
東海大學

資訊工程研究所

碩士論文

指導教授: 劉榮春博士, 楊朝棟博士

於 OpenStack 上實作具 GPU 加速的虛擬桌面基
礎設施

The Implementation of a Virtual Desktop

Infrastructure with GPU Accelerated on

OpenStack

研究生: 李政岳

中華民國一零六年六月

1

摘 要

這幾年，資訊產業發展趨勢逐漸邁向雲端，各種雲端相關的技術與應用與日俱

增，隨著雲端技術的普及，無論是企業用戶或是個人用戶使用雲服務的數量也

有爆炸性的提升。而雲端虛擬桌面則為使用者最先接觸到的一個部份，而雲端

虛擬桌面的性能則與網路以及 GPU 有所牽連，如何提供一個順暢的雲端虛擬

桌面就是一個很重要的議題，本論文提出了在 OpenStack 上整合圖形處理器

(Graphics Processing Unit, GPU)，並且透過 PCI Pass-Through 的方式，來解

決虛擬機顯示效能的問題，透過將 GPU 資源分配至虛擬機，讓虛擬機器達到

圖形處理加速的能力，實驗的部份將會透過不同的基準測試軟體來測量虛擬機，

在三種不同的驅動程式其中包括了 OpenGL、DirectX11 以及 DirectX9 進行測

試，另外也因為在雲端環境中隨需自助服務的特性，本文也會將 vCPU 的因素

也納入考量，在實驗中調整不同數量的的 vCPU 進行實驗，藉此測量出在不同

情況下的虛擬機 FPS(Frame per Second，FPS, 畫面幀率) 藉此評斷虛擬機的效

能。透過本文的實驗發現三個不同的驅動程式對於虛擬桌面畫面處理的能力也

不盡相同，其中由 DirectX11 的效能最好，且會因為 vCPU 的數量增加而增加

顯示的效能，在 16 個 vCPU 的情況下 DirectX11 達到最高的圖形處理能力，在

Heaven Benchmark 中 Max FPS 遠遠大於 DirectX9 以及 OpenGL 約兩倍左右。

而平均 FPS 的部分，DirectX11 大於 OpenGL 約兩倍，大於 DirectX 約 3 倍

左右，透過這些數據可以發現 DirectX11 與 NVIDIA 的 K2 GPU 相容性最高，

對虛擬桌面的畫面處理能力提升最多。另外本文在實驗中也發現 DirectX9 與

vCPU 的數量似乎沒有相關性，而 OpenGL 與 DirectX11 兩個都會因為 vCPU

的數量而有所改變。

關鍵字: 雲端服務，虛擬桌面，OpenStack，圖形處理器，軟體即服務

i

Abstract

In recent years, Information industry trends gradually towards the clouds. Various

clouds are related technologies and applications are growing with the popularity of

cloud technology. Whether the number of enterprise users or individual users use

cloud services is also an explosive upgrade. While cloud virtual desktop is the first

user access part of the cloud and the performance of cloud virtual desktop with

the network and GPU has been implicated. Therefore, a smooth cloud virtual

desktop is a very important issue in this environment. This study proposed an

integration of GPU on OpenStack and through PCI Pass-Through way to solve

the problem of virtual machine display performance by allocating GPU resources

for virtual machine. So, the virtual machine can achieve the ability of graphic

acceleration. For the experimental, we will use different benchmarking software

to measure the virtual machine. Among three different drivers that consist of

OpenGL, DirectX11 and DirectX9 for testing and also because of the character-

istics of on-demand self-services on the cloud environment, this study uses vCPU

factor as experiment considering. In the experiment, adjust the different number of

vCPUs to measure the different cases performance of FPS virtual machine (Frame

per Second). Through this experimental, we found out there are three different

processing drivers for virtual desktop. Under 16 cores of virtual CPU condition,

DirectX11 is the best performance. In the Heaven Benchmark environment, Max

FPS is twice better performance than DirectX9 and OpenGL. The average of FPS

values, Direct X11 is twice better performance than OpenGL, three times better

performance than DirectX. Through these data found out DirectX11 and NVIDIA

ii

Chapter 0 Abstract iii

‘s K2GPU have highest compatibility. The virtual desktop graphics processing ca-

pacity enhance the most. Besides that, our experiments found out the number of

DirectX9 and vCPU seems no correlation. Then, because of the number of vCPU

factor, OpenGL and DirectX11 have changed.

Keywords:Cloud service, Virtual Desktop Interface, OpenStack, Graphics Pro-

cessing Unit, Software as a Service

致謝詞

在研究所的這兩年期間，兩年說長不長，說短不短，在這段時間學習的過程之

中，每分每秒都是特別的重要。首先我要感謝我的指導教授楊朝棟博士，在兩

年期間給了我許多不管是實質上的，包括是設備或是其他實體的幫助，亦或者

是精神上的指導幫助，給了我許多的建議，讓我在研究的方向能更加的明確。

並且讓我有機會參加各式各樣的研討會或是競賽，讓我從中學習獲取經驗，得

到更多的專業知識以及磨練技術。也因為這些經驗的累積，才讓我能夠順利的

完成本篇論文。謹此致最深之謝忱，讓我不僅在獨立思考、上台發表以及執行

專案能力都更加進步。

除此之外我還要感謝我的實驗室同學、以及不管是研究所的學弟、妹們或是

大學部的學弟、妹。謝謝你們在我需要幫忙的時候對我伸出援手，協助我完成

各種艱難的挑戰。同時也要感謝已經畢業的學長們，即使畢業也還是持續的幫

助我，協助我完成各式各樣的專案，以及給了我許多建議，不管是實驗方面亦

或者是人生的建議。讓我能從一個什麼都不懂的狀況，跟著大家一路走到今天。

現今已能獨立完成專案、上台發表都更加的進步。

最後我要感謝我的家人，在這兩年來無論我遇到任何挑戰。都一直支持鼓勵

我，有你們大家的支持，才能讓我沒有後顧之憂的完成學業。謝謝所有關心我

的人，感謝。

東海大學資訊工程學系 高效能實驗室 李政岳 一零六年七月

iv

Table of Contents

摘要 i

Abstract ii

致謝詞 iv

Table of Contents v

List of Figures vii

List of Tables ix

1 Introduction 1
1.1 Motivation . 1
1.2 Thesis Goal and Contributions . 2
1.3 Limitations of Prior Art . 2
1.4 Thesis Organization . 3

2 Background Review and Related Work 4
2.1 Background Review . 4

2.1.1 Cloud Computing . 4
2.1.2 Virtualization . 6
2.1.3 OpenStack . 8
2.1.4 OpenStack Component . 8
2.1.5 OpenStack Conceptual Architecture 10
2.1.6 Graphics Processing Unit 12
2.1.7 Virtual Desktop Infrastructure 13

2.2 Related Works . 17

3 System Design and Implementation 18
3.1 System Design Architecture . 18
3.2 System Implementation . 19

3.2.1 OpenStack Service Deployment 20
3.2.2 GPU Pass-Through . 24
3.2.3 Methodology . 24

v

TABLE OF CONTENTS vi

4 Experimental Results 27
4.1 Experimental Environment . 27
4.2 Network Delay Experiment . 29
4.3 Heaven Benchmark Experiment . 29
4.4 CineBench Experiment . 41

5 Conclusions and Future Work 43
5.1 Concluding Remark . 43
5.2 Future Works . 44

References 46

Appendix 49

A OpenStack Installation 49

List of Figures

2.1 OpenStack Architecture . 9
2.2 OpenStack conceptual Architecture 10
2.3 VM spawning sequence OpenStack 12
2.4 noVNC Sequence . 16
2.5 Spice Architecture . 16

3.1 System Architecture . 19
3.2 OpenStack nova with KVM and XenServer 20
3.3 Experiment Environment . 20
3.4 OpenStack Overview . 21
3.5 OpenStack VM Instances . 22
3.6 OpenStack noVNC Web Console 22
3.7 OpenStack Spice web console . 23
3.8 OpenStack Spice client . 24
3.9 GPU Pass-Through Architecture 25
3.10 NVIDIA GRID K2 on compute . 25
3.11 NVIDIA GRID K2 on Windows VM 26

4.1 ping 60s . 29
4.2 ping 60s . 29
4.3 OpenStack VM HeavenBenchmark FPS 30
4.4 OpenStack VM HeavenBenchmark MaxFPS 30
4.5 OpenStack VM HeavenBenchmark MinFPS 31
4.6 OpenStack VM HeavenBenchmark Score 31
4.7 OpenStack and XenServer instance performance compare(4 vcpu) . 32
4.8 OpenStack and XenServer instance performance compare(4 vcpu) . 32
4.9 OpenStack and XenServer instance performance compare(4 vcpu) . 33
4.10 OpenStack and XenServer instance performance compare(4 vcpu) . 34
4.11 OpenStack and XenServer instance performance compare(8 vcpu) . 34
4.12 OpenStack and XenServer instance performance compare(8 vcpu) . 35
4.13 OpenStack and XenServer instance performance compare(8 vcpu) . 35
4.14 OpenStack and XenServer instance performance compare(8 vcpu) . 36
4.15 OpenStack and XenServer instance performance compare(16 vcpu) 36
4.16 OpenStack and XenServer instance performance compare(16 vcpu) 37
4.17 OpenStack and XenServer instance performance compare(16 vcpu) 37
4.18 OpenStack and XenServer instance performance compare(16 vcpu) 38

vii

LIST OF FIGURES viii

4.19 Compare Physical FPS . 38
4.20 Compare Physical Max FPS . 39
4.21 Compare Physical Min FPS . 39
4.22 Compare Physical score . 40
4.23 CineBench CPU . 41
4.24 CineBench OpenGL . 41

List of Tables

3.1 Software Specification . 21

4.1 Hardware Specification . 27
4.2 Virtual Machine Specification . 28
4.3 Software Specification . 28

ix

Chapter 1

Introduction

In the current era of cloud computing, computing, storage, network resources are

virtualized, the data center resources in accordance with the needs of users to

allocate.OpenStack [1–3] is now one of the most widely used open source cloud

platform, in recent years is very popular, many of which are interesting questions

worthy of our discussion.

1.1 Motivation

In today’s cloud computing era [4–6], computing, storage, network resources are

virtualized, the data center resources in accordance with the needs of the user dis-

tribution is the current trend. OpenStack is now one of the most widely used open

source cloud platform, in recent years is very popular, many of which are interest-

ing questions worthy of our discussion. Today’s cloud services are not limited to

IaaS, PaaS, SaaS [7–11]model has emerged more and more different service model.

