R FAESEL JomE L

> OpenStack ' 7 T2 GPU “4cig dm bt b o £
The Implementation of a Virtual Desktop

Infrastructure with GPU Accelerated on

OpenStack

TAE S TNAEFEARFESE S 2 LA RPM RS R 2P B
FZ Y 2 0 BHR A EF 2SR A SR 2R E
BFRA A TR LG RS R FEARFI - BN oA 2
oot Bl e 2 GPU 3 732> e 8- BRW a2 AR
;T*ﬂ;— BRE & aikiE > A%k~ &7 & OpenStack + B & Bl A ad® B
(Graphics Processing Unit, GPU) » & ® 1% i PCI Pass-Through == ;% » % f#
AR E T ot Pl AL BB GPU FRA e B RAE M B
B ASE 4o id chit 4 0 B BRenIND € B EF b e RGR R KR R BRI
=7 PSR4z 2 P 2 457 OpenGL ~ DirectX11 12 2 DirectX9 it {7 ip|
Wb TR A2 ABREY T P BIRBEE Av 2 g8 vCPU 7R
2R TE o ERHRYDBFAREL DN VCPU LR & B RE N AT R
Fm T g #4% FPS(Frame per Second » FPS, & & M &) # ﬁﬁ“ B2 -4 Xaglid
oo WA NPHRFRZ B R ORI RRE S F 6 I 4 S
7 &tk o 2 d DirectX1l gy E4F > ¥ € F1 i vCPU hfic & 3 4o @ 3 4o
om0 16 B vCPU &= ™ DirectX11 i 3| & § B2 A%t 4 > &
Heaven Benchmark # Max FPS i#i& ~ 3 DirectX9 7 %2 OpenGL 57 & = %
@ T 33 FPS 738 4 » DirectX11 = % OpenGL % # & > < *% DirectX ¥ 3 i3
4 0 % B Bdh T 005 T DirectX11 2 NVIDIA 0 K2 GPU 49 % B4 &
HERED DF 6 I F 255 o ¥ bR A9 %P 4 % R DirectX9 &
023 B > @ OpenGL ¥ DirectX11 & i " ¢ 715 vCPU

Mt ZHPRF > meEd @ ° OpenStack » B AJZ B » k8 T IR+

Abstract

In recent years, Information industry trends gradually towards the clouds. Various
clouds are related technologies and applications are growing with the popularity of
cloud technology. Whether the number of enterprise users or individual users use
cloud services is also an explosive upgrade. While cloud virtual desktop is the first
user access part of the cloud and the performance of cloud virtual desktop with
the network and GPU has been implicated. Therefore, a smooth cloud virtual
desktop is a very important issue in this environment. This study proposed an
integration of GPU on OpenStack and through PCI Pass-Through way to solve
the problem of virtual machine display performance by allocating GPU resources
for virtual machine. So, the virtual machine can achieve the ability of graphic
acceleration. For the experimental, we will use different benchmarking software
to measure the virtual machine. Among three different drivers that consist of
OpenGL, DirectX11 and DirectX9 for testing and also because of the character-
istics of on-demand self-services on the cloud environment, this study uses vCPU
factor as experiment considering. In the experiment, adjust the different number of
vCPUs to measure the different cases performance of FPS virtual machine (Frame
per Second). Through this experimental, we found out there are three different
processing drivers for virtual desktop. Under 16 cores of virtual CPU condition,
DirectX11 is the best performance. In the Heaven Benchmark environment, Max
FPS is twice better performance than DirectX9 and OpenGL. The average of FPS
values, Direct X11 is twice better performance than OpenGL, three times better

performance than DirectX. Through these data found out DirectX11 and NVIDIA

ii

Chapter 0 Abstract iii

‘s K2GPU have highest compatibility. The virtual desktop graphics processing ca-
pacity enhance the most. Besides that, our experiments found out the number of
DirectX9 and vCPU seems no correlation. Then, because of the number of vCPU

factor, OpenGL and DirectX11 have changed.

Keywords:Cloud service, Virtual Desktop Interface, OpenStack, Graphics Pro-

cessing Unit, Software as a Service

3R

BT ies AYPRF O3 ERE L RETE ACEAFFEY it

ol EREFPREL > s
ERRETAFESFFRF ML LR A LA 0 R m A
A A fﬁ%‘ﬁ%ﬁ?‘* VB AT S HuE o A AT i 4P
"'“’i*\'"’]f}ﬁg?}c%; r.fimﬁﬁ {%% ﬁgg\”‘:‘ g”jﬁﬁh““%} ~
ﬂi?*%%%%U£@ﬁﬁﬁoﬁﬂ%é%@ﬁﬁ%% 4 AR 5 A e
TR AEHT o AP REBIFELMIL > BAT A LY~ SFE MR HE

BEicd g seieh o

ﬂaé&#f&{%Mmiﬁ AR T kL

o

AR BREHASARER S E T FAF LGS S L
SEIDF G ko WP ANT R R EEAR S s AR
ERIGEAPR P SEP SREOF LR TR EES R UFL N
yﬂ’ﬁyﬂ%$é$%ﬁw%$»u£$?ﬁ€?éﬁ’“%%?$*@*
éﬁ{*i&$%°§ﬂﬁm:%P@@ZEW%W’@¥*??%iﬂ§*°
My e A Rk AL e it

—
o

VR 3 \mif’&Eﬁﬁkﬁﬁ\ﬁﬂﬁwﬁﬁoﬁ~ii%&%
Ao R A RehAF S RN EAR G AL B S EE o PG B A

iv

Table of Contents

&
Abstract

B

Table of Contents
List of Figures
List of Tables

1 Introduction

1.TQMotRalian .0 Gl .~ —. . . A4 WA §J & = . . .
1.2 Thesis Goal and Contributions
1.3 Limitations of Prior Art
1.4 Thesis Organization

Background Review and Related Work

2.1 Background Review oo
2.1.1 Cloud Computing
2.1.2 Virtualization L
2.1.3 OpenStack
2.1.4 OpenStack Component
2.1.5 OpenStack Conceptual Architecture
2.1.6 Graphics Processing Unit
2.1.7 Virtual Desktop Infrastructure

2.2 Related Works

System Design and Implementation

3.1 System Design Architecture

3.2 System Implementation
3.2.1 OpenStack Service Deployment
3.2.2 GPU Pass-Through
3.2.3 Methodology

TABLE OF CONTENTS vi
4 Experimental Results 27
4.1 Experimental Environment00 27
4.2 Network Delay Experiment 29
4.3 Heaven Benchmark Experiment 29
4.4 CineBench Experiment L. 41
5 Conclusions and Future Work 43
5.1 Concluding Remark 43
5.2 Future Works 44
References 46
Appendix 49
A OpenStack Installation 49

List of Figures

2.1
2.2
2.3
24
2.5

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15
4.16
4.17
4.18

OpenStack Architecture 9
OpenStack conceptual Architecture 10
VM spawning sequence OpenStack 12
noVNC Sequence 16
Spice Architectureo 16
System Architecture oL 19
OpenStack nova with KVM and XenServer 20
Experiment Environmento 0000 20
OpenStack Overview 21
OpenStack VM Instances 22
OpenStack noVNC Web Console 22
OpenStack Spice web console 23
OpenStack Spice client 24
GPU Pass-Through Architecture 25
NVIDIA GRID K2 on compute 25
NVIDIA GRID K2 on Windows VM 26
PINE OUS B - - - 2 e ™. . . Y 29
ping 60s 29
OpenStack VM HeavenBenchmark FPS. 30
OpenStack VM HeavenBenchmark MaxFPS 30
OpenStack VM HeavenBenchmark MinFPS 31
OpenStack VM HeavenBenchmark Score 31
OpenStack and XenServer instance performance compare(4 vepu) 32
OpenStack and XenServer instance performance compare(4 vepu) . 32
OpenStack and XenServer instance performance compare(4 vepu) 33
OpenStack and XenServer instance performance compare(4 vepu) 34
OpenStack and XenServer instance performance compare(8 vepu) . 34
OpenStack and XenServer instance performance compare(8 vepu) 35
OpenStack and XenServer instance performance compare(8 vepu) 35
OpenStack and XenServer instance performance compare(8 vepu) 36
OpenStack and XenServer instance performance compare(16 vepu) 36
OpenStack and XenServer instance performance compare(16 vepu) 37
OpenStack and XenServer instance performance compare(16 vepu) 37
OpenStack and XenServer instance performance compare(16 vepu) 38

vii

LIST OF FIGURES viii

4.19 Compare Physical FPS oL 38
4.20 Compare Physical Max FPS 39
4.21 Compare Physical Min FPS 39
4.22 Compare Physical score L. 40
4.23 CineBench CPU 41

4.24 CineBench OpenGL 41

List of Tables

3.1

4.1
4.2
4.3

Software Specification 21
Hardware Specification 27
Virtual Machine Specification 28
Software Specification L. 28

X

Chapter 1

Introduction

In the current era of cloud computing, computing, storage, network resources are
virtualized, the data center resources in accordance with the needs of users to
allocate.OpenStack [1-3] is now one of the most widely used open source cloud
platform, in recent years is very popular, many of which are interesting questions

worthy of our discussion.

1.1 Motivation

In today’s cloud computing era [4-6], computing, storage, network resources are
virtualized, the data center resources in accordance with the needs of the user dis-
tribution is the current trend. OpenStack is now one of the most widely used open
source cloud platform, in recent years is very popular, many of which are interest-
ing questions worthy of our discussion. Today’s cloud services are not limited to
l[aaS, PaaS, SaaS [7-11]model has emerged more and more different service model.
Today’s global companies have cited cloud technology, [aaS providers, including
IBM, HP, Microsoft, Google, Amazon, Rackspace, and several other companies,
to provide services to small individual users or other large non-information type
of the company The So that these enterprises can not build their own cloud en-

vironment, focus on their own business, and can also use the convenience of the

Chapter 1 Introduction 2

cloud. In addition to the convenience of the cloud, how to provide users with an
easy to use the use of the environment, so that users have a better user experience,
is a very important issue now. The closest part to the average user is the virtual
desktop, the virtual virtual desktop can be configured through virtualization re-
sources to configure the operating system in accordance with the needs of users,
and can be installed on the operating system of different applications. But the
virtual desktop is limited to the network or other reasons, resulting in the use of
non-smooth situation will occur, so this paper plans to use PCI Pass-through tech-
nology to use GPU resources to accelerate the performance of virtual desktops,

enhance the virtual desktop The degree of smoothness.

1.2 Thesis Goal and Contributions

The current OpenStack-supported hypervisors include KVM, QEMU, VMware
VSphere, XenServer, Hyper-V, and so on. Different hypervisors will have their own
VDI. There are generally noVNC, Spice, RDP, etc., and users will use VDI Connect
to the hypervisor on the hypervisor, but not all VDI can support the GPU display,
so this article will be OpenStack integrated XenServer as a hypervisor layer, and
through the Pass-through technology GPU (this article using NVIDIA Grid K2)
configuration to Virtual machines, and the use of the RDP (Remote Desktop
Protocol) environment to achieve the ability to accelerate virtual machine picture
processing, and through different benchmarking software to test performance, and

to assess the GPU and vCPU virtual desktop performance impact.

