B R U RE L

2T & mEitiRE o Hadoop 2 g 6 ke r v
The Implementation of a Hadoop Ecosystem

Portal with Virtualization Deployment

FHBALHELEMBXERELE

ZERIBEE HRA

REBEAREE:
MEA B o K FRZEX

ELEAE I F e Hadoop £ E A AT 4

BAERUEE HORALBMRIRE -

e L - L L
¥ B 74 54

I SN |
L A

% B

e nn THEREE L,

EE

FERE 106 £ 6 A 27

£ &

REERFHAF B FR AR FLEOFE L2 F ARLARE & o
o R ERFRAFTL 04T IR E g Rs A kARG o p ?ﬁ%%?ffé_f
ek B < i £ * Hadoop 2 Spark k& {7 AT 4 47 » e M SaTR B §
TEH G - Tk EFapas <‘bm§’ni)§i Ho R kG - R
VOO RRTR B AR 0T R Mg~ dp £ EEJRITHYERY R L e R

R X G AT ié“#ﬂﬁiﬁn%mﬁ%ﬁ AT CEET T8 5 e e
F/%@P’:A\ 7N K # < 1% Liferay Portal § %1 % & Hadoop ¥ Spark E
T

EFHT ST F 06 - X {- HRERFRI SaRT R 445
BEEN LB Y o RR Y FASE S QR WEE R TR SHRFE
EFHOLIE - FIRETIAPTRY 515 b pro o H1 EFEY %
RS PR RE I E BT SRS TR o Ak T BB

:
R AHEERTRY X A0 HFERFTHAILL Farcil o # 7% 5
L HiBench spli# £ PR ERER T F 2 TR AFFE $TRY ¥ 15 H
EEFHAIL FRarci T S B PR - b d NHRF T AT L
EATREY 2R OpenCV ehTh s > & F % % b3 B (bl 2 25 %%
OpenCV 858 & & o sb¢ chw # 3 o

MaEz: EE FAT 5 Portlet » g #i » Hadoop » Spark -

Abstract

The requirements of research, analysis, processing and storing of big data are
more and more because big data is increasingly important for development in
the fields of information technology, finance, medicine, etc. Most of the big data
environments are built on Hadoop or Spark. But the constructions of these kinds of
big data platform are not easy for normal users because of the lacks of professional
knowledge and familiarity with the system. And users usually have to learn how to
use the command line for operations. To make it easier to use the big data platform
for data processing and analysis, we implemented the web user interface combining
the big data platform including Hadoop and Spark. And we packaged the whole big
data platform into the virtual machine image file along with the web user interface
so that users can construct the environment and do the job more quickly and easily.
We provide the convenient web user interface, reduce the difficulty of building a
big data platform and save time but do not reduce too much performance of the
system. And we also made the comparison of performance between the web user
interface and the command line using the HiBench benchmark suit. In addition,
we have also built the OpenCV library in our system for our related research. The
functionality of OpenCV in our system is validated by performing the Particle
Image Velocimetry (PIV) applications.

Keywords: Big Data Platform, Portlet, Virtualization, Hadoop, Spark.

ii

3R

AR KA A B TR g Aenies £ 0 AL R S R el o R
Be s A VEREFEFE S EHEE 7o 7 AR Y FATEIE Y

MP R BB LB s 220 - R ARTYZIAFHY o

Ep;qﬁgﬁ;pmﬁ%,xﬁ@ﬁﬂmﬁ%%ﬁﬁﬂﬁﬁi°11§%

#W%ﬁf' EFF R BAPFEEART LT B RF
Pf’ﬁﬁﬁx TFER A EAFEE LTINS U EEREART O E o
£ay

;iﬁﬂ?ﬂ [ERg1 e Ak
K NN é‘f’j?’(% o

;Em—» e yka%‘jpa A ?{%-‘\'ﬂ m‘_;ﬁ mﬂh}i ’ 11—11—bga?

LR AT L R A TR BIR LR £ P KRR RE KR
PHEZTRREANGREY v E s AU RN AR R B B4 3 5 auEk o

?EE\“ ;E-ﬂ #‘S—Eé\r]"? 1/12 E/I/f { /af’f ’ § 4‘ ?‘:_. ““ gﬁzj‘o

o TZ}Q;&T@MQ &-&x l;'?)J-E v .um;&ﬂi Jvf‘t-}?‘-l N BRSO 4% ﬁ-l IVEIEEE fg'.rE'fv

'__,E:r;‘i Ao é_,g:rv‘n P B iR AR R T »x;gjr:,,gz,g:aggi v AR ;—"D%’zf 0

Fos RREHMHADF L LPRLBHE BRFEAFYEFL LR T AN
EINARBMHEFES fp8h o EHTRFDOPLEF I RPIpHFEIL I
NI R E-F R LI S

Bt o 4 B ER G REHAE L EFANFL o A RE NPT o 5
G BT A AR A i 4 o G H AL Y AR S B A

SRR 3 Lak IR B i

LA FRIAE S BT ERRE Bae - Fn &0

ok

iii

Table of Contents

&
Abstract

B

Table of Contents
List of Figures
List of Tables

1 Introduction

1.TQMotRalian .0 Gl .~ —. . . A4 WA §J & = . . .
1.2 Contributions
1.3 Thesis Organization

2 Background Review and Related Works

2.1 BigData.
2.2 Hadoop Ecosystem
221 Hadoop
222 HDFS
223 Spark ...
2.3 Portal and Portlet o
2.4 OpenCV e
2.5 Virtualization
2.6 Related Works

3 System Design and Implementation

3.1 System Design

3.2 System Implementation
3.2.1 Virtualization Platform Installation and Virtual Machine

Setup

3.2.2 Hadoop Ecosystem Installation
3.2.3 Liferay Portal server and Integrated Development Environ-

ment Installationo 0oL

iv

ii

iii

iv

vi

viii

TABLE OF CONTENTS v
3.24 OpenCV Environment Setup 20
3.2.5 Liferay Portal, Portlet Development and Virtual Machine
Image File Export 22
4 Experimental Results 26
4.1 Experimental Environment 00000 26
4.2 Experimental Results 0L 28
4.2.1 Virtual Machine Deployment in Different Virtualization En-
vironments oo 28
4.2.2 Functionality Validation of Portlets 30
4.2.3 Performance Comparison between the Portal and the Com-
gond Line.0 .. N - & - 32
4.2.4 Performance Comparison between Hadoop and Spark 35
4.2.5 OpenCV Environment Validation 35
5 Conclusions and Future Work 38
5.1 Concluding Remarks, 38
5.2 Future Work 39
References 40
Appendix 44
A Hadoop Installation 44
B Spark Installation 48
C HBase Installation 50