Today’s global companies have cited cloud technology, IaaS providers, including

IBM, HP, Microsoft, Google, Amazon, Rackspace, and several other companies,

to provide services to small individual users or other large non-information type

of the company The So that these enterprises can not build their own cloud en-

vironment, focus on their own business, and can also use the convenience of the

1

Chapter 1 Introduction 2

cloud. In addition to the convenience of the cloud, how to provide users with an

easy to use the use of the environment, so that users have a better user experience,

is a very important issue now. The closest part to the average user is the virtual

desktop, the virtual virtual desktop can be configured through virtualization re-

sources to configure the operating system in accordance with the needs of users,

and can be installed on the operating system of different applications. But the

virtual desktop is limited to the network or other reasons, resulting in the use of

non-smooth situation will occur, so this paper plans to use PCI Pass-through tech-

nology to use GPU resources to accelerate the performance of virtual desktops,

enhance the virtual desktop The degree of smoothness.

1.2 Thesis Goal and Contributions

The current OpenStack-supported hypervisors include KVM, QEMU, VMware

VSphere, XenServer, Hyper-V, and so on. Different hypervisors will have their own

VDI. There are generally noVNC, Spice, RDP, etc., and users will use VDI Connect

to the hypervisor on the hypervisor, but not all VDI can support the GPU display,

so this article will be OpenStack integrated XenServer as a hypervisor layer, and

through the Pass-through technology GPU (this article using NVIDIA Grid K2)

configuration to Virtual machines, and the use of the RDP (Remote Desktop

Protocol) environment to achieve the ability to accelerate virtual machine picture

processing, and through different benchmarking software to test performance, and

to assess the GPU and vCPU virtual desktop performance impact.

1.3 Limitations of Prior Art

The data center network will be affected too much, including the workload over

the load caused by the network congestion, as well as cable failure, set the error,

etc., although the CPU Benchmark and GPU Benchmark currently have a lot

of software available to us Do a test, and in the cloud environment to do so

Chapter 1 Introduction 3

will have some software compatibility issues. In addition, this article describes

the OpenStack integrated GPU part, the current OpenStack does not provide full

GPU virtualization solution, so now only through the pass-through way to provide

the GPU to the virtual machine. Also in the virtual desktop part of the existing

VDI, not all support GPU display part, some VDI will lead to virtual desktop can

not be used normally, only a specific hypervisor with a specific VDI can be used

normally.

1.4 Thesis Organization

In the second section, we will introduce some background knowledge, including

cloud computing, OpenStack, Neutron, GPU, VDI, and in the third part of the

section we will introduce the experimental environment, as well as experimental

methods and steps. The fourth part of the chapter will introduce and analyze the

results of the experiment, the final part of the end, we will make a conclusion, and

sort out our contribution and future prospects of the part.

Chapter 2

Background Review and Related

Work

In this chapter, we review some background knowledges for later use of system

design and implementation.

2.1 Background Review

2.1.1 Cloud Computing

Cloud computing is a web-based computing model that provides a wide range

of resources, including operations, storage, and so on, that typically provide re-

sources in a large number of resources in the data center through virtualized and

dynamically expanded Do not need to understand the infrastructure of the cloud

infrastructure or do not need to directly master the cloud technology, but it can

also use the resources of the cloud.

And according to the definition of NIST basically by the three service models,

four deployment models, five features to form.

The three service modes are as follows

4

Chapter 2 Background Review and Related Work 5

• Software as a Service (SaaS): The user uses the software that has been

deployed in the cloud or has been stored in the cloud, and does not use

the cloud infrastructure and the cloud environment’s programming envi-

ronment. In this way, users do not need to install their own software on

their own computers, thereby reducing maintenance difficulties, including

software compatibility issues.

• Platform as a Service (PaaS): PaaS provides a computing platform that

includes the operation of the cloud platform, the database, the programming

environment, and the Web server. The application developers can develop

and implement the software on PaaS without having to spend a lot of money

to procure the physical machines and manage them maintain.

• Infrastructure as a Service (IaaS): IaaS is the most basic kind of cloud service

model, providing physical machines, virtual machines and other resources,

so that users can control the allocation of resources. But can not control the

cloud’s infrastructure.

The four deployment modes are as follows

• Public Cloud:Through the public network so that users can use, but can not

see other people’s information.

• Private Cloud:Private cloud compared to the public cloud, some aspects

of more advantages, EX: flexibility, to provide appropriate services, and

the public cloud is the difference between the private cloud program and

information are usually business or user management.

• Community Cloud:Community clouds shared by several organizations are

often used by specific communities that share common needs.

• Hybrid Cloud:The cloud may contain two or more deployment patterns.

Five features are as follows

Chapter 2 Background Review and Related Work 6

• On-demand self-service.

• Anytime, anywhere access by any network device.

• Resource pooling.

• Quick redeployment.

• Can be monitored and measured.

2.1.2 Virtualization

In the cloud computing technology, virtualization [12–15] is the computer entity

resources such as servers, networks, memory and storage to be abstract, converted

after the show, so that users can be better than the original way to apply these

resources The The virtual part of these resources is not limited by the way in

which existing resources are erected, geographically or physically. Generally refers

to the virtualization resources, including computing power and data storage.

In computer science, virtualization is a technology for a computer or operating

system. Virtualization hides the real hardware device for the user, presenting

another virtual computing platform. Virtualization technology transforms the

entity into a virtual computing environment (virtual machine) to the user. And the

user uses the client’s application to operate the virtual machine, virtual machine

does not limit any application or operating system, the virtual machine is like

running directly on the same machine. Virtual machines are unified management

of hardware resources (such as networks, screens, keyboards, hard drives) at a

more restrictive level than a processor or memory, the client will be restricted to

access the peripherals of the entity, This depends on the access strategy adopted

by the entity.

Virtual Desktop (VDI) is a software technology that separates the desktop

environment and related applications from the entity’s client devices. Virtual

desktops can be combined with application virtualization and user profile man-

agement systems, now known as ”user virtualization”, providing a comprehensive

Chapter 2 Background Review and Related Work 7

virtual desktop environment management system. In this mode, the components

required by the desktop are virtualized. This gives virtual desktops more flexibility

and a more secure environment. In addition, this approach supports a variety of

disaster recovery strategies, because all the components are basically stored in the

data center, and through the maintenance system backup. If the user’s compo-

nents or files are lost, but also easy to restore, because basically all of the desktop

components can be registered in other entities on the machine. In addition, since

the data is not stored in the user’s equipment, if the user’s device is lost, it can

also reduce the loss, the data are stored in the data center. The following is a more

detailed description of the type of desktop virtualization technology that will be

used in a typical deployment.

The implementation of desktop virtualization is categorized if the virtual desk-

tops are running remotely or locally, whether the access requirements are constant

or designed to be intermittent, and the virtual desktops still exist between commu-

nications. Often, software products that provide desktop virtualization solutions

can be combined with local and remote implementations to provide specific and

appropriate requirements. The client device’s independent functionality is inter-

dependent with the server’s location and access policies. Virtualization is used to

render independent desktops to multiple user users.

Build your virtualization and simplify your IT infrastructure with virtualiza-

tion solutions. Virtualization can help reduce capital expenditures through server

consolidation, use automation to reduce operating costs, and reduce scheduled

and non-scheduled downtime, significantly reducing revenue losses. Reduce cap-

ital and operating costs by improving energy efficiency while leveraging server

consolidation to reduce the need for hardware.

Chapter 2 Background Review and Related Work 8

2.1.3 OpenStack

In the related technologies of cloud service, virtualization technology plays a deci-

sive role and distributed many kinds of virtualization project. Through the begin-

ning of VMware vSphere and Hyper-V deployment until using OpenStack [16,17]

platform.

OpenStack is a NASA open source software jointly developed by NASA and

Rackspace, licensed as an Apache license, and is a free software and open source

project to build Infrastructure as a Service.

OpenStack has three module modules, Netcom modules and storage mod-

ules, plus a centralized management of the dashboard module, to form a set of

OpenStack shared services, and to provide virtual machine, external operations

Resources to facilitate flexibility expansion or scheduling. Users can use open

source OpenStack to build their own Amazon EC2-like services, and OpenStack

specifications are also compatible with Amazon EC2, so whether it is in the above

development system, the use of systems, or to help people develop the system,

people use the system , OpenStack can be achieved, which is now the reason for

such open source IaaS hot.

2.1.4 OpenStack Component

OpenStack mainly has seven different functions of the suite, namely the computing

suite Nova, the object storage kit Swift, block storage kit Cinder, Netcom kit

Neutron, identity identification kit Keystone, image management suite Glance,

dashboard suite Horizon.

• Nova: Provides the ability to deploy and manage virtual machines.

• Swift: A decentralized storage platform that can store unstructured data.

• Neutron: To ensure the consistency and reliability of the entire network.

Chapter 2 Background Review and Related Work 9

• Cinder: Provide block storage capacity, with snapshot function.

• Keystone: Provides a variety of authentication methods to see which users

can access which services.

• Glance: Provide image search, registration and service delivery and other

functions.

• Horizon: Graphical web interface that allows IT staff to manage the hard-

ware resources of the cloud service.

The OpenStack architecture is shown in Figure 2.1.

Figure 2.1: OpenStack Architecture

Chapter 2 Background Review and Related Work 10

2.1.5 OpenStack Conceptual Architecture

The OpenStack Conceptual Architecture is shown in Figure 2.2. Virtual machine

generation is one of the most important use-cases in any cloud environment.Here

we describe the steps involved in configuring the instance in the OpenStack cloud,

which includes the order of the requests and the interaction between the various

OpenStack components in order to successfully start the VM.Here we describe

the steps involved in configuring the instance in the OpenStack cloud, which in-

cludes the order of the requests and the interaction between the various OpenStack

components in order to successfully start the VM.

conceptual Architecture.png conceptual Architecture.bb

Figure 2.2: OpenStack conceptual Architecture

And Figure 2.3. is the OpenStack suite of communication process. These

connections are initiated by using the associated API as a remote program call

(RPCs) that can be converted to an nova-boot command when the tenant issues

Chapter 2 Background Review and Related Work 11

an instance request via the CLI (command line interface) or dashboard.The Nova

API server sends the user’s credentials to Keystone for authentication (1, 2). Af-

ter successful authentication, nova-api contacts nova-db to initialize the initial

configuration information for the new instance into the database (4,5,6,7). Then,

nova-api sends an RPC call to the nova-scheduler, requesting the ID of the hosts

that started the instance (8, 9).The nova-scheduler crawls information to nova-db

and uses the filter and weighting functions to select the best (or least load) HOST

and return its ID (10, 11, 12). The scheduler selects the appropriate compute

node as the host and sends a message to start the new instance (12, 13). Nova-

compute then RPC calls to nova-conductor, nova-conductor access nova-compute

to nova db for information such as host ID, flavor disk, and vCPU (14, 15, 16,

17, 18).Use the authentication token, nova-compute to make a REST call to the

glance-api to retrieve the image from the image repository and upload it to the

selected host (19, 20, 21). This uploaded image will be cached for future use.

