84.00B 512.00MB & 100% PERSISTED NO 05-25-2016 02:16:19:661 05-25-2016 02:16:21:264
b BasicNonByteBuffer_NO_CACHE_CACHE_THROUGH 84.00B 512.00MB & 100% PERSISTED NO 05-25-2016 02:16:17:390 05-25-2016 02:16:17:920
& BasicNonByteBuffer_NO_CACHE_MUST_CACHE 84,008 512.00MB &100% NOT_PERSISTED NO 05-25-2016 02:16:16:047 05-25-2016 02:16:16:060
ki BasicNonByteBuffer_NO_CACHE_THROUGH 84.00B 512.00MB 0% PERSISTED NO 05-25-2016 02:16:18:747 05-25-2016 02:16:19:410
& Basic_CACHE_ASYNC_THROUGH 80.00B 512.00MB &100% PERSISTED NO 05-25-2016 02:16:15:868 05-25-2016 02:16:17:261
B Basic_CACHE_CACHE_THROUGH 80.00B 512.00MB & 100% PERSISTED NO 06-25-2016 02:16:13:310 05-25-2016 02:16:13:791
M Basic_CACHE_MUST_CACHE 80.00B 512.00MB & 100% NOT_PERSISTED NO 05-25-2016 02:16:13:116 05-25-2016 02:16:13:132
B Basic_CACHE_PROMOTE_ASYNC_THROUGH 80.00B 512.00MB & 100% PERSISTED NO 06-25-2016 02:16:12:687 05-25-2016 02:16:14:268
& Basic_CACHE_PROMOTE_CACHE_THROUGH 80.00B 512.00MB & 100% PERSISTED NO 05-25-2016 02:16:08:656 05-25-2016 02:16:09:949
& Basic_CACHE_PROMOTE_MUST_CACHE 80.00B 512.00MB & 100% NOT_PERSISTED NO 05-25-2016 02:16:08:261 05-25-2016 02:16:08:388
b Basic_CACHE_PROMOTE_THROUGH 80.00B 512.00MB & 100% PERSISTED NO 06-26-2016 02:16:10:863 05-26-2016 02:16:11:400
& Basic_CACHE_THROUGH 80.00B 512.00MB & 100% PERSISTED NO 05-25-2016 02:16:14:379 05-25-2016 02:16:14:829

2 Next Last

F1GURE 4.5: Ceph OSD Output

Chapter 4 Experimental Results 32

4.2.2 Inkscope Monitoring System

The following is the Inkscope monitoring system for the Ceph environment. Inkscope
monitors all server hardware, networks, pools, and services as follows: This page
you can see that are two hard drives as object storage daemon 10 pool, 136 config-
uration group (placement group). When the user data will be saved to the cluster,
each object must be mapped to a configuration group placement group and every
one configuration group placement group will be mapped to a OSD, OSD is one
of the other primary, is backup(replica). Figure 4.6, Figure 4.7, Figure 4.8 and
Figure 4.9 show the Inkscope Ceph status.

@ Inkscope sign in

inkfcope

Usar

ST

Passward

FIGURE 4.6: Inkscope Ceph Login Page

Ceph cluster hosts

fill 'platform’ field in inkscope.conf
inll.i:ape Q50 Pool PG Block devices Rados Gateway MDS Monitoring Mige Logoed as admin
Date : 14:1| Hosts

Cluster general flags

| Cluster moenitoring

Searc b P

click on hosts for details

Name < P Wiew
moni 162 165 244 141 &
osd1 192 168.244 143 &
osd2 192.168.244 142 &

FIGURE 4.7: Inkscope Ceph cluste hosts

Chapter 4 Experimental Results

33

Ceph status

fill "platform’ field in inkscope.conf
inkfcope oo 05D Pexal PG Eocac b, <irarc i ke Gty DS

Cluster health at 14:15:33

Logoed s adme

P S00D Dyfess e © 0.0 Dyies, Resdwey 0.0 Diess

history [oseorarsenst ok

Monitors status

136 Placement groups

W xbmechian

Avail. capacity :
23.2GB

36.7 %

135 GB used
on 36,6 GB

o

208D
up

our

Full

FIGURE 4.8: Inkscope Ceph status

DOWH

K

10 pools
clean unclean
MDSs)
upin
up:standby
max

Chapter 4 Experimental Results

34

inkfcope

Ceph pools management

fill “platform’ field in inkscope.conf

ChAte os0

Date : 14:19:54

Paod PG Bilin; & oo il

weren posoll i

Lpace unad Oiisfectn

Tl O Bl 1
B 1) e 3
00 Bk]
356 1 Byl 2
L] o
L] 127
(&AM T 3
2 0 Exla
00 byl 1
1710 ek i

FIGURE 4.9:

LICIE I I N DO

MES iratoreg (NN Lonjajnind 5. anieriaii

Total space usage

36.7 %

115 G uiad
on M EO8

Bytes used by pools

e G100 THE By

e 550 EYS.

rgmrast BN Byl

Inkscope Ceph Pools Management

Chapter 4 Experimental Results

35

If the OSD server in all systems has insufficient space or any problems, the

Inkscope system will notify you. Figure 4.10, Figure 4.11 shows the osd status.