List of Figures

1.1

2.1
2.2
2.3
24
2.5
2.6
2. [

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12

Search interest of bigdata 1
[@Wsof b data 0 L o - & 5
Hadoop architecture 7
HDFS master-slave architecture 7
Spark architecture 9
Example of portal and portlet layout 10
Funcitons of Liferay Portal 11
Virtualization 13
System architecture 17
System interactionso 18
Intel Processor Identification Utility 19
New virtual machine creation 20
Hadoop status 21
Hadoop cluster status 21
Spak statuSe, ¥ 4. . . F ARMER N W 5 &wW. 22
Liferay IDE 22
Installation result of OpenCV 23
Liferay Porlet web UL 23
Virtual machine export 24
Virtual machine in Oracle Virtualbox 24
Virtual machine in VMware Workstation 25
Process of VM image import on VMware Workstation 28
Process of VM image import on Oracle Virtualbox 29
Portlet: HDFS file upload 30
HDFS browser (upload destination) 30
Portlet: Hadoop job submission 31
HDFS browser (output directory) 31
Portlet: Command excution 32
Result of building HiBench 32
Process of running HiBench 33
Sorting performance comparison 34
Word count performance comparison 34
Terasort performance comparison 35

vi

LIST OF FIGURES vii
4.13 Performance comparison between Hadoop and Spark (command) 36
4.14 Performance comparison between Hadoop and Spark (portal) 36
4.15 PIVresult -river Lo 37
4.16 PIV result - campus 37

List of Tables

4.1 Personal computer hardware specification 27
4.2 Laptop hardware specification 27
4.3 Configurations of virtual machine 27
4.4 Software information L. 27
4.5 Average time of VM image import on PC 29
4.6 Average time of VM image import on laptop 29

viii

Chapter 1

Introduction

Big Data is becoming more and more important today. Due to the rapid devel-
opment of computers, networks and information services, a large amount of data
has been generated [1] [2]. A variety of theories, researches, and applications of
big data flourish and become a trend. Big data were only accessed by scientists,
researchers or large companies before, but it is getting closer to us now and more
related to human being and many types of fields. Many industries see it as an im-
portant resource. The relevant researches, development, storage, applications and
environments are constantly expanding and updating because of the development
of big data. It is a good time for people who are willing to get into the field of big

data because there are more and more resources available.

® big data

Search term

h S NS
Vg

FIGURE 1.1: Search interest of big data [3]

Chapter 1 Introduction 2

1.1 Motivation

Although there are many resources about big data and many applications avail-
able, normal users may have some problems using big data tools at present. The
problems may be how to prepare the environment suitable for big data, how to
set up the whole environment, there is some possibility during the installation,
unfamiliar with the command-line interface of Linux and the big data tools, etc.
Because of the need for big data research, we want to address these situations
that are present. We want to do the researches and develop a way to simplify
the pre-operation and installation process of the big data platform. The way that
can deploy the big data platform directly in the existing environment, doesn’t
require the dedicated devices, let users choose the environment they are familiar
to, makes users operating the tool intuitively, reduces the chance of error and
makes the different types of jobs executing together. Besides, we want to make
the file management, job status monitoring and job scheduling more easier and

the capability for advanced users to adding functions by themselves.

1.2 Contributions

In this work, we implemented the web user interface applying to Hadoop ecosys-
tem. Hadoop platform is widely adopted to big data analysis, processing and
storage. The web user interface provides the user-friendly way to executing many
kinds of jobs, operations and management. Besides, the installation of Hadoop
ecosystem is time consuming and possible to make some error to normal users.
We package the web user interface along with the whole Hadoop ecosystem into
a virtual machine image file. It can be apply to different kinds of environments,
make users deploy the whole system in the environment they want, simplify the
process of building the system to save time and reduce the chance of error. The
web user interface for this system is modular and allows users to modify or add

the desired functions based on their needs by introduce Liferay Portal into our

Chapter 1 Introduction 3

system. We did some experiments to compare the performance between using the

portal and the command line, Hadoop and Spark in our system.

1.3 Thesis Organization

In Chapter 2, we will describe the background information and previous studies
related to our work, including big data, Hadoop ecosystem, the portal and the
portlet, OpenCV, and the virtualization technology. In Chapter 3, the system
architecture and the implementation are introduced. Chapter 4 shows the ex-
periments done in our system, including the experimental environment and the
experimental results. And we summarized our work and the future work of this

thesis in Chapter 5.

Chapter 2

Background Review and Related
Works

In this chapter, the background information related to our work, including big
data, Hadoop ecosystem, portlet, OpenCV, and the virtualization technology are

introduced.

2.1 Big Data

Big data means the data sets which are hard to be processed with traditional
methods or tools owing to the large volume or the high complexity. Big data can
be the data collected from sensors, log files generated while servers are running,

or the user behavior recodes and posted information on the Internet.

The term was defined as the combination of 3Vs: Volume, Velocity and Variety
[4]. These are the generic big data properties. Nowadays, the big data system
definition is extended to the following 7Vs [5]:

o Volume: the amount of data which is generated and stored; The data quan-

tity can easily reaches tens of TB today.

» Velocity: the speed of data generated and processed
4

Chapter 2 Background Review and Related Works 5

Variety: the types of data; The data can be unstructured or in various

formats like text, picture, video, 3D model, and so on.

Veracity: the accuracy of data; There may be incorrect parts or noises need-

ing to be filtered in the data.

Variability: the uncertainty of data; The similar or the same value of data

may have different meaning.

Visualization: the ways of presenting results of processing; The results should

be easily understood by using charts, graphs or other visual presentations.

