
東海大學

資訊工程研究所

碩士論文

指導教授: 楊朝棟博士

實作結合虛擬化部署的 Hadoop 生態系統入口網

The Implementation of a Hadoop Ecosystem

Portal with Virtualization Deployment

研究生: 蔣元斌

中華民國一零六年七月

1

摘 要

現今巨量資料在許多領域如資訊、金融、醫學等的發展皆具有越來越重要的地

位，因此巨量資料的研究、分析、處理等的需求也越來越多。目前用於巨量資

料的環境大部份是使用 Hadoop 或 Spark 來進行處理分析，但此類環境的建置

需具備有一定的專業知識與對系統的熟悉度，對一般使用者來說有一定的難度。

另此類環境的操作皆須以輸入指令的方式進行操作，對習慣使用圖形桌面環境

的使用者存在學習使用指令操作的門檻。為了降低使用者操作巨量資料工具進

行處理分析的門檻，本論文利用 Liferay Portal 實作了結合 Hadoop 與 Spark 巨

量資料平台的網頁使用者介面，並更進一步將巨量資料平台與網頁使用者介面

整合於虛擬機映像檔中，讓使用者能夠快速方便地部建巨量資料平台與執行巨

量資料的工作。希望提供便利的網頁使用者介面的同時，減少對工作時運算效

能的影響，且降低建立巨量資料平台的難度與所需時間。本論文亦進行了透過

使用指令與透過網頁使用者介面執行巨量資料處理工作的效能比較，使用的

是 HiBench 的測試套件，測試在提供使用者方便性的同時，網頁使用者介面對

巨量資料處理工作時的效能所造成影響的程度。另外，由於相關研究的需要，

在本環境中亦建置了 OpenCV 的環境，也實際使用粒子圖像測速法程式驗證

OpenCV 函式庫在本系統中的可用性。

關鍵字: 巨量資料平台，Portlet，虛擬化，Hadoop，Spark。

i

Abstract

The requirements of research, analysis, processing and storing of big data are

more and more because big data is increasingly important for development in

the fields of information technology, finance, medicine, etc. Most of the big data

environments are built on Hadoop or Spark. But the constructions of these kinds of

big data platform are not easy for normal users because of the lacks of professional

knowledge and familiarity with the system. And users usually have to learn how to

use the command line for operations. To make it easier to use the big data platform

for data processing and analysis, we implemented the web user interface combining

the big data platform including Hadoop and Spark. And we packaged the whole big

data platform into the virtual machine image file along with the web user interface

so that users can construct the environment and do the job more quickly and easily.

We provide the convenient web user interface, reduce the difficulty of building a

big data platform and save time but do not reduce too much performance of the

system. And we also made the comparison of performance between the web user

interface and the command line using the HiBench benchmark suit. In addition,

we have also built the OpenCV library in our system for our related research. The

functionality of OpenCV in our system is validated by performing the Particle

Image Velocimetry (PIV) applications.

Keywords: Big Data Platform, Portlet, Virtualization, Hadoop, Spark.

ii

致謝詞

回顧在東海大學資訊工程研究所的這兩年，我受到許多師長的教導和同儕們的

協助，使我在研究的領域持續精進。透過對巨量資料與虛擬化技術的深入研究，

將這些技術實際應用於研究與開發中，建立了一套系統並完成本篇論文。

在研究領域能有今日的成果，非常感謝我的指導教授楊朝棟博士。從大學時

期的課程就受到楊老師的教導，後來楊老師鼓勵我繼續在資訊領域做更深入的

研究，除了提供研究資源，也讓我有培養表達能力以及拓展國際視野的機會。

楊老師不僅傳授我做研究的方法與學問，也教導我為人處世的態度，謝謝老師

用心的教導。

特別感謝口試委員許慶賢教授、劉榮春教授、姜自強教授以及黃國展教授特

地撥空前來參加我的論文口試，在口試時點出我論文的盲點也給予許多的建議，

讓我能再將論文修改得更加完整，學生衷心感謝。

也很感謝國家高速網路與計算中心的蔡惠峰博士、張文鎰博士以及吳建衡助

理研究員，在研究與開發的過程中提供了許多協助與建議，使我的論文更完整。

另外也要感謝我的學長姐們做為榜樣，傳承寶貴的學習與研究經驗，並在我

感到疑惑時適時給予指點。也感謝實驗室的夥伴與學弟妹們互相扶持與指教，

在各自擅長的領域提供協助，共同學習與成長。

最後，也是最重要的，感謝始終支持著我的家人。在求學的期間，你們適時

的關心與叮嚀給予我持續努力的動力。你們對我的支持也讓我無後顧之憂，能

夠專注於學業與研究，非常感謝。

東海大學資訊工程學系 高效能計算實驗室 蔣元斌 一零六年七月

iii

Table of Contents

摘要 i

Abstract ii

致謝詞 iii

Table of Contents iv

List of Figures vi

List of Tables viii

1 Introduction 1
1.1 Motivation . 2
1.2 Contributions . 2
1.3 Thesis Organization . 3

2 Background Review and Related Works 4
2.1 Big Data . 4
2.2 Hadoop Ecosystem . 6

2.2.1 Hadoop . 6
2.2.2 HDFS . 6
2.2.3 Spark . 8

2.3 Portal and Portlet . 9
2.4 OpenCV . 10
2.5 Virtualization . 13
2.6 Related Works . 14

3 System Design and Implementation 16
3.1 System Design . 16
3.2 System Implementation . 17

3.2.1 Virtualization Platform Installation and Virtual Machine
Setup . 18

3.2.2 Hadoop Ecosystem Installation 19
3.2.3 Liferay Portal server and Integrated Development Environ-

ment Installation . 20

iv

TABLE OF CONTENTS v

3.2.4 OpenCV Environment Setup 20
3.2.5 Liferay Portal, Portlet Development and Virtual Machine

Image File Export . 22

4 Experimental Results 26
4.1 Experimental Environment . 26
4.2 Experimental Results . 28

4.2.1 Virtual Machine Deployment in Different Virtualization En-
vironments . 28

4.2.2 Functionality Validation of Portlets 30
4.2.3 Performance Comparison between the Portal and the Com-

mand Line . 32
4.2.4 Performance Comparison between Hadoop and Spark 35
4.2.5 OpenCV Environment Validation 35

5 Conclusions and Future Work 38
5.1 Concluding Remarks . 38
5.2 Future Work . 39

References 40

Appendix 44

A Hadoop Installation 44

B Spark Installation 48

C HBase Installation 50

List of Figures

1.1 Search interest of big data . 1

2.1 7 Vs of big data . 5
2.2 Hadoop architecture . 7
2.3 HDFS master-slave architecture . 7
2.4 Spark architecture . 9
2.5 Example of portal and portlet layout 10
2.6 Funcitons of Liferay Portal . 11
2.7 Virtualization . 13

3.1 System architecture . 17
3.2 System interactions . 18
3.3 Intel Processor Identification Utility 19
3.4 New virtual machine creation . 20
3.5 Hadoop status . 21
3.6 Hadoop cluster status . 21
3.7 Spark status . 22
3.8 Liferay IDE . 22
3.9 Installation result of OpenCV . 23
3.10 Liferay Porlet web UI . 23
3.11 Virtual machine export . 24
3.12 Virtual machine in Oracle Virtualbox 24
3.13 Virtual machine in VMware Workstation 25