Figure 4.12 shows the notification interface.

Pools | PGs /| OSDs

fill ‘platform’ field in inkscope.conf

inkfeope Cumeo 05D Pool PG~ Block devices Feadine: Gateveay MDS- Monanring- Misc Loggsi as admin
Date : 14:21:34 Selection: pool allpeis | oag| ol cods " only unhealthy pgs o o
7 —

FIGURE 4.10: Inkscope Ceph osd page

Refresh period | infin | |updale:

omd 0 {136 pgs)

osd. 1 (136 pgs)

Chapter 4 Experimental Results 36

) OSD map Foa st 5
fill "platform’ field in inkscope.conf Diepiay sttibute: Upldoun v
inkScope Cusier- 0SD- Podl- PG~ Blckdevices- Rados Gateway - MDS~ Monitoring = Misc. ~ &5 admin-
Search node: |
Date : 14:18:13

Fewesght by ulilization

Legend

mup
W down

FIGURE 4.11: Inkscope Ceph osd map

Probes status

fill 'platform’ field in inkscope.conf
l.”“” Cluster~ OSD+ Pool~ PG+ Block devices+ Rados Gateway~ MDS+ Monitoring~ Misc.~ Logged as admin «

Date : 14:24:45

Inkscope server date: 2016/07/27 14:24:39
Ceph probes

Sys probes
G e

FI1GURE 4.12: Inkscope Ceph Pools Management?2

Chapter 4 Experimental Results 37

TABLE 4.3: Performance Comparison Test with Read, Write, Randomize for

each OSDs
Osd1 Osd2 Osd3
5G | 10G | 156G | 5G | 10G | 15G | 5G | 10G | 15G
S.Read 1.8 11919 2220 |21] 201 21| 1.9
S.Write 24.0 | 25.7 |1 24.8 | 26.6 | 24.0 | 24.0 | 18.1 | 20.5 | 19.9
Rand.Read 13 (11110121211 | 13 | 1.1 | 1.1

Rand. Write 26 | 25 | 24 | 26 | 25 | 23 | 23 | 23 | 1.9
SRead(30%) | 2.0 | 21 | 21 | 21 | 20 | 34 | 64 | 6.7 | 538
SWrite(30%) | 08 | 09 | 1.5 | 09 | 0.8 | 1.5 | 28 | 28 | 2.5

Rand.Read(30%) | 1.1 | 1.0 | 09 | 1.1 | 1.0 | 0.9 | 1.T | 0.9 | 0.9

Rand.Write(30%) | 0.4 | 0.4 | 03 | 04 | 04 | 03 | 04 | 0.3 | 0.3

TABLE 4.4: Performance Comparison Test with Read, Write, Randomize for

CephFS
CephFS
5G | 10G | 156G
S.Read 198 | 1.9 | 1.9
S.Write 0.7 | 25.7 | 24.8

Rand.Read 16.1 | 16.9 | 16.9
Rand.Write 0.5 1 0.5 | 0.5
S.Read(30%) 1.2 | 1.3 | 1.3

S Write(30%) | 05 | 0.5 | 0.6
Rand.Read(30%) | 1.1 | 0.9 | 0.7
Rand.Write(30%) | 0.4 | 0.4 | 0.3

4.2.3 The Performance between Rados Gateway and CephF'S

Comparison

We use FIO tool to benchmark. Using Rados Gateway and CephFS. Table 4.3
and Table 4.4 is our experimental result.The first way, three OSDs is using Rados
Gateway and S3 API way to store the data in to OSDs. The second way is through
CephF'S stored the data to OSDs.According to experiment.

The Figure 4.13 shows the Osd and CephF'S in sequential read and write access
comparison. We observe from the figure in terms of reading CephF'S is better than

Osd. In terms of writing is different.

Chapter 4 Experimental Results

38

S.Read

40
35

30
25
mb/s 20
15

BsRead

30

20

S.Write

25 +

mb/s 15 -

10

Es.write

5G |10G |15G| 5G |10G|15G| 5G |10G|15G| 5G |10G|15G

osdl osd2 o0sd3 CephFs

CephFs

FIGURE 4.13: Speed Performance Test with S.Read/Write for each OSD and
CephFS

The Figure 4.14 shows the Osd and CephF'S in random read and write access
comparison. We observe from the figure in terms of reading CephF'S is apparently

excellent than Osd. In terms of writing is different.

Rand.Read

18

16
14
12

mb/s

IS

~

o

CephFs

B Rand.Read

Rand.Write

mb/s 1.5
1
05

0

@ Rand.Write

FIGURE 4.14: Speed Performance Test with Randomize Read/Write for each

OSD and CephFS

The Figure 4.15 shows the Osd and CephFS in sequential read(30%) and

write(30%) access comparison. We observe from the figure that the osd Slightly

better than CephF'S.

S.Read(30%)

mb/s

O Rk N W A VO N ®

CephFs

B S.Read(30%)

S.Write(30%)

2

mb/s 1.5
14
0.5

0

ES.Write(30%)

FIGURE 4.15: Speed Performance Test with S.Read/Write(30%) for each OSD
and CephFS

Chapter 4 Experimental Results 39

The Figure 4.16 shows the Osd and CephFS in random read(30%) and write(30%)

access comparison. We observe from the figure that no significant difference.