Value: the usefulness or importance of the results got from the data; The

value is actually what we want to get from doing many thing to data.

[Volume]

| Variety) [~ terabyte | Velocity)

* structured * records/arch | |« patch

* unstructured * tables/files * real/near-time

* multi-factor * distributed * processes

= probabilistic streams

* linked

* dynamic Veracity]
(Variability trustworthiness

authenticity
origin, repudiation
availability
accountability

* changing data
* changing model
* linkage

(Value | [visualization |

* correlations * bar chart
* statistical * report
* events * readable

* hypothetical

FIGURE 2.1: 7 Vs of big data [5]

Chapter 2 Background Review and Related Works 6

2.2 Hadoop Ecosystem

2.2.1 Hadoop

Apache Hadoop [6] [7] is a open-source software framework for big data processing.
Owing to its reliability, scalability and distributability, Hadoop can provide pro-
cessing capacity by integrating the computational resource of the thousands nodes
in the cluster. The implementation of Hadoop is based on two research results
published by Google, Google Distributed System (DFS) in 2003 and MapReduce
programming framework in 2004. The architecture of Hadoop is shown in Figure
2.2. The Hadoop framework is constructed on the Hadoop Distributed File System
(HDFS) and it manage jobs and resource by YARN. The MapReduce [8] program-
ming framework is implemented to operate the distributed processing by dividing
the files into the same block size and distributing them to nodes [9]. Hadoop

includes these modules:

o Hadoop Common: Java libraries and the common utilities;
« Hadoop Distributed File System (HDFS): a distributed file system of Hadoop;

o Hadoop YARN: a framework for job scheduling and cluster resource man-

agement;

o Hadoop MapReduce: a YARN-based programming model for big data pro-

cessing.

2.2.2 HDFS

The Hadoop Distributed File System (HDFS) is a distributed file system that
provides data storage with reliability, scalability and fault tolerance [10]. It is
designed to be deployed on low-cost hardware. HDFS is suitable for big data
applications because it provides high-throughput and streaming data access and

can store data of different kinds of format. HDFS has master-slave architecture

Chapter 2 Background Review and Related Works 7

Applications

HBase MapReduce

YARN

HDFS

Cluster Servers
10 1O
11 [

i

FIGURE 2.2: Hadoop architecture

including a single namenode and multiple datanodes. In the HDF'S, data is divided
into some blocks and distributed to nodes. If there are some datanodes down,
HDFS can recovery the data with the backups on the other working datanodes [11].

Figure 2.3 shows the HDFS master-slave architecture.

NameNode

%\

DataNode0O1 DataNode02 DataNode03

block01 block02 block03

block02 block03 block04

FIGURE 2.3: HDFS master-slave architecture

Chapter 2 Background Review and Related Works 8

2.2.3 Spark

Apache Spark is an open-source cluster-computing framework. It was originally
developed by AMPLab at University of California, Berkeley as a distributed data
processing framework. The Spark project was donated to the Apache Software

Foundation in 2013 and became a Top-Level Apache Project in 2014.

Spark provides the application programming interface (API) centered on the
data abstraction called the resilient distributed dataset (RDD) distributed to the
nodes in the cluster with fault tolerance for programmers. Spark is designed to
improve the performance of MapReduce by offering the in-memory processing. The
programs run with Spark can be up to 100 times faster than Hadoop MapReduce
in memory or 10 times faster on disk. The features of RDD are conducive to
the implementation of iterative algorithms, accessing datasets multiple time using
loops, and analyzing data interactively. For machine learning systems, the iterative
algorithms are the training methods. Thus Spark is the framework suitable for

machine learning.

Spark requires a cluster manager and a distributed storage system for its op-
erating environment. Spark supports three modes for cluster management: stan-
dalone, Hadoop YARN, and Apache Mesos. For distributed storage, Spark can link
to various interfaces including Hadoop Distributed File System (HDFS), MapR
File System (MapR-FS), Cassandra, OpenStack Swift, Amazon S3, and so on.
The programming languages supported by Spark include Java, Scala, Python and
R. Spark also can be run in pseudo-distributed local mode convenient for testing
or development. In this mode, Spark runs all the applications on a single machine.

The components of Apache Spark are listed below:

« Spark Core: the base engine providing the distributed task scheduling, ba-
sic input and output operations, and the RDD abstraction for the Spark

platform;

o Spark SQL: a module supporting querying structured and semi-structured

data by query languages;

Chapter 2 Background Review and Related Works 9

» Spark Streaming: a extension of Spark Core providing the real time process-

ing with scalability, high throughput and fault tolerance;
o MLIib: a scalable library of machine learning algorithms;

o GraphX: a graph computation engine supports the massively parallel algo-

rithms.

S APACHE&

oark

sparksaL | _ SPark

Streaming

Spark Core

FIGURE 2.4: Spark architecture

2.3 Portal and Portlet

A portal [12] [13] is a specially designed website with specific contents and ap-
pearance. It gathers resource and information together from the system or other
source and presents them to users on the single entry point with consistent way.
For users, they can easily obtain resource and information and use the applications

from one location.

A portal is consists of several portlets. A portlet is a pluggable user interface
software component. It is based on Java, can be deployed, configured and displayed
in the web container. A portlet can be regarded as a miniature web application.
It is managed by portlet container, used to process the requirement from the
container and generate contents dynamically. While initializing a configurable

porlet, the permission of the portlet can be set so that confirming whether the

Chapter 2 Background Review and Related Works 10

user can configure the portlet or not. Portlets can be set to transmit information
to each other. Some examples of portlet applications are e-mail, weather reports,
discussion forums, and news. Portlets are useless without a portal because they

need it to be deployed on.

One of the main jobs of a portal is to gather the contents generated by portlets.
Multiple portlets can be displayed on a portal. Users can choose which portlets
they want to see and customize the layout. A portal provides the identity verifica-
tion, the authorization and the management tools for the system administrators.

Figure 2.5 shows the example of portal and portlet layout.