Subsequently, nova-compute calls neutron-api to retrieve network allocation and

configuration information so that fixed IP is assigned to the new instance (22, 23,

24). If the user requests to attach some volumes to the instance, nova-compute

uses the REST call, the additional volume (25, 26, 27) for the cinder-api. Finally,

nova-compute forwards all the information to the virtualization driver and gen-

erates an instance request on hyperviser (28). During the various phases of the

configuration process, the corresponding instance states that can be seen from the

Horizon dashboard are: scheduling> Networking> Spawning> Running.

Chapter 2 Background Review and Related Work 12

spawning sequence OpenStack.png spawning sequence OpenStack.bb

Figure 2.3: VM spawning sequence OpenStack

2.1.6 Graphics Processing Unit

Graphics processing unit (GPU), also known as the display core, visual processor,

display chip, is a specialized in personal computers, workstations, game consoles

and mobile devices (such as tablet PCs, smart phones, etc.) The work of the

microprocessor is treated as the heart of the card. In recent years, experts from

various fields have noticed the computing power of the GPU and have tried to apply

its computing power extensively to data analysis (eg, machine learning, depth

learning, etc.), and huge amounts of data processing (eg MapReduce). GRID

vGPU is NVIDIA’s graphics acceleration technology, which can use a single GPU

to achieve multiple virtual desktop services GPU sharing, through the NVIDIA

Chapter 2 Background Review and Related Work 13

GRID GPU card installed on the X86 host, a substantial increase in the VMware

vSphere The performance of running a graphics-intensive application is a great

help for users who need to use a large number of 2D and 3D graphical interfaces,

such as architects, engineering labs, and clinicians in medical facilities. NVIDIA

GRID vGPU’s technology offers the following better user experience:

• For all graphics applications with 100 per cent compatibility, access to each

PC and workstation NVIDIA graphics card driver, can provide to each vir-

tual machine and Local side of the same performance.

• Support real-time integration, unified centralized management of graphics

data set resources, and then by the end user needs to provide resources to

meet the needs.

• Provide a decentralized workforce productivity in different workspaces (such

as animation designers, clinicians and researchers).

• With NVIDIA’s high-end graphics processing performance, server managers

can deliver better performance services without compromising the original

vSphere desktop virtualization environment.

• Reduce costs and increase resource utilization by sharing the GPU.

• Centralized management of graphic data sets to provide better protection

for data storage.

2.1.7 Virtual Desktop Infrastructure

To understand desktop virtualization technology, you must understand the devel-

opment of desktop virtualization. You can simply desktop virtualization [18–21]

technology is divided into the following stages:Large host era: the mainframe

when the first appearance of the price is very expensive, although expensive but

the mainframe computing power is very good, so it was proposed to share a ma-

chine to multiple users to use the way, of course, this is not virtualization, But

Chapter 2 Background Review and Related Work 14

rely on the system of multiple users of the multi-task form.For example, Linux,

Unix and Windows server versions can support multi-user form. Desktop virtu-

alization agreement: Remote Desktop Protocol (RDP, Remote Desktop Protocol)

early from Microsoft from Citrix company bought the technology developed by

itself.

And independent computing structure agreement (ICA, Independent Comput-

ing Architecture) is Citrix company to use So far the service.The first phase of

desktop virtualization technology actually combines remote desktop connectivity

and virtual systems, allowing users to have their own virtual desktop system. Can

do so of course because the server’s hardware has been from the previous single-

core single-work into a multi-core multi-work, to enhance the server’s computing

power and virtualization capabilities, and memory from the previous 4GB, 8GB

breakthrough to 128GB Of the capacity, greatly enhance the server’s computing

power, enhanced hardware capabilities coupled with the maturity of virtualiza-

tion, enabling servers to provide multiple virtual desktops to provide user opera-

tion, making desktop virtualization technology to become a large-scale application

may.The main vendors that currently offer desktop virtualization solutions are Mi-

crosoft, VMware, and Citrix, which uses three different protocols. Microsoft’s RDP

(Remote Desktop Protocol) was developed by Citrix and was later developed by

Citrix Microsoft has purchased and improved the agreement in Windows Server,

and VMware Horizon View also supports such agreements;Citrix will apply the

agreement to its virtualization products; the third is the US company Teradici

developed PCoIP (PC-over-IP) agreement, was later developed by the Citrix self-

developed ICA (Independent Computing Architecture) VMware is purchased and

applied to its desktop virtualization products to enhance the user’s desktop vir-

tualization experience.Virtual desktop system attaches great importance to the

agreement, the agreement often determines the user experience is good or bad. It

is known from the original technical documents that the original ICA (Independent

Computing Architecture) protocol is superior to the RDP (Remote Desktop Pro-

tocol) and PCoIP (PC-over-IP) protocols, requiring about 30kbps of bandwidth,

while the RDP (Remote Desktop Protocol) In 50kbps or so, this does not include

Chapter 2 Background Review and Related Work 15

playing games and watching movies and 3D graphics under the state of the loss of

bandwidth, just the transmission of the screen there is such a consumption.

RDP (Remote Desktop Protocol) agreement currently causes the most band-

width loss, will cause the impact is running in the WAN environment, play video,

Flash, the implementation of 3D software, such as screen delay and distortion will

occur. ICA (Independent Computing Architecture) agreement user experience will

be very smooth. VMware will improve the performance of the PCoIP agreement

to enhance the virtual desktop user experience and published in the latest VMware

View 5.0 products, according to the official file will reduce the bandwidth loss rate

of 75 percent, is also leading all the virtual desktop agreement. These three ven-

dors have their own virtualization server technology, Microsoft HyperV, VMware

for vSphere, Citrix is XenServer, but can be installed on Hyper-v and vSphere.

This paper mainly discusses two kinds of remote connection technologies com-

monly used in OpenStack, namely noVNC and SPICE.

• noVNC: To provide a remote console or remote desktop access to guest

virtual machines, use VNC or SPICE HTML5 through either the OpenStack

dashboard or the command line. Both client proxies leverage a shared service

to manage token authentication called nova-consoleauth. This service must

be running for either proxy to work. Many proxies of either type can be

run against a single nova-consoleauth service in a cluster configuration.Do

not confuse the nova-consoleauth shared service with nova-console, which is

a XenAPI-specific service that most recent VNC proxy architectures do not

use.

Chapter 2 Background Review and Related Work 16

Figure 2.4: noVNC Sequence

• Spice: OpenStack Compute supports VNC consoles to guests. The VNC pro-

tocol is fairly limited, lacking support for multiple monitors, bi-directional

audio, reliable cut-and-paste, video streaming and more. SPICE is a new

protocol that aims to address the limitations in VNC and provide good

remote desktop support. SPICE support in OpenStack Compute shares a

similar architecture to the VNC implementation. The OpenStack dashboard

uses a SPICE-HTML5 widget in its console tab that communicates to the

nova-spicehtml5proxy service by using SPICE-over-websockets. The nova-

spicehtml5proxy service communicates directly with the hypervisor process

by using SPICE.

Figure 2.5: Spice Architecture

Chapter 2 Background Review and Related Work 17

2.2 Related Works

Several recent studies proposed broad guidelines for the development of bench-

marks of cloud resources,among them are the works of Folkerts et al., O’Loughlin

et al., Binnig et al.and Rak et al.There have also been several benchmarking studies

on actual cloud deployments. Mailk et al. [22] In they measurement study evaluate

OpenStack’s open source SDN layers, using Neutron together with a OpenDay-

light, OFAgent, ML2 and Ryu used in OpenStack Juno in the face of different types

and severity levels of network errors.Pacevič et al. [23] Their paper presents the

development of visualization software as a service in the OpenStack cloud infras-

tructure. VisLT cloud visualization service is developed for visualizing the results

computed and stored in the private cloud infrastructure. GPU is virtualized as

a PCI device employing direct pass-through [24, 25] technology on the hardware

virtual machines of Xen hypervisor to ensure fast remote rendering, which is a key

feature of distributed visualization systems.Iserte et al.Their study the viability

of this approach using a public cloud service configuration, and develop a module

for OpenStack in order to add support for the virtualized devices and the logic to

manage them. The results demonstrate this is a viable configuration which adds

flexibility to current and well-known cloud solutions. Yamato et al. [26, 27] Their

study proposes a PaaS which analyzes application logics and offloads computations

to GPU and FPGA automatically when users deploy applications to clouds.

Chapter 3

System Design and

Implementation

Because the popularity of the cloud, and now more and more people will come into

contact with the relevant environment, most people most commonly used part of

the virtual desktop, and the general virtual desktop performance is low, resulting

in operational difficulties. The work is to integrate the GPU on OpenStack ,

and through the Pass-through way to allow the virtual machine can use the GPU

resources, to speed up the VDI performance. In this section will introduce our

overall architecture design, as well as the use of open source software.

3.1 System Design Architecture

As shown in Figure 3.1，We used OpenStack as our foundation and used as the ba-

sis for the entire virtualization. We integrated the GPU on OpenStack and passed

the Pass-through way to allow the virtual machine to use the GPU’s resources and

test it in a number of VDI to find a VDI protocol for OpenStack.

18

Chapter 3 System Design and Implementation 19

Figure 3.1: System Architecture

3.2 System Implementation

The proposed architecture is divided into several parts to do research, one for the

OpenStack virtual machine performance test. Again, GPU performance testing

and performance comparison in different network environments.

In this work, we built an OpenStack cluster of eight physical machines, one for

the controller Four of which are compute nodes and equipped with K2 GPU, com-

pute node, respectively, there are different hypervisors, KVM, XenServer, ESXI,

etc., this node using XenServer as the end of the experiment, the other two nodes

were Network node and the Storage node, Network Node is responsible for the

transfer of network packets and vlan management, and in the storage part we

use Cinder and Swift suite, Cinder is Block Storage service, in this paper we will

Cinder split out of space , Used as a virtual machine hard drive, and Swift is the

Object service, where we used as a storage file for XenServer.