Rand.Read(30%) Rand.write(30%)

12 0.45
04

035

03

0.25

mb/s 02
0.15

01

0.05

1
0.8 -

mb/s 0.6

04 1 B Rand.Read(30%) H Rand.write(30%)

02 +

0 -

FIGURE 4.16: Speed Performance Test Randomize Read/Write(30%) for each
OSD and CephFS

Chapter 4 Experimental Results 40

TABLE 4.5: IOPS Performance Test with Read, Write and Randomize for each

OSDs
Osd1 Osd2 Osd3
5G | 10G | 156G | 5G | 10G | 156G | 5G | 10G | 15G
S.Read 118 112 121 137 127 | 134 125 132 120
S.Write 1504 | 1609 | 1552 | 1664 | 1545 | 1505 | 1132 | 1281 | 1246
Rand.Read 82 74 67 78 75 71 85 72 71

Rand.Write 166 | 158 | 150 | 163 | 157 | 149 | 144 | 132 | 124

S.Read(30%) 130 | 133 | 131 | 132 | 126 | 217 | 416 | 424 | 368

S.Write(30%) o4 56 94 55 33 94 | 176 | 179 | 157

Rand.Read(30%) | 71 62 60 73 64 99 68 o8 o8

Rand.Write(30%) | 28 25 24 29 25 24 . 4 21 23

TABLE 4.6: IOPS Performance Comparison Test with Read, Write, Randomize

for CephFS
CephFS
5G | 10G | 15G
S.Read 1238 | 2084 | 1260
S.Write 40 40 40
Rand.Read 1006 | 1058 | 1056
Rand.Write 31 29 27

SRead(30%) | 74 | 79 | 83
S Write(30%) | 30 | 32 | 34
Rand.Read(30%) | 65 56 43
Rand.Write(30%) | 26 22 17

As shown in the above Table 4.5 and Table 4.6. The first way, three OSDs is
using Rados Gateway and S3 API way to store the data in to OSDs. We measured
each OSD speed and got above result. The second way is through CephFS stored
the data to OSDs.According to experiment, we can conclude that the performance
of the CephFS than Rados Gateway and S3 API.The measurement results in [OPS

is the same. When the value, higher the better read and write performance.

The Figure 4.17 shows the Osd and CephFS in sequential read and write access
comparison. We observe from the figure as same as speed test,in terms of reading

CephFS is better than Osd. In terms of writing is different.

The Figure 4.18 shows the Osd and CephF'S in random read and write access
comparison. We observe from the figure in terms of reading CephF'S is significant

better than Osd.

Chapter 4 Experimental Results 41

S.Read S.Write

2500

Bs.Read ES.Write

5G |10G | 15G | 5G | 10G | 15G | 5G | 10G | 15G | 5G | 10G | 15G

CephFS

FIGURE 4.17: TIOPS Performance Test with S.Read/Write for each OSD and
CephFS

Rand.Read Rand.Write

1200

1000

800

600

ERand.Read B Rand.Write

400

CephFs

FIGURE 4.18: IOPS Performance Test with Randomize Read/Write for each
OSD and CephFS

The Figure 4.19 shows the Osd and CephFS in sequential read(30%) and
write(30%) access comparison. We observe from the figure in terms of reading

Osd is Slightly better than CephFS.

S.Read(30%) S.Write(30%)

200
180
160
140
120
100
B S.Read(30%) 80
60 -
40
20

Es.write(30%)

5G |10G |15G| 5G | 10G|15G | 5G | 10G|15G| 5G |10G | 15G

FIGURE 4.19: IOPS Performance Test with S.Read/Write(30%) for each OSD
and CephFS

The Figure 4.20 shows the Osd and CephFS in random read(30%) and write(30%)
access comparison. We observe from the figure in terms of reading and writing are

not significant difference.

Chapter 4 Experimental Results 42

Rand.Read(30%) Rand.write(30%)

B Rand.Read(30%) @ Rand.write(30%)

[[| |
[[[|

56 ‘10(3‘15(5‘ 5G ‘106'156‘ 56 1106‘156‘ 5G ‘10(;‘15@‘

osd1l osd2 osd3 ‘ CephFS

FIGURE 4.20: IOPS Performance Test with Randomize Read/Write(30%) for
each OSD and CephFS

4.2.4 The Performance among Rados Gateway, CephFS

and GlusterFS Comparison

This experiment compares GlusterF'S , Rados Gateway and CephFS three file
systems to record the time required for file access. In the client to create a single
file on the file size of 1MB, 2MB, 4MB, 8MB, 16MB, 32MB, 64MB, 128MB,
256MB, 512MB, 1GB, 2GB, 4GB, 8GB, 16GB, 32GB of access performance test.

The Figure 4.21 above is the time it takes for different sizes of files to be
uploaded from the client to the distributed file system. We observe from the
figure be clearly. When the file is less than 512MB, the time is no significant
difference. Starting from 512MB, it is significant that GlusterF'S and OSD upload
time spent almost twice as much as CephF'S, So this figure shows that CephFS is
superior to GlusterF'S and OSD in file storage.