Portal
4)
Portlet
Portlet
Portlet
\ J

FiGURE 2.5: Example of portal and portlet layout

Liferay Portal is Java-based web. It is convenient for Java programmers be-
cause Hadoop and Spark also use Java programming language. The programmer
can be concentrate on Java programming and develops the Hadoop applications
and portlets. If necessary, HTML, CSS and JavaScript also can be used to develop
the portlets. Liferay Portal provides functions not only those mentioned above but

some additional components. Figure 2.6 shows the functions of Liferay Portal.

2.4 OpenCV

OpenCV (Open Source Computer Vision Library) [15] [16] is an open-source and

cross-platform, computer vision and machine learning software library. It was

Chapter 2 Background Review and Related Works 11

WEB COLLABORATION
EXPERIENCE

Document
Library

FOUNDATION @ sioes

KERNEL INDEPENDENT

APPS

FORMS &

WORKFLOW . Roles Audience

Targeting

Cwnamic
Data Lists

Calendar .

o
Connector

. Knowledge
Base

FIGURE 2.6: Funcitons of Liferay Portal [14]

started by Intel and is released under a BSD license so that it is free for commercial
and research purposes. OpenCV was designed to provide a common infrastructure
for computer vision applications and accelerate the use of machine perception in

the commercial products.

OpenCV is the leading open-source library for computer vision, image pro-
cessing and machine learning. It was designed for computational efficiency and
real-time applications. OpenCV was written in optimized C and C++, and it
can be linked to C, C++, Python, Java and MATLAB. The operating systems
supported by OpenCV include Windows, Linux, Mac OS, Android, iOS, and so

on. OpenCV also supports the multi-core operations.

OpenCV is used widely in the field of image processing, image and video

Chapter 2 Background Review and Related Works 12

reading and saving, matrix operations, statistics, automated inspection and mon-
itoring, robot and driver-less car navigation and control, medical image analysis,

image and video search and retrieval, and so on.

OpenCV has a modular structure. The following are some modules OpenCV
provides [17]:

o Core functionality: a compact module defining basic data structures;

o Image processing: an image processing module that includes linear and non-
linear image filtering, geometrical image transformations, color space con-

version, histograms, and so on;

» video: a video analysis module that includes motion estimation, background

subtraction, and object tracking algorithms;

o calib3d: basic multiple-view geometry algorithms, single and stereo camera
calibration, object pose estimation, stereo correspondence algorithms, and

elements of 3D reconstruction;
o features2d: salient feature detectors, descriptors, and descriptor matchers;

 objdetect: detection of objects and instances of the predefined classes (for

example, faces, eyes, mugs, people, cars, and so on);
e highgui: an easy-to-use interface to simple UI capabilities;
« Video I/O: an easy-to-use interface to video capturing and video codecs;

o gpu: GPU-accelerated algorithms from different OpenCV modules.

OpenCV is adopted by many companies, research organizations, and govern-
ment organs like Google, Yahoo, Microsoft, Intel, IBM, Sony, Honda, Toyota.
OpenCV is maintained by a non-profit foundation OpenCV.org.

Chapter 2 Background Review and Related Works 13

2.5 Virtualization

Virtualization [18] [19] is the technology that can abstract, manage, and redis-
tribute the computing resources like CPU, memory, storage, network, applica-
tions, and so on. Virtualization can make the computing resources more flexible
and scalable, and reduce the costs. In this work, we use the virtual machine (VM)
an application of the virtualization technology to build our system in it. We can
configure the computing resource of a virtual machine and package it into a image
file easy to be move or copy to another environment. A virtual machine contain
the whole operating system and applications in it. The resource of a virtual ma-
chine can be reconfigured according to the resource in the environment. Figure

2.7 shows the architecture of virtualization.

Systems/ Systems/ Systems /
Applications Applications Applications

Virtualization Layer

Computational Computational Computational
Resources Resources Resources

FIGURE 2.7: Virtualization

Another kind of virtualization is desktop virtualization. Users can use the
remote virtual desktop environment via network. That can share the computing
resources of the server to multiple users at the same time. And the computing

resources are centralized and easy to be managed.

Chapter 2 Background Review and Related Works 14

2.6 Related Works

Xiugin Lin et al. [20] in 2013, Ilias Mavridis and Helen Karatza [21] in 2017 all
successfully applied Hadoop and Spark to analyze Log. For big data analysis,
Hadoop is a good solution; the Apache Hadoop is built on top of HDFS. Hadoop
provides an off-line batch computing framework. Spark is compatible with Hadoop
HDFS; Spark uses in-memory and distributed memory technology, and it allows
repeatedly operations of cache data in memory since Spark in-memory primitives
provide performance up to 100 times faster for certain applications. Spark has a
higher speed than Hadoop in processing capability, and access to data on YARN.
According to the experimental results in the works, we compare the performance

between Hadoop and Spark.

Chien-Heng Wu et .al [22] in 2016 studied and used the virtualization tech-
nology to develop their small size personal big data platform for developers and
made the platform easy to be deployed. They performed the comparison between
the virtual machine and their large-scale Hadoop cluster. The result of the work
showed the virtual machine is an ideal platform for development and the large-
scale Hadoop cluster is great for production runs. According to the result in that
work, we build not only the Hadoop ecosystem but also the OpenCV library and
Liferay Portal on it. We want to make the platform more easy to be used. And

we performed some test on the platform.

Shengsheng Huang et .al [23] in 2010 proposed the realistic and comprehensive
benchmark suite for Hadoop called HiBench. And they used that to evaluate
the Hadoop framework including the speed, throughput, HDFS bandwidth, CPU,
memory, disk I/O usage. And the benchmark suite has the ability to export the
graphical charts. HiBench supports used by evaluate the Hadoop and Spark now.
It includes different kinds of workloads, like sort, wordcount, TeraSort, machine
learning, SQL, web search, graphic benchmark, streaming benchmark, and so on.
In our work, we use HiBench to evaluate the performance of our Hadoop ecosystem

and compare the performance between Hadoop and Spark.

Chapter 2 Background Review and Related Works 15

Timofei Epanchintsev and Andrey Sozykin [24] in 2015 presented the approach
to use OpenCV library for distributed image processing on a Hadoop cluster. That
is based on the MapReduce Image Processing (MIPr) framework they developed
before. The performance and the scalability of that framework were evaluated.
We refer to the concept of that work, build the OpenCV library and execute the

application to test if OpenCV works in our system.