4.1 Process of VM image import on VMware Workstation 28
4.2 Process of VM image import on Oracle Virtualbox 29
4.3 Portlet: HDFS file upload . 30
4.4 HDFS browser (upload destination) 30
4.5 Portlet: Hadoop job submission . 31
4.6 HDFS browser (output directory) 31
4.7 Portlet: Command excution . 32
4.8 Result of building HiBench . 32
4.9 Process of running HiBench . 33
4.10 Sorting performance comparison . 34
4.11 Word count performance comparison 34
4.12 Terasort performance comparison 35

vi

LIST OF FIGURES vii

4.13 Performance comparison between Hadoop and Spark (command) . 36
4.14 Performance comparison between Hadoop and Spark (portal) . . . 36
4.15 PIV result - river . 37
4.16 PIV result - campus . 37

List of Tables

4.1 Personal computer hardware specification 27
4.2 Laptop hardware specification . 27
4.3 Configurations of virtual machine 27
4.4 Software information . 27
4.5 Average time of VM image import on PC 29
4.6 Average time of VM image import on laptop 29

viii

Chapter 1

Introduction

Big Data is becoming more and more important today. Due to the rapid devel-

opment of computers, networks and information services, a large amount of data

has been generated [1] [2]. A variety of theories, researches, and applications of

big data flourish and become a trend. Big data were only accessed by scientists,

researchers or large companies before, but it is getting closer to us now and more

related to human being and many types of fields. Many industries see it as an im-

portant resource. The relevant researches, development, storage, applications and

environments are constantly expanding and updating because of the development

of big data. It is a good time for people who are willing to get into the field of big

data because there are more and more resources available.

Figure 1.1: Search interest of big data [3]

1

Chapter 1 Introduction 2

1.1 Motivation

Although there are many resources about big data and many applications avail-

able, normal users may have some problems using big data tools at present. The

problems may be how to prepare the environment suitable for big data, how to

set up the whole environment, there is some possibility during the installation,

unfamiliar with the command-line interface of Linux and the big data tools, etc.

Because of the need for big data research, we want to address these situations

that are present. We want to do the researches and develop a way to simplify

the pre-operation and installation process of the big data platform. The way that

can deploy the big data platform directly in the existing environment, doesn’t

require the dedicated devices, let users choose the environment they are familiar

to, makes users operating the tool intuitively, reduces the chance of error and

makes the different types of jobs executing together. Besides, we want to make

the file management, job status monitoring and job scheduling more easier and

the capability for advanced users to adding functions by themselves.

1.2 Contributions

In this work, we implemented the web user interface applying to Hadoop ecosys-

tem. Hadoop platform is widely adopted to big data analysis, processing and

storage. The web user interface provides the user-friendly way to executing many

kinds of jobs, operations and management. Besides, the installation of Hadoop

ecosystem is time consuming and possible to make some error to normal users.

We package the web user interface along with the whole Hadoop ecosystem into

a virtual machine image file. It can be apply to different kinds of environments,

make users deploy the whole system in the environment they want, simplify the

process of building the system to save time and reduce the chance of error. The

web user interface for this system is modular and allows users to modify or add

the desired functions based on their needs by introduce Liferay Portal into our

Chapter 1 Introduction 3

system. We did some experiments to compare the performance between using the

portal and the command line, Hadoop and Spark in our system.

1.3 Thesis Organization

In Chapter 2, we will describe the background information and previous studies

related to our work, including big data, Hadoop ecosystem, the portal and the

portlet, OpenCV, and the virtualization technology. In Chapter 3, the system

architecture and the implementation are introduced. Chapter 4 shows the ex-

periments done in our system, including the experimental environment and the

experimental results. And we summarized our work and the future work of this

thesis in Chapter 5.

Chapter 2

Background Review and Related

Works

In this chapter, the background information related to our work, including big

data, Hadoop ecosystem, portlet, OpenCV, and the virtualization technology are

introduced.

2.1 Big Data

Big data means the data sets which are hard to be processed with traditional

methods or tools owing to the large volume or the high complexity. Big data can

be the data collected from sensors, log files generated while servers are running,

or the user behavior recodes and posted information on the Internet.

The term was defined as the combination of 3Vs: Volume, Velocity and Variety

[4]. These are the generic big data properties. Nowadays, the big data system

definition is extended to the following 7Vs [5]:

• Volume: the amount of data which is generated and stored; The data quan-

tity can easily reaches tens of TB today.

• Velocity: the speed of data generated and processed

4

Chapter 2 Background Review and Related Works 5

• Variety: the types of data; The data can be unstructured or in various

formats like text, picture, video, 3D model, and so on.

• Veracity: the accuracy of data; There may be incorrect parts or noises need-

ing to be filtered in the data.

• Variability: the uncertainty of data; The similar or the same value of data

may have different meaning.

• Visualization: the ways of presenting results of processing; The results should

be easily understood by using charts, graphs or other visual presentations.

• Value: the usefulness or importance of the results got from the data; The

value is actually what we want to get from doing many thing to data.

Figure 2.1: 7 Vs of big data [5]

Chapter 2 Background Review and Related Works 6

2.2 Hadoop Ecosystem

2.2.1 Hadoop

Apache Hadoop [6] [7] is a open-source software framework for big data processing.

Owing to its reliability, scalability and distributability, Hadoop can provide pro-

cessing capacity by integrating the computational resource of the thousands nodes

in the cluster. The implementation of Hadoop is based on two research results

published by Google, Google Distributed System (DFS) in 2003 and MapReduce

programming framework in 2004. The architecture of Hadoop is shown in Figure

2.2. The Hadoop framework is constructed on the Hadoop Distributed File System

(HDFS) and it manage jobs and resource by YARN. The MapReduce [8] program-

ming framework is implemented to operate the distributed processing by dividing

the files into the same block size and distributing them to nodes [9]. Hadoop

includes these modules:

• Hadoop Common: Java libraries and the common utilities;

• Hadoop Distributed File System (HDFS): a distributed file system of Hadoop;

• Hadoop YARN: a framework for job scheduling and cluster resource man-

agement;

• Hadoop MapReduce: a YARN-based programming model for big data pro-

cessing.

2.2.2 HDFS

The Hadoop Distributed File System (HDFS) is a distributed file system that

provides data storage with reliability, scalability and fault tolerance [10]. It is

designed to be deployed on low-cost hardware. HDFS is suitable for big data

applications because it provides high-throughput and streaming data access and

can store data of different kinds of format. HDFS has master-slave architecture

Chapter 2 Background Review and Related Works 7

Figure 2.2: Hadoop architecture

including a single namenode and multiple datanodes. In the HDFS, data is divided

into some blocks and distributed to nodes. If there are some datanodes down,

HDFS can recovery the data with the backups on the other working datanodes [11].

Figure 2.3 shows the HDFS master-slave architecture.

Figure 2.3: HDFS master-slave architecture

Chapter 2 Background Review and Related Works 8

2.2.3 Spark

Apache Spark is an open-source cluster-computing framework. It was originally

developed by AMPLab at University of California, Berkeley as a distributed data

processing framework. The Spark project was donated to the Apache Software

Foundation in 2013 and became a Top-Level Apache Project in 2014.