Chapter 4 Experimental Results

43

2500

2000

1300

Run time(S)

FIGURE 4.21: Performance Test with read for Rados Gateway, CephFS and

GlusterF'S

Chapter 4 Experimental Results 44

The experiment in Figure 4.22 shows the time it takes for different sizes of
files to be downloaded from the distributed file system to the client. This figure
suggest at 2GB had a Slight difference. Starting from 4GB, CephFS had better

performance than Gluster and Osd.

1000

. I
. /
. /

z
: /!
E 500
E == Glusterfs
& 400 == Osd
300 ~d— CephFs
200
100

n_
IR R R
@*ﬁh@%‘b,\@a}@

L B @ O L6 6 6 B
h"'} 1‘*“ Q\!\ A
g

File size

FIGURE 4.22: Performance Test with write for Rados Gateway, CephFS and
GlusterFS

Chapter 5

Conclusions and Future Work

5.1 Concluding Remarks

Ceph is a high-performance, scalable storage, safe and stable management platform
management mode with simple and low cost and built in addition to significantly
reduce the build time and reduce system risk. Stable system architecture and
flexible virtual machine settings. Let the platform can provide high reliability.
High scalability and meet user demand of the user storage system.We also use
Inkscope to monitor the operation of the machine and the space usage. If the

machine has any problems we can clearly know through the web interface.

In the integration system often encounter version update and version does not
support each other’s problems, the occurrence of such problems will make us all
must be new, such as Ceph version we tried three Hammer, Infernalis, Jewel. We
found that the Jewel version is compatible with Hadoop and Alluxio. We also
encountered insufficient hardware space, lack of integration authority and OSD

tree can not start normally.

This paper use open source software components are Ceph, Alluxio and Hadoop

environment. Through this experiment, we get a few results as follows:

45

Chapter 5 Conclusions and Future Work 46

o High speed read/write storage and flexible expansion storage space with

NF'S using the OSD other format.
e Ceph data is safer in Rados Gateway because of intermediate security.

« Hadoop operations can be saved directly to the OSD via the CephF'S plugin.

In this way, access to data is more efficient than Rados Gateway.
o CephFS is significantly better than Rados Gateway at writing.

o CephFS, Rados Gateway and GlusterF'S in the case of small data comparison

are no significant differences at writing.

o« When the data starts from GB, CephFS is significantly better than the

others.

5.2 Future Work

In our system, due to the lack of hardware resources quantity. We hope to have
the opportunity to increase the number of OSD nodes. We hope to have the
opportunity to use more physical machine environment. We can store the entity
data on this system, such as the campus WIFI Log data. For the file storage

function, we hope to use erasure code to improve security and availability.

References

1]

8]

P. Shu, R. Gu, Q. Dong, C. Yuan, and Y. Huang. Accelerating big data
applications on tiered storage system with various eviction policies. pages

13501357, 2016.

H. Wu, L. Zhu, K. Lu, G. Li, and D. Wu. Stagefs: A parallel file system
optimizing metadata performance for ssd based clusters. pages 2147-2152,

2016.

K. Zhan and A.H. Piao. Optimization of ceph reads/writes based on multi-
threaded algorithms. pages 719-725, 2016.

D. Manini, M. Gribaudo, and M. lacono. Modeling replication and erasure
coding in large scale distributed storage systems based on ceph. volume 18,

pages 273-284, 2016.

S. Meyer and J.P. Morrison. Supporting heterogeneous pools in a single ceph

storage cluster. pages 352-359, 2015.

M.A. Sevilla, N. Watkins, C. Maltzahn, I. Nassi, S.A. Brandt, S.A. Weil,
G. Farnum, and S. Fineberg. Mantle: A programmable metadata load bal-
ancer for the ceph file system. volume 15-20-November-2015, 2015.

Z. Farkas, P. Kacsuk, and A. Hajnal. Connecting workflow-oriented science

gateways to multi-cloud systems. pages 40-46, 2015.

Y. Huang, Y. Yesha, M. Halem, Y. Yesha, and S. Zhou. Yinmem: A dis-
tributed parallel indexed in-memory computation system for large scale data
analytics. pages 214-222, 2016.

47

References 48

[9]

[10]

[11]

[12]

[18]

[. Mavridis and H. Karatza. Performance evaluation of cloud-based log file
analysis with apache hadoop and apache spark. Journal of Systems and

Software, 125:133-151, 2017.

J. Pinto, P. Jain, and T. Kumar. Hadoop distributed computing clusters for
fault prediction. 2016.

W. Kong and Y. Luo. Multi-level image software assembly technology based
on openstack and ceph. pages 307-310, 2016.

M.D. Poat and J. Lauret. Performance and advanced data placement tech-

niques with ceph’s distributed storage system. Journal of Physics: Conference

Series, 762(1), 2016.

L. Wang and Y. Wen. Design and implementation of ceph block device in

userspace for container scenarios. pages 383386, 2016.

P. Li and W. Xu. Optimizing hash-based distributed storage using client
choices. 2016.

A. Ahmad, A. Paul, S. Din, M.M. Rathore, G.S. Choi, and G. Jeon. Mul-
tilevel data processing using parallel algorithms for analyzing big data in
high-performance computing. International Journal of Parallel Programming,

pages 1-20, 2017.