T. Lakshmi Siva Rama Krishna et .al [25] in 2016 proposed the customized
web user interface (CWBUI) for Hadoop Distributed File System that users can
perform file system operations to and from HDFS easily by clicking the buttons
displayed on the screen rather than using shell commands. They built a Hadoop
cluster with ten nodes and modified the original web user interface of Hadoop
Distributed File System. They used servlets and Java Server Pages (JSP) to
develop the customized web user interface. In our system, we use Liferay Portal
server and develop portlets for our web user interface. And the functions of our
web user interface include not only performing file system operations but also

running Hadoop and other applications.

Chapter 3

System Design and

Implementation

The architecture and the implementation of our system are introduced in this
chapter. Our system is based on Hadoop ecosystem and packaged into virtual

machine images along with the web user interface.

3.1 System Design

The bottom layer of the software part of our system is the hypervisor of the
virtaul machine, Oracle Virtualbox and VMware Workstation are tested in this
work. And the Ubuntu desktop operating system is installed on the hypervisor.
Then the Hadoop ecosystem that includes HDFS, Yarn, ZooKeeper and Spark is
built in Ubuntu. The Hadoop applications and the Liferay Portal are based on
Hadoop and Liferay server. Users can execute big data jobs through the portal
easily. Figure 3.1 shows the architecture of our system. The following are the

portlets on the Liferay Portal web user interface in our system:

e job submission: executing Hadoop applications with given jar file and re-

quired arguments;

16

Chapter 3 System Design and Implementation 17

o file upload: uploading the given file to the destination path on Hadoop
Distributed File System;

« sequential file packaging: packaging the given files like images into a sequen-
tial file and uploading it to the destination path in Hadoop Distributed File
System;

« file management: presenting the files and directories on Hadoop Distributed

File System.

¥ Liferay Portal Web User Interface

Job File Uploadin Sequential File
Submission P g File Packaging Management

h daap

0 "
Sporé\z CQ | LIFERAY

OpenCV server

Guest OS (Ubuntu)

N7 VirtualBox Hypervisor ({5l vmware

Host OS

FIGURE 3.1: System architecture

While a user executes jobs through the portlets on the Liferay Portal web user
interface, the portlets can not only communicate with each other but also pass the
commands to the Hadoop ecosystem, the OpenCV library and the operating sys-
tem and receive the returned information to run the applications. The interactions

of the components in the system are shown in Figure 3.2.

3.2 System Implementation

At the first, we must to check if the virtualization technology, like Intel VT-x or
AMD-V, is supported by the CPU of the computer. That can be confirmed by

Chapter 3 System Design and Implementation 18

o

. Liferay Portal Web User Interface

Portlet <> Portlet

$ A
0
{‘(g o

b OpenCV

A 4
Guest OS (Ubuntu)

FIGURE 3.2: System interactions

configuring the BIOS settings or using the specific software like Intel Processor

Identification Utility [26] shown in Figure 3.3.

3.2.1 Virtualization Platform Installation and Virtual Ma-

chine Setup

After the virtualization technology support was confirmed, we install the virtual-
ization platform and its extension component: Oracle Virtualbox with Extension
Pack and VMware Workstation with VMtools. The extension components are
used to enhance the supportability for the resource of the physical machine. The
timings of installing the extension components are different depending on the ven-
dors. Oracle Virtualbox Extension Pack can be installed before adding a virtual
machine into the repertory but VMware Workstation VMtools only can be con-

figured after the operating system of a virtual machine is installed.

Chapter 3 System Design and Implementation 19

[EE Intel(R) Processor Identification Utility &J
File E View Help

Frequency Test CPU Technologies | CEUID Dats |

IntelR Processor Identification Utility

Intel(R) Core(TM) 17-2600 CPU @ 3 40GHz

Supporting Advanced Intel Processor Technologies
InteliR) ¥irtualization Technology

Intel(E) Hyper-Threading Technology

Intel(R) 64 Architecture

Other Intel Technologies Sapported

T Enhanced Lntel SpeedStep(R) Technology Yer Intel(R) Advanced Vector Exfensions Tes
- Intel(R) S3E Yes Intsl(R) AES New Instroctions Tes
J "EY /vl InteliR) S5E2 Yer Intel ¥WT- with Extended Page Tables Tes
- ?5/ i Intel(R) SSE3 Fes
’a / Intel(R) SSE4 Vs
"‘-\. a‘“—
4 2
L
f\ Intel processor mymbers sre not a measure of performance. Processor numbers differentiate features within each processor
= L&mﬂy, not across different processor families. See http:dwww intel comiproducts'processor_number for details.

FIGURE 3.3: Intel Processor Identification Utility [26]

While the virtualization platform is done, we can add a new virtual machine
and configure the resource for it, such as the number of the cores of the virtual
CPU, the size of the memory, the capacity of the virtual disk, the guest operating
system, the network settings, the display and so on. Figure 3.4 shows the process

of creating a new virtual machine on Oracle Virtualbox.

3.2.2 Hadoop Ecosystem Installation

After booting up the virtual machine and the installation is finished, we install
the Java Development Kit first and set the SSH key for Hadoop. Then we build
Hadoop, Yarn, HDFS, HBase, Spark, Zookeeper and the environment parameters
must be set. Figure 3.5, 3.6 and 3.7 show the status of Hadoop and Spark after
the services has been started successfully. In this work, we build the Hadoop

ecosystem with the Cloudera CDH 5.5.1 package [27].

Chapter 3 System Design and Implementation 20

e =Erxy

@'“I’ EIE- ! Oy | ([tHREEE

gD HEEE
OF I

ERE AR -
B0 R

¥y
BH(A): DigDats \
24

$BRUT): [Linux | [P

HEAR (V) [Ubunt (64-bit)

i)
i 2048 2] MB
4 MEB 12288 ME

B

O A RS D)

@ ZLRMERL ERFIELE (C)

O (ERRAERERERZ D)

7T
o

st [mw || Eu

FIGURE 3.4: New virtual machine creation

3.2.3 Liferay Portal server and Integrated Development

Environment Installation

Next, the Liferay Portal bundle with Tomcat server is required to be downloaded.
After unzipping the package and running the installation batch file, the Liferay
server will be installed and started up in several minutes. The following are Eclipse,
Liferay IDE plugin for Eclipse and Liferay server. The Liferay development envi-
ronment is combined with Eclipse, the server can be easily controlled and portlets
can be developed through Eclipse. Figure 3.8 shows the Liferay IDE integrated
with Eclipse.