1.3 Limitations of Prior Art

The data center network will be affected too much, including the workload over
the load caused by the network congestion, as well as cable failure, set the error,
etc., although the CPU Benchmark and GPU Benchmark currently have a lot

of software available to us Do a test, and in the cloud environment to do so

Chapter 1 Introduction 3

will have some software compatibility issues. In addition, this article describes
the OpenStack integrated GPU part, the current OpenStack does not provide full
GPU virtualization solution, so now only through the pass-through way to provide
the GPU to the virtual machine. Also in the virtual desktop part of the existing
VDI, not all support GPU display part, some VDI will lead to virtual desktop can
not be used normally, only a specific hypervisor with a specific VDI can be used

normally.

1.4 Thesis Organization

In the second section, we will introduce some background knowledge, including
cloud computing, OpenStack, Neutron, GPU, VDI, and in the third part of the
section we will introduce the experimental environment, as well as experimental
methods and steps. The fourth part of the chapter will introduce and analyze the
results of the experiment, the final part of the end, we will make a conclusion, and

sort out our contribution and future prospects of the part.

Chapter 2

Background Review and Related
Work

In this chapter, we review some background knowledges for later use of system

design and implementation.

2.1 Background Review

2.1.1 Cloud Computing

Cloud computing is a web-based computing model that provides a wide range
of resources, including operations, storage, and so on, that typically provide re-
sources in a large number of resources in the data center through virtualized and
dynamically expanded Do not need to understand the infrastructure of the cloud
infrastructure or do not need to directly master the cloud technology, but it can

also use the resources of the cloud.

And according to the definition of NIST basically by the three service models,

four deployment models, five features to form.

The three service modes are as follows

Chapter 2 Background Review and Related Work)

« Software as a Service (SaaS): The user uses the software that has been
deployed in the cloud or has been stored in the cloud, and does not use
the cloud infrastructure and the cloud environment’s programming envi-
ronment. In this way, users do not need to install their own software on
their own computers, thereby reducing maintenance difficulties, including

software compatibility issues.

o Platform as a Service (PaaS): PaaS provides a computing platform that
includes the operation of the cloud platform, the database, the programming
environment, and the Web server. The application developers can develop
and implement the software on PaaS without having to spend a lot of money

to procure the physical machines and manage them maintain.

« Infrastructure as a Service (IaaS): IaaS is the most basic kind of cloud service
model, providing physical machines, virtual machines and other resources,
so that users can control the allocation of resources. But can not control the

cloud’s infrastructure.
The four deployment modes are as follows
o Public Cloud:Through the public network so that users can use, but can not

see other people’s information.

o Private Cloud:Private cloud compared to the public cloud, some aspects
of more advantages, EX: flexibility, to provide appropriate services, and
the public cloud is the difference between the private cloud program and

information are usually business or user management.

o Community Cloud:Community clouds shared by several organizations are

often used by specific communities that share common needs.

o Hybrid Cloud:The cloud may contain two or more deployment patterns.

Five features are as follows

Chapter 2 Background Review and Related Work 6

On-demand self-service.

Anytime, anywhere access by any network device.

« Resource pooling.

Quick redeployment.

Can be monitored and measured.

2.1.2 Virtualization

In the cloud computing technology, virtualization [12-15] is the computer entity
resources such as servers, networks, memory and storage to be abstract, converted
after the show, so that users can be better than the original way to apply these
resources The The virtual part of these resources is not limited by the way in
which existing resources are erected, geographically or physically. Generally refers

to the virtualization resources, including computing power and data storage.

In computer science, virtualization is a technology for a computer or operating
system. Virtualization hides the real hardware device for the user, presenting
another virtual computing platform. Virtualization technology transforms the
entity into a virtual computing environment (virtual machine) to the user. And the
user uses the client’s application to operate the virtual machine, virtual machine
does not limit any application or operating system, the virtual machine is like
running directly on the same machine. Virtual machines are unified management
of hardware resources (such as networks, screens, keyboards, hard drives) at a
more restrictive level than a processor or memory, the client will be restricted to
access the peripherals of the entity, This depends on the access strategy adopted
by the entity.

Virtual Desktop (VDI) is a software technology that separates the desktop
environment and related applications from the entity’s client devices. Virtual
desktops can be combined with application virtualization and user profile man-

agement systems, now known as "user virtualization”, providing a comprehensive

Chapter 2 Background Review and Related Work 7

virtual desktop environment management system. In this mode, the components
required by the desktop are virtualized. This gives virtual desktops more flexibility
and a more secure environment. In addition, this approach supports a variety of
disaster recovery strategies, because all the components are basically stored in the
data center, and through the maintenance system backup. If the user’s compo-
nents or files are lost, but also easy to restore, because basically all of the desktop
components can be registered in other entities on the machine. In addition, since
the data is not stored in the user’s equipment, if the user’s device is lost, it can
also reduce the loss, the data are stored in the data center. The following is a more
detailed description of the type of desktop virtualization technology that will be

used in a typical deployment.

The implementation of desktop virtualization is categorized if the virtual desk-
tops are running remotely or locally, whether the access requirements are constant
or designed to be intermittent, and the virtual desktops still exist between commu-
nications. Often, software products that provide desktop virtualization solutions
can be combined with local and remote implementations to provide specific and
appropriate requirements. The client device’s independent functionality is inter-
dependent with the server’s location and access policies. Virtualization is used to

render independent desktops to multiple user users.

Build your virtualization and simplify your IT infrastructure with virtualiza-
tion solutions. Virtualization can help reduce capital expenditures through server
consolidation, use automation to reduce operating costs, and reduce scheduled
and non-scheduled downtime, significantly reducing revenue losses. Reduce cap-
ital and operating costs by improving energy efficiency while leveraging server

consolidation to reduce the need for hardware.

Chapter 2 Background Review and Related Work 8

2.1.3 OpenStack

In the related technologies of cloud service, virtualization technology plays a deci-
sive role and distributed many kinds of virtualization project. Through the begin-
ning of VMware vSphere and Hyper-V deployment until using OpenStack [16,17]

platform.

OpenStack is a NASA open source software jointly developed by NASA and
Rackspace, licensed as an Apache license, and is a free software and open source

project to build Infrastructure as a Service.

OpenStack has three module modules, Netcom modules and storage mod-
ules, plus a centralized management of the dashboard module, to form a set of
OpenStack shared services, and to provide virtual machine, external operations
Resources to facilitate flexibility expansion or scheduling. Users can use open
source OpenStack to build their own Amazon EC2-like services, and OpenStack
specifications are also compatible with Amazon EC2, so whether it is in the above
development system, the use of systems, or to help people develop the system,
people use the system , OpenStack can be achieved, which is now the reason for

such open source IaaS hot.

2.1.4 OpenStack Component

OpenStack mainly has seven different functions of the suite, namely the computing
suite Nova, the object storage kit Swift, block storage kit Cinder, Netcom kit
Neutron, identity identification kit Keystone, image management suite Glance,
dashboard suite Horizon.

o Nova: Provides the ability to deploy and manage virtual machines.

o Swift: A decentralized storage platform that can store unstructured data.

o Neutron: To ensure the consistency and reliability of the entire network.

Chapter 2 Background Review and Related Work 9

e Cinder: Provide block storage capacity, with snapshot function.

o Keystone: Provides a variety of authentication methods to see which users

can access which services.

e Glance: Provide image search, registration and service delivery and other

functions.

o Horizon: Graphical web interface that allows I'T staff to manage the hard-

ware resources of the cloud service.

The OpenStack architecture is shown in Figure 2.1.

Heat
Orchestrates
cloud
Provides
Horizon < o - -
Provides network
connectivity for
Neutron
Provides images
Provides
volumes for
hJ hJ Provisions hJ hJ
Stores
Cinder Nova Glance images in Swift
Menitors Ceilometer
Provides

Auth for Keystone <«—

Backups volumes in

FIGURE 2.1: OpenStack Architecture

Chapter 2 Background Review and Related Work 10

2.1.5 OpenStack Conceptual Architecture

The OpenStack Conceptual Architecture is shown in Figure 2.2. Virtual machine
generation is one of the most important use-cases in any cloud environment.Here
we describe the steps involved in configuring the instance in the OpenStack cloud,
which includes the order of the requests and the interaction between the various
OpenStack components in order to successfully start the VM.Here we describe
the steps involved in configuring the instance in the OpenStack cloud, which in-
cludes the order of the requests and the interaction between the various OpenStack

components in order to successfully start the VM.

conceptual Architecture.png conceptual Architecture.bb

rKﬂﬁWﬂJ Guomnhn: | Horizon J

LN - LS
[_l_

Prowides auth Manitar Provides LI

Regaters hadoop Boots data processag |
images in instances via Jobs
1 R o
:{F Gla 5'| [v Sy)
o8 - a ary in
|)) Sahara
Provigion
Fetchs images Siores Ovrchbsbiileg
wia images in cluslars via
J Boots database
MALANCHS. Wia £]
Prowides i i . 4
Registers guest mag | Snif |
Images in
L i ¢ ‘—T—r”
— -
r Prowision WMe E— v;':;::& — m\;‘:mu“
’ mies in
i it '\' J
—n N
’{ putren Provides network Backups
— ponnection for databases in
- I
i J Cinder]
Prewision, oaaration —
and managemant
Pravidas PXE T
Etenk
f_'.._"\ i y
‘—| Ironic Trowe \I Haal
| — L)
Orchastration

FIGURE 2.2: OpenStack conceptual Architecture

And Figure 2.3. is the OpenStack suite of communication process. These
connections are initiated by using the associated API as a remote program call

(RPCs) that can be converted to an nova-boot command when the tenant issues

Chapter 2 Background Review and Related Work 11

an instance request via the CLI (command line interface) or dashboard.The Nova
API server sends the user’s credentials to Keystone for authentication (1, 2). Af-
ter successful authentication, nova-api contacts nova-db to initialize the initial
configuration information for the new instance into the database (4,5,6,7). Then,
nova-api sends an RPC call to the nova-scheduler, requesting the ID of the hosts
that started the instance (8, 9).The nova-scheduler crawls information to nova-db
and uses the filter and weighting functions to select the best (or least load) HOST
and return its ID (10, 11, 12). The scheduler selects the appropriate compute
node as the host and sends a message to start the new instance (12, 13). Nova-
compute then RPC calls to nova-conductor, nova-conductor access nova-compute
to nova db for information such as host ID, flavor disk, and vCPU (14, 15, 16,
17, 18).Use the authentication token, nova-compute to make a REST call to the
glance-api to retrieve the image from the image repository and upload it to the
selected host (19, 20, 21). This uploaded image will be cached for future use.
Subsequently, nova-compute calls neutron-api to retrieve network allocation and
configuration information so that fixed IP is assigned to the new instance (22, 23,
24). If the user requests to attach some volumes to the instance, nova-compute
uses the REST call, the additional volume (25, 26, 27) for the cinder-api. Finally,
nova-compute forwards all the information to the virtualization driver and gen-
erates an instance request on hyperviser (28). During the various phases of the
configuration process, the corresponding instance states that can be seen from the

Horizon dashboard are: scheduling> Networking> Spawning> Running.