D. Shankar, X. Lu, and D.K.D.K. Panda. Boldio: A hybrid and resilient
burst-buffer over lustre for accelerating big data i/o. pages 404-409, 2016.

E.N.C. Wai, P.-W. Tsai, and J.-S. Pan. Hierarchical pso clustering on mapre-
duce for scalable privacy preservation in big data. Advances in Intelligent

Systems and Computing, 536:36—44, 2017.

R.J. Commons, K. Thriemer, G. Humphreys, I. Suay, C.H. Sibley, P.J.
Guerin, and R.N. Price. The vivax surveyor: Online mapping database

for plasmodium vivax clinical trials. International Journal for Parasitology:

Drugs and Drug Resistance, 7(2):181-190, 2017.

References 49

[19]

[20]

[21]

[22]

K. Matsuzaki. Functional models of hadoop mapreduce with application to

scan. International Journal of Parallel Programming, 45(2):362-381, 2017.

B. Jena, M.K. Gourisaria, S.S. Rautaray, and M. Pandey. A survey work on
optimization techniques utilizing map reduce framework in hadoop cluster.
International Journal of Intelligent Systems and Applications, 9(4):61-68,
2017.

X. Zhang, S. Gaddam, and A.T. Chronopoulos. Ceph distributed file system
benchmarks on an openstack cloud. pages 113-120, 2015.

P.S. Andrei, M. Florica, M. Alin, A. Victor, and C.M. Claudiu. Hardware
acceleration in ceph distributed file system. pages 209-215, 2013.

C.-F. Tsai, W.-C. Lin, and S.-W. Ke. Big data mining with parallel comput-
ing: A comparison of distributed and mapreduce methodologies. Journal of

Systems and Software, 122:83-92, 2016.

Appendix A

Ceph Installation

[. Modify hosts

sudo vim /etc/hosts

II. Modify hostname

sudo vim /etc/hostname

sudo service hostname start

II1. Update and updrade

sudo apt-get update && sudo apt-get upgrade

IV. Install NTP

sudo apt-get install ntp openssh-server

V. Add userceph

sudo useradd -d /home/{username} -m {username}
sudo passwd {usernamel}

echo "{username} ALL = (root) NOPASSWD:ALL" | sudo tee /etc/sudoers.d/{username}

50

Appendix

o1

sudo chmod 0440 /etc/sudoers.d/{username}

VI. Create SSH authentication login

ssh-keygen
ssh-copy-id userceph@monl
ssh-copy-id userceph@osdl

ssh-copy-id userceph@osd2

*+ # O H# O H #

ssh-copy-id userceph@osd3

VII. Modify config

sudo vim ~/.ssh/config
Host monl
Hostname monl
User userceph
Host osdil
Hostname osdl
User userceph
Host osd2
Hostname osd2
User userceph
Host osd3
Hostname o0sd3

User userceph

VIII. Download release key

wget -q -0- 'https://download.ceph.com/keys/release.asc' |
echo deb http://download.ceph.com/debian-jewel/ $(1lsb_release -sc) main |

sudo apt-get update && sudo apt-get install ceph-deploy

sudo apt-key add -

sudo tee /ef

IX. Create cluster

mkdir ~/ceph && cd ~/ceph
ceph-deploy new {mon-nodes}

sed -i '$a osd pool default size = 3' ceph.conf

X. Install Ceph

c/apt/sources.

Appendix

52

ceph-deploy
ceph-deploy
ceph-deploy
ceph-deploy
ceph-deploy

#+ O O H O H #

install {deploy-node} {mon-nodes} {osd-nodes}
mon create-initial

osd prepare osdl:/mnt/{osd0; osdl; osd2}

osd activate osdl:/mnt/{osd0; osdl; osd2}

admin {all nodes}

sudo chmod +r /etc/ceph/ceph.client.admin.keyring

XI. Use ceph health to see running program

cd /ceph/
ceph health

ceph osd tree

Appendix B

Rados (GGateway Installation

I. Install Ceph Object Gateway

ceph-deploy install --rgw monl

I1. Create Rados Gateway

ceph-deploy rgw create monl

ITI. Rados Gateway website

monl:7480

IV. Create Gateway Rados user account for S3 access

sudo radosgw-admin user create --uid="testuser" --display-name="First User"

V. Install python boto

sudo apt-get install -y python-boto

V. Create and modify py

53

Appendix 54

sudo vim s3test.py

import boto

import boto.s3.connection

access_key = 'I5SWPD6S2BX6JKE2I4TUS8'

secret_key = '3WtojizD5CIGNsx161lsubabQAPuOfHw7BnGhlrdg'
conn = boto.connect_s3(

aws_access_key_id = access_key,

aws_secret_access_key = secret_key,

host = '{hostname}', port = {port},

is_secure=False, calling_format = boto.s3.connection.OrdinaryCallingFormat(),
)

bucket = conn.create_bucket ('my-new-bucket')

for bucket in conn.get_all_buckets():

print "{name} {createdl}".format (

name = bucket.name,

created = bucket.creation_date,

python s3test.py

scp -r tmp userceph@moni:~
sudo vim s3ListObject.py
python s3ListObject.py
sudo vim s3ListObject.py
python s3ListObject.py

sudo vim s3generate.py

#+ O H O O O H O H

python s3generate.py

Appendix C

Hadoop Installation

I. Modify hosts

sudo vim /etc/hosts

II. Install JDK

sudo apt-get -y install openjdk-7-jdk
sudo 1ln -s /usr/lib/jvm/java-7-openjdk-amd64 /usr/lib/jvm/jdk