3.2.4 OpenCV Environment Setup

The last step is building and compiling the OpenCV library [28]. After download-
ing and unzipping the OpenCV library package, installing the required software

Chapter 3 System Design and Implementation

21

Overview

adoop

Datanodes Datanode Volume Failures Snapshot Startup Progress

Overview ‘master-9000’

Started:
Version:
Compiled:
Cluster ID:

Block Pool ID:

Summary

Security is off.

Safemode is off

(active)

Thu Apr 13 17:29:04 CST 2017

2.6.0-cdn5.5.1, re1581abbb6ab62b0ad 1h7ce6141d7280b10c53da
2015-12-02T18:40Z by jenkins from Unknown
CID-b525bc3b-1941-4548-a271-b8ad15cb0d01

BP-1995363909-140.110.20.15-1490951530694

614 files and directories, 485 blocks = 1,099 total filesystem object(s)
Heap Memory used 156.64 MB of 548 1B Heap Memory. Max Heap Memory is 889 MB.

Non Heap Memory used 57.32 MB of 58.41 MB Commited Non Heap Memory. Max Non Heap Memory is -1 B.

Configured Capacity: 1615 T8

Ficure 3.5: Hadoop status

G hERREED

All Applications

Logged in as: dr.who

~ Cluster Cluster Metrics
About Apps | Apps | Apps | Apps | Containers | Memory | Memory | Memory | VCores | VCores | VCores | Active | Decommissioned | Lost | Unhealthy | Rebooted
Nodes Submitted | Pending | Running | Compieted Running | Used | Total | Reserved | Used al | Reserved | Nodes Nodes Nodes | Nodes des
Applications 20 0 20 0 08 726808 0 2 0 3 i 0 [0
NEW savme Show 20 eniries Search
SUBMITIED Allocated
i D ~ | == Name ¢ Appication Queue StartTime FinshTime giie 5 Finaistatus o Conaness| CPU /?‘w‘;rcnaéfyd Progress ¢ "acking
s Vpe & s s S S veores | Memory u s
FALLED &
KILED application 1492075688159 0030 hduser mnist_spark py SPARK default FriApr14 FriApr14 FINISHED SUCCEEDED NA NA NA History
170038 17:01.00
Scheduler 40800 +0800
017 2017
» Tools application 1492075688159 0029 hduser mnist_spark py SPARK defaull FriApr14 FriApr14 FINISHED SUCCEEDED NA NA NA History
161102 16:11:23
0800 +0800
2017 2017
application_1492075688159_0028 hduser mnist_spark py SPARK default FriApr14 FriApr14 FINISHED SUCCEEDED NA NA NA History
135747 135808
40800 +0800
017 2017
application 1492075688159 0027 hduser mnist_spark py SPARK default FriApr14 FriApr14 FINISHED SUCCEEDED NA NA NA History
135327 13.5347
40800 +0800
2017 2017
application_1492075688159_0026 hduser mnist_spark py SPARK default FriApr14 FriApr14 FINISHED SUCCEEDED NA NA NA History
135035 135057
40800 +0800
2017 2017
application 1492075688159 0025 hduser mnist_spark py SPARK default FriApr14 FriApri4 KILLED KILLED NA NA NA History
134732 134936
40800 +0800
017 2017
application 1492075688159 0024 hduser mnist_spark py SPARK default FriApr14 FriApr14 KILED KILLED NA NA NA History
133918 134335
40800 +0800
017 2017
application 1492075688158 0021 hduser mnist data setuppv SPARK default FriApr14 FriApri4 FINISHED FAILED NA NA NA Historv

FicUure 3.6: Hadoop cluster status

packages and building the OpenCV library, the OpenCV library files must be gen-
erated if OpenCV is installed successfully. The installation result of OpenCV is
shown in Figure 3.9. So far, the related environment is built and can be used to

develop the Hadoop, Spark, portlet, and OpenCV applications.

Chapter 3 System Design and Implementation 22

quﬂ:f .o Spark Master at spark://master:7077

URL: spark://master 7077

REST URL: spark//master:6066 (cluster mode)
Alive Workers: 3

Cores in use: 24 Total, 0 Used

Memory in use: 91.1 GB Total, 0.0 B Used
Applications: 0 Running, 0 Completed
Drivers: 0 Running. 0 Completed

Status: ALIVE

Workers
Worker Id Address State Cores Memory
worker-20170414120114-140.110.20.16-34671 140.110.20.16:34671 ALIVE & (0 Used) 30.4 GB (0.0 B Used)
worker-20170414120114-140.110.20.17-45991 140.110.20.17:45991 ALIVE 8 (0 Used) 30.4 GB (0.0 B Used)
worker-20170414120114-140.110.20.18-34997 140.110.20.18:34997 ALIVE & (0 Used) 30.4 GB (0.0 B Used)

Running Applications

Application ID Name Cores Memory per Node Submitted Time User State Duration
Completed Applications
Application ID Name Cores Memory per Node Submitted Time User State Duration

FIGURE 3.7: Spark status

Liferay - test1-portlet/docroot /WEB-INF/src/com /test /NewPortlet1.java - Eclipse 1y B <) 1750 &
=g @ @ R P Y BN B0 RS F IO RIY G G-

|| B %2 JavaEE | [Liferay|

[# Package Explorer 22 = B [NewPortlet1java 52 = O E: outline B = = g
R - : package com.test; ERRE e -
s s e e 2| Sstmpert Java.io.surrerodaadors(] # com.test