Chapter 2 Background Review and Related Work

12

spawning sequence OpenStack.png spawning sequence OpenStack.bb
1

3

Dashboard/ CLI -+

2

» nova-api

Keystone

Keystone
DB

20

[

glance-api glance-registry

| Image Storage

Glance DB
Glance
% neutron-server 23

neutron- neutron-

> agent .. plugin
2 Meutron
Neutron DB

26

cinder-api [

FIGURE 2.3: VM spawning sequence OpenStack

2.1.6 Graphics Processing Unit

Graphics processing unit (GPU), also known as the display core, visual processor,

display chip, is a specialized in personal computers, workstations, game consoles

and mobile devices (such as tablet PCs, smart phones, etc.) The work of the

microprocessor is treated as the heart of the card. In recent years, experts from

various fields have noticed the computing power of the GPU and have tried to apply

its computing power extensively to data analysis (eg, machine learning, depth

learning, etc.), and huge amounts of data processing (eg MapReduce). GRID

vGPU is NVIDIA’s graphics acceleration technology, which can use a single GPU

to achieve multiple virtual desktop services GPU sharing, through the NVIDIA

Chapter 2 Background Review and Related Work 13

GRID GPU card installed on the X86 host, a substantial increase in the VMware
vSphere The performance of running a graphics-intensive application is a great
help for users who need to use a large number of 2D and 3D graphical interfaces,
such as architects, engineering labs, and clinicians in medical facilities. NVIDIA

GRID vGPU’s technology offers the following better user experience:

o For all graphics applications with 100 per cent compatibility, access to each
PC and workstation NVIDIA graphics card driver, can provide to each vir-

tual machine and Local side of the same performance.

e Support real-time integration, unified centralized management of graphics
data set resources, and then by the end user needs to provide resources to

meet the needs.

« Provide a decentralized workforce productivity in different workspaces (such

as animation designers, clinicians and researchers).

o With NVIDIA’s high-end graphics processing performance, server managers
can deliver better performance services without compromising the original

vSphere desktop virtualization environment.
e Reduce costs and increase resource utilization by sharing the GPU.

o Centralized management of graphic data sets to provide better protection

for data storage.

2.1.7 Virtual Desktop Infrastructure

To understand desktop virtualization technology, you must understand the devel-
opment of desktop virtualization. You can simply desktop virtualization [18-21]
technology is divided into the following stages:Large host era: the mainframe
when the first appearance of the price is very expensive, although expensive but
the mainframe computing power is very good, so it was proposed to share a ma-

chine to multiple users to use the way, of course, this is not virtualization, But

Chapter 2 Background Review and Related Work 14

rely on the system of multiple users of the multi-task form.For example, Linux,
Unix and Windows server versions can support multi-user form. Desktop virtu-
alization agreement: Remote Desktop Protocol (RDP, Remote Desktop Protocol)
early from Microsoft from Citrix company bought the technology developed by
itself.

And independent computing structure agreement (ICA, Independent Comput-
ing Architecture) is Citrix company to use So far the service.The first phase of
desktop virtualization technology actually combines remote desktop connectivity
and virtual systems, allowing users to have their own virtual desktop system. Can
do so of course because the server’s hardware has been from the previous single-
core single-work into a multi-core multi-work, to enhance the server’s computing
power and virtualization capabilities, and memory from the previous 4GB, 8GB
breakthrough to 128GB Of the capacity, greatly enhance the server’s computing
power, enhanced hardware capabilities coupled with the maturity of virtualiza-
tion, enabling servers to provide multiple virtual desktops to provide user opera-
tion, making desktop virtualization technology to become a large-scale application
may.The main vendors that currently offer desktop virtualization solutions are Mi-
crosoft, VMware, and Citrix, which uses three different protocols. Microsoft’s RDP
(Remote Desktop Protocol) was developed by Citrix and was later developed by
Citrix Microsoft has purchased and improved the agreement in Windows Server,
and VMware Horizon View also supports such agreements;Citrix will apply the
agreement to its virtualization products; the third is the US company Teradici
developed PColP (PC-over-IP) agreement, was later developed by the Citrix self-
developed ICA (Independent Computing Architecture) VMware is purchased and
applied to its desktop virtualization products to enhance the user’s desktop vir-
tualization experience.Virtual desktop system attaches great importance to the
agreement, the agreement often determines the user experience is good or bad. It
is known from the original technical documents that the original ICA (Independent
Computing Architecture) protocol is superior to the RDP (Remote Desktop Pro-
tocol) and PColP (PC-over-IP) protocols, requiring about 30kbps of bandwidth,
while the RDP (Remote Desktop Protocol) In 50kbps or so, this does not include

Chapter 2 Background Review and Related Work 15

playing games and watching movies and 3D graphics under the state of the loss of

bandwidth, just the transmission of the screen there is such a consumption.

RDP (Remote Desktop Protocol) agreement currently causes the most band-
width loss, will cause the impact is running in the WAN environment, play video,
Flash, the implementation of 3D software, such as screen delay and distortion will
occur. ICA (Independent Computing Architecture) agreement user experience will
be very smooth. VMware will improve the performance of the PColP agreement
to enhance the virtual desktop user experience and published in the latest VMware
View 5.0 products, according to the official file will reduce the bandwidth loss rate
of 75 percent, is also leading all the virtual desktop agreement. These three ven-
dors have their own virtualization server technology, Microsoft HyperV, VMware

for vSphere, Citrix is XenServer, but can be installed on Hyper-v and vSphere.

This paper mainly discusses two kinds of remote connection technologies com-

monly used in OpenStack, namely noVNC and SPICE.

« noVNC: To provide a remote console or remote desktop access to guest
virtual machines, use VNC or SPICE HTML5 through either the OpenStack
dashboard or the command line. Both client proxies leverage a shared service
to manage token authentication called nova-consoleauth. This service must
be running for either proxy to work. Many proxies of either type can be
run against a single nova-consoleauth service in a cluster configuration.Do
not confuse the nova-consoleauth shared service with nova-console, which is
a XenAPI-specific service that most recent VNC proxy architectures do not

use.

Chapter 2 Background Review and Related Work 16

1 The user requests an access URL | 2 The API sends a <<get_vnc_console>> message
> i >
4—/ :

5 Returns a URL with a token

I Nova-api Compute node
6 Browses the URL returned I Generates a token
Http://novncip:port/?token=xyz 4 sends <<authorize_console>> message 1

3 sends a <<get_vnc_connection>>message

1 Caches the connection informations and token l

7 send <<check_token>> message
-

o

8 Proxy starts

Nova-consoleauth Libvirt driver

FIGURE 2.4: noVNC Sequence

o Spice: OpenStack Compute supports VNC consoles to guests. The VNC pro-
tocol is fairly limited, lacking support for multiple monitors, bi-directional
audio, reliable cut-and-paste, video streaming and more. SPICE is a new
protocol that aims to address the limitations in VNC and provide good
remote desktop support. SPICE support in OpenStack Compute shares a
similar architecture to the VNC implementation. The OpenStack dashboard
uses a SPICE-HTML5 widget in its console tab that communicates to the
nova-spicehtml5proxy service by using SPICE-over-websockets. The nova-
spicehtml5proxy service communicates directly with the hypervisor process

by using SPICE.

SPICE Server
$ $
! SPICE Client
Guest OS
QEMU VM

FIGURE 2.5: Spice Architecture

Chapter 2 Background Review and Related Work 17

2.2 Related Works

Several recent studies proposed broad guidelines for the development of bench-
marks of cloud resources,among them are the works of Folkerts et al., O’ Loughlin
et al., Binnig et al.and Rak et al. There have also been several benchmarking studies
on actual cloud deployments. Mailk et al. [22] In they measurement study evaluate
OpenStack’s open source SDN layers, using Neutron together with a OpenDay-
light, OFAgent, ML2 and Ryu used in OpenStack Juno in the face of different types
and severity levels of network errors.Pacevi¢ et al. [23] Their paper presents the
development of visualization software as a service in the OpenStack cloud infras-
tructure. VisLT cloud visualization service is developed for visualizing the results
computed and stored in the private cloud infrastructure. GPU is virtualized as
a PCI device employing direct pass-through [24,25] technology on the hardware
virtual machines of Xen hypervisor to ensure fast remote rendering, which is a key
feature of distributed visualization systems.Iserte et al.Their study the viability
of this approach using a public cloud service configuration, and develop a module
for OpenStack in order to add support for the virtualized devices and the logic to
manage them. The results demonstrate this is a viable configuration which adds
flexibility to current and well-known cloud solutions. Yamato et al. [26,27] Their
study proposes a PaaS which analyzes application logics and offloads computations

to GPU and FPGA automatically when users deploy applications to clouds.

Chapter 3

System Design and

Implementation

Because the popularity of the cloud, and now more and more people will come into
contact with the relevant environment, most people most commonly used part of
the virtual desktop, and the general virtual desktop performance is low, resulting
in operational difficulties. The work is to integrate the GPU on OpenStack |,
and through the Pass-through way to allow the virtual machine can use the GPU
resources, to speed up the VDI performance. In this section will introduce our

overall architecture design, as well as the use of open source software.

3.1 System Design Architecture

As shown in Figure 3.1 » We used OpenStack as our foundation and used as the ba-
sis for the entire virtualization. We integrated the GPU on OpenStack and passed
the Pass-through way to allow the virtual machine to use the GPU’s resources and

test it in a number of VDI to find a VDI protocol for OpenStack.

18

Chapter 3 System Design and Implementation 19

L
1 VDI
Network @ Compute § Storage GPU <~ NVIDIA
(Neutron) (Nova) (Cinder) |(NVIDIAK2)

OpenStack

Passthrough

{ " Ubuntu16.04

Hardware

FIGURE 3.1: System Architecture

3.2 System Implementation

The proposed architecture is divided into several parts to do research, one for the
OpenStack virtual machine performance test. Again, GPU performance testing

and performance comparison in different network environments.

In this work, we built an OpenStack cluster of eight physical machines, one for
the controller Four of which are compute nodes and equipped with K2 GPU, com-
pute node, respectively, there are different hypervisors, KVM, XenServer, ESXI,
etc., this node using XenServer as the end of the experiment, the other two nodes
were Network node and the Storage node, Network Node is responsible for the
transfer of network packets and vlan management, and in the storage part we
use Cinder and Swift suite, Cinder is Block Storage service, in this paper we will
Cinder split out of space , Used as a virtual machine hard drive, and Swift is the

Object service, where we used as a storage file for XenServer.

Chapter 3 System Design and Implementation 20

KVM HOST XenServer Host

Nova

VM Agent VM VM

VM VM VM

VM VM VM

Nova H .
Agent ypervisor Bare Metal

Operating System Hypervisor

F1GURE 3.2: OpenStack nova with KVM and XenServer

NETWORK STROAGE

CONTROLLER

COMPUTE COMPUTE COMPUTE COMPUTE

GRID K2 GRID K2 GRID K2 GRID K2

FIGURE 3.3: Experiment Environment

3.2.1 OpenStack Service Deployment

By using Ubuntu OS to create virtual machines, open source software OpenStack
is applied to build and manage the proposed cloud system. The overview of the

system is shown in Figure 3.4 and Figure 3.5.

Chapter 3 System Design and Implementation 21

TABLE 3.1: Software Specification

Software Version
Ubuntu 16.04.02 LTS
Windows 10
OpenStack Newton
Python 2.7.6
MariaDB 10.1.1.14
XenServer 7.0
NVIDIA Driver 369.95
ubuntu® Wttt e - b

| . Crverview

Lirmit Surmmary

> ’ 4 [2 V D

Usage Sumemany

Sebeci @ panod of b b0 gueny i3 usage:
Brwed i #h ¢ AT R Tt Paariced™s L FU-Maarn: 1000 47 T oo™ Gillsiour 174 4 Than Faroaln AR -soars - 404 &

FIGURE 3.4: OpenStack Overview

VDI Deployment noVINC

OpenStack uses noVNC to implement user interface to virtual desktop, and noVNC
is a Web client that uses Web Scoket and HTML5 Canvas. But the use of noVNC
will cause the use of virtual desktop delay and Lag status, for the user is very

inconvenient to use.