Chapter 3 System Design and Implementation 20

Figure 3.2: OpenStack nova with KVM and XenServer

Figure 3.3: Experiment Environment

3.2.1 OpenStack Service Deployment

By using Ubuntu OS to create virtual machines, open source software OpenStack

is applied to build and manage the proposed cloud system. The overview of the

system is shown in Figure 3.4 and Figure 3.5.

Chapter 3 System Design and Implementation 21

Table 3.1: Software Specification

Software Version
Ubuntu 16.04.02 LTS
Windows 10
OpenStack Newton
Python 2.7.6
MariaDB 10.1.1.14
XenServer 7.0

NVIDIA Driver 369.95

Figure 3.4: OpenStack Overview

VDI Deployment noVNC

OpenStack uses noVNC to implement user interface to virtual desktop, and noVNC

is a Web client that uses Web Scoket and HTML5 Canvas. But the use of noVNC

will cause the use of virtual desktop delay and Lag status, for the user is very

inconvenient to use.

VDI Deployment Spice Protocol

Because noVNC is not smooth, we have integrated Spice (The Simple Protocol for

Independent Computing Environments) services in our OpenStack cloud platform,

SPICE allows users to view the ”desktop” environment.The Spice environment in

our system is shown in Figure 3.7 and Figure 3.8.

Chapter 3 System Design and Implementation 22

Figure 3.5: OpenStack VM Instances

Figure 3.6: OpenStack noVNC Web Console

Graphic Processing Unit

This paper predicts the use of the GPU to speed up VDI fluency, as well as

the ability of virtual machines to process graphics, a GPU that specializes in

performing graphics operations on a PC, Server, or other device. In this section

we will use NVIDIA Grid K2 as our GPU device, K2 is the use of NVIDIA Kepler

architecture of the device, is designed to provide a virtual environment in the rich

design experience designed.

Chapter 3 System Design and Implementation 23

Figure 3.7: OpenStack Spice web console

GRID GPU Features

• GPU Virtualization: NVIDIA KEPLER architecture is designed to provide

virtual machine designed to provide a GPU hardware virtualization capa-

bilities, the meaning of representatives can allow multiple users to use the

GPU together, but the OpenStack KVM architecture does not support the

underlying GPU virtualization capabilities.

• Low latency remote display: GRID with low-latency remote display technol-

ogy, users can reduce the user through the VDI Protocol connection to the

virtual machine when using the delay time, to improve the user experience,

this technology will be directly to the virtual screen VDI Protocol.

Chapter 3 System Design and Implementation 24

Figure 3.8: OpenStack Spice client

3.2.2 GPU Pass-Through

GPU resources can be configured through the GPU virtualization or Pass-Through

way to configure the virtual machine, and Pass-Through practice, can be inter-

preted as a GPU dedicated to a virtual machine, through this technology, you

can make specific Of the virtual machine configuration to all the GPU resources,

with the vGPU is a different part of the vGPU is a complete GPU resources

cut into smaller vGPU resources, provided to the need for virtual machines, and

Pass-Through is complete Resource allocation to the same virtual machine.

3.2.3 Methodology

This article through the OpenStack and integrated XenServer, the program through

Pass-thorugh way will be installed on the compute node (XenServer) on the GPU

(NVIDIA K2) assigned to the use of virtual machines, and designed several ex-

periments, through the experiment Data to see if the GPU will affect the display

performance of the virtual machine and test in different circumstances, including

the memory size, vCPU core number, etc. will be associated with the GPU, trying

Chapter 3 System Design and Implementation 25

Figure 3.9: GPU Pass-Through Architecture

Figure 3.10: NVIDIA GRID K2 on compute

to find the most efficient to enhance the virtual desktop Performance setting. So

we designed a few experiments.

• Through the host machine and the virtual machine at the same time the

implementation of the ping command, and record the return value of the

period of time, through the return value to determine whether the network

in the virtual machine will be delayed and so on the network.

• Through the Heaven benchmark software to test the three cases under the

GPU on the machine’s display performance is affected, three cases are as

follows 1.Install the GPU on the physical machine; 2.Through the Open-

Stack open and through PCI pass-through get GPU resources of the virtual

machine (Hypervisor for XenServer); 3.Directly through XenServer to open

and through PCI pass-through GPU resources to get the virtual machine.

In the above three cases to do the test, and in the virtual machine part,

we will set the memory 8G, and virtual CPU part will be divided into

Chapter 3 System Design and Implementation 26

Figure 3.11: NVIDIA GRID K2 on Windows VM

three parts, 2socket with 2core per socket (4 vCPU), 2socket with 4core per

Socket (8 vCPU), 2socket with 4core per socket (16 vCPU). And through

the Heaven benchmark to get four results, respectively, Score, FPS, MinFPS,

MaxFPS.

• The third experiment we will use CineBench Benchmark tool for testing,

CineBench test can be obtained two return value, respectively, with the

GPU-related OpenGL FPS, the other is CPU-related CPU Score, so we

will CindeBenchmark to test, test the situation as the second experiment,

respectively, in three different cases to do the test, and part of the virtual

machine will be tested in three different CPU number, then the two return

value , To determine whether the GPU can be accelerated in the virtual

machine effect.

Chapter 4

Experimental Results

In this section, we will show the environment of the experiment and the results of

the experiment. In subsection 4.1, we will describe our experimental environment,

subsection 4.2 - 4.6 will introduce our experimental results.

4.1 Experimental Environment

We used OpenStack to build our cloud platform, which then was used to create

and manage the storage distribution. As a simple example, we integrated two

heterogeneous storage technologies. And we built the storage system by some

VMs, in which HDFS was constructed by three VMs with specifications of 4-core

CPU, 4 GB memory, and a total of 200 GB storage space. Table 4.1, 4.2, 4.3 are

our experimental environment specification.

Table 4.1: Hardware Specification

Host name CPU Memory Disk GPU OS
Openstack Controller 12 cores 64GB 2TB Ubuntu 16.04.02
Openstack Network 24 cores 64GB 2TB Ubuntu 16.04.02

Openstack Compute(KVM) 20 cores 24GB 2TB GRID K2 Ubuntu 16.04.02
XenServer 20 cores 24GB 2TB GRID K2 XenServer 7.0

Openstack Block Storage 64 cores 48GB 8TB Ubuntu 16.04.02

27

Chapter 4 Experimental Results 28

Table 4.2: Virtual Machine Specification

Host name CPU Memory Disk OS
Instance 01 4 cores vCPU 8GB 100GB Windows 10
Instance 02 8 cores vCPU 8GB 100GB Windows 10
Instance 03 16 cores vCPU 8GB 100GB Windows 10

Table 4.3: Software Specification

Software Version
OpenStack Newton
Python 2.7.6
MariaDB 10.1.1.14

In our experiment, we will use NVIDIA K2 GPU as a device to accelerate

VDI, so the experiment will be part of the main K2.

Chapter 4 Experimental Results 29

4.2 Network Delay Experiment

The first experiment, using the PING instruction, respectively, in the HOST and

virtual machine at the same time PING instructions, the command is to ping

8.8.8.8, to test whether the virtual machine and the external machine between the

network is delayed. We were tested for 60 seconds, 120 seconds, the experimental

results shown in Figure 4.1,4.2,

Figure 4.1: ping 60s

Figure 4.2: ping 60s

From this experiment can be found in the virtual machine and the physical machine

outside the network is no significant difference, on behalf of the virtual machine

will not because of OpenStack and Windows two layers of OS on the network

caused by the delay, so you can ignore the experiment in the follow-up part.

4.3 Heaven Benchmark Experiment

This experiment uses Heaven Benchmark’s free Benchmark tool, measures the

performance of the physical machine and the virtual machine, distributes the GPU

Chapter 4 Experimental Results 30

to the virtual machine using Pass-through technology, and measures whether the

vCPU will affect it by modifying the part of the virtual CPU core To the display

performance of the virtual machine.

First, through the Heaven Benchmark test OpenStack open virtual machine,

you can get four values, namely FPS, Min FPS, Max FPS and Score We tested

three cases, namely 4vCPU, 8vCPU, 16vCPU and memory part are all 8G Ram

the results as shown in Figure 4.3,4.4,4.5,4.6.

Figure 4.3: OpenStack VM HeavenBenchmark FPS

Figure 4.4: OpenStack VM HeavenBenchmark MaxFPS

The four charts are FPS, MAX FPS, MIN FPS, Score, after the data into a

chart can be found DirectX9 FPS average are similar in the fixed memory situation,

the number of virtual CPU will not Affect the performance of DirectX9, and

the average FPS falls on about sixty. And DirectX11 because the CPU core of

different, affecting his performance, and DirectX11 performance is significantly

better than the other two drivers.

Chapter 4 Experimental Results 31

Figure 4.5: OpenStack VM HeavenBenchmark MinFPS

Figure 4.6: OpenStack VM HeavenBenchmark Score

OpenGL part is not particularly prominent performance. In addition, we

found in the test, different picture resolution will also affect the performance of

the screen, so we are fixed with 1280 * 720 resolution to do the test, when we

use 1920 * 1080, FPS and Score will be reduced to 50% of the figures are usually

between 20 to 30.

In the second part of the virtual machine test, we will compare OpenStack in-

tegration XenServer and only XenServer environment, by modifying the vCPU to

test performance, the experiment we will open three virtual machines in XenServer,

as in the previous part of the experiment, respectively, 4 vCPU , 8vCPU, 16vCPU

three virtual machines, and are configured 8G memory, through the PCI Pass-

through technology K2 configuration to the virtual machine, and the previous

experiment are exactly the same. After the Heaven Benchmark test to get the

Chapter 4 Experimental Results 32

following results. The 4vcpu results shown in Figure 4.7,4.9,4.10,4.8, 8vcpu re-

sults shown in Figure 4.11,4.13,4.14,4.12, the 16vcpu results shown in Figure

4.15,4.17,4.18,4.16.

Figure 4.7: OpenStack and XenServer instance performance compare(4 vcpu)

Figure 4.8: OpenStack and XenServer instance performance compare(4 vcpu)

Through this second experiment test results, we can see that the part of the

Heaven Benchmark test is still the best performance of DirectX11, OpenGL and

Chapter 4 Experimental Results 33

Figure 4.9: OpenStack and XenServer instance performance compare(4 vcpu)

DirectX11 because of the number of CPU and the impact of the test results are

good or bad, and DirectX9 will not, In the case of fixed Ram, DirectX11 perfor-

mance is much higher than the other two, about 2 to 3 times, the results through

openStack open virtual machine test results are no different.