Spark provides the application programming interface (API) centered on the

data abstraction called the resilient distributed dataset (RDD) distributed to the

nodes in the cluster with fault tolerance for programmers. Spark is designed to

improve the performance of MapReduce by offering the in-memory processing. The

programs run with Spark can be up to 100 times faster than Hadoop MapReduce

in memory or 10 times faster on disk. The features of RDD are conducive to

the implementation of iterative algorithms, accessing datasets multiple time using

loops, and analyzing data interactively. For machine learning systems, the iterative

algorithms are the training methods. Thus Spark is the framework suitable for

machine learning.

Spark requires a cluster manager and a distributed storage system for its op-

erating environment. Spark supports three modes for cluster management: stan-

dalone, Hadoop YARN, and Apache Mesos. For distributed storage, Spark can link

to various interfaces including Hadoop Distributed File System (HDFS), MapR

File System (MapR-FS), Cassandra, OpenStack Swift, Amazon S3, and so on.

The programming languages supported by Spark include Java, Scala, Python and

R. Spark also can be run in pseudo-distributed local mode convenient for testing

or development. In this mode, Spark runs all the applications on a single machine.

The components of Apache Spark are listed below:

• Spark Core: the base engine providing the distributed task scheduling, ba-

sic input and output operations, and the RDD abstraction for the Spark

platform;

• Spark SQL: a module supporting querying structured and semi-structured

data by query languages;

Chapter 2 Background Review and Related Works 9

• Spark Streaming: a extension of Spark Core providing the real time process-

ing with scalability, high throughput and fault tolerance;

• MLlib: a scalable library of machine learning algorithms;

• GraphX: a graph computation engine supports the massively parallel algo-

rithms.

Figure 2.4: Spark architecture

2.3 Portal and Portlet

A portal [12] [13] is a specially designed website with specific contents and ap-

pearance. It gathers resource and information together from the system or other

source and presents them to users on the single entry point with consistent way.

For users, they can easily obtain resource and information and use the applications

from one location.

A portal is consists of several portlets. A portlet is a pluggable user interface

software component. It is based on Java, can be deployed, configured and displayed

in the web container. A portlet can be regarded as a miniature web application.

It is managed by portlet container, used to process the requirement from the

container and generate contents dynamically. While initializing a configurable

porlet, the permission of the portlet can be set so that confirming whether the

Chapter 2 Background Review and Related Works 10

user can configure the portlet or not. Portlets can be set to transmit information

to each other. Some examples of portlet applications are e-mail, weather reports,

discussion forums, and news. Portlets are useless without a portal because they

need it to be deployed on.

One of the main jobs of a portal is to gather the contents generated by portlets.

Multiple portlets can be displayed on a portal. Users can choose which portlets

they want to see and customize the layout. A portal provides the identity verifica-

tion, the authorization and the management tools for the system administrators.

Figure 2.5 shows the example of portal and portlet layout.

Figure 2.5: Example of portal and portlet layout

Liferay Portal is Java-based web. It is convenient for Java programmers be-

cause Hadoop and Spark also use Java programming language. The programmer

can be concentrate on Java programming and develops the Hadoop applications

and portlets. If necessary, HTML, CSS and JavaScript also can be used to develop

the portlets. Liferay Portal provides functions not only those mentioned above but

some additional components. Figure 2.6 shows the functions of Liferay Portal.

2.4 OpenCV

OpenCV (Open Source Computer Vision Library) [15] [16] is an open-source and

cross-platform, computer vision and machine learning software library. It was

Chapter 2 Background Review and Related Works 11

Figure 2.6: Funcitons of Liferay Portal [14]

started by Intel and is released under a BSD license so that it is free for commercial

and research purposes. OpenCV was designed to provide a common infrastructure

for computer vision applications and accelerate the use of machine perception in

the commercial products.

OpenCV is the leading open-source library for computer vision, image pro-

cessing and machine learning. It was designed for computational efficiency and

real-time applications. OpenCV was written in optimized C and C++, and it

can be linked to C, C++, Python, Java and MATLAB. The operating systems

supported by OpenCV include Windows, Linux, Mac OS, Android, iOS, and so

on. OpenCV also supports the multi-core operations.

OpenCV is used widely in the field of image processing, image and video

Chapter 2 Background Review and Related Works 12

reading and saving, matrix operations, statistics, automated inspection and mon-

itoring, robot and driver-less car navigation and control, medical image analysis,

image and video search and retrieval, and so on.

OpenCV has a modular structure. The following are some modules OpenCV

provides [17]:

• Core functionality: a compact module defining basic data structures;

• Image processing: an image processing module that includes linear and non-

linear image filtering, geometrical image transformations, color space con-

version, histograms, and so on;

• video: a video analysis module that includes motion estimation, background

subtraction, and object tracking algorithms;

• calib3d: basic multiple-view geometry algorithms, single and stereo camera

calibration, object pose estimation, stereo correspondence algorithms, and

elements of 3D reconstruction;

• features2d: salient feature detectors, descriptors, and descriptor matchers;

• objdetect: detection of objects and instances of the predefined classes (for

example, faces, eyes, mugs, people, cars, and so on);

• highgui: an easy-to-use interface to simple UI capabilities;

• Video I/O: an easy-to-use interface to video capturing and video codecs;

• gpu: GPU-accelerated algorithms from different OpenCV modules.

OpenCV is adopted by many companies, research organizations, and govern-

ment organs like Google, Yahoo, Microsoft, Intel, IBM, Sony, Honda, Toyota.

OpenCV is maintained by a non-profit foundation OpenCV.org.

Chapter 2 Background Review and Related Works 13

2.5 Virtualization

Virtualization [18] [19] is the technology that can abstract, manage, and redis-

tribute the computing resources like CPU, memory, storage, network, applica-

tions, and so on. Virtualization can make the computing resources more flexible

and scalable, and reduce the costs. In this work, we use the virtual machine (VM)

an application of the virtualization technology to build our system in it. We can

configure the computing resource of a virtual machine and package it into a image

file easy to be move or copy to another environment. A virtual machine contain

the whole operating system and applications in it. The resource of a virtual ma-

chine can be reconfigured according to the resource in the environment. Figure

2.7 shows the architecture of virtualization.

Figure 2.7: Virtualization

Another kind of virtualization is desktop virtualization. Users can use the

remote virtual desktop environment via network. That can share the computing

resources of the server to multiple users at the same time. And the computing

resources are centralized and easy to be managed.

Chapter 2 Background Review and Related Works 14

2.6 Related Works

Xiuqin Lin et al. [20] in 2013, Ilias Mavridis and Helen Karatza [21] in 2017 all

successfully applied Hadoop and Spark to analyze Log. For big data analysis,

Hadoop is a good solution; the Apache Hadoop is built on top of HDFS. Hadoop

provides an off-line batch computing framework. Spark is compatible with Hadoop

HDFS; Spark uses in-memory and distributed memory technology, and it allows

repeatedly operations of cache data in memory since Spark in-memory primitives

provide performance up to 100 times faster for certain applications. Spark has a

higher speed than Hadoop in processing capability, and access to data on YARN.

According to the experimental results in the works, we compare the performance

between Hadoop and Spark.