VDI Deployment Spice Protocol

Because noVNC is not smooth, we have integrated Spice (The Simple Protocol for
Independent Computing Environments) services in our OpenStack cloud platform,
SPICE allows users to view the "desktop” environment.The Spice environment in

our system is shown in Figure 3.7 and Figure 3.8.

Chapter 3 System Design and Implementation 22

(o ol el
n = =2 *e T A w- =
=5 admin ~ & admin v
N
EEr
e =K 15”
s - 0 F—
=EpEm -| w2 | asvEw fore Actions -
i -
ERDLT e P frik w# an wis e 5 mERE = Actons
B
coph.0SD2 ubuntu20G 100,075 ubuntu_4.4.20 demo-key A computa02 = ERE 05
o
o ceph0SD1 bt 206 100074 sbunt4.420 demorkey e computed1 P e 78
TR R R R ceph-mon ubuntu-20G 10.0.0.73 ubuntu_4.4.20 demo-key BHD compute01 E3 ETRIT 175
s
‘swift-node02 ubuntu-20G 10.0.0.72 ubuntu_4.4.20 demo-key AP compute02 E 3 IETERIT 25
R
P B suit-node ubunu206 100071 sbnts_4.4.20 demorkey e compute02 P i w5
10,0066
swit-senice ubunt tu FEHIP iPC demo-key L compute02 E ETERTT 238 FgElsEE -

140.128.98.41
100,062

5p0) - FEIP: nonitor demo-key D compute02 = EriT 238 48 FREIEE | -
140.128.98.46

10.0.0.59
ubuntu-20G FEIP: monitor demo-key P compute02 = EriT 438 FHEEEE | v
140.126.90.45
DataFlow-controller ubunty 10.0.0.57 HPC demo-key L compute02 £ IETERIT 1H
opnode02 ubunty 100051 Pe demo-key A computetz & Etai? 15
doop-node01 ubuntu 10.0.0.50 PC demo-key RS compute02 & Ef#RIT 18 FOEENETEE | v
100049
ubunty FEIP: PC demorkey S compute2 = Ef#e i s |

140.128.98.42

FIGURE 3.5: OpenStack VM Instances

n Instance Detail: VM2 Logged in as: admin Settings

openstack Gorsole

Instance Console

If console is not responding to keyboard input: click the grey status bar below. Click here to show only console
Project

Connected to: 7bd-ab22- Send CtrlAltDel

admin 2.04.3 ubuntu ttyl

FiGUurE 3.6: OpenStack noVNC Web Console

Graphic Processing Unit

This paper predicts the use of the GPU to speed up VDI fluency, as well as
the ability of virtual machines to process graphics, a GPU that specializes in
performing graphics operations on a PC, Server, or other device. In this section
we will use NVIDIA Grid K2 as our GPU device, K2 is the use of NVIDIA Kepler
architecture of the device, is designed to provide a virtual environment in the rich

design experience designed.

Chapter 3 System Design and Implementation 23

FIGURE 3.7: OpenStack Spice web console

GRID GPU Features

o GPU Virtualization: NVIDIA KEPLER architecture is designed to provide
virtual machine designed to provide a GPU hardware virtualization capa-
bilities, the meaning of representatives can allow multiple users to use the
GPU together, but the OpenStack KVM architecture does not support the

underlying GPU virtualization capabilities.

o Low latency remote display: GRID with low-latency remote display technol-
ogy, users can reduce the user through the VDI Protocol connection to the
virtual machine when using the delay time, to improve the user experience,

this technology will be directly to the virtual screen VDI Protocol.

Chapter 3 System Design and Implementation 24

FiGURE 3.8: OpenStack Spice client

3.2.2 GPU Pass-Through

GPU resources can be configured through the GPU virtualization or Pass-Through
way to configure the virtual machine, and Pass-Through practice, can be inter-
preted as a GPU dedicated to a virtual machine, through this technology, you
can make specific Of the virtual machine configuration to all the GPU resources,
with the vGPU is a different part of the vGPU is a complete GPU resources
cut into smaller vGPU resources, provided to the need for virtual machines, and

Pass-Through is complete Resource allocation to the same virtual machine.

3.2.3 Methodology

This article through the OpenStack and integrated XenServer, the program through
Pass-thorugh way will be installed on the compute node (XenServer) on the GPU
(NVIDIA K2) assigned to the use of virtual machines, and designed several ex-
periments, through the experiment Data to see if the GPU will affect the display
performance of the virtual machine and test in different circumstances, including

the memory size, vCPU core number, etc. will be associated with the GPU, trying

Chapter 3 System Design and Implementation 25

VIRTUAL MACHINE

Windows Instance

OpenStack

GRID K2 GPU

FiGure 3.9: GPU Pass-Through Architecture

F1cure 3.10: NVIDIA GRID K2 on compute

to find the most efficient to enhance the virtual desktop Performance setting. So

we designed a few experiments.

e Through the host machine and the virtual machine at the same time the
implementation of the ping command, and record the return value of the
period of time, through the return value to determine whether the network

in the virtual machine will be delayed and so on the network.

o Through the Heaven benchmark software to test the three cases under the
GPU on the machine’s display performance is affected, three cases are as
follows 1.Install the GPU on the physical machine; 2. Through the Open-
Stack open and through PCI pass-through get GPU resources of the virtual
machine (Hypervisor for XenServer); 3.Directly through XenServer to open

and through PCI pass-through GPU resources to get the virtual machine.

In the above three cases to do the test, and in the virtual machine part,

we will set the memory 8G, and virtual CPU part will be divided into

Chapter 3 System Design and Implementation 26

& Ee

WEF BEE SRV RBEH)

| nm @ Gl

A EETFEECE v & DESKTOP-0D56QI7 B

~ [} RETR & DVD/CD-ROM A3 .
@ Tiemgs =@ IDE ATA/ATAR| /35|22 EREER
@ s=nEs M ARENERE Roms
@ ZEESR FIENEF

» @ SHERENRE
) maue
A SEVER v |
v 3 EneE
- EuEE

i BERaRgs

§ AREREEacwHE

@ WEE (COM B LPT)

0 TRERCEESE

= § 1]

o EElat

- BT

@ ERNEE

=8

v @ BTs

O NVIDIA GeForce 210
@ NVIDIA GRID K2
Il NVIDIA GRID K2

FIGURE 3.11: NVIDIA GRID K2 on Windows VM

three parts, 2socket with 2core per socket (4 vCPU), 2socket with 4core per
Socket (8 vCPU), 2socket with 4core per socket (16 vCPU). And through
the Heaven benchmark to get four results, respectively, Score, FPS, MinFPS,
MaxFPS.

The third experiment we will use CineBench Benchmark tool for testing,
CineBench test can be obtained two return value, respectively, with the
GPU-related OpenGL FPS, the other is CPU-related CPU Score, so we
will CindeBenchmark to test, test the situation as the second experiment,
respectively, in three different cases to do the test, and part of the virtual
machine will be tested in three different CPU number, then the two return
value , To determine whether the GPU can be accelerated in the virtual

machine effect.

Chapter 4

Experimental Results

In this section, we will show the environment of the experiment and the results of
the experiment. In subsection 4.1, we will describe our experimental environment,

subsection 4.2 - 4.6 will introduce our experimental results.

4.1 Experimental Environment

We used OpenStack to build our cloud platform, which then was used to create
and manage the storage distribution. As a simple example, we integrated two
heterogeneous storage technologies. And we built the storage system by some
VMs, in which HDFS was constructed by three VMs with specifications of 4-core
CPU, 4 GB memory, and a total of 200 GB storage space. Table 4.1, 4.2, 4.3 are

our experimental environment specification.

TABLE 4.1: Hardware Specification

Host name CPU | Memory | Disk GPU 0OS
Openstack Controller 12 cores | 64GB | 2TB Ubuntu 16.04.02
Openstack Network 24 cores | 64GB | 2TB Ubuntu 16.04.02
Openstack Compute(KVM) | 20 cores | 24GB | 2TB | GRID K2 | Ubuntu 16.04.02
XenServer 20 cores | 24GB | 2TB | GRID K2 | XenServer 7.0
Openstack Block Storage | 64 cores | 48GB | 8TB Ubuntu 16.04.02

27

Chapter 4 Experimental Results 28

TABLE 4.2: Virtual Machine Specification

Host name CPU Memory | Disk OS

Instance 01 4 cores vCPU 8GB 100GB | Windows 10
Instance 02 8 cores vCPU 8GB 100GB | Windows 10
Instance 03 16 cores vCPU 8GB 100GB | Windows 10

TABLE 4.3: Software Specification

Software Version
OpenStack Newton
Python 2.7.6
MariaDB 10.1.1.14

In our experiment, we will use NVIDIA K2 GPU as a device to accelerate

VDI, so the experiment will be part of the main K2.

Chapter 4 Experimental Results 29

4.2 Network Delay Experiment

The first experiment, using the PING instruction, respectively, in the HOST and
virtual machine at the same time PING instructions, the command is to ping
8.8.8.8, to test whether the virtual machine and the external machine between the

network is delayed. We were tested for 60 seconds, 120 seconds, the experimental

results shown in Figure 4.1,4.2,

—Host —Instance

— =
B [<)]

Response Time(s)
=
2%

sohoaM Ay D

1 6 11 16 21 26 31 36 41 46 51 56
Execution Time(s)

=
o

0 4]

FIGURE 4.1: ping 60s

——Host —Instance

.
o

Response Time(s)
B e
s 8 &

)

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96 101 106 111 116
Execution Time(s)

FIGURE 4.2: ping 60s

From this experiment can be found in the virtual machine and the physical machine
outside the network is no significant difference, on behalf of the virtual machine
will not because of OpenStack and Windows two layers of OS on the network

caused by the delay, so you can ignore the experiment in the follow-up part.

4.3 Heaven Benchmark Experiment

This experiment uses Heaven Benchmark’s free Benchmark tool, measures the

performance of the physical machine and the virtual machine, distributes the GPU

Chapter 4 Experimental Results 30

to the virtual machine using Pass-through technology, and measures whether the
vCPU will affect it by modifying the part of the virtual CPU core To the display

performance of the virtual machine.

First, through the Heaven Benchmark test OpenStack open virtual machine,
you can get four values, namely FPS, Min FPS, Max FPS and Score We tested
three cases, namely 4vCPU, 8vCPU, 16vCPU and memory part are all 8G Ram
the results as shown in Figure 4.3,4.4,4.5,4.6.