III. Creat SSH authentication login

ssh-keygen -t rsa -f ~/.ssh/id_rsa -P ''
cp ~/.ssh/id_rsa.pub ~/.ssh/authorized_keys

IV. Install hadoop

wget http://ftp.twaren.net/Unix/Web/apache/hadoop/common/hadoop-2.6.0/
hadoop-2.6.0.tar.gz

tar zxf hadoop-2.6.0.tar.gz

mv hadoop-2.6.0 hadoop

V. Modify .bashrc

%)

Appendix

o6

sudo vim .bashrc

export JAVA_HOME=/usr/lib/jvm/jdk/

export HADOOP_INSTALL=/home/userceph/hadoop
export PATH=$PATH:$HADOOP_INSTALL/bin
export PATH=$PATH: $HADOOP_INSTALL/sbin
export HADOOP_MAPRED_HOME=$HADOOP_INSTALL
export HADOOP_COMMON_HOME=$HADOOP_INSTALL
export HADOOP_HDFS_HOME=$HADOOP_INSTALL
export YARN_HOME=$HADOOP_INSTALL

source ~/.bashrc

VI. Set hadoop config

cd hadoop/etc/hadoop

vim hadoop-env.sh

export JAVA_HOME=/usr/lib/jvm/jdk/

vim core-site.zxml

<property>
<name>fs.default.name</name>
<value>hdfs://hadoop-master:9000</value>

</property>

vim yarn-site.xml

<property>
<name>yarn.nodemanager.aux-services</name>
<value>mapreduce_shuffle</value>

</property>

<property>
<name>yarn.resourcemanager .hostname</name>
<value>hduser</value>

</property>

cp mapred-site.xml.template mapred-site.xml

vim mapred-site.xml

<property>
<name>mapreduce.framework.name</name>
<value>yarn</value>

</property>

mkdir -p ~/mydata/hdfs/namenode

Appendix

57

mkdir -p ~/mydata/hdfs/datanode

vim hdfs-site.zxml

<property>

<name>dfs.replication</name>
<value>2</value>

</property>

<property>
<name>dfs.namenode.name.dir</name>
<value>/home/hduser/mydata/hdfs/namenode</value>

</property>

<property>
<name>dfs.datanode.data.dir</name>
<value>/home/hduser/mydata/hdfs/datanode</value>

</property>

vim slaves

hadoop

VII. Format HDFS

hdfs namenode -format

VIII. Start hadoop

start-all.sh

IX. Use jps to see java running program

jps

X. Hadoop environment set Ceph S3 API account

vim core-site.xml

<property>
<name>fs.default.name</name>
<value>hdfs://namenode:9000</value>
</property>

<property>

<name>fs.s3n.awsAccessKeyId</name>

Appendix

o8

<value>BHA5B6APZUATIMMQ12UT</value>

</property>

<property>

<name>fs.s3n.awsSecretAccessKey</name>
<value>pXiRSF9fm3SSJxSGoYzNcHpC2GmENE6G6UdeqdWhQ </ value>

</property>

<property>

<name>fs.alluxio.impl</name>

<value>alluxio.hadoop.FileSystem</value>

<description>The Alluxio FileSystem (Hadoop 1.x and 2.x)</description>
</property>

<property>

<name>fs.alluxio-ft.impl</name>
<value>alluxio.hadoop.FaultTolerantFileSystem</value>

<description>The Alluxio FileSystem (Hadoop 1.x and 2.x) with fault tolerant
support</description>

</property>

<property>

<name>fs.AbstractFileSystem.alluxio.impl</name>
<value>alluxio.hadoop.AlluxioFileSystem</value>

<description>The Alluxio AbstractFileSystem (Hadoop 2.x)</description>

</property>

Appendix D

Alluxio Installation

1. Install Alluxio

wget http://downloads.alluxio.org/downloads/files/1.2.0/alluxio-1.2.0
-hadoop2.6-bin.tar.gz
tar xvfz alluxio-1.2.0-hadoop2.6-bin.tar.gz

bin/alluxio bootstrap-conf localhost local

II. Modify Alluxio

vim alluxio-env.sh

export ALLUXIO_UNDERFS_ADDRESS=s3n://my-new-bucket/test/
#ALLUXIO_UNDERFS_ADDRESS=${ALLUXIO_UNDERFS_ADDRESS:-"${ALLUXIO_HOME}/underFSStorage/"}
export ALLUXIO_WORKER_MEMORY_SIZE=${ALLUXIO_WORKER_MEMORY_SIZE:-1GB}

export ALLUXIO_JAVA_OPTS+="
-Dalluxio.user.file.writetype.default=CACHE_THROUGH
-Dlog4j.configuration=file:${CONF_DIR}/log4j.properties
-Dalluxio.worker.tieredstore.levels=1
-Dalluxio.worker.tieredstore.level0O.alias=MEM
-Dalluxio.worker.tieredstore.levelO.dirs.path=${ALLUXIO_RAM_FOLDER}
-Dalluxio.worker.tieredstore.levelO.dirs.quota=${ALLUXIO_WORKER_MEMORY_SIZE}
-Dalluxio.underfs.address=${ALLUXIO_UNDERFS_ADDRESS}
-Dalluxio.worker.memory.size=${ALLUXIO_WORKER_MEMORY_SIZE}
-Dalluxio.master.hostname=${ALLUXIO_MASTER_ADDRESS}