Chien-Heng Wu et .al [22] in 2016 studied and used the virtualization tech-

nology to develop their small size personal big data platform for developers and

made the platform easy to be deployed. They performed the comparison between

the virtual machine and their large-scale Hadoop cluster. The result of the work

showed the virtual machine is an ideal platform for development and the large-

scale Hadoop cluster is great for production runs. According to the result in that

work, we build not only the Hadoop ecosystem but also the OpenCV library and

Liferay Portal on it. We want to make the platform more easy to be used. And

we performed some test on the platform.

Shengsheng Huang et .al [23] in 2010 proposed the realistic and comprehensive

benchmark suite for Hadoop called HiBench. And they used that to evaluate

the Hadoop framework including the speed, throughput, HDFS bandwidth, CPU,

memory, disk I/O usage. And the benchmark suite has the ability to export the

graphical charts. HiBench supports used by evaluate the Hadoop and Spark now.

It includes different kinds of workloads, like sort, wordcount, TeraSort, machine

learning, SQL, web search, graphic benchmark, streaming benchmark, and so on.

In our work, we use HiBench to evaluate the performance of our Hadoop ecosystem

and compare the performance between Hadoop and Spark.

Chapter 2 Background Review and Related Works 15

Timofei Epanchintsev and Andrey Sozykin [24] in 2015 presented the approach

to use OpenCV library for distributed image processing on a Hadoop cluster. That

is based on the MapReduce Image Processing (MIPr) framework they developed

before. The performance and the scalability of that framework were evaluated.

We refer to the concept of that work, build the OpenCV library and execute the

application to test if OpenCV works in our system.

T. Lakshmi Siva Rama Krishna et .al [25] in 2016 proposed the customized

web user interface (CWBUI) for Hadoop Distributed File System that users can

perform file system operations to and from HDFS easily by clicking the buttons

displayed on the screen rather than using shell commands. They built a Hadoop

cluster with ten nodes and modified the original web user interface of Hadoop

Distributed File System. They used servlets and Java Server Pages (JSP) to

develop the customized web user interface. In our system, we use Liferay Portal

server and develop portlets for our web user interface. And the functions of our

web user interface include not only performing file system operations but also

running Hadoop and other applications.

Chapter 3

System Design and

Implementation

The architecture and the implementation of our system are introduced in this

chapter. Our system is based on Hadoop ecosystem and packaged into virtual

machine images along with the web user interface.

3.1 System Design

The bottom layer of the software part of our system is the hypervisor of the

virtaul machine, Oracle Virtualbox and VMware Workstation are tested in this

work. And the Ubuntu desktop operating system is installed on the hypervisor.

Then the Hadoop ecosystem that includes HDFS, Yarn, ZooKeeper and Spark is

built in Ubuntu. The Hadoop applications and the Liferay Portal are based on

Hadoop and Liferay server. Users can execute big data jobs through the portal

easily. Figure 3.1 shows the architecture of our system. The following are the

portlets on the Liferay Portal web user interface in our system:

• job submission: executing Hadoop applications with given jar file and re-

quired arguments;

16

Chapter 3 System Design and Implementation 17

• file upload: uploading the given file to the destination path on Hadoop

Distributed File System;

• sequential file packaging: packaging the given files like images into a sequen-

tial file and uploading it to the destination path in Hadoop Distributed File

System;

• file management: presenting the files and directories on Hadoop Distributed

File System.

Figure 3.1: System architecture

While a user executes jobs through the portlets on the Liferay Portal web user

interface, the portlets can not only communicate with each other but also pass the

commands to the Hadoop ecosystem, the OpenCV library and the operating sys-

tem and receive the returned information to run the applications. The interactions

of the components in the system are shown in Figure 3.2.

3.2 System Implementation

At the first, we must to check if the virtualization technology, like Intel VT-x or

AMD-V, is supported by the CPU of the computer. That can be confirmed by

Chapter 3 System Design and Implementation 18

Figure 3.2: System interactions

configuring the BIOS settings or using the specific software like Intel Processor

Identification Utility [26] shown in Figure 3.3.

3.2.1 Virtualization Platform Installation and Virtual Ma-

chine Setup

After the virtualization technology support was confirmed, we install the virtual-

ization platform and its extension component: Oracle Virtualbox with Extension

Pack and VMware Workstation with VMtools. The extension components are

used to enhance the supportability for the resource of the physical machine. The

timings of installing the extension components are different depending on the ven-

dors. Oracle Virtualbox Extension Pack can be installed before adding a virtual

machine into the repertory but VMware Workstation VMtools only can be con-

figured after the operating system of a virtual machine is installed.

Chapter 3 System Design and Implementation 19

Figure 3.3: Intel Processor Identification Utility [26]

While the virtualization platform is done, we can add a new virtual machine

and configure the resource for it, such as the number of the cores of the virtual

CPU, the size of the memory, the capacity of the virtual disk, the guest operating

system, the network settings, the display and so on. Figure 3.4 shows the process

of creating a new virtual machine on Oracle Virtualbox.

3.2.2 Hadoop Ecosystem Installation

After booting up the virtual machine and the installation is finished, we install

the Java Development Kit first and set the SSH key for Hadoop. Then we build

Hadoop, Yarn, HDFS, HBase, Spark, Zookeeper and the environment parameters

must be set. Figure 3.5, 3.6 and 3.7 show the status of Hadoop and Spark after

the services has been started successfully. In this work, we build the Hadoop

ecosystem with the Cloudera CDH 5.5.1 package [27].

Chapter 3 System Design and Implementation 20

Figure 3.4: New virtual machine creation

3.2.3 Liferay Portal server and Integrated Development

Environment Installation

Next, the Liferay Portal bundle with Tomcat server is required to be downloaded.

After unzipping the package and running the installation batch file, the Liferay

server will be installed and started up in several minutes. The following are Eclipse,

Liferay IDE plugin for Eclipse and Liferay server. The Liferay development envi-

ronment is combined with Eclipse, the server can be easily controlled and portlets

can be developed through Eclipse. Figure 3.8 shows the Liferay IDE integrated

with Eclipse.

3.2.4 OpenCV Environment Setup

The last step is building and compiling the OpenCV library [28]. After download-

ing and unzipping the OpenCV library package, installing the required software

Chapter 3 System Design and Implementation 21

Figure 3.5: Hadoop status

Figure 3.6: Hadoop cluster status

packages and building the OpenCV library, the OpenCV library files must be gen-

erated if OpenCV is installed successfully. The installation result of OpenCV is

shown in Figure 3.9. So far, the related environment is built and can be used to

develop the Hadoop, Spark, portlet, and OpenCV applications.

Chapter 3 System Design and Implementation 22

Figure 3.7: Spark status

Figure 3.8: Liferay IDE

3.2.5 Liferay Portal, Portlet Development and Virtual Ma-

chine Image File Export

Liferay Portal is Java-based web. The portlets are developed in Java programming

language. If necessary, HTML, CSS and JavaScript also can be used to develop the

portlets. We implemented portlets that can perform Hadoop and Spark operations

including jar file execution, file uploading, file management and sequential file

packaging. The portlets are modular so they can be add into or remove from the

Chapter 3 System Design and Implementation 23

Figure 3.9: Installation result of OpenCV

Liferay Portal web page by the user. The Liferay Portal web page we implemented

is shown in Figure 3.10.