Through 4.19,4.20,4.21,4.22, the above comparison chart, we can find in the

virtual machine performance test part, through OpenStack or OpenStack directly

through the virtual machine between the two data between the difference is very

small, it can be said that there is almost no gap, so We can understand that

OpenStack does not affect the performance of virtual desktop display, the reason

should be for our experimental environment will OpenStack and XenServer inte-

gration, which OpenStack will only open the virtual machine, through NOVA-API

to communicate with XenServer, Then we do not need to operate on the virtual

machine through OpenStack So in the test performance, we can directly ignore

the impact of OpenStack.

Chapter 4 Experimental Results 34

Figure 4.10: OpenStack and XenServer instance performance compare(4
vcpu)

Figure 4.11: OpenStack and XenServer instance performance compare(8
vcpu)

Chapter 4 Experimental Results 35

Figure 4.12: OpenStack and XenServer instance performance compare(8
vcpu)

Figure 4.13: OpenStack and XenServer instance performance compare(8
vcpu)

Chapter 4 Experimental Results 36

Figure 4.14: OpenStack and XenServer instance performance compare(8
vcpu)

Figure 4.15: OpenStack and XenServer instance performance compare(16
vcpu)

Chapter 4 Experimental Results 37

Figure 4.16: OpenStack and XenServer instance performance compare(16
vcpu)

Figure 4.17: OpenStack and XenServer instance performance compare(16
vcpu)

Chapter 4 Experimental Results 38

Figure 4.18: OpenStack and XenServer instance performance compare(16
vcpu)

Figure 4.19: Compare Physical FPS

Chapter 4 Experimental Results 39

Figure 4.20: Compare Physical Max FPS

Figure 4.21: Compare Physical Min FPS

Chapter 4 Experimental Results 40

Figure 4.22: Compare Physical score

Chapter 4 Experimental Results 41

4.4 CineBench Experiment

In this experiment, we through the CineBench Benchmark tool to the virtual

machine to do the experiment, the software will be tested through the graphical

test CPU and GPU, we will be the same as the previous experiment is divided

into three virtual machines, 4 vCPU, 8 VCPU, 16 vCPU, three virtual machines

are fixed to 8G of memory.

The results of the test are as follows 4.23,4.24.

Figure 4.23: CineBench CPU

Through the test data we can see in the CPU part of the value based on a

different number of CPU has increased significantly, 8 CPU time more than 4 times

the CPU about double the score, and 16 CPU and more than 8 CPU Doubled.

You can see the relationship from the picture.

Figure 4.24: CineBench OpenGL

Chapter 4 Experimental Results 42

And in the OpenGL part we can find in a different number of CPU conditions,

the data will not be too much difference, almost all about 120 up and down, and

not too much gap, so you can know the number of CPU on the OpenGL The effect

is not so big, and this result can be verified with the results of Heaven Benchmark.

Through the above three experiments can be sorted out the conclusion of the

experiment, the first point between the virtual machine and the host network

is no significant difference, so the network part is almost negligible, The second

point through the sky benchmark can be found in the number of different CPU

CORE will indirectly affect the GPU with the effect of the screen display, you

can also find different drivers will have different effects on performance, especially

in the DirectX11 impact Maximum, and DirectX9 has no effect, and the worst

performance. The third part of the experiment can be used by CineBench to

discover the combined effects of the CPU.

Chapter 5

Conclusions and Future Work

5.1 Concluding Remark

In order to speed up the fluency of the virtual desktop and the ability to process

graphics, we use Pass-Through to allow virtual machines to use the HOST’s GPU

resources, and through testing, including the network delay test, we learned that

OpenStack virtual machine In the Neutron architecture and host machine network

delay difference is not large, almost can ignore the part of the network.

In the experiment before we tested a variety of VDI, OpenStack can support

GPU VDI is not much, noVNC and Spice are not normal operation, so we use the

RDP as our experiment VDI. In the selected VDI after Benchmark experiment,

we CPU and GPU part of the test and comparison, in different Benchmark tool,

DirectX11 is the most compatible with NVIDIA GRID K2, and DirectX9 is the

most inefficient Well, and the number of CPUs on DirectX9 has no effect. Which

part of the performance of DirectX11 than DirectX9 and OpenGL both about 2

to 3 times the performance, including Min FPS, Max FPS, FPS AVS.

In the course of the experiment, we also found that if the entity is displayed

directly through other graphics cards, K2 will not be used, but if the connection

to the solid machine through RDP, K2 will begin operation, during which 10

to 25% of the upper and lower utilization rate to display the action, it can be

43

Chapter 5 Conclusions and Future Work 44

found through the RDP GPU will indeed accelerate the display function, but also

because the GPU for VDI acceleration function, it will find through RDP test

performance than directly Solid machine test on the above worse, almost worse to

about 20And through the RDP connection test, the GPU’s temperature rise is also

faster than the direct operation of the solid machine. Although the performance

is not as good as the actual operation of the machine, but the GPU can indeed

accelerate the performance of VDI, GPU can be identified for the virtual desktop

can significantly improve the use of the use of experience.

5.2 Future Works

In this paper, XenServer for GPU Pass-Through experiment, the future hope to

replace the different hypervisors, such as VMware ESXI or KVM, and so different

Hypervisro, and through Benchmark to find out what kind of hypervisor on the

GPU Pass-through support the best The Can get the best performance.

To balance the amount of storage resources, we propose a mechanism for het-

erogeneous storage. In the proposed mechanism, different cluster can be integrated

in our system and each file can be split into suitable storage. Besides, this mech-

anism has scalability so that one can add more heterogeneous storages.

OpenStack does not support vGPU mode, only through the Pass-Through, but

this approach may cause a waste of GPU resources, because the GPU performance

is powerful, just a virtual desktop may not play to all the features , So the future if

the GPU can be through virtualization technology, assigned to a different virtual

machine, so that each virtual machine can get different virtual machine resources,

may be a better practice.

So in the future we plan to achieve vGPU in different ways, including the

existing VMware full virtualization, XenServer vGPU, KVM KVM-GT, etc., these

are the future we plan to try, the above vGPU function into OpenStack will then

find out where the performance of virtual desktops can reach the maximum value,

Chapter 5 Conclusions and Future Work 45

and there will be no waste of additional performance, which is our next stage of

the goal.

References

[1] M. Zakarya and L. Gillam. Energy efficient computing, clusters, grids and

clouds: A taxonomy and survey. Sustainable Computing: Informatics and

Systems, 14:13–33, 2017.

[2] P. Mishra, E.S. Pilli, V. Varadharajan, and U. Tupakula. Intrusion detection

techniques in cloud environment: A survey. Journal of Network and Computer

Applications, 77:18–47, 2017.

[3] H.-J. Hong, P.-H. Tsai, and C.-H. Hsu. Dynamic module deployment in a fog

computing platform. 2016.

[4] I. Kamel, A.M. Talha, and Z.A. Aghbari. Dynamic spatial index for efficient

query processing on the cloud. Journal of Cloud Computing, 6(1), 2017.

[5] A. Razaque and S.S. Rizvi. Privacy preserving model: a new scheme for

auditing cloud stakeholders. Journal of Cloud Computing, 6(1), 2017.

[6] M. Abu Sharkh, A. Shami, and A. Ouda. Optimal and suboptimal resource

allocation techniques in cloud computing data centers. Journal of Cloud

Computing, 6(1), 2017.

[7] A. Solano, R. Dormido, N. Duro, and J.M. Sánchez. A self-provisioning

mechanism in openstack for iot devices. Sensors (Switzerland), 16(8), 2016.

[8] D. Freet, R. Agrawal, J.J. Walker, and Y. Badr. Open source cloud man-

agement platforms and hypervisor technologies: A review and comparison.

volume 2016-July, 2016.

46

References 47

[9] V.G. Chamorro, C.N. Castillo, and F. Lopez-Pires. An elastic voip solution

based on openstack. pages 43–47, 2016.

[10] S. Sotiriadis and N. Bessis. An inter-cloud bridge system for heterogeneous

cloud platforms. Future Generation Computer Systems, 54:180–194, 2016.

[11] I. Benatia, M. Ridda, H. Bendjenna, and S.B. Eom. Implementing a cloud-

based decision support system in a private cloud: The infrastructure and

the deployment process. International Journal of Decision Support System

Technology, 8(1):25–42, 2016.

[12] C. de Alfonso, A. Calatrava, and G. Moltó. Container-based virtual elastic

clusters. Journal of Systems and Software, 127:1–11, 2017.

[13] A. Pietrabissa, F.D. Priscoli, A. Di Giorgio, A. Giuseppi, M. Panfili, and

V. Suraci. An approximate dynamic programming approach to resource man-

agement in multi-cloud scenarios. International Journal of Control, 90(3):

508–519, 2017.

[14] R. Mijumbi, S. Hasija, S. Davy, A. Davy, B. Jennings, and R. Boutaba.

Topology-aware prediction of virtual network function resource requirements.

IEEE Transactions on Network and Service Management, 14(1):106–120,

2017.

[15] C.-T. Yang, J.-C. Liu, S.-T. Chen, and K.-L. Huang. Virtual machine man-

agement system based on the power saving algorithm in cloud. Journal of

Network and Computer Applications, 80:165–180, 2017.

[16] M. Marks and E. Niewiadomska-Szynkiewicz. Hybrid cpu/gpu platform for

high performance computing. pages 508–514, 2014.

[17] S. Boob, H. González-Vélez, and A.M. Popescu. Automated instantiation of

heterogeneous fast flow cpu/gpu parallel pattern applications in clouds. pages

162–169, 2014.

[18] B. Kim and B. Lee. Integrated management system for distributed micro-

datacenters. volume 2016-March, pages 466–469, 2016.

References 48

[19] A. Paradowski, L. Liu, and B. Yuan. Benchmarking the performance of

openstack and cloudstack. pages 405–412, 2014.

[20] J. Zhang, S. Han, J. Wan, B. Zhu, L. Zhou, Y. Ren, and W. Zhang. Im-

dedup: An image management system based on deduplication applied in

dwsns. International Journal of Distributed Sensor Networks, 2013, 2013.

[21] M. Izumi and K. Horikawa. Toward practical use of virtual smartphone. 2012.

[22] A. Malik, J. Ahmed, J. Qadir, and M.U. Ilyas. A measurement study of

open source sdn layers in openstack under network perturbation. Computer

Communications, 102:139–149, 2017.

[23] R. Pacevič and A. Kačeniauskas. The development of vislt visualization ser-

vice in openstack cloud infrastructure. Advances in Engineering Software,

103:46–56, 2017.

[24] A. Kačeniauskas, R. Pacevič, V. Starikovičius, A. Maknickas, M. Staškūnienė,

and G. Davidavičius. Development of cloud services for patient-specific sim-

ulations of blood flows through aortic valves. Advances in Engineering Soft-

ware, 103:57–64, 2017.