> @ definitions

- v
* @ osgi/bootstrap/src 20. © Newportlet1

DO

> @@ portalimpl/src 21 * Portlet implementation class NewPortletl ©.init() : void
, Limpl, N . 22 %/ © . processAction(ActionRequest,
@ portal-impl/test/integration 23 public class NewPortletl extends GenericPortlet { o - doView(RenderRequest, Rende
» & portal-impl/test/unit 24 | - i)
» @ portal-pacl/src 255 public veid init() { o include(string, RenderRequest,
i 26 viewTemplate = getInitParameter("view-template”); < viewTemplate: String
> @ portal-service/src 27 } S log: L
= » @ portal-serviceftest/unit 28 ©°_log:Log)
g + & supporttomcat/src 295 public void processAction(= executeCommand(String) : Stri
ppor 30 ActionRequest actionRequest, ActionResponse actionResponse)
= e @ util-bridges/src 31 throws IOException, PortletException {
= > @ utiljavajsrc 32
BN > (= utiljava/test/unit , super (» act)i
> @@ utilslFaj/src 35
» @8 ytil-taglib/src 365 public void doview(
. X 3 ,)
ﬁ " =AJRE system Library [jdks] ol B throws ToBxception, PortletException { .
Sl b Servers XX = g B console 52 Hv =8 #antx = B
EI 2% 0 & ga = Noconsolesto displayat this time. PP %
Sl > (i Liferayv6.2 CE Server (Tomcat 7) at localhc >) bigdata-app-ext [bigdata-app-ex!
E ») bigdata-app-hook [bigdata-app-t
» &) bigdata-app-portlet [bigdata-apr
8o » Kl test1-portlet [testi-portlet/build
U Writable Smart Insert 24:1

FicUre 3.8: Liferay IDE

3.2.5 Liferay Portal, Portlet Development and Virtual Ma-

chine Image File Export

Liferay Portal is Java-based web. The portlets are developed in Java programming
language. If necessary, HTML, CSS and JavaScript also can be used to develop the
portlets. We implemented portlets that can perform Hadoop and Spark operations
including jar file execution, file uploading, file management and sequential file

packaging. The portlets are modular so they can be add into or remove from the

Chapter 3 System Design and Implementation 23

Linking CXX executable ../../binfopencv_perf_stitching
Built target opencv perf stitching

Linking CXX executable ../../bin/opencv_perf_gpu
Built target opencv perf gpu
root@master: /opt/opencv-2.4.4% |

F1cURrE 3.9: Installation result of OpenCV

Liferay Portal web page by the user. The Liferay Portal web page we implemented

is shown in Figure 3.10.

4 welcome - TIRERE x
@ | localhost c B & & |

> Admin = MySites = 0 (@ Portal Admin =

L]
[] ‘e o
/‘\. ':,\“ Vi - .
a2 OpenSocial Gadget ﬂg‘ %Ll' % k éﬁ }|%:‘|’ $§‘f\ Eﬁ% EI:% §§ a8 E\

Welcome

Welcome

W Hello Velocity
z You are signed in as Portal Admin. jar file file source
NewAPl.ia e/hduser/Testimage.

22 IFrame

22 Web Proxy o argl upload destination

Welcome to Liferay Portal

Community Edition 6.2 CE GAG arg2
(Newton / Build 6205 / January 6,
20186).

Upload

v v v v

Result: NULL
arg3

FicUure 3.10: Liferay Porlet web Ul

We package the whole environment including the Ubuntu desktop operating
system, the Hadoop ecosystem and the Liferay Portal web user interface into
a virtual machine image file. Figure 3.11 shows the process of virtual machine
export. The virtual machine image file can be deployed on Oracle Virtualbox and
VMware Workstation, and the computing resource of the virtual machine can be
configured according to the environment which the virtual machine be deployed

in. Figure 3.12 and 3.13 show the results of the deployment.

Chapter 3 System Design and Implementation 24

H:':.Eﬁ#ﬁﬁﬁ
o 3
% IF FE A HEIREEE (M) ERESRER
| BigData-VIM-Platform-Portlet-OpenCV | = “HEE
=i=E
e ZE BigData-VM-Platform-P_..
P =2
@ EJURL
@ =T
@ EEE URL
@ M=
@ =it
@ =E
FHEERTER)
TEE(F): CMIserdbigdataDocumentsiBizgData- Vh-Platform-Porflet-OpenCV ova Iﬁ
#270): [QVE LD - om
[C] BB Manifest HZE M)
[ismws | (EFmpE | [B || B J -

Figure 3.11: Virtual machine export

¥ BigData-VM-Platform (535 1) [T] - Oracle VM VirtualBox [E=ETo ™)
A% EEAE B2 @\ S 88

é "4 Welcome- THREHS x (g

& @ localhost:8080 vie|Qs wBe ¥ A9 =

=
;« B BIGﬂ ATA TRENSAEREEMETE

E Welcome

eeeee
~
= ORACLE
y You are signed in as Portal Admin. ar file —_—
VM

WordCountNewAP! jar

[~ E1- IR argt

i; file://foptiavaibig
.

@ rtualBox

Welcome to Liferay Portal Community Edition 6.2 CE GAB
(Newton / Build 6205 / January 6, 2016). arg2

file://optjavarbigdata-software-p

E

PP EE E O E R

FIGURE 3.12: Virtual machine in Oracle Virtualbox

Chapter 3 System Design and Implementation

25

I e

n-|&|p oo
Welcome - THEHBAAEKIMMR
PN 7 Welcome - TREHE x

Fle Edit View VM Tabs Help

& - Mozilla Firefox

@ localhost:3080

e e P i | 12

Welcome

You are signed in as Portal Admin

Welcome to Liferay Portal Community Edition 6.2 CE GAG
(Newton / Build 6205 / January 6, 2016).

Ihe OIEE 1~

()
-_—
)
Uy
&
i
H
e
\[T
v

D=s|[E

Admin = MySites =

Portal Admin =

BRENTERETA

jarfile

WordCountNewAP!jar

argt

fle://lopt/javabigdata-software-p

arg2

filez//optjava/bigdata-software-p

E Welcome

[About VMuware Workstation 12 Pro

@

Product Information
Product; VMare® Workstaton 12Pr0
Verson: 12.5.6 buid:5528349

License Information

Stats: Licensed
Type: Volume
Exraton: Noexpiration

‘Addtional Information

Hostname: bigdata-PC.
Memory: 1220448

Host 0S version: Windows 7 Enterprise, 645t 6. 1.7601, Service Pack 1
Utlog fe:

VM log fe:

W locaton:

Copyriht © 1998-2017 Ware, Inc. Al rights reserved.