Figure 3.10: Liferay Porlet web UI

We package the whole environment including the Ubuntu desktop operating

system, the Hadoop ecosystem and the Liferay Portal web user interface into

a virtual machine image file. Figure 3.11 shows the process of virtual machine

export. The virtual machine image file can be deployed on Oracle Virtualbox and

VMware Workstation, and the computing resource of the virtual machine can be

configured according to the environment which the virtual machine be deployed

in. Figure 3.12 and 3.13 show the results of the deployment.

Chapter 3 System Design and Implementation 24

Figure 3.11: Virtual machine export

Figure 3.12: Virtual machine in Oracle Virtualbox

Chapter 3 System Design and Implementation 25

Figure 3.13: Virtual machine in VMware Workstation

Chapter 4

Experimental Results

In this chapter, we show the system and experimental results. In Section 4.1,

we introduce the experimental environment, including the hardware specification

and the software information. Our experimental results are presented in Section

4.2 in detail including the virtual machine deployment in different virtualization

environments, functionality validation of the portlets, performance comparison be-

tween using the portlets on the web user interface and command line, performance

comparison between Hadoop and Spark, and the last one OpenCV environment

validation.

4.1 Experimental Environment

In this work, we perform the experiments on a desktop personal computer to

simulate the user operating environment. The hardware specification is shown in

Table 4.1. The operating system on the computer is Microsoft Windows 7 SP1, and

the one in our virtaul machine is Ubuntu Desktop 16.04 LTS. The virtualization

platforms are Oracle Virtualbox and VMware Workstation. The software includes

Hadoop ecosystem, Liferay Portal, OpenCV and the benchmark suite HiBench.

The detail software versions are shown in Table 4.4.

26

Chapter 4 Experimental Results 27

Table 4.1: Personal computer hardware specification

CPU Intel Core i7-2600 (3.4GHz)
Memory DDR3 RAM 12 GB
Graphics Intel HD Graphics 2000
Hard Disk 1TB SATA III Hard Disk

Table 4.2: Laptop hardware specification

CPU Intel Core i7-3632QM (2.2GHz)
Memory DDR3 RAM 8 GB
Graphics AMD Radeon HD 7500M/7600M Series
Hard Disk 128GB SATA III SSD
External Hard Drive 500GB HDD (SATA to USB 3.0)

Table 4.3: Configurations of virtual machine

vCPU 4 cores
vRAM 8 GB
vHDD 48 GB

Table 4.4: Software information

Software Name Version
Oracle Virtualbox 5.1.18
VMware Workstation 12.5.6
Microsoft Windows 7 SP1
Ubuntu 16.04 LTS
Hadoop 2.6.0 (CDH 5.5.1)
Spark 1.6.0
ZooKeeper 3.4.5 (CDH 5.5.1)
HBase 1.0.0 (CDH 5.5.1)
Liferay IDE 2.2.4 GA5
Liferay Portal 6.2.5 GA6
OpenCV 2.4.4
HiBench 6.0

Chapter 4 Experimental Results 28

4.2 Experimental Results

4.2.1 Virtual Machine Deployment in Different Virtualiza-

tion Environments

We deploy the virtual machines on Windows using Oracle Virtualbox and VMware

Workstation, then record each the time they took. The process of Virtual Machine

image file import on VMware Workstation is shown in Figure 4.1 and the one on

Oracle Virtualbox is shown in Figure 4.2.

The size of our virtual machine image file is about 7.73 GB. The each average

time of virtual machine image import is shown in Table 4.5 and 4.6. There are

two part of this experiment. One is using the desktop personal computer and the

other is using a laptop with an external hard drive. To simulate the scenario of

making the virtual machine portable, we put the virtual machine image file in the

external hard drive and connect it to the laptop. And the configurations of the

two virtualization platform of this part are set to store the vHDD on the external

hard drive.

Figure 4.1: Process of VM image import on VMware Workstation

Chapter 4 Experimental Results 29

Figure 4.2: Process of VM image import on Oracle Virtualbox

Table 4.5: Average time of VM image import on PC

Hypervisor Time of VM image import
Oracle Virtualbox (5.1.18) ∼173 s

VMware Workstation (12.5.6) ∼338 s

Table 4.6: Average time of VM image import on laptop

Hypervisor Time of VM image import
Oracle Virtualbox (5.1.18) ∼755 s

VMware Workstation (12.5.6) ∼1363 s

The time importing the virtual machine image took is less than 10 minutes.

It is faster than installing the operating system and all the Hadoop software by

users themselves. The process of image file import is much easier than building

the whole system. And there is no need to keep concentrating on the process

of import. That means the virtual machine can help simplifying the process of

building the system and saving time.

Chapter 4 Experimental Results 30

4.2.2 Functionality Validation of Portlets

In this experiment, we use the portlets on the web user interface to execute a

wordcount job to demonstrate our function of the portlets we developed.

First, we upload our sample text file to the HDFS by filling in the source file

full path and the upload destination field, clicking the upload button and waiting

for the result. Figure 4.3 shows the HDFS file upload portlet. Then we can check

the directory we uploaded a file to by the HDFS browser shown in Figure 4.4.

Figure 4.3: Portlet: HDFS file upload

Figure 4.4: HDFS browser (upload destination)

Second, the full path of the wordcount jar file, input text file and output

destination must to be set. The execution result is shown in the text field below

Chapter 4 Experimental Results 31

after clicking the submission button and waiting for execution finished. Figure 4.5

is the portlet of Hadoop job submission. We also can check the output directory

we set through the HDFS browser shown in Figure 4.6. to upload our sample text

file to the HDFS, browse the directory on the HDFS, execute the wordcount jar

application on Hadoop, and check the output result.

Figure 4.5: Portlet: Hadoop job submission

Figure 4.6: HDFS browser (output directory)

Last, we can check the output file on the HDFS by downloading it through

the HDFS browser or using the portlet of command execution shown in Figure 4.7

to show the content of the output file.

Chapter 4 Experimental Results 32

Figure 4.7: Portlet: Command excution

4.2.3 Performance Comparison between the Portal and the

Command Line

The following are experiments of performance comparison between using the com-

mand line and the portal web user interface. We use the Hadoop and Spark

benchmark suite — HiBench to evaluate the performance of our platform. We run

the three kinds of workloads, sorting, TeraSort and wordcount. Figure 4.8 shows

the result of building HiBench and Figure 4.9 is the process of running HiBench.

Figure 4.8: Result of building HiBench

Chapter 4 Experimental Results 33

Figure 4.9: Process of running HiBench

In theory, the execution time of using command line should be better than or

equivalent to the ones of using the portal interface. We run the benchmark with

three kinds of dataset scale. The each experimental data is the average value of

the five times result. The experimental data show that most of them meet the

cognition. In this work, most of the differences of performance are related to the

execution time.

Figure 4.10 shows that it takes more time to sort data through the portal

web user interface. And we find that the differences of the sorting performance

between using command line and the portal web user interface with Hadoop are

higher than the one with Spark.

We can get the result that it also takes more time to perform the wordcount

application through the portal web user interface from Figure 4.10. But the dif-

ference of the wordcount performance between using command line and the portal

web user interface with Spark and the large scale dataset is quite higher than

others.

Figure 4.12 shows that it takes more time to perform the TeraSort application

through the portal web user interface but Hadoop with the small scale dataset.