Heaven Benchmark 4.0

163.7
150 135.4
114.3=
a 100 80.3 60.1 N= N4 vCPU
55-‘%0) 60.2 | 60.2 %g
- %5' %E §§ =8 vCPU
. NE NE NE 16 vCPU
OpenGL DirectX9 Direct¥11
Driver

FIGURE 4.3: OpenStack VM HeavenBenchmark FPS

Heaven Benchmark 4.0

350 330.2
300 0
o 250 220.4=
& 200 =]
' 1381 277 140.6 \\\§ = N4 vCPU
© 150 36 120657 \ = ~
2 100 §= §§ §§ =8vCPU
50 N= N= N= 16 VCPU
0 & = & = & =
OpenGL DirectX9 Direct¥11
Driver

FIGURE 4.4: OpenStack VM HeavenBenchmark MaxFPS

The four charts are FPS, MAX FPS, MIN FPS, Score, after the data into a
chart can be found DirectX9 FPS average are similar in the fixed memory situation,
the number of virtual CPU will not Affect the performance of DirectX9, and
the average FPS falls on about sixty. And DirectX11 because the CPU core of
different, affecting his performance, and DirectX11 performance is significantly

better than the other two drivers.

Chapter 4 Experimental Results 31

Heaven Benchmark 4.0

30 29‘-\223? 1
- 2722 2%9220.2 §§
g2 E[l X5 \E
15 = %E §§ N 4 vCPU
=10 \NE §§ §§ = 8 VCPU
i §E NE| \E 16 vCPU
N\ NE N= v
OpenGL i DirectX11

o 9
o =
= 8
m-—l—

>
= 0o

Fi1GURE 4.5: OpenStack VM HeavenBenchmark MinFPS

Heaven Benchmark 4.0

5000
4096
4000 3422
5 3000 2E$E 4 vCPU
(] 2034 1499 NE Ny
& 2000 M 101357 NE _
oo N= NE %g =g vCPU
NE NE NE
o NE NE NE 16 vCPU
OpenGL DirectX9 DirectX11
Driver

FI1GURE 4.6: OpenStack VM HeavenBenchmark Score

OpenGL part is not particularly prominent performance. In addition, we
found in the test, different picture resolution will also affect the performance of
the screen, so we are fixed with 1280 * 720 resolution to do the test, when we
use 1920 * 1080, FPS and Score will be reduced to 50% of the figures are usually
between 20 to 30.

In the second part of the virtual machine test, we will compare OpenStack in-
tegration XenServer and only XenServer environment, by modifying the vCPU to
test performance, the experiment we will open three virtual machines in XenServer,
as in the previous part of the experiment, respectively, 4 vCPU , 8vCPU, 16vCPU
three virtual machines, and are configured 8G memory, through the PCI Pass-
through technology K2 configuration to the virtual machine, and the previous

experiment are exactly the same. After the Heaven Benchmark test to get the

Chapter 4 Experimental Results 32

following results. The 4vcpu results shown in Figure 4.7,4.9,4.10,4.8, 8vcpu re-
sults shown in Figure 4.11,4.13,4.14,4.12, the 16vcpu results shown in Figure
4.15,4.17,4.18,4.16.

140
120 112.6 114.3

100
80 67.1 66.1
60
A0
20

0

59.2 60.2

FPS

= OpenStack

Il XenServer

o
g (L CLCTETIETT
A
o

DirectX9 DirectX11
Driver

FIGURE 4.7: OpenStack and XenServer instance performance compare(4 vepu)

3000 2837 2841

2500

2000 1690 1714

E 1500 = — E
S = = = = OpenStack
1000 = = — Il XenServer
500 = = =
0 = = =
OpenGL

Directx9 DirectX11
Dirver

FIGURE 4.8: OpenStack and XenServer instance performance compare(4 vepu)

Through this second experiment test results, we can see that the part of the

Heaven Benchmark test is still the best performance of DirectX11, OpenGL and

Chapter 4 Experimental Results 33

30 5 28.2
23.9 276

[
+
[y

25

20

- 3 = OpenStack

Min FPS

Il XenServer

[
=
[

LA

OpenGL DirectX9 DirectX11
Driver

FIGURE 4.9: OpenStack and XenServer instance performance compare(4 vepu)

DirectX11 because of the number of CPU and the impact of the test results are
good or bad, and DirectX9 will not, In the case of fixed Ram, DirectX11 perfor-
mance is much higher than the other two, about 2 to 3 times, the results through

openStack open virtual machine test results are no different.

Through 4.19,4.20,4.21,4.22, the above comparison chart, we can find in the
virtual machine performance test part, through OpenStack or OpenStack directly
through the virtual machine between the two data between the difference is very
small, it can be said that there is almost no gap, so We can understand that
OpenStack does not affect the performance of virtual desktop display, the reason
should be for our experimental environment will OpenStack and XenServer inte-
gration, which OpenStack will only open the virtual machine, through NOVA-API
to communicate with XenServer, Then we do not need to operate on the virtual
machine through OpenStack So in the test performance, we can directly ignore

the impact of OpenStack.

Chapter 4 Experimental Results

34

250 3204

[
[y
[

200
120.5

[
L
s
P
oo
[y

150 117.7

= OpenStack

Max FPS

100

Il XenServer
50

o
g L[ETETETTET T
A
)

DirectX9 DirectX11

Driver

FIGURE 4.10: OpenStack and XenServer instance performance compare(4

vepu)
FPS
150 132.81354
100 ——
49.5 50.2 58.8 00.1 =
50 — — ——
D — — —
OpenGL DirectX9 DirectX11

= OpenStack Il XenServer

FIGURE 4.11: OpenStack and XenServer instance performance compare(8
vepu

N

Chapter 4 Experimental Results

35

Score
4000 2347 3422
3000 —
2000 —
1246 1241 1467 1495 ——
1000 — — ——
D — — —
OpenGL DirectX9 Direct¥11

= OpenStack 1 XenServer

FIGURE 4.12: OpenStack and XenServer instance performance compare(8

vepu)
Min FPS
30 27,5 28.3
25 22.3 917 5y 22 E
0 = — =
15 = = =
n o = = =
5 = = =
. = = =
OpenGL DirectX9 DirectX11

= OpenStack Il XenServer

FIGURE 4.13: OpenStack and XenServer instance performance compare(8
vepu)

Chapter 4 Experimental Results

36

Max FPS

300
250
200

150 .
94.9 93.6 11281157
100 ‘

50
OpenGL Directx9

b

.|
iy
=
ca

-
=
m
]
e
e
[y
[

= OpenStack 1 XenServer

FIGURE 4.14: OpenStack and XenServer instance performance compare(8

vepu)
Score
4000 2347 3422
3000 ——
2000 —
1246 1241 1467 1435 —
1000 — — —
D —_— —_— —_—
OpenGL DirectX9 DirectX11

= OpenStack 1 XenServer

FIGURE 4.15: OpenStack and XenServer instance performance compare(16
vepu)

Chapter 4 Experimental Results

37

Score
4000 2347 3422
3000 ——
2000 —
1246 1241 1467 1435 —
1000 — — —
D —_— —_— —_—
OpenGL DirectX9 DirectX11

= OpenStack 1 XenServer

FIGURE 4.16: OpenStack and XenServer instance performance compare(16

vepu)
Score
4000 1347 3422
3000 =
2000 ——
1246 1241 1467 1959 =
1000 — — —
D — — —
OpenGL DirectX9 DirectX11

= OpenStack 1 XenServer

FIGURE 4.17: OpenStack and XenServer instance performance compare(16
vepu)

Chapter 4 Experimental Results

38

Score
4000
3000
2000
1246 1241 1467 1455
1000 — —
D — —
OpenGL DirectX9

= OpenStack 1 XenServer

3347 3422

DirectX11

FIGURE 4.18: OpenStack and XenServer instance performance compare(16

vepu)
180 167 7163.7 168
160 N
140 %g
120 97.1 %E
100 80.3 §§
4 21.8 N=
om0 60.2 §§
) §E 593607 N=
N = NS
0 W= = N=
' N2/l NE| NE
OpenGL Directkd DirectX11
Driver

F1GURE 4.19: Compare Physical FPS

2 OpenStack

= XenServer
P

Chapter 4 Experimental Results

39

Max FPS

Min FPS

400
350
300
250
200
150
100

50

40
35
30
25
20
15
10

323.3f='3’79‘i15':r
1654& 7 1+ 165.3 %g W OpenStack
Q= ~=| %g = XenServer
NE| M=/ XE
OpenGL DirectX9 DirectX11
Driver
F1GURE 4.20: Compare Physical Max FPS
35.1
35,9 26.9 27.1
22.732.2 22.4 §§
§§ 15%2% §§ “» OpenStack
%E §§ %E = XenServer
N NE N= PM
el NE| XE
N= NE NE
OpenGL DirectXS DirectX11
Driver

FI1GURE 4.21: Compare Physical Min FPS

Chapter 4 Experimental Results

40

6000

<000 4920

apg7096

4000 N=

5 §§

S 3000 2612 NE

n 2061 2034 %E

2000 % = | 1495357 % =

N= N = NE

1000 § = § = § =

N2 NE| \E

0 h —_ b h f]
OpenGL DirectX9 DirectX11

Driver

FIGURE 4.22: Compare Physical score

» OpenStack

= XenServer
PM

Chapter 4 Experimental Results 41

4.4 CineBench Experiment

In this experiment, we through the CineBench Benchmark tool to the virtual
machine to do the experiment, the software will be tested through the graphical
test CPU and GPU, we will be the same as the previous experiment is divided

into three virtual machines, 4 vCPU, 8 VCPU, 16 vCPU, three virtual machines

are fixed to 8G of memory.

The results of the test are as follows 4.23,4.24.

CPU
1800 1656
1600
1400
1200 1096
L 1000
8 —
& 800 —
600 533 —
400 \\\ =
200 =
0 N =
4 vCPU 8vCPU 16 vCPU

The number of vCPU

FIGURE 4.23: CineBench CPU

Through the test data we can see in the CPU part of the value based on a
different number of CPU has increased significantly, 8 CPU time more than 4 times

the CPU about double the score, and 16 CPU and more than 8 CPU Doubled.

You can see the relationship from the picture.

OpenGL
130
125.48
125
120
114.25
© 115
S N
& 110 \ 107.97
100 \ =
a5 &
4vCPU 8 vCPU 16 vCPU
The number of vCPU

FI1GURE 4.24: CineBench OpenGL

Chapter 4 Experimental Results 42

And in the OpenGL part we can find in a different number of CPU conditions,
the data will not be too much difference, almost all about 120 up and down, and
not too much gap, so you can know the number of CPU on the OpenGL The effect

is not so big, and this result can be verified with the results of Heaven Benchmark.

Through the above three experiments can be sorted out the conclusion of the
experiment, the first point between the virtual machine and the host network
is no significant difference, so the network part is almost negligible, The second
point through the sky benchmark can be found in the number of different CPU
CORE will indirectly affect the GPU with the effect of the screen display, you
can also find different drivers will have different effects on performance, especially
in the DirectX11 impact Maximum, and DirectX9 has no effect, and the worst
performance. The third part of the experiment can be used by CineBench to

discover the combined effects of the CPU.

Chapter 5

Conclusions and Future Work

5.1 Concluding Remark

In order to speed up the fluency of the virtual desktop and the ability to process
graphics, we use Pass-Through to allow virtual machines to use the HOST’s GPU
resources, and through testing, including the network delay test, we learned that
OpenStack virtual machine In the Neutron architecture and host machine network

delay difference is not large, almost can ignore the part of the network.

In the experiment before we tested a variety of VDI, OpenStack can support
GPU VDI is not much, noVNC and Spice are not normal operation, so we use the
RDP as our experiment VDI. In the selected VDI after Benchmark experiment,
we CPU and GPU part of the test and comparison, in different Benchmark tool,
DirectX11 is the most compatible with NVIDIA GRID K2, and DirectX9 is the
most inefficient Well, and the number of CPUs on DirectX9 has no effect. Which
part of the performance of DirectX11 than DirectX9 and OpenGL both about 2
to 3 times the performance, including Min FPS, Max FPS, FPS AVS.