-Dorg.apache. jasper.compiler.disablejsr199=true
-Djava.net.preferIPv4Stack=true

-Dfs.s3n.awsAccessKeyId=QINHSA7JD2MBEKNO7F4A
-Dfs.s3n.awsSecretAccessKey=mbjd9H80AokLYFP2Yx44K64Jgy5JdXZI1lrWRrcPn

59

Appendix

60

-Dalluxio.underfs.s3.disable.dns.buckets=true
-Dalluxio.underfs.s3.endpoint=monl
-Dalluxio.underfs.s3.proxy.https.only=false
-Dalluxio.underfs.s3.endpoint.http.port=7480

export ALLUXIO_MASTER_JAVA_OPTS="${ALLUXIO_JAVA_OPTS}"
export ALLUXIO_WORKER_JAVA_OPTS="${ALLUXIO_JAVA_OPTS}"

II1. Format Alluxio

./bin/alluxio format

./bin/alluxio-start.sh local

IV. Use jps to see Alluxio running program

jps

Appendix E

CephF'S Installation

I. Create user

sudo useradd -d /home/{username} -m {username}

sudo passwd {username}

echo "{username} ALL = (root) NOPASSWD:ALL" | sudo tee /etc/sudoers.d/
{username}

sudo chmod 0440 /etc/sudoers.d/{username}

II. Install NTP

sudo apt-get install ntp openssh-server

ITI. Create SSH authentication login

ssh-copy-id {username}@{nodeIP}

IV. Install Ceph kit

ceph-deploy install client

ceph-deploy admin client

V. Update kernal

61

Appendix

62

sudo apt-get install linux-generic-lts-xenial

sudo reboot

VI. Create mount

sudo mkdir -p /mnt/mycephfs
sudo chmod 777 /mnt/mycephfs

VII. Check Ceph.client.admin.keyring

cd /etc/ceph
sudo cat ceph.client.admin.keyring

sudo mount -t ceph monIP:6789:/ /mnt/mycephfs -o name=admin,secret=cat

*+ #

df -h

Appendix F

Inkscope Installation

I. Download InkScope-Admviz, InkScope-Common, InkScope-Cephrestapi and InkScope-

Monitoring

wget https://raw.githubusercontent.com/inkscope/inkscope-packaging/master/
DEBS/inkscope-admviz_1.4.0.2.deb

wget https://raw.githubusercontent.com/inkscope/inkscope-packaging/master/
DEBS/inkscope-common_1.4.0.2.deb

wget https://raw.githubusercontent.com/inkscope/inkscope-packaging/master/
DEBS/inkscope-monitoring_l.4.0.2.deb

wget https://raw.githubusercontent.com/inkscope/inkscope-packaging/master/

DEBS/inkscope-cephrestapi_1.4.0.2.deb

IT. Download Common, Cephrestapi, Cephprobe and Sysprobe

Mon [node]

wget https://raw.githubusercontent.com/inkscope/inkscope-packaging/master/
DEBS/inkscope-common_1.4.0.2.deb

wget https://raw.githubusercontent.com/inkscope/inkscope-packaging/master/
DEBS/inkscope-cephrestapi_1.4.0.2.deb

wget https://raw.githubusercontent.com/inkscope/inkscope-packaging/master/
DEBS/inkscope-cephprobe_1.4.0.2.deb

wget https://raw.githubusercontent.com/inkscope/inkscope-packaging/master/

DEBS/inkscope-sysprobe_1.4.0.2.deb

ITI. Download Common and Sysprobe

63

Appendix 64

0SD [node]

wget https://raw.githubusercontent.com/inkscope/inkscope-packaging/master/
DEBS/inkscope-common_1.4.0.2.deb/inkscope-sysprobe_1.4.0.2.deb

wget https://raw.githubusercontent.com/inkscope/inkscope-packaging/master/

DEBS/inkscope-sysprobe_1.4.0.2.deb

IV. Download inkscope-admviz, inkscope-common and inkscope-monitoring

Inkscope

sudo dpkg -i inkscope-admviz_1.4.0.2.deb

sudo dpkg -i inkscope-common_1.4.0.2.deb

sudo dpkg -i inkscope-cephrestapi_1.4.0.2.deb
sudo dpkg -i inkscope-monitoring_1.4.0.2.deb
Mon [node]

sudo dpkg -i inkscope-common_1.4.0.2.deb

sudo dpkg -i inkscope-cephrestapi_1.4.0.2.deb
sudo dpkg -i inkscope-cephprobe_1.4.0.2.deb

sudo dpkg -i inkscope-sysprobe_1.4.0.2.deb
0SD [node]