Chapter 4 Experimental Results 34

Figure 4.10: Sorting performance comparison

Figure 4.11: Word count performance comparison

Chapter 4 Experimental Results 35

Figure 4.12: Terasort performance comparison

4.2.4 Performance Comparison between Hadoop and Spark

In this section, we perform the Hadoop and Spark performance comparison in our

system. We test whether the performance comparison between Hadoop and Spark

in our system is like the results of previous studies or not.

In Figure 4.13 and 4.14, we get that all the execution time of Spark are shorter

than the one of Hadoop. The results of the experiments are similar to those

presented in other works before. The performance of Spark is better than Hadoop

even on our single-node virtual machine. And we find while the dataset scale is

large in three kinds of jobs, the differences of performance are much greater.

4.2.5 OpenCV Environment Validation

For our related research, we need the environment with Hadoop and OpenCV

together. So we have also built the OpenCV support environment in our virtual

machine and make some test about Particle Image Velocimetry (PIV) applications

Chapter 4 Experimental Results 36

Figure 4.13: Performance comparison between Hadoop and Spark (command)

Figure 4.14: Performance comparison between Hadoop and Spark (portal)

to validate the OpenCV environment in our system. The Figure 4.15 and 4.16

below show the input images and output results of a application. The example

application can read two pictures and calculate the shift direction and the amount

of displacement by drawing the arrows on the output picture. This application uses

Chapter 4 Experimental Results 37

the OpenCV library and can be developed to determine the water flow direction

using computers.

Figure 4.15: PIV result - river

Figure 4.16: PIV result - campus [29]

Chapter 5

Conclusions and Future Work

5.1 Concluding Remarks

In this work, we developed and implemented a portal web user interface and

portlets that facilitated the use of the Hadoop ecosystem and integrated the in-

terface with the Hadoop ecosystem into a virtual machine image file. It provides

a fast and convenient way to set up the platform for users. The processes of

building the whole system were described and the implementation of our system

was presented. We have actually tested how quick the process of using the vir-

tual machine image file to deploy our system on several desktop environments.

And we had executed the Hadoop job through the portlets we developed on the

web user interface to validate the functionality. The differences of performance

between using the portal web user interface and the command line to perform

several works with Hadoop and Spark in our system are also tested. Executing

the jobs with the large scale dataset by using the portlets takes more time than

using the command line. The differences of performance between Hadoop and

Spark are also presented. The result of the performance comparisons are similar

to those presented in other studies before. In theory, the execution time of us-

ing command-line should be better than or equivalent to the execution time of

38

Chapter 5 Conclusions and Future Work 39

using the portal web user interface. Our experimental data show the actual test

comparison results. That also shows that there is still room for improvement.

5.2 Future Work

This study is mainly the implementation of the functional part of the system. The

performance of our system needs to be enhanced. The results of the works can

be produced into a chart or other ways to show, in order to achieve the effect of

visualization of data. In the course of the study, the possibility of using the portal

interface of the machine to connect to other Hadoop servers had been thought

about. We will keep studying on the feasibility of that function in the future so

that the use environment of this portal web user interface can be more extensive.

In addition, the current study of the Spark machine learning library to join the

platform. We hope this platform not only has the ability to handle huge amounts

of data, but also extends to the field of machine learning. With the increment of

capabilities, the volume of our system may be more and more larger. It may be

possible that we will provide the customized system that users can choose which

features they want and exclude the unnecessary parts to reduce the volume of the

system. The multi-node version of the system is also worth to be developed.

References

[1] Min Chen, Shiwen Mao, and Yunhao Liu. Big data: A survey. Mobile Net-

works and Applications, 19(2):171–209, 2014.

[2] Chao-Tung Yang ; Yin-Zhen Yan ; Ren-Hao Liu ; Shuo-Tsung Chen. Cloud

City Traffic State Assessment System Using a Novel Architecture of Big Data.

2015 International Conference on Cloud Computing and Big Data (CCBD),

2015.

[3] Search interest of big data - Google Trends, 2017. https://trends.google.

com/trends/explore?date=all&q=big%20data&hl=en.

[4] Douglas Laney. 3D data management: Controlling data volume, velocity, and

variety. Technical report, META Group, February 2001.

[5] Apoorva Gupta. Big data analysis using computational intelligence and

hadoop: A study. In 2015 International Conference on Computing for Sus-

tainable Global Development, INDIACom 2015, pages 1397–1401, 2015.

[6] Apache hadoop, 2014. http://hadoop.apache.org/.

[7] Hadoop, 2017. http://en.wikipedia.org/wiki/Apache_Hadoop.

[8] Mapreduce, 2017. https://hadoop.apache.org/docs/r1.2.1/mapred_

tutorial.html.

[9] Jens Dittrich and Jorge-arnulfo Quian. Efficient Big Data Processing in

Hadoop MapReduce. Proceedings of the VLDB Endowment, 5(12):2014–2015,

2012.

40

https://trends.google.com/trends/explore?date=all&q=big%20data&hl=en
https://trends.google.com/trends/explore?date=all&q=big%20data&hl=en
http://hadoop.apache.org/
http://en.wikipedia.org/wiki/Apache_Hadoop
https://hadoop.apache.org/docs/r1.2.1/mapred_tutorial.html
https://hadoop.apache.org/docs/r1.2.1/mapred_tutorial.html

References 41

[10] Dhruba Borthakur. The hadoop distributed file system: Architecture and de-

sign, 2007. http://hadoop.apache.org/docs/r0.18.0/hdfs_design.pdf.

[11] Farag Azzedin. Towards a scalable HDFS architecture. In Proceedings of the

2013 International Conference on Collaboration Technologies and Systems,

CTS 2013, pages 155–161, 2013.

[12] What Is a Portlet - O’Reilly Media, 2017. http://archive.oreilly.com/

pub/a/java/archive/what-is-a-portlet.html.

[13] Portals and Portlets: The Basics, 2017. http://editorial.mcpressonline.

com/web/mcpdf.nsf/wdocs/5232/$file/5232_exp.pdf.

[14] Introduction to Liferay development, 2017. https://dev.

liferay.com/zh/develop/tutorials/-/knowledge_base/7-0/

introduction-to-liferay-development.

[15] About - OpenCV, 2017. http://opencv.org/about.html.

[16] OpenCV | NVIDIA Developer, 2017. https://developer.nvidia.com/

opencv.

[17] Introduction - OpenCV 2.4.4.0 documentation, 2017. http://docs.opencv.

org/2.4.4/modules/core/doc/intro.html.

[18] Virtualization Technology & Virtual Machine Software - VMware, 2017.

https://www.vmware.com/il/solutions/virtualization.html.

[19] Yukio Tsuruoka. Cloud computing - current status and future directions.

Journal of Information Processing, 24(2):183–194, 2016.

[20] Xiuqin Lin, Peng Wang, and Bin Wu. Log analysis in cloud computing envi-

ronment with Hadoop and Spark. 2013 5th IEEE International Conference

on Broadband Network & Multimedia Technology, pages 273–276, 2013.