In the course of the experiment, we also found that if the entity is displayed
directly through other graphics cards, K2 will not be used, but if the connection
to the solid machine through RDP, K2 will begin operation, during which 10
to 25% of the upper and lower utilization rate to display the action, it can be

43

Chapter 5 Conclusions and Future Work 44

found through the RDP GPU will indeed accelerate the display function, but also
because the GPU for VDI acceleration function, it will find through RDP test
performance than directly Solid machine test on the above worse, almost worse to
about 20And through the RDP connection test, the GPU’s temperature rise is also
faster than the direct operation of the solid machine. Although the performance
is not as good as the actual operation of the machine, but the GPU can indeed
accelerate the performance of VDI, GPU can be identified for the virtual desktop

can significantly improve the use of the use of experience.

5.2 Future Works

In this paper, XenServer for GPU Pass-Through experiment, the future hope to
replace the different hypervisors, such as VMware ESXI or KVM, and so different
Hypervisro, and through Benchmark to find out what kind of hypervisor on the
GPU Pass-through support the best The Can get the best performance.

To balance the amount of storage resources, we propose a mechanism for het-
erogeneous storage. In the proposed mechanism, different cluster can be integrated
in our system and each file can be split into suitable storage. Besides, this mech-

anism has scalability so that one can add more heterogeneous storages.

OpenStack does not support vGPU mode, only through the Pass-Through, but
this approach may cause a waste of GPU resources, because the GPU performance
is powerful, just a virtual desktop may not play to all the features , So the future if
the GPU can be through virtualization technology, assigned to a different virtual
machine, so that each virtual machine can get different virtual machine resources,

may be a better practice.

So in the future we plan to achieve vGPU in different ways, including the
existing VMware full virtualization, XenServer vGPU, KVM KVM-GT, etc., these
are the future we plan to try, the above vGPU function into OpenStack will then

find out where the performance of virtual desktops can reach the maximum value,

Chapter 5 Conclusions and Future Work 45

and there will be no waste of additional performance, which is our next stage of

the goal.

References

1]

M. Zakarya and L. Gillam. Energy efficient computing, clusters, grids and
clouds: A taxonomy and survey. Sustainable Computing: Informatics and

Systems, 14:13-33, 2017.

P. Mishra, E.S. Pilli, V. Varadharajan, and U. Tupakula. Intrusion detection
techniques in cloud environment: A survey. Journal of Network and Computer

Applications, 77:18-47, 2017.

H.-J. Hong, P.-H. Tsai, and C.-H. Hsu. Dynamic module deployment in a fog
computing platform. 2016.

[. Kamel, A.M. Talha, and Z.A. Aghbari. Dynamic spatial index for efficient
query processing on the cloud. Journal of Cloud Computing, 6(1), 2017.

A. Razaque and S.S. Rizvi. Privacy preserving model: a new scheme for

auditing cloud stakeholders. Journal of Cloud Computing, 6(1), 2017.

M. Abu Sharkh, A. Shami, and A. Ouda. Optimal and suboptimal resource
allocation techniques in cloud computing data centers. Journal of Cloud

Computing, 6(1), 2017.

A. Solano, R. Dormido, N. Duro, and J.M. Sanchez. A self-provisioning

mechanism in openstack for iot devices. Sensors (Switzerland), 16(8), 2016.

D. Freet, R. Agrawal, J.J. Walker, and Y. Badr. Open source cloud man-
agement platforms and hypervisor technologies: A review and comparison.

volume 2016-July, 2016.

46

References 47

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[18]

V.G. Chamorro, C.N. Castillo, and F. Lopez-Pires. An elastic voip solution
based on openstack. pages 43-47, 2016.

S. Sotiriadis and N. Bessis. An inter-cloud bridge system for heterogeneous

cloud platforms. Future Generation Computer Systems, 54:180-194, 2016.

I. Benatia, M. Ridda, H. Bendjenna, and S.B. Eom. Implementing a cloud-
based decision support system in a private cloud: The infrastructure and

the deployment process. International Journal of Decision Support System

Technology, 8(1):25-42, 2016.

C. de Alfonso, A. Calatrava, and G. Molt6. Container-based virtual elastic
clusters. Journal of Systems and Software, 127:1-11, 2017.

A. Pietrabissa, F.D. Priscoli, A. Di Giorgio, A. Giuseppi, M. Panfili, and
V. Suraci. An approximate dynamic programming approach to resource man-
agement in multi-cloud scenarios. International Journal of Control, 90(3):

508-519, 2017.

R. Mijumbi, S. Hasija, S. Davy, A. Davy, B. Jennings, and R. Boutaba.
Topology-aware prediction of virtual network function resource requirements.
IEEE Transactions on Network and Service Management, 14(1):106-120,
2017.

C.-T. Yang, J.-C. Liu, S.-T. Chen, and K.-L. Huang. Virtual machine man-
agement system based on the power saving algorithm in cloud. Journal of

Network and Computer Applications, 80:165-180, 2017.

M. Marks and E. Niewiadomska-Szynkiewicz. Hybrid cpu/gpu platform for
high performance computing. pages 508-514, 2014.

S. Boob, H. Gonzalez-Vélez, and A.M. Popescu. Automated instantiation of
heterogeneous fast flow cpu/gpu parallel pattern applications in clouds. pages

162-169, 2014.

B. Kim and B. Lee. Integrated management system for distributed micro-

datacenters. volume 2016-March, pages 466-469, 2016.

References 48

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

A. Paradowski, L. Liu, and B. Yuan. Benchmarking the performance of

openstack and cloudstack. pages 405412, 2014.

J. Zhang, S. Han, J. Wan, B. Zhu, L. Zhou, Y. Ren, and W. Zhang. Im-
dedup: An image management system based on deduplication applied in

dwsns. International Journal of Distributed Sensor Networks, 2013, 2013.
M. Izumi and K. Horikawa. Toward practical use of virtual smartphone. 2012.

A. Malik, J. Ahmed, J. Qadir, and M.U. Ilyas. A measurement study of
open source sdn layers in openstack under network perturbation. Computer

Communications, 102:139-149, 2017.

R. Pacevi¢ and A. Kaceniauskas. The development of vislt visualization ser-

vice in openstack cloud infrastructure. Advances in Engineering Software,

103:46-56, 2017.

A. Kaceniauskas, R. Pacevi¢, V. Starikovicius, A. Maknickas, M. Staskuniené,
and G. Davidavi¢ius. Development of cloud services for patient-specific sim-
ulations of blood flows through aortic valves. Advances in Engineering Soft-

ware, 103:57-64, 2017.

R. Pacevic and A. Kaceniauskas. Deployment of visualization software and

gpu rendering on an openstack cloud infrastructure. Civil-Comp Proceedings,

107, 2015.

Y. Yamato. Optimum application deployment technology for heterogeneous

iaas cloud. Journal of Information Processing, 25:56-58, 2017.

Y. Yamato. Proposal of optimum application deployment technology for het-
erogeneous iaas cloud. pages 34-37, 2016.

Appendix A

OpenStack Installation

OpenStack Controller Installation Shell

#! /bin/sh
read -p ”"Please input your MYSQL Password: ” password # For it * K ﬁﬁ »

” controller

read -p "Please input your controller ip:
sudo apt-get install -y software-properties -common
sudo add-apt-repository -y cloud-archive:newton
sudo apt-get update && sudo apt-get -y dist-upgrade
sudo apt-get install -y python-openstackclient

sudo apt-get install -y mariadb-server python-pymysql

touch /etc/mysql/mariadb.conf.d/openstack.cnf
echo ”[mysqld]
bind-address = ${controller}

default -storage -engine = innodb
innodb_ file_ per_ table
max__connections = 4096

collation -server = utf8_ general_ci

character -set-server = utf8” >> /etc/mysql/mariadb.conf.d/openstack.cnf

sudo service mysql restart

sudo mysql_secure__installation

sudo apt-get install -y rabbitmq-server
sudo rabbitmqctl add_user openstack ${password}
sudo rabbitmqctl set_ permissions openstack 7.*” 7. *7 7 *?»

sudo apt-get install -y memcached python-memcache

sudo sed -i ’s@-1 127.0.0.1@-1 ’${controller}’@ /etc/memcached.conf

sudo service memcached restart

49

Appendix

50

mysql -u root -p${password} -e “drop database keystone;”
mysql -u root -p${password} -e “drop database glance;”
mysql -u root -p${password} -e ”drop database nova;”
mysql -u root -p${password} -e ”drop database nova_api;”
mysql -u root -p${password} -e ”drop database neutron;”

mysql -u root -p${password} -e ”drop database cinder;”

mysql -u root -p${password} -e "CREATE DATABASE keystone;”

mysql -u root -p${password} -e "GRANT ALL PRIVILEGES ON keystone.* TO ’keystone’ @’
localhost > IDENTIFIED BY ’${password}’;”

mysql -u root -p${password} -e GRANT ALL PRIVILEGES ON keystone.* TO ’keystone @%’
IDENTIFIED BY ’${password}’;”

mysql -u root -p${password} -e "CREATE DATABASE glance;”

mysql -u root -p${password} -e "GRANT ALL PRIVILEGES ON glance.* TO ’glance’@’
localhost > IDENTIFIED BY ’${password}’;”

mysql -u root -p${password} -e "GRANT ALL PRIVILEGES ON glance.* TO ’glance’ @ %’
IDENTIFIED BY ’${password}’;”

mysql -u root -p${password} -e "CREATE DATABASE nova;”

mysql -u root -p${password} -e ”CREATE DATABASE nova_ api;”

mysql -u root -p${password} -e "GRANT ALL PRIVILEGES ON nova.* TO ’'nova’@’localhost’
IDENTIFIED BY ’${password}’;”

mysql -u root -p${password} -e "GRANT ALL PRIVILEGES ON nova.* TO ’nova’@%’
IDENTIFIED BY ’${password}’;”

mysql -u root -p${password} -e "GRANT ALL PRIVILEGES ON nova_api.* TO ’nova’@’
localhost ’ IDENTIFIED BY ’${password}’;”

mysql -u root -p${password} -e "GRANT ALL PRIVILEGES ON nova_api.* TO ’nova’@%’
IDENTIFIED BY ’${password}’;”

mysql -u root -p${password} -e ”CREATE DATABASE neutron;”

mysql -u root -p${password} -e "GRANT ALL PRIVILEGES ON neutron.* TO ’neutron’@’
localhost ’ IDENTIFIED BY ’${password}’;”

mysql -u root -p${password} -e "GRANT ALL PRIVILEGES ON neutron.* TO ’neutron’@%’
IDENTIFIED BY ’${password}’;”

mysql -u root -p${password} -e "CREATE DATABASE cinder;”

mysql -u root -p${password} -e "GRANT ALL PRIVILEGES ON cinder.* TO ’cinder '@’
localhost > IDENTIFIED BY ’'${password}’;”

mysql -u root -p${password} -e "GRANT ALL PRIVILEGES ON cinder.* TO ’cinder’@%’
IDENTIFIED BY ’${password}’;”