[25] R. Pacevic and A. Kaceniauskas. Deployment of visualization software and

gpu rendering on an openstack cloud infrastructure. Civil-Comp Proceedings,

107, 2015.

[26] Y. Yamato. Optimum application deployment technology for heterogeneous

iaas cloud. Journal of Information Processing, 25:56–58, 2017.

[27] Y. Yamato. Proposal of optimum application deployment technology for het-

erogeneous iaas cloud. pages 34–37, 2016.

Appendix A

OpenStack Installation

OpenStack Controller Installation Shell
#! /bin/sh

read -p ”Please input your MYSQL Password : ” password # 提示使用者輸入

read -p ”Please input your cont ro l l e r ip : ” cont ro l l e r

sudo apt - get i n s t a l l -y software - propert ies -common

sudo add - apt - repos i tory -y cloud - archive : newton

sudo apt - get update && sudo apt - get -y dist - upgrade

sudo apt - get i n s t a l l -y python - openstackcl ient

sudo apt - get i n s t a l l -y mariadb - server python - pymysql

touch /etc/mysql/mariadb . conf . d/openstack . cnf

echo ” [mysqld]

bind - address = ${ cont ro l l e r }

default - storage - engine = innodb

innodb_file_per_table

max_connections = 4096

co l la t ion - server = utf8_general_ci

character - set - server = utf8 ” >> /etc/mysql/mariadb . conf . d/openstack . cnf

sudo se rv i c e mysql r e s ta r t

sudo mysql_secure_installation

sudo apt - get i n s t a l l -y rabbitmq - server

sudo rabbitmqctl add_user openstack ${password}

sudo rabbitmqctl set_permissions openstack ”.*” ”.*” ”.*”

sudo apt - get i n s t a l l -y memcached python -memcache

sudo sed - i ’s@- l 127 .0 .0 .1@- l ’ ${ cont ro l l e r } ’@’ / etc/memcached . conf

sudo se rv i c e memcached re s ta r t

49

Appendix 50

mysql -u root -p${password} - e ”drop database keystone ;”

mysql -u root -p${password} - e ”drop database glance ; ”

mysql -u root -p${password} - e ”drop database nova ;”

mysql -u root -p${password} - e ”drop database nova_api ; ”

mysql -u root -p${password} - e ”drop database neutron ;”

mysql -u root -p${password} - e ”drop database cinder ; ”

mysql -u root -p${password} - e ”CREATE DATABASE keystone ;”

mysql -u root -p${password} - e ”GRANT ALL PRIVILEGES ON keystone .* TO ’ keystone ’@’

loca lhost ’ IDENTIFIED BY ’${password } ’ ; ”

mysql -u root -p${password} - e ”GRANT ALL PRIVILEGES ON keystone .* TO ’ keystone ’@’%’

IDENTIFIED BY ’${password } ’ ; ”

mysql -u root -p${password} - e ”CREATE DATABASE glance ;”

mysql -u root -p${password} - e ”GRANT ALL PRIVILEGES ON glance .* TO ’ glance ’@’

loca lhost ’ IDENTIFIED BY ’${password } ’ ; ”

mysql -u root -p${password} - e ”GRANT ALL PRIVILEGES ON glance .* TO ’ glance ’@’%’

IDENTIFIED BY ’${password } ’ ; ”

mysql -u root -p${password} - e ”CREATE DATABASE nova ;”

mysql -u root -p${password} - e ”CREATE DATABASE nova_api ; ”

mysql -u root -p${password} - e ”GRANT ALL PRIVILEGES ON nova .* TO ’nova ’@’ loca lhost ’

IDENTIFIED BY ’${password } ’ ; ”

mysql -u root -p${password} - e ”GRANT ALL PRIVILEGES ON nova .* TO ’nova ’@’%’

IDENTIFIED BY ’${password } ’ ; ”

mysql -u root -p${password} - e ”GRANT ALL PRIVILEGES ON nova_api .* TO ’nova ’@’

loca lhost ’ IDENTIFIED BY ’${password } ’ ; ”

mysql -u root -p${password} - e ”GRANT ALL PRIVILEGES ON nova_api .* TO ’nova ’@’%’

IDENTIFIED BY ’${password } ’ ; ”

mysql -u root -p${password} - e ”CREATE DATABASE neutron ;”

mysql -u root -p${password} - e ”GRANT ALL PRIVILEGES ON neutron .* TO ’ neutron ’@’

loca lhost ’ IDENTIFIED BY ’${password } ’ ; ”

mysql -u root -p${password} - e ”GRANT ALL PRIVILEGES ON neutron .* TO ’ neutron ’@’%’

IDENTIFIED BY ’${password } ’ ; ”

mysql -u root -p${password} - e ”CREATE DATABASE cinder ; ”

mysql -u root -p${password} - e ”GRANT ALL PRIVILEGES ON cinder .* TO ’ cinder ’@’

loca lhost ’ IDENTIFIED BY ’${password } ’ ; ”

mysql -u root -p${password} - e ”GRANT ALL PRIVILEGES ON cinder .* TO ’ cinder ’@’%’

IDENTIFIED BY ’${password } ’ ; ”

Appendix 51

echo ”manual” | sudo tee /etc/ i n i t /keystone . overr ide

sudo apt - get i n s t a l l keystone apache2 libapache2 -mod- wsgi -y

sudo sed - i ’s@#admin_token = <None>@admin_token =21

d7fb48086e09f30d40be5a5e95a7196f2052b2cae6b491@ ’ /etc/keystone/keystone . conf

sudo sed - i ’ s~connection = sq l i t e ://// var/ l i b /keystone/keystone . db~connection = mysql

+pymysql :// keystone : ’ ${password} ’@’ ${ cont ro l l e r } ’/ keystone ~ ’ / etc/keystone/

keystone . conf

sudo sed - i ’s@#servers = loca lhos t :11211@servers = ’${ cont ro l l e r } ’ :11211@’ /etc/

keystone/keystone . conf

sudo sed - i ’s@#provider = uuid@provider = fernet@ ’ / etc/keystone/keystone . conf

sudo keystone -manage db_sync

sudo keystone -manage fernet_setup - - keystone - user keystone - - keystone - group keystone

sudo keystone -manage credential_setup - - keystone - user keystone - - keystone - group

keystone

sudo keystone -manage bootstrap - - bootstrap - password ${password} \

- - bootstrap -admin - ur l http ://${ cont ro l l e r }:35357/v3/ \

- - bootstrap - internal - ur l http ://${ cont ro l l e r }:35357/v3/ \

- - bootstrap - public - ur l http ://${ cont ro l l e r }:5000/v3/ \

- - bootstrap - region - id RegionOne

echo ”ServerName ${ cont ro l l e r}”>> /etc/apache2/apache2 . conf

sudo ln - s / etc/apache2/ s i t e s - ava i lab le /keystone . conf / etc/apache2/ s i t e s - enabled

sudo se rv i c e apache2 r e s ta r t

sudo rm - f /var/ l i b /keystone/keystone . db

export OS_USERNAME=admin

export OS_PASSWORD=${password}

export OS_PROJECT_NAME=admin

export OS_USER_DOMAIN_NAME=Default

export OS_PROJECT_DOMAIN_NAME=Default

export OS_AUTH_URL=http ://${ cont ro l l e r }:35357/v3

export OS_IDENTITY_API_VERSION=3

openstack project create - -domain default \

- - descr ipt ion ”Service Project ” se rv i c e

openstack project create - -domain default \

- - descr ipt ion ”Demo Project ” demo

openstack user create - -domain default - - password ${password} demo

openstack ro l e create user

openstack ro l e add - - pro ject demo - - user demo user

Appendix 52

export OS_PROJECT_DOMAIN_NAME=default

export OS_USER_DOMAIN_NAME=default

export OS_PROJECT_NAME=admin

export OS_USERNAME=admin

export OS_PASSWORD=${password}

export OS_AUTH_URL=http ://${ cont ro l l e r }:35357/v3

export OS_IDENTITY_API_VERSION=3

export OS_IMAGE_API_VERSION=2

openstack user create - -domain default - - password ${password} - - email glance@example .

com glance

openstack ro l e add - - pro ject s e rv i c e - - user glance admin

openstack se rv i c e create - -name glance - - descr ipt ion ”OpenStack Image se rv i c e ” image

openstack endpoint create - - region RegionOne \

image public http ://${ cont ro l l e r }:9292

openstack endpoint create - - region RegionOne \

image inte rna l http ://${ cont ro l l e r }:9292

openstack endpoint create - - region RegionOne \

image admin http ://${ cont ro l l e r }:9292

sudo apt - get i n s t a l l -y glance

sudo sed - i ’ s~sqlite_db = /var/ l i b /glance/glance . s q l i t e ~connection = mysql+pymysql ://

glance : ’ ${password} ’@’ ${ cont ro l l e r } ’/ glance ~ ’ / etc/glance/glance - api . conf

sudo sed - i ’N; s@\[keystone_authtoken \]\n@\[keystone_authtoken \]\ nauth_uri = http :// ’

${ cont ro l l e r } ’ :5000\nauth_url = http :// ’ ${ cont ro l l e r } ’:35357\nmemcached_servers =

’${ cont ro l l e r } ’:11211\nauth_type = password\nproject_domain_name = default \

nuser_domain_name = default \nproject_name = serv i c e \nusername = glance\npassword =

’${password} ’@’ / etc/glance/glance - api . conf

sudo sed - i ’s@#f lavor = keystone@flavor = keystone@ ’ /etc/glance/glance - api . conf

sudo sed - i ’s@#store s = f i l e , http@stores = f i l e , http@ ’ /etc/glance/glance - api . conf

sudo sed - i ’s@#default_store = f i l e@default_store = fi le@ ’ / etc/glance/glance - api .

conf

sudo sed - i ’s@#filesystem_store_datadir = /var/ l i b /glance/

images@filesystem_store_datadir = /var/ l i b /glance/images/@’ /etc/glance/glance - api

. conf

sudo sed - i ’ s~sqlite_db = /var/ l i b /glance/glance . s q l i t e ~connection = mysql+pymysql ://

glance : ’ ${password} ’@’ ${ cont ro l l e r } ’/ glance ~ ’ / etc/glance/glance - r eg i s t ry . conf

Appendix 53

sudo sed - i ’N; s@\[keystone_authtoken \]@\[keystone_authtoken \]\ nauth_uri = http :// ’ ${

cont ro l l e r } ’ :5000\nauth_url = http :// ’ ${ cont ro l l e r } ’:35357\nmemcached_servers = ’$