sudo dpkg -i inkscope-common_1.4.0.2.deb

sudo dpkg -i inkscope-sysprobe_1.4.0.2.deb

V. Create ceph-rest-api user

MON [node]

sudo chmod 777 /etc/ceph

sudo ceph auth get-or-create client.restapi mds 'allow' osd 'allow *' mon
'allow *' > /etc/ceph/ceph.client.restapi.keyring

cd /etc/ceph

1s

VI. Added /etc/ceph/ceph.conf

vim /etc/ceph/ceph.conf

[client.restapil

log_file = /dev/null

keyring = /etc/ceph/ceph.client.restapi.keyring

ceph-rest-api -i restapi

VII. Install kit

Appendix 65

sudo apt-get install python-pip apache2 libapache2-mod-wsgi mongodb python-ceph

cd ceph
radosgw-admin user create --uid=inkscope --display-name="Inkscope admin" --
access-key="inkscopeAccess" --secret="inkscopeSecret" --

caps="users=*;metadata=*;buckets=x*"

VIII. Modify inkscope

sudo vim /opt/inkscope/etc/inkscope.conf

"ceph_conf": "/etc/ceph/ceph.conf",

"ceph_rest_api": "inkscope_host:inkscope_port",
"ceph_rest_api_subfolder": "ceph_rest_api",

"mongodb_host" : "mpongo_host",

"mongodb_set" : "mongodb0:27017 ,mongodbl1:27017 ,mongodb2:27017",

"user": "inkscope", "access_key": "inkscopeAccess", "secret_key": "inkscopeSecret"

IX. Modify ports.conf

sudo vim /etc/apache2/ports.conf

X. Install flask-login simple-json

sudo pip install flask-login simple-json

XI. Start inkScope

sudo a2ensite inkScope\

sudo a2enmod proxy

sudo vim /etc/apache2/sites-enabled/inkScope.conf

ProxyPass /ceph-rest-api/ http://<inkscope_host>:<inkscope_port>/ceph_rest_api/
api/v0.1/

sudo service apache2 restart

\textbf{sudo vim /etc/mongodb.conf}

sudo service mongodb restart

XII. Modify and Install kit OSD[node]

Appendix

66

sudo vim /opt/inkscope/etc/inkscope.conf

"ceph_conf": "/etc/ceph/ceph.conf",

"ceph_rest_api": "inkscope_host:inkscope_port",
"ceph_rest_api_subfolder": "ceph_rest_api",

"mongodb_host" : "mpongo_host",

"mongodb_set" : "mongodb0:27017 ,mongodbl:27017 ,mongodb2:27017",
"user": "inkscope", "access_key": "inkscopeAccess", "secret_key": "inkscopeSecret"
sudo apt-get install 1lshw sysstat

sudo apt-get install python-pip python-dev

sudo pip install psutil==2.1.3

sudo pip install pymongo

sudo /etc/init.d/sysprobe start

sudo /etc/init.d/sysprobe status

XIII. Install MON[node]

sudo apt-get install python-dev python-pip

sudo pip install psutil==2.1.3

sudo vim /opt/inkscope/etc/inkscope.conf

"ceph_conf": "/etc/ceph/ceph.conf",

"ceph_rest_api": "inkscope_host:inkscope_port",
"ceph_rest_api_subfolder": "ceph_rest_api",

"mongodb_host" : "mpongo_host",

"mongodb_set" : "mongodb0:27017 ,mongodbl1:27017 ,mongodb2:27017",
"user": "inkscope", "access_key": "inkscopeAccess", "secret_key": "inkscopeSecret"

sudo pip install pymongo
sudo /etc/init.d/sysprobe start

sudo /etc/init.d/cephprobe status

XIV. Carried out inkscope

sudo ceph-rest-api -i restapi
sudo service apache2 restart

cd /var/log

#*= O OH O H #®

sudo nohup ceph-rest-api -i admin

	摘要
	Abstract
	致謝詞
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivation
	1.2 Contributions
	1.3 Thesis Organization

	2 Backgroud Review and Related Works
	2.1 Background
	2.1.1 Ceph Storage System
	2.1.2 Alluxio
	2.1.3 Hadoop
	2.1.4 Map Reduce
	2.1.5 HDFS
	2.1.6 Gluster File System

	2.2 Related Works

	3 System Design and Implementation
	3.1 System Architecture
	3.2 System Implementation
	3.2.1 Ceph Storage Service Deployment
	3.2.2 HDFS Deployment
	3.2.3 Alluxio Deployment
	3.2.4 Rados Gateway Deployment
	3.2.5 Ceph File System Deployment
	3.2.6 User Services

	4 Experimental Results
	4.1 Experimental Environment
	4.2 Experimental Results
	4.2.1 MapReduce Input and Output
	4.2.2 Inkscope Monitoring System
	4.2.3 The Performance between Rados Gateway and CephFS Comparison
	4.2.4 The Performance among Rados Gateway, CephFS and GlusterFS Comparison

	5 Conclusions and Future Work
	5.1 Concluding Remarks
	5.2 Future Work

	References
	Appendix
	A Ceph Installation
	B Rados Gateway Installation
	C Hadoop Installation
	D Alluxio Installation
	E CephFS Installation
	F Inkscope Installation