Appendix 51

echo ”"manual” | sudo tee /etc/init/keystone.override

sudo apt-get install keystone apache2 libapache2-mod-wsgi -y

sudo sed -i ’'s@#admin_token = <None>Qadmin_ token =21
d7fb48086e09f30d40be5a5e95a7196f2052b2cae6b491@° /etc/keystone/keystone.conf

sudo sed -i ’s~connection = sqlite:////var/lib/keystone/keystone.db~connection = mysql
+pymysql://keystone:’${password } '@ ${controller }’/keystone~’ /etc/keystone/
keystone.conf

sudo sed -i ’s@#servers = localhost:11211@servers = '${controller }’:11211Q@" /etc/
keystone/keystone.conf

sudo sed -i ’s@#provider = uuid@provider = fernet@’ /etc/keystone/keystone.conf

sudo keystone-manage db_sync

sudo keystone-manage fernet_setup --keystone-user keystone --keystone-group keystone

sudo keystone-manage credential_ setup --keystone-user keystone --keystone-group
keystone
sudo keystone-manage bootstrap --bootstrap-password ${password} \

--bootstrap -admin-url http://${controller}:35357/v3/ \
--bootstrap-internal -url http://${controller }:35357/v3/ \
--bootstrap - public -url http://${controller }:5000/v3/ \

--bootstrap -region -id RegionOne

echo ”ServerName ${controller}”>> /etc/apache2/apache2.conf
sudo In -s /etc/apache2/sites -available/keystone.conf /etc/apache2/sites -enabled
sudo service apache2 restart

sudo rm -f /var/lib/keystone/keystone.db

export OS USERNAME=admin

export OS_PASSWORD=${password }

export OS PROJECT NAME=admin

export OS USER, DOMAIN NAME=Default

export OS PROJECT DOMAIN NAME=Default

export OS_AUTH URI=http://${controller }:35357/v3
export OS_IDENTITY_ API VERSION=3

openstack project create --domain default \
--description ”Service Project” service
openstack project create --domain default \
--description ”"Demo Project” demo

openstack user create --domain default --password ${password} demo

openstack role create user

openstack role add --project demo --user demo user

Appendix 52

export OS PROJECT DOMAIN NAME=default

export OS USER_ DOMAIN NAME=default

export OS PROJECT NAME=admin

export OS_USERNAME=admin

export OS_PASSWORD=${password }

export OS AUTH URI=http://${controller }:35357/v3
export OS_IDENTITY API VERSION=3

export OS IMAGE_API VERSION=2

openstack user create --domain default --password ${password} --email glance@example.

com glance

openstack role add --project service --user glance admin
openstack service create --name glance --description ”OpenStack Image service” image
openstack endpoint create --region RegionOne \

image public http://${controller }:9292

openstack endpoint create --region RegionOne \

image internal http://${controller }:9292

openstack endpoint create --region RegionOne \

image admin http://${controller }:9292

sudo apt-get install -y glance

sudo sed -i ’s~sqlite_db = /var/lib/glance/glance.sqlite~connection = mysql+pymysql://
glance:’${password}’@ ${controller}’/glance~’ /etc/glance/glance-api.conf

sudo sed -i ’'N; s@)\[keystone_authtoken\]\n@\ [keystone__authtoken\]\nauth_uri = http://’
${controller }’:5000\ nauth_url = http://’${controller }’:35357\ nmemcached_servers =
"${controller }’:11211\ nauth type = password\nproject domain name = default\
nuser _domain name = default\nproject name = service\nusername = glance\npassword =
"${password}’@’ /etc/glance/glance-api.conf

sudo sed -i ’s@#flavor = keystone@flavor = keystone@’ /etc/glance/glance-api.conf

sudo sed -i ’s@#stores = file ,http@stores = file ,http@’ /etc/glance/glance-api.conf

sudo sed -i ’s@#default__store = file@default_store = file@’ /etc/glance/glance-api.
conf

sudo sed -i ’s@#filesystem store datadir = /var/lib/glance/
images@filesystem store datadir = /var/lib/glance/images/@Q /etc/glance/glance-api

.conf

sudo sed -i ’s~sqlite_db = /var/lib/glance/glance.sqlite~connection = mysql+pymysql://
glance:’${password}’'@Q ${controller }’/glance~’ /etc/glance/glance-registry.conf

Appendix 53

sudo sed -i ’N; s@)\[keystone_authtoken)\]@\[keystone authtoken\]\nauth_uri = http://’${
controller }’:5000\nauth_url = http://’${controller }’:35357\ nmemcached_servers = ’$
{controller }’:11211\nauth_type = password\nproject__domain_name = default\
nuser _domain name = default\nproject name = service\nusername = glance\npassword =
"${password } '@ /etc/glance/glance-registry.conf
sudo sed -i ’s@#flavor = keystone@flavor = keystone@’ /etc/glance/glance-registry.conf

sudo glance-manage db_sync
sudo service glance-registry restart
sudo service glance-api restart

sudo rm -f /var/lib/glance/glance.sqlite

sudo wget http://download.cirros -cloud.net/0.3.4/cirros-0.3.4-x86_64-disk.img

openstack image create ”cirros-0.3.4-x86_64" \
--file cirros-0.3.4-x86_64-disk.img \
--disk - format qcow2 --container-format bare \

--public

export OS PROJECT DOMAIN NAME=default

export OS USER, DOMAIN NAME=default

export OS PROJECT NAME=admin

export OS USERNAME=admin

export OS PASSWORD=${password}

export OS_ AUTH URL=http://${controller }:35357/v3
export OS_IDENTITY API VERSION=3

export OS_IMAGE API VERSION=2

openstack user create --domain default --password ${password} --email nova@example.com
nova

openstack role add --project service --user nova admin

openstack service create --name nova --description ”OpenStack Compute” compute

openstack endpoint create --region RegionOne \

compute public http://${controller }:8774/v2.1/%\(tenant_id\)s

openstack endpoint create --region RegionOne \

compute internal http://${controller }:8774/v2.1/%\(tenant_id\)s
openstack endpoint create --region RegionOne \

compute admin http://${controller }:8774/v2.1/%\(tenant_id\)s

sudo apt-get install -y nova-api nova-conductor nova-consoleauth \

nova-novncproxy nova-scheduler

Appendix 54

sudo sed -i ’N; s@)\[DEFAULT\]\n@\ [DEFAULT\]|\n\nmy ip = ’${controller }’\nrpc_backend =
rabbit\nauth_ strategy = keystone\nuse neutron = True\nfirewall driver = nova.virt.

firewall . NoopFirewallDriver\n@’ /etc/nova/nova.conf

sudo sed -i ’N; s~\[database\]\n~\[database\]\nconnection = mysql+pymysql://nova:’${
password } '@ ${controller }’/nova\n#~" /etc/nova/nova.conf

sudo sed -i 'N; s~\[api_database\]\n~\[api_database\]\nconnection = mysql+pymysql://
nova:’${password}’@ ${controller }’/nova_api\n#~’ /etc/nova/nova.conf

sudo sed -i ’s@lock_path=/var/lock/nova@lock_path=/var/lib /nova/tmp@’ /etc/nova/nova.

conf
echo ”
[vnc]
vncserver_listen = ${controller}
vncserver_proxyclient address = ${controller}

[oslo__messaging rabbit]
rabbit__host = ${controller}
rabbit__userid = openstack

rabbit_password = ${password}

[keystone authtoken]
auth_uri = http://${controller }:5000
auth_url = http://${controller }:35357

memcached_servers = ${controller }:11211
auth_type = password

project__ domain_name = default
user__domain_name = default

project__name = service

username = nova

password = ${password}

[glance]

api_servers = http://${controller }:9292

9

>> /etc/nova/nova.conf

sudo nova-manage api_db sync

sudo nova-manage db sync

Appendix 55

sudo service nova-api restart

sudo service nova-consoleauth restart
sudo service nova-scheduler restart
sudo service nova-conductor restart

sudo service nova-novncproxy restart

sudo rm -f /var/lib/nova/nova.sqlite

openstack compute service list

export OS PROJECT DOMAIN NAME=default

export OS USER DOMAIN NAME=default

export OS PROJECT NAME=admin

export OS_USERNAME=admin

export OS PASSWORD=${password }

export OS_AUTH URL=http://${controller }:35357/v3
export OS_IDENTITY API VERSION=3

export OS IMAGE_API VERSION=2

openstack user create --domain default --password ${password} --email neutron@example.

com neutron

openstack role add --project service --user neutron admin
openstack service create --name neutron --description ”OpenStack Networking” network
openstack endpoint create --region RegionOne \

network public http://${controller }:9696

openstack endpoint create --region RegionOne \

network internal http://${controller }:9696

openstack endpoint create --region RegionOne \

network admin http://${controller }:9696

sudo apt-get install -y neutron-server neutron-plugin-ml2

sudo sed -i ’s@#service plugins =@service plugins =router@’ /etc/neutron/neutron.conf

sudo sed -i ’s@#allow_overlapping ips = false@Qallow_ overlapping_ips = True@Q’ /etc/
neutron/neutron.conf

sudo sed -i ’s@#rpc_backend = rabbit@rpc_backend = rabbit@’ /etc/neutron/neutron.conf

sudo sed -i ’s@#auth_strategy = keystone@auth_strategy = keystone@Q’ /etc/neutron/
neutron. conf

sudo sed -i ’s@#notify_nova_on_ port_ status_ changes =
true@notify nova_on_port_status_changes = true@’ /etc/neutron/neutron.conf

sudo sed -i ’s@#notify_nova_on_ port_data_changes =

true@notify__nova_on_ port_data_changes = true@’ /etc/neutron/neutron.conf

Appendix 56

sudo sed -i ’s~connection = sqlite:////var/lib/neutron/neutron.sqlite~connection =
mysql+pymysql://neutron:’${password}’@Q ${controller }'/neutron~’ /etc/neutron/
neutron. conf

sudo sed -i ’s@#rabbit_host = localhost@rabbit_host = ’${controller}’'@ /etc/neutron/
neutron.conf

sudo sed -i ’s@#rabbit_userid = guest@rabbit_userid = openstack@’ /etc/neutron/neutron
.conf

sudo sed -i ’s@#rabbit_password = guest@rabbit__password = ’${password}’@ /etc/neutron
/neutron . conf

sudo sed -i ’'s@# From keystonemiddleware.auth token@# From keystonemiddleware.
auth_token\nauth_ uri = http://’${controller }’:5000\nauth_url = http:// ${
controller }’:35357\ nmemcached_servers = '${controller }’:11211\nauth_type =

password\nproject__domain_name = default\nuser domain_name = default\nproject_name
= service\nusername = neutron\npassword = ’${password}’\n@Q" /etc/neutron/neutron.
conf

sudo sed -i ’N; s@)\[nova\]\n@\ [nova\]\n\nauth url = http://’${controller }’:35357\
nauth type = password\nproject domain name = default\nuser domain name = default)
nregion name = RegionOne\nproject _name = service\nusername = nova\npassword = ’${

password } '@’ /etc/neutron/neutron.conf

sudo sed -i ’'s@#type_drivers = local ,flat ,vlan, gre,vxlan,geneve@type_drivers = flat ,
vlan , gre ,vxlan@’ /etc/neutron/plugins/ml2/ml2 conf.ini

sudo sed -i ’s@#tenant_network_types = local@tenant_network_types = vxlan@’ /etc/
neutron/plugins/ml2/ml2_conf.ini

sudo sed -i ’s@#mechanism_drivers =@mechanism_drivers =openvswitch ,12population@’ /etc
/neutron/plugins/ml2/ml2_conf. ini