[21] Ilias Mavridis and Helen Karatza. Performance evaluation of cloud-based log

file analysis with apache hadoop and apache spark. Journal of Systems and

Software, 125:133–151, 2017.

http://hadoop.apache.org/docs/r0.18.0/hdfs_design.pdf
http://archive.oreilly.com/pub/a/java/archive/what-is-a-portlet.html
http://archive.oreilly.com/pub/a/java/archive/what-is-a-portlet.html
http://editorial.mcpressonline.com/web/mcpdf.nsf/wdocs/5232/$file/5232_exp.pdf
http://editorial.mcpressonline.com/web/mcpdf.nsf/wdocs/5232/$file/5232_exp.pdf
https://dev.liferay.com/zh/develop/tutorials/-/knowledge_base/7-0/introduction-to-liferay-development
https://dev.liferay.com/zh/develop/tutorials/-/knowledge_base/7-0/introduction-to-liferay-development
https://dev.liferay.com/zh/develop/tutorials/-/knowledge_base/7-0/introduction-to-liferay-development
http://opencv.org/about.html
https://developer.nvidia.com/opencv
https://developer.nvidia.com/opencv
http://docs.opencv.org/2.4.4/modules/core/doc/intro.html
http://docs.opencv.org/2.4.4/modules/core/doc/intro.html
https://www.vmware.com/il/solutions/virtualization.html

References 42

[22] Chien-Heng Wu, Franco Lin, Wen-Yi Chang, Whey-Fone Tsai, Hsi-Ching

Lin, and Chao-Tung Yang. Big data development platform for engineering

applications. In Proceedings - 2016 IEEE International Conference on Big

Data, Big Data 2016, pages 2699–2702, 2017.

[23] Shengsheng Huang, Jie Huang, Jinquan Dai, Tao Xie, and Bo Huang. The hi-

bench benchmark suite: Characterization of the mapreduce-based data anal-

ysis. In Proceedings - International Conference on Data Engineering, pages

41–51, 2010.

[24] Timofei Epanchintsev and Andrey Sozykin. Processing large amounts of im-

ages on Hadoop with OpenCV. In CEUR Workshop Proceedings, volume

1513, pages 137–143, 2015.

[25] T.L.S.R. Krishna, T. Ragunathan, and S.K. Battula. Customized web user

interface for Hadoop Distributed File System. Advances in Intelligent Systems

and Computing, 380:567–576, 2016.

[26] Determine if your processor supports Intel Virtualization Technology

- Intel, 2017. https://www.intel.com/content/www/us/en/support/

processors/000005486.html.

[27] Cloudera enterprise 5.5.x documentation, 2017. https://www.cloudera.

com/documentation/enterprise/5-5-x.html.

[28] Installation in linux —OpenCV 2.4.13.3 documentation, 2017.

http://docs.opencv.org/2.4/doc/tutorials/introduction/linux_

install/linux_install.html.

[29] Tunghai University - Google Maps, 2017. https://www.google.com.tw/

maps/@24.1786972,120.6000693,3a,75y,139.52h,91.5t/data=!3m5!

1e1!3m3!2e0!7i13312!8i6656.

[30] M. Mazhar, Anand Paul, Awais Ahmad, and Suengmin Rho. Urban planning

and building smart cities based on the Internet of Things using Big Data

analytics. Computer Networks, 2016.

https://www.intel.com/content/www/us/en/support/processors/000005486.html
https://www.intel.com/content/www/us/en/support/processors/000005486.html
https://www.cloudera.com/documentation/enterprise/5-5-x.html
https://www.cloudera.com/documentation/enterprise/5-5-x.html
http://docs.opencv.org/2.4/doc/tutorials/introduction/linux_install/linux_install.html
http://docs.opencv.org/2.4/doc/tutorials/introduction/linux_install/linux_install.html
https://www.google.com.tw/maps/@24.1786972,120.6000693,3a,75y,139.52h,91.5t/data=!3m5!1e1!3m3!2e0!7i13312!8i6656
https://www.google.com.tw/maps/@24.1786972,120.6000693,3a,75y,139.52h,91.5t/data=!3m5!1e1!3m3!2e0!7i13312!8i6656
https://www.google.com.tw/maps/@24.1786972,120.6000693,3a,75y,139.52h,91.5t/data=!3m5!1e1!3m3!2e0!7i13312!8i6656

References 43

[31] Lars George. HBase: The Definitive Guide. O’REILLY, 2012.

[32] Yang Jin, Tang Deyu, and Zhou Yi. A distributed storage model for ehr

based on hbase. In Information Management, Innovation Management and

Industrial Engineering (ICIII), 2011 International Conference on, volume 2,

pages 369–372, Nov 2011.

[33] Haijie Ding, Yuehui Jin, Yidong Cui, and Tan Yang. Distributed storage of

network measurement data on hbase. In Cloud Computing and Intelligent

Systems (CCIS), 2012 IEEE 2nd International Conference on, volume 02,

pages 716–720, Oct 2012.

[34] Jun Bai. Feasibility analysis of big log data real time search based on hbase

and elasticsearch. In Natural Computation (ICNC), 2013 Ninth International

Conference on, pages 1166–1170, July 2013.

[35] Chen Zhang and Xue Liu. Hbasemq: A distributed message queuing system

on clouds with hbase. In INFOCOM, 2013 Proceedings IEEE, pages 40–44,

April 2013.

Appendix A

Hadoop Installation

I. Modify hosts

sudo vim /etc/hosts

II. Modify hostname

sudo vim /etc/hostname

sudo service hostname start

III. Install Java JDK

sudo apt-get -y install openjdk-7-jdk

sudo ln -s /usr/lib/jvm/java-7-openjdk-amd64 /usr/lib/jvm/jdk

IV. Add hadoop user

sudo addgroup hadoop

sudo adduser --ingroup hadoop hduser

sudo adduser hduser sudo

V. Creat SSH authentication login

44

Appendix 45

ssh-keygen -t rsa -f \~{}/.ssh/id_{}rsa -P ""