{ cont ro l l e r } ’:11211\nauth_type = password\nproject_domain_name = default \

nuser_domain_name = default \nproject_name = serv i c e \nusername = glance\npassword =

’${password} ’@’ / etc/glance/glance - r eg i s t ry . conf

sudo sed - i ’s@#f lavor = keystone@flavor = keystone@ ’ /etc/glance/glance - r eg i s t ry . conf

sudo glance -manage db_sync

sudo se rv i c e glance - r eg i s t ry r e s ta r t

sudo se rv i c e glance - api r e s ta r t

sudo rm - f /var/ l i b /glance/glance . s q l i t e

sudo wget http ://download . c i r ros - cloud . net /0.3 .4/ c i r ros - 0 . 3 . 4 - x86_64 - disk . img

openstack image create ” c i r ros - 0 . 3 . 4 - x86_64” \

- - f i l e c i r ros - 0 . 3 . 4 - x86_64 - disk . img \

- - disk - format qcow2 - - container - format bare \

- - publ ic

export OS_PROJECT_DOMAIN_NAME=default

export OS_USER_DOMAIN_NAME=default

export OS_PROJECT_NAME=admin

export OS_USERNAME=admin

export OS_PASSWORD=${password}

export OS_AUTH_URL=http ://${ cont ro l l e r }:35357/v3

export OS_IDENTITY_API_VERSION=3

export OS_IMAGE_API_VERSION=2

openstack user create - -domain default - - password ${password} - - email nova@example . com

nova

openstack ro l e add - - pro ject s e rv i c e - - user nova admin

openstack se rv i c e create - -name nova - - descr ipt ion ”OpenStack Compute” compute

openstack endpoint create - - region RegionOne \

compute public http ://${ cont ro l l e r }:8774/v2.1/%\(tenant_id\) s

openstack endpoint create - - region RegionOne \

compute inte rna l http ://${ cont ro l l e r }:8774/v2.1/%\(tenant_id\) s

openstack endpoint create - - region RegionOne \

compute admin http ://${ cont ro l l e r }:8774/v2.1/%\(tenant_id\) s

sudo apt - get i n s t a l l -y nova - api nova - conductor nova - consoleauth \

nova - novncproxy nova - scheduler

Appendix 54

sudo sed - i ’N; s@\[DEFAULT\]\n@\[DEFAULT\]\n\nmy_ip = ’${ cont ro l l e r } ’\nrpc_backend =

rabbit \nauth_strategy = keystone\nuse_neutron = True\nf i rewal l_dr iver = nova . v i r t .

f i r ewa l l . NoopFirewallDriver\n@’ /etc/nova/nova . conf

sudo sed - i ’N; s ~\[database \]\n~\[database \]\ nconnection = mysql+pymysql ://nova : ’ ${

password} ’@’ ${ cont ro l l e r } ’/nova\n#~’ / etc/nova/nova . conf

sudo sed - i ’N; s ~\[api_database \]\n~\[api_database \]\ nconnection = mysql+pymysql ://

nova : ’ ${password} ’@’ ${ cont ro l l e r } ’/nova_api\n#~’ /etc/nova/nova . conf

sudo sed - i ’ s@lock_path=/var/ lock/nova@lock_path=/var/ l i b /nova/tmp@’ /etc/nova/nova .

conf

echo ”

[vnc]

vncserver_l isten = ${ cont ro l l e r }

vncserver_proxyclient_address = ${ cont ro l l e r }

[oslo_messaging_rabbit]

rabbit_host = ${ cont ro l l e r }

rabbit_userid = openstack

rabbit_password = ${password}

[keystone_authtoken]

auth_uri = http ://${ cont ro l l e r }:5000

auth_url = http ://${ cont ro l l e r }:35357

memcached_servers = ${ cont ro l l e r }:11211

auth_type = password

project_domain_name = default

user_domain_name = default

project_name = serv i c e

username = nova

password = ${password}

[glance]

api_servers = http ://${ cont ro l l e r }:9292

” >> /etc/nova/nova . conf

sudo nova -manage api_db sync

sudo nova -manage db sync

Appendix 55

sudo se rv i c e nova - api r e s ta r t

sudo se rv i c e nova - consoleauth re s ta r t

sudo se rv i c e nova - scheduler r e s ta r t

sudo se rv i c e nova - conductor r e s ta r t

sudo se rv i c e nova - novncproxy re s ta r t

sudo rm - f /var/ l i b /nova/nova . s q l i t e

openstack compute se rv i c e l i s t

export OS_PROJECT_DOMAIN_NAME=default

export OS_USER_DOMAIN_NAME=default

export OS_PROJECT_NAME=admin

export OS_USERNAME=admin

export OS_PASSWORD=${password}

export OS_AUTH_URL=http ://${ cont ro l l e r }:35357/v3

export OS_IDENTITY_API_VERSION=3

export OS_IMAGE_API_VERSION=2

openstack user create - -domain default - - password ${password} - - email neutron@example .

com neutron

openstack ro l e add - - pro ject s e rv i c e - - user neutron admin

openstack se rv i c e create - -name neutron - - descr ipt ion ”OpenStack Networking” network

openstack endpoint create - - region RegionOne \

network public http ://${ cont ro l l e r }:9696

openstack endpoint create - - region RegionOne \

network inte rna l http ://${ cont ro l l e r }:9696

openstack endpoint create - - region RegionOne \

network admin http ://${ cont ro l l e r }:9696

sudo apt - get i n s t a l l -y neutron - server neutron - plugin -ml2

sudo sed - i ’s@#service_plugins =@service_plugins =router@ ’ /etc/neutron/neutron . conf

sudo sed - i ’s@#allow_overlapping_ips = false@allow_overlapping_ips = True@’ /etc/

neutron/neutron . conf

sudo sed - i ’s@#rpc_backend = rabbit@rpc_backend = rabbit@ ’ /etc/neutron/neutron . conf

sudo sed - i ’s@#auth_strategy = keystone@auth_strategy = keystone@ ’ /etc/neutron/

neutron . conf

sudo sed - i ’s@#notify_nova_on_port_status_changes =

true@notify_nova_on_port_status_changes = true@ ’ /etc/neutron/neutron . conf

sudo sed - i ’s@#notify_nova_on_port_data_changes =

true@notify_nova_on_port_data_changes = true@ ’ /etc/neutron/neutron . conf

Appendix 56

sudo sed - i ’ s~connection = sq l i t e ://// var/ l i b /neutron/neutron . s q l i t e ~connection =

mysql+pymysql :// neutron : ’ ${password} ’@’ ${ cont ro l l e r } ’/ neutron~ ’ / etc/neutron/

neutron . conf

sudo sed - i ’s@#rabbit_host = localhost@rabbit_host = ’${ cont ro l l e r } ’@’ / etc/neutron/

neutron . conf

sudo sed - i ’s@#rabbit_userid = guest@rabbit_userid = openstack@ ’ /etc/neutron/neutron

. conf

sudo sed - i ’s@#rabbit_password = guest@rabbit_password = ’${password} ’@’ / etc/neutron

/neutron . conf

sudo sed - i ’s@# From keystonemiddleware . auth_token@# From keystonemiddleware .

auth_token\nauth_uri = http :// ’ ${ cont ro l l e r } ’ :5000\nauth_url = http :// ’ ${

cont ro l l e r } ’:35357\nmemcached_servers = ’${ cont ro l l e r } ’:11211\nauth_type =

password\nproject_domain_name = default \nuser_domain_name = default \nproject_name

= serv i c e \nusername = neutron\npassword = ’${password} ’\n@’ /etc/neutron/neutron .

conf

sudo sed - i ’N; s@\[nova\]\n@\[nova\]\n\nauth_url = http :// ’ ${ cont ro l l e r } ’:35357\

nauth_type = password\nproject_domain_name = default \nuser_domain_name = default \

nregion_name = RegionOne\nproject_name = serv i c e \nusername = nova\npassword = ’${

password} ’@’ / etc/neutron/neutron . conf

sudo sed - i ’s@#type_drivers = loca l , f l a t , vlan , gre , vxlan , geneve@type_drivers = f l a t ,

vlan , gre , vxlan@ ’ /etc/neutron/plugins/ml2/ml2_conf . i n i

sudo sed - i ’s@#tenant_network_types = local@tenant_network_types = vxlan@ ’ /etc/

neutron/plugins/ml2/ml2_conf . i n i

sudo sed - i ’s@#mechanism_drivers =@mechanism_drivers =openvswitch , l2population@ ’ /etc

/neutron/plugins/ml2/ml2_conf . i n i

sudo sed - i ’s@#extension_drivers =@extension_drivers = port_security@ ’ /etc/neutron/

plugins/ml2/ml2_conf . i n i

sudo sed - i ’s@# VXLAN VNI IDs that are ava i lab le fo r tenant network a l l o ca t i on (l i s t

value)@# VXLAN VNI IDs that are ava i lab le fo r tenant network a l l o ca t i on (l i s t

value)\nvni_ranges = 1:1000@’ /etc/neutron/plugins/ml2/ml2_conf . i n i

sudo sed - i ’s@#enable_ipset = true@enable_ipset = true@ ’ /etc/neutron/plugins/ml2/

ml2_conf . i n i

echo ”