sudo sed -i ’s@#extension_drivers =Q@extension_drivers = port_security@’ /etc/neutron/

plugins/ml2/ml2_conf. ini

sudo sed -i ’s@# VXLAN VNI IDs that are available for tenant network allocation (list
value)@4# VXLAN VNI IDs that are available for tenant network allocation (list
value)\nvni_ranges = 1:1000@’ /etc/neutron/plugins/ml2/ml2_conf.ini

sudo sed -i ’s@#enable_ ipset = true@enable ipset = true@Q’ /etc/neutron/plugins/ml2/

ml2_ conf.ini

”

echo
[neutron]

url = http://${controller }:9696
auth_url = http://${controller }:35357
auth_type = password
project__domain_name = default

user _domain_ name = default

region__name = RegionOne

project__name = service
username = neutron
password = ${password}

service__metadata_ proxy = True

Appendix 57

metadata_ proxy_ shared_secret = ${password}

” >> /etc/nova/nova.conf

sudo neutron-db-manage --config-file /etc/neutron/neutron.conf \
--config-file /etc/neutron/plugins/ml2/ml2_ conf.ini \

upgrade head

sudo service nova-api restart

sudo service neutron-server restart

neutron ext-list

sudo apt-get install openstack-dashboard -y

sudo sed -i ’SQOPENSTACK HOST = 7127.0.0.1”@QOPENSTACK HOST = ”’${controller }'”’@ /etc/
openstack -dashboard /local__settings.py

sudo sed -i ’s@127.0.0.1:11211@ ${controller}’:11211@" /etc/openstack-dashboard/
local__settings.py

echo ”SESSION_ENGINE = ’django.contrib.sessions.backends.cache’” >> /etc/openstack-
dashboard/local__settings.py

sudo sed -i ’SQOPENSTACK KEYSTONE URL = ”http://%s:5000/v2.0” %
OPENSTACK HOST@QOPENSTACK KEYSTONE URL = "http://%s:5000/v3” % OPENSTACK HOST@ /
etc/openstack -dashboard/local settings.py

sudo sed -i ’s@_ member @Quser@’ /etc/openstack-dashboard/local_ settings.py

sudo sed -i ’'s@H#OPENSTACK KEYSTONE MULTIDOMAIN SUPPORT =
Falss@QOPENSTACK KEYSTONE MULTIDOMAIN_SUPPORT = True@’ /etc/openstack-dashboard/
local__settings.py

sudo sed -i ’s@HOPENSTACK KEYSTONE DEFAULT DOMAIN @OPENSTACK KEYSTONE DEFAULT DOMAIN @
> /etc/openstack -dashboard/local settings.py

sudo sed -i ’'s@#OPENSTACK API VERSIONS@OPENSTACK API VERSIONS@ /etc/openstack-
dashboard/local settings.py

sudo sed -i ’'s@# ”?identity 7: 3,@ “identity ”: 3,@ /etc/openstack-dashboard/
local__settings.py

sudo sed -i ’s@# ”image”: 2,@ ”image”: 2,Q /etc/openstack-dashboard/
local_settings.py

sudo sed -i ’s@# ?volume”: 2,@ “volume”: 2,\n}@ /etc/openstack-dashboard/
local_settings.py

sudo service apache2 reload

sudo service apache2 restart

openstack flavor create --ram 1024 --disk 10 --vcpus 1 test
echo ”

export OS PROJECT DOMAIN NAME=default
export OS USER_ DOMAIN NAME=default
export OS PROJECT NAME=admin

export OS_USERNAME=admin

Appendix 58

export OS_PASSWORD=${password }

export OS AUTH URL=http://${controller }:35357/v3
export OS_IDENTITY_ API VERSION=3

export OS IMAGE_ API VERSION=2

” >> admin-openrc

OpenStack Network Installation Shell

#! /bin/sh

read -p ”Please input your controller ip: ” controller
read -p "Please input your network ip: ” network

read -p "Please input your passwd: ” password

sudo apt-get install -y software-properties -common
sudo add-apt-repository -y cloud-archive:newton
sudo apt-get update && sudo apt-get -y dist-upgrade
echo ”

net.ipv4.ip_ forward=1
net.ipv4.conf.all.rp_filter=0
net.ipv4.conf.default.rp_filter=0

”>> [etc/sysctl.conf

sudo sysctl -p

sudo apt-get install -y neutron-plugin-ml2 neutron-13-agent \
neutron-dhcp-agent neutron-metadata-agent \

neutron-openvswitch -agent

sudo sed -i ’s@#verbose = true@verbose = true@’ /etc/neutron/neutron.conf

sudo sed -i ’s@#rpc_backend = rabbit@rpc backend = rabbit@’ /etc/neutron/neutron.conf

sudo sed -i ’s@#auth strategy = keystone@auth strategy = keystone@’ /etc/neutron/
neutron. conf

sudo sed -1 ’s@#service_ plugins =Qservice plugins = router@’ /etc/neutron/neutron.conf

sudo sed -i ’s@#allow_overlapping ips = false@allow_ overlapping_ ips = True@Q’ /etc/

neutron/neutron. conf

sudo sed -i ’s@connection = sqlite:////var/lib/neutron/neutron.sqlite@#connection =
sqlite:////var/lib /neutron/neutron.sqlite@’ /etc/neutron/neutron.conf

sudo sed -i ’s@#rabbit_host = localhost@rabbit_host = ’${controller}’@ /etc/neutron/
neutron.conf

sudo sed -i ’s@#rabbit__userid = guest@rabbit_userid = openstack@’ /etc/neutron/neutron
.conf

sudo sed -i ’s@#rabbit__password = guest@rabbit__password = ’${password}’@ /etc/neutron

/neutron. conf

Appendix 59

sudo sed -i ’'N; s@)\[keystone_authtoken\]\n@\ [keystone_ authtoken\]\nauth_uri = http://’
${controller }’:5000\ nauth _url = http://’${controller }’:35357\ nmemcached servers =
"${controller }’:11211\ nauth_type = password\nproject_domain_name = default)
nuser_domain name = default\nproject name = service\nusername = neutron\npassword

= ’${password}’@Q" /etc/neutron/neutron.conf

sudo sed -i ’'s@#type_drivers = local ,flat ,vlan,gre,vxlan,geneve@type_drivers = flat ,
vlan, gre,vxlan@’ /etc/neutron/plugins/ml2/ml2_conf.ini

sudo sed -i ’s@#tenant_network_types = local@tenant__network_types = vxlan@Q’ /etc/
neutron/plugins/ml2/ml2 conf.ini

sudo sed -i ’s@#mechanism drivers =@mechanism drivers =openvswitch ,12population@’ /etc
/neutron/plugins/ml2/ml2_conf. ini

sudo sed -i ’s@#extension_drivers =@extension drivers =port_security@’ /etc/neutron/
plugins/ml2/ml2_conf. ini

sudo sed -i ’s@#flat_networks =Qflat_networks = external\n#@’ /etc/neutron/plugins/ml2
/ml2_ conf.ini

sudo sed -i ’N; s@\[ml2 type vxlan\]@\[ml2 type vxlan\]\nvni_ ranges = 1:1000Q" /etc/
neutron/plugins/ml2/ml2 conf.ini

sudo sed -i ’s@#enable ipset = true@enable ipset = true@Q’ /etc/neutron/plugins/ml2/

ml2 conf.ini

sudo sed -i ’s@#local ip = <None>@local ip = ’${network}’@ /etc/neutron/plugins/ml2/
openvswitch_agent.ini

sudo sed -i ’s@#bridge mappings =@bridge mappings = external:br-ex@Q’ /etc/neutron/
plugins /ml2/openvswitch_agent. ini

sudo sed -i ’s@#tunnel types =Q@tunnel types = vxlan@Q’ /etc/neutron/plugins/ml2/
openvswitch__agent.ini

sudo sed -i ’s@#l2_population = false@l2_population = True@’ /etc/neutron/plugins/ml2/
openvswitch_agent.ini

sudo sed -i ’s@#prevent arp spoofing = true@prevent_ arp spoofing = true@’ /etc/neutron
/plugins/ml2/openvswitch agent.ini

sudo sed -i ’s@#enable_ security group = true@enable_ security group = TrueQ’ /etc/
neutron/plugins/ml2/openvswitch_agent.ini

sudo sed -i ’'s@#firewall_ driver = <None>Qfirewall driver = neutron.agent.linux.
iptables_firewall. OVSHybridIptablesFirewallDriver@’ /etc/neutron/plugins/ml2/

openvswitch__agent.ini

sudo sed -i ’s@#verbose = true@verbose = true@’ /etc/neutron/l13 agent.ini

sudo sed -i ’'s@#interface__driver = <None>Qinterface_driver = neutron.agent.linux.
interface.OVSInterfaceDriver@’ /etc/neutron/13_agent.ini

sudo sed -i ’s@#external_network_ bridge = br-ex@external_network_bridge =@’ /etc/

neutron/13_agent.ini

sudo sed -i ’'s@#verbose = true@verbose = true@’ /etc/neutron/dhcp_agent.ini

sudo sed -i ’'s@#interface_ driver = <None>Qinterface driver = neutron.agent.linux.
interface.OVSInterfaceDriver@’ /etc/neutron/dhcp_agent.ini

sudo sed -i ’'s@#dhcp_driver = neutron.agent.linux.dhcp.Dnsmasq@dhcp_ driver = neutron.

agent.linux .dhcp.Dnsmasq@’ /etc/neutron/dhcp_agent. ini

Appendix 60

sudo sed -i ’s@#enable_isolated metadata = false@enable_isolated metadata = True@’ /
etc/neutron/dhcp_agent. ini

sudo sed -i ’s@#dnsmasq_config_file =@dnsmasq__config_file = /etc/neutron/dnsmasq-
neutron.conf@’ /etc/neutron/dhcp agent.ini

echo ’dhcp-option-force=26,1450" | sudo tee /etc/neutron/dnsmasq-neutron.conf

sudo sed -i ’s@#nova_metadata_ip = 127.0.0.1@nova_metadata_ip = ’${controller }’Q’ /etc
/neutron/metadata_agent. ini
sudo sed -i ’s@#metadata proxy_ shared secret =@Qmetadata proxy shared secret =’${

password } '@’ /etc/neutron/metadata agent.ini

	摘要
	Abstract
	致謝詞
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivation
	1.2 Thesis Goal and Contributions
	1.3 Limitations of Prior Art
	1.4 Thesis Organization

	2 Background Review and Related Work
	2.1 Background Review
	2.1.1 Cloud Computing
	2.1.2 Virtualization
	2.1.3 OpenStack
	2.1.4 OpenStack Component
	2.1.5 OpenStack Conceptual Architecture
	2.1.6 Graphics Processing Unit
	2.1.7 Virtual Desktop Infrastructure

	2.2 Related Works

	3 System Design and Implementation
	3.1 System Design Architecture
	3.2 System Implementation
	3.2.1 OpenStack Service Deployment
	3.2.2 GPU Pass-Through
	3.2.3 Methodology

	4 Experimental Results
	4.1 Experimental Environment
	4.2 Network Delay Experiment
	4.3 Heaven Benchmark Experiment
	4.4 CineBench Experiment

	5 Conclusions and Future Work
	5.1 Concluding Remark
	5.2 Future Works

	References
	Appendix
	A OpenStack Installation