cp \~{}/.ssh/id_{}rsa.pub ~/.ssh/authorized_{}keys

scp –r ~/.ssh hduser:~/

VI. Download hadoop

cd ~

wget http://ftp.twaren.net/Unix/Web/apache/hadoop/common \\

/hadoop -2.6.0/hadoop -2.6.0.tar.gz

tar zxf hadoop -2.6.0.tar.gz

mv hadoop -2.6.0.tar.gz hadoop

VII. Add the environment variable

vim .bashrc

export JAVA_HOME=/usr/lib/jvm/jdk/

export HADOOP_INSTALL=/home/hduser/hadoop

export PATH=$PATH:$HADOOP_INSTALL/bin

export PATH=$PATH:$HADOOP_INSTALL/sbin

export HADOOP_MAPRED_HOME=$HADOOP_INSTALL

export HADOOP_COMMON_HOME=$HADOOP_INSTALL

export HADOOP_HDFS_HOME=$HADOOP_INSTALL

export YARN_HOME=$HADOOP_INSTALL

VIII. Set hadoop config

cd hadoop/etc/hadoop

vim hadoop-env.sh

export JAVA_HOME=/usr/lib/jvm/jdk/

vim core-site.xml

<property>

<name>fs.default.name</name>

<value>hdfs://hadoop-master:9000</value>

</property>

vim yarn-site.xml

<property>

Appendix 46

<name>yarn.nodemanager.aux-services</name>

<value>mapreduce_shuffle </value>

</property>

<property>

<name>yarn.resourcemanager.hostname</name>

<value>hduser</value>

</property>

cp mapred-site.xml.template mapred-site.xml

vim mapred-site.xml

<property>

<name>mapreduce.framework.name</name>

<value>yarn</value>

</property>

mkdir -p ~/mydata/hdfs/namenode

mkdir -p ~/mydata/hdfs/datanode

vim hdfs-site.xml

<property>

<name>dfs.replication </name>

<value>2</value>

</property>

<property>

<name>dfs.namenode.name.dir</name>

<value>/home/hduser/mydata/hdfs/namenode</value>

</property>

<property>

<name>dfs.datanode.data.dir</name>

<value>/home/hduser/mydata/hdfs/datanode</value>

</property>

vim slaves

hadoop-master

node01

node02

node03

node04

node05

node06

node07

node08

node09

node10

node11

node12

Appendix 47

IX. Copy hadoop to all nodes

scp -r /home/hduser/hadoop node01:/home/hduser

scp -r /home/hduser/hadoop node02:/home/hduser

scp -r /home/hduser/hadoop node03:/home/hduser

scp -r /home/hduser/hadoop node04:/home/hduser

scp -r /home/hduser/hadoop node05:/home/hduser

scp -r /home/hduser/hadoop node06:/home/hduser

scp -r /home/hduser/hadoop node07:/home/hduser

scp -r /home/hduser/hadoop node08:/home/hduser

scp -r /home/hduser/hadoop node09:/home/hduser

scp -r /home/hduser/hadoop node010:/home/hduser

scp -r /home/hduser/hadoop node011:/home/hduser

scp -r /home/hduser/hadoop node012:/home/hduser

X. Format HDFS

hdfs namenode -format

XI. Start hadoop

start-all.sh

XII. Use jps to see java running program

jps

XIII. MapReduce JobTracker monitoring website

hadoop-master:50030

Appendix B

Spark Installation

I. Download and Unzip Scala

#wget \\

http://ftp.twaren.net/Unix/Web/apache/spark/spark-1.4.1/spark-1.4.1-bin-hadoop2.6.tgz

#tar zxf spark-1.4.1-bin-hadoop2.6.tgz

#mv spark-1.4.1-bin-hadoop2.6 spark

#cd spark/conf

IV. Set Spark config

#vim spark-env.sh

export SCALA_HOME=/usr/lib/scala

export JAVA_HOME=/usr/lib/jvm/jdk

export SPARK_MASTER=master

export HADOOP_HOME=/home/hduser/hadoop

export SPARK_HOME=/home/hduser/spark

export SPARK_LIBARY_PATH=.:$JAVA_HOME/lib:$JAVA_HOME/jre/lib:$HADOOP_HOME/lib/native

export YARN_CONF_DIR=$HADOOP_HOME/etc/hadoop

#vim slaves

hadoop-master

node01

node02

node03

node04

node05

node06

48

Appendix 49

node07

node08

node09

node10

node11

node12

III. Copy spark to all nodes

scp -r /home/hduser/spark node01:/home/hduser

scp -r /home/hduser/spark node02:/home/hduser

scp -r /home/hduser/spark node03:/home/hduser

scp -r /home/hduser/spark node04:/home/hduser

scp -r /home/hduser/spark node05:/home/hduser

scp -r /home/hduser/spark node06:/home/hduser

scp -r /home/hduser/spark node07:/home/hduser

scp -r /home/hduser/spark node08:/home/hduser

scp -r /home/hduser/spark node09:/home/hduser

scp -r /home/hduser/spark node010:/home/hduser

scp -r /home/hduser/spark node011:/home/hduser

scp -r /home/hduser/spark node012:/home/hduser

bin/start-hbase.sh

Appendix C

HBase Installation

I. Download HBase

cd ~

wget http://ftp.twaren.net/Unix/Web/apache/hbase\\

/hbase-1.0.0/hbase-1.0.0-hadoop2-bin.tar.gz

II. Unzip hbase-1.0.0-hadoop2-bin.tar.gz

tar zxf hbase-1.0.0-hadoop2-bin.tar.gz

III. Move the File of HBase

mv hbase-1.0.0-hadoop2 hbase

IV. Set HBase config

cd hbase

vim conf/hbase-env.sh

export JAVA_HOME=/usr/lib/jvm/jdk

export HBASE_HOME=/home/hduser/hbase

hadoop fs -mkdir /hbase

vim conf/hbase-site.xml

50

Appendix 51

<property>

<name>hbase.rootdir</name>

<value>hdfs://hadoop-master:9000/hbase</value>

</property>

<property>

<name>hbase.cluster.distributed </name>

<value>true</value>

</property>

<property>

<name>hbase.zookeeper.quorum</name>

<value>Test-master</value>

</property>

vim conf/regionservers

hadoop-master

node01

node02

node03

node04

node05

node06

node07

node08

node09

node10

node11

node12

III. Copy jar to hbase/lib

rm lib/hadoop-*

cd /home/hduser/hadoop/share/hadoop

cp *.jar /home/hduser/hbase/lib/

IV. Copy hbase to all nodes

scp -r /home/hduser/hbase node01:/home/hduser

scp -r /home/hduser/hbase node02:/home/hduser

scp -r /home/hduser/hbase node03:/home/hduser

scp -r /home/hduser/hbase node04:/home/hduser

scp -r /home/hduser/hbase node05:/home/hduser

scp -r /home/hduser/hbase node06:/home/hduser

scp -r /home/hduser/hbase node07:/home/hduser

Appendix 52

scp -r /home/hduser/hbase node08:/home/hduser

scp -r /home/hduser/hbase node09:/home/hduser

scp -r /home/hduser/hbase node010:/home/hduser

scp -r /home/hduser/hbase node011:/home/hduser

scp -r /home/hduser/hbase node012:/home/hduser

bin/start-hbase.sh

V. HBase monitoring website

hduser:60010

	摘要
	Abstract
	致謝詞
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivation
	1.2 Contributions
	1.3 Thesis Organization

	2 Background Review and Related Works
	2.1 Big Data
	2.2 Hadoop Ecosystem
	2.2.1 Hadoop
	2.2.2 HDFS
	2.2.3 Spark

	2.3 Portal and Portlet
	2.4 OpenCV
	2.5 Virtualization
	2.6 Related Works

	3 System Design and Implementation
	3.1 System Design
	3.2 System Implementation
	3.2.1 Virtualization Platform Installation and Virtual Machine Setup
	3.2.2 Hadoop Ecosystem Installation
	3.2.3 Liferay Portal server and Integrated Development Environment Installation
	3.2.4 OpenCV Environment Setup
	3.2.5 Liferay Portal, Portlet Development and Virtual Machine Image File Export

	4 Experimental Results
	4.1 Experimental Environment
	4.2 Experimental Results
	4.2.1 Virtual Machine Deployment in Different Virtualization Environments
	4.2.2 Functionality Validation of Portlets
	4.2.3 Performance Comparison between the Portal and the Command Line
	4.2.4 Performance Comparison between Hadoop and Spark
	4.2.5 OpenCV Environment Validation

	5 Conclusions and Future Work
	5.1 Concluding Remarks
	5.2 Future Work

	References
	Appendix
	A Hadoop Installation
	B Spark Installation
	C HBase Installation