[neutron]

ur l = http ://${ cont ro l l e r }:9696

auth_url = http ://${ cont ro l l e r }:35357

auth_type = password

project_domain_name = default

user_domain_name = default

region_name = RegionOne

project_name = serv i c e

username = neutron

password = ${password}

service_metadata_proxy = True

Appendix 57

metadata_proxy_shared_secret = ${password}

” >> /etc/nova/nova . conf

sudo neutron -db-manage - - config - f i l e / etc/neutron/neutron . conf \

- - config - f i l e / etc/neutron/plugins/ml2/ml2_conf . i n i \

upgrade head

sudo se rv i c e nova - api r e s ta r t

sudo se rv i c e neutron - server r e s ta r t

neutron ext - l i s t

sudo apt - get i n s t a l l openstack - dashboard -y

sudo sed - i ’s@OPENSTACK_HOST = ”127 .0 .0 .1”@OPENSTACK_HOST = ” ’${ cont ro l l e r } ’”@’ /etc/

openstack - dashboard/ loca l_sett ings . py

sudo sed - i ’ s@127 .0 .0 . 1 : 11211@’ ${ cont ro l l e r } ’ :11211@’ /etc/openstack - dashboard/

loca l_sett ings . py

echo ”SESSION_ENGINE = ’ django . contr ib . s e s s i ons . backends . cache ’” >> /etc/openstack -

dashboard/ loca l_sett ings . py

sudo sed - i ’s@OPENSTACK_KEYSTONE_URL = ”http://%s :5000/v2 .0” %

OPENSTACK_HOST@OPENSTACK_KEYSTONE_URL = ”http://%s :5000/v3” % OPENSTACK_HOST@’ /

etc/openstack - dashboard/ loca l_sett ings . py

sudo sed - i ’s@_member_@user@’ / etc/openstack - dashboard/ loca l_sett ings . py

sudo sed - i ’s@#OPENSTACK_KEYSTONE_MULTIDOMAIN_SUPPORT =

False@OPENSTACK_KEYSTONE_MULTIDOMAIN_SUPPORT = True@’ /etc/openstack - dashboard/

loca l_sett ings . py

sudo sed - i ’s@#OPENSTACK_KEYSTONE_DEFAULT_DOMAIN @OPENSTACK_KEYSTONE_DEFAULT_DOMAIN @

’ /etc/openstack - dashboard/ loca l_sett ings . py

sudo sed - i ’s@#OPENSTACK_API_VERSIONS@OPENSTACK_API_VERSIONS@’ /etc/openstack -

dashboard/ loca l_sett ings . py

sudo sed - i ’s@# ” ident i ty ” : 3 ,@ ” ident i ty ” : 3 ,@’ / etc/openstack - dashboard/

loca l_sett ings . py

sudo sed - i ’s@# ”image ” : 2 ,@ ”image ” : 2 ,@’ / etc/openstack - dashboard/

loca l_sett ings . py

sudo sed - i ’s@# ”volume ” : 2 ,@ ”volume ” : 2 ,\n}@’ /etc/openstack - dashboard/

loca l_sett ings . py

sudo se rv i c e apache2 reload

sudo se rv i c e apache2 r e s ta r t

openstack f l avor create - -ram 1024 - - disk 10 - - vcpus 1 te s t

echo ”

export OS_PROJECT_DOMAIN_NAME=default

export OS_USER_DOMAIN_NAME=default

export OS_PROJECT_NAME=admin

export OS_USERNAME=admin

Appendix 58

export OS_PASSWORD=${password}

export OS_AUTH_URL=http ://${ cont ro l l e r }:35357/v3

export OS_IDENTITY_API_VERSION=3

export OS_IMAGE_API_VERSION=2

” >> admin - openrc

OpenStack Network Installation Shell
#! /bin/sh

read -p ”Please input your cont ro l l e r ip : ” cont ro l l e r

read -p ”Please input your network ip : ” network

read -p ”Please input your passwd : ” password

sudo apt - get i n s t a l l -y software - propert ies -common

sudo add - apt - repos i tory -y cloud - archive : newton

sudo apt - get update && sudo apt - get -y dist - upgrade

echo ”

net . ipv4 . ip_forward=1

net . ipv4 . conf . a l l . rp_f i l t e r=0

net . ipv4 . conf . de fault . rp_f i l t e r=0

”>> /etc/ sy s c t l . conf

sudo sy s c t l -p

sudo apt - get i n s t a l l -y neutron - plugin -ml2 neutron - l3 - agent \

neutron -dhcp - agent neutron -metadata - agent \

neutron - openvswitch - agent

sudo sed - i ’s@#verbose = true@verbose = true@ ’ /etc/neutron/neutron . conf

sudo sed - i ’s@#rpc_backend = rabbit@rpc_backend = rabbit@ ’ /etc/neutron/neutron . conf

sudo sed - i ’s@#auth_strategy = keystone@auth_strategy = keystone@ ’ /etc/neutron/

neutron . conf

sudo sed - i ’s@#service_plugins =@service_plugins = router@ ’ /etc/neutron/neutron . conf

sudo sed - i ’s@#allow_overlapping_ips = false@allow_overlapping_ips = True@’ /etc/

neutron/neutron . conf

sudo sed - i ’ s@connection = sq l i t e ://// var/ l i b /neutron/neutron . sql i te@#connection =

sq l i t e ://// var/ l i b /neutron/neutron . sqlite@ ’ /etc/neutron/neutron . conf

sudo sed - i ’s@#rabbit_host = localhost@rabbit_host = ’${ cont ro l l e r } ’@’ / etc/neutron/

neutron . conf

sudo sed - i ’s@#rabbit_userid = guest@rabbit_userid = openstack@ ’ /etc/neutron/neutron

. conf

sudo sed - i ’s@#rabbit_password = guest@rabbit_password = ’${password} ’@’ / etc/neutron

/neutron . conf

Appendix 59

sudo sed - i ’N; s@\[keystone_authtoken \]\n@\[keystone_authtoken \]\ nauth_uri = http :// ’

${ cont ro l l e r } ’ :5000\nauth_url = http :// ’ ${ cont ro l l e r } ’:35357\nmemcached_servers =

’${ cont ro l l e r } ’:11211\nauth_type = password\nproject_domain_name = default \

nuser_domain_name = default \nproject_name = serv i c e \nusername = neutron\npassword

= ’${password} ’@’ / etc/neutron/neutron . conf

sudo sed - i ’s@#type_drivers = loca l , f l a t , vlan , gre , vxlan , geneve@type_drivers = f l a t ,

vlan , gre , vxlan@ ’ /etc/neutron/plugins/ml2/ml2_conf . i n i

sudo sed - i ’s@#tenant_network_types = local@tenant_network_types = vxlan@ ’ /etc/

neutron/plugins/ml2/ml2_conf . i n i

sudo sed - i ’s@#mechanism_drivers =@mechanism_drivers =openvswitch , l2population@ ’ /etc

/neutron/plugins/ml2/ml2_conf . i n i

sudo sed - i ’s@#extension_drivers =@extension_drivers =port_security@ ’ /etc/neutron/

plugins/ml2/ml2_conf . i n i

sudo sed - i ’s@#flat_networks =@flat_networks = external \n#@’ /etc/neutron/plugins/ml2

/ml2_conf . i n i

sudo sed - i ’N; s@\[ml2_type_vxlan\]@\[ml2_type_vxlan\]\ nvni_ranges = 1:1000@’ /etc/

neutron/plugins/ml2/ml2_conf . i n i

sudo sed - i ’s@#enable_ipset = true@enable_ipset = true@ ’ /etc/neutron/plugins/ml2/

ml2_conf . i n i

sudo sed - i ’s@#local_ip = <None>@local_ip = ’${network} ’@’ / etc/neutron/plugins/ml2/

openvswitch_agent . i n i

sudo sed - i ’s@#bridge_mappings =@bridge_mappings = external : br -ex@’ /etc/neutron/

plugins/ml2/openvswitch_agent . i n i

sudo sed - i ’s@#tunnel_types =@tunnel_types = vxlan@ ’ /etc/neutron/plugins/ml2/

openvswitch_agent . i n i

sudo sed - i ’s@#l2_population = false@l2_population = True@’ /etc/neutron/plugins/ml2/

openvswitch_agent . i n i

sudo sed - i ’s@#prevent_arp_spoofing = true@prevent_arp_spoofing = true@ ’ /etc/neutron

/plugins/ml2/openvswitch_agent . i n i

sudo sed - i ’s@#enable_security_group = true@enable_security_group = True@’ /etc/

neutron/plugins/ml2/openvswitch_agent . i n i

sudo sed - i ’s@#f i rewal l_dr iver = <None>@firewall_driver = neutron . agent . l inux .

ip tab le s_f i r ewa l l . OVSHybridIptablesFirewallDriver@ ’ /etc/neutron/plugins/ml2/

openvswitch_agent . i n i

sudo sed - i ’s@#verbose = true@verbose = true@ ’ /etc/neutron/l3_agent . i n i

sudo sed - i ’s@#inter face_dr iver = <None>@interface_driver = neutron . agent . l inux .

in t e r f a c e . OVSInterfaceDriver@ ’ /etc/neutron/l3_agent . i n i

sudo sed - i ’s@#external_network_bridge = br - ex@external_network_bridge =@’ /etc/

neutron/l3_agent . i n i

sudo sed - i ’s@#verbose = true@verbose = true@ ’ /etc/neutron/dhcp_agent . i n i

sudo sed - i ’s@#inter face_dr iver = <None>@interface_driver = neutron . agent . l inux .

in t e r f a c e . OVSInterfaceDriver@ ’ /etc/neutron/dhcp_agent . i n i

sudo sed - i ’s@#dhcp_driver = neutron . agent . l inux . dhcp .Dnsmasq@dhcp_driver = neutron .

agent . l inux . dhcp .Dnsmasq@’ /etc/neutron/dhcp_agent . i n i

Appendix 60

sudo sed - i ’s@#enable_isolated_metadata = false@enable_isolated_metadata = True@’ /

etc/neutron/dhcp_agent . i n i

sudo sed - i ’s@#dnsmasq_config_file =@dnsmasq_config_file = /etc/neutron/dnsmasq -

neutron . conf@ ’ /etc/neutron/dhcp_agent . i n i

echo ’dhcp - option - fo rce =26 ,1450 ’ | sudo tee /etc/neutron/dnsmasq - neutron . conf

sudo sed - i ’s@#nova_metadata_ip = 127 .0 .0 .1@nova_metadata_ip = ’${ cont ro l l e r } ’@’ / etc

/neutron/metadata_agent . i n i

sudo sed - i ’s@#metadata_proxy_shared_secret =@metadata_proxy_shared_secret =’${

password} ’@’ / etc/neutron/metadata_agent . i n i

	摘要
	Abstract
	致謝詞
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivation
	1.2 Thesis Goal and Contributions
	1.3 Limitations of Prior Art
	1.4 Thesis Organization

	2 Background Review and Related Work
	2.1 Background Review
	2.1.1 Cloud Computing
	2.1.2 Virtualization
	2.1.3 OpenStack
	2.1.4 OpenStack Component
	2.1.5 OpenStack Conceptual Architecture
	2.1.6 Graphics Processing Unit
	2.1.7 Virtual Desktop Infrastructure

	2.2 Related Works

	3 System Design and Implementation
	3.1 System Design Architecture
	3.2 System Implementation
	3.2.1 OpenStack Service Deployment
	3.2.2 GPU Pass-Through
	3.2.3 Methodology

	4 Experimental Results
	4.1 Experimental Environment
	4.2 Network Delay Experiment
	4.3 Heaven Benchmark Experiment
	4.4 CineBench Experiment

	5 Conclusions and Future Work
	5.1 Concluding Remark
	5.2 Future Works

	References
	Appendix
	A OpenStack Installation