=]

Apache » Hadoop > | o }
{ I ‘other juri
SRS
oy | (st e s = argd
. ,
 ickiside or press CHIZG. [YoL 1. - Alw)

FIGURE 3.13: Virtual machine in VMware Workstation

Chapter 4

Experimental Results

In this chapter, we show the system and experimental results. In Section 4.1,
we introduce the experimental environment, including the hardware specification
and the software information. Our experimental results are presented in Section
4.2 in detail including the virtual machine deployment in different virtualization
environments, functionality validation of the portlets, performance comparison be-
tween using the portlets on the web user interface and command line, performance
comparison between Hadoop and Spark, and the last one OpenCV environment

validation.

4.1 Experimental Environment

In this work, we perform the experiments on a desktop personal computer to
simulate the user operating environment. The hardware specification is shown in
Table 4.1. The operating system on the computer is Microsoft Windows 7 SP1, and
the one in our virtaul machine is Ubuntu Desktop 16.04 LTS. The virtualization
platforms are Oracle Virtualbox and VMware Workstation. The software includes
Hadoop ecosystem, Liferay Portal, OpenCV and the benchmark suite HiBench.

The detail software versions are shown in Table 4.4.

26

Chapter 4 Experimental Results

TABLE 4.1: Personal computer hardware specification

CPU Intel Core i7-2600 (3.4GHz)

Memory DDR3 RAM 12 GB

Graphics | Intel HD Graphics 2000

Hard Disk | 1TB SATA IIT Hard Disk

TABLE 4.2: Laptop hardware specification
CPU Intel Core 17-3632QM (2.2GHz)
Memory DDR3 RAM 8 GB
Graphics AMD Radeon HD 7500M /7600M Series
Hard Disk 128GB SATA III SSD
External Hard Drive | 500GB HDD (SATA to USB 3.0)

TABLE 4.3: Configurations of virtual machine

vCPU | 4 cores

vRAM | 8 GB

vHDD | 48 GB

TABLE 4.4: Software information

Software Name Version

Oracle Virtualbox 5.1.18

VMware Workstation | 12.5.6

Microsoft Windows 7 SP1

Ubuntu 16.04 LTS
Hadoop 2.6.0 (CDH 5.5.1)
Spark 1.6.0

ZooKeeper 3.4.5 (CDH 5.5.1)
HBase 1.0.0 (CDH 5.5.1)
Liferay IDE 2.2.4 GAS
Liferay Portal 6.2.5 GA6
OpenCV 2.4.4

HiBench 6.0

Chapter 4 Experimental Results 28

4.2 Experimental Results

4.2.1 Virtual Machine Deployment in Different Virtualiza-

tion Environments

We deploy the virtual machines on Windows using Oracle Virtualbox and VMware
Workstation, then record each the time they took. The process of Virtual Machine
image file import on VMware Workstation is shown in Figure 4.1 and the one on

Oracle Virtualbox is shown in Figure 4.2.

The size of our virtual machine image file is about 7.73 GB. The each average
time of virtual machine image import is shown in Table 4.5 and 4.6. There are
two part of this experiment. One is using the desktop personal computer and the
other is using a laptop with an external hard drive. To simulate the scenario of
making the virtual machine portable, we put the virtual machine image file in the
external hard drive and connect it to the laptop. And the configurations of the
two virtualization platform of this part are set to store the vHDD on the external

hard drive.

VMware Workstation E‘E‘g
File Edit Miew VM Tabs Help ‘ - | ‘ | = |
Library x £} Home]
Q, Type here tosearch -

=ity Computer
1 Shared ViMis

WORKSTATION" 12
0 Vhware Waorkstation | a Connect to
Importing BigData-VM-Platform-1u50-windows-x64 er VMwa;ei:(CIDud

vmware

FIGURE 4.1: Process of VM image import on VMware Workstation

Chapter 4 Experimental Results

29

¢ Oracle VM VirtualBox EES = | B ||

BED | EmgEM =280
7

‘H;} LA 7 £oh PEEREElDy | (50 RIE)
N REEE E T |-t

O zism=mss

SR (TR -
FEREERE [&
[V¥ CEEAEREE :Importing app\iance'C\User's\bigdata\Downloads\BigData-VM-P,,w‘ [/!]

Importing virtual disk image BigData-VM-Flatfom-1u50-windows-x64-disk001 vindk' .. (2/3)

TT 25338, 11
@) DVD
P Use =R =
[C] EHFMATLF SR 60 MAC [Tt ©)
EREEREE
(BEmpE || ®mA || mH |

FIGURE 4.2: Process of VM image import on Oracle Virtualbox

TABLE 4.5: Average time of VM image import on PC

Hypervisor Time of VM image import
Oracle Virtualbox (5.1.18) ~173 s
VMware Workstation (12.5.6) ~338 s

TABLE 4.6: Average time of VM image import on laptop

Hypervisor Time of VM image import
Oracle Virtualbox (5.1.18) ~T55 s
VMware Workstation (12.5.6) ~1363 s

building the system and saving time.

The time importing the virtual machine image took is less than 10 minutes.
It is faster than installing the operating system and all the Hadoop software by
users themselves. The process of image file import is much easier than building
the whole system. And there is no need to keep concentrating on the process

of import. That means the virtual machine can help simplifying the process of

Chapter 4 Experimental Results 30

4.2.2 Functionality Validation of Portlets

In this experiment, we use the portlets on the web user interface to execute a

wordcount job to demonstrate our function of the portlets we developed.

First, we upload our sample text file to the HDFS by filling in the source file
full path and the upload destination field, clicking the upload button and waiting
for the result. Figure 4.3 shows the HDFS file upload portlet. Then we can check
the directory we uploaded a file to by the HDFS browser shown in Figure 4.4.

Your request completed successfully.
Source file full path
home/hduser/1 00M txt Source file full path
Upload destinati
hdfs://master:9000/input

Upload destination:

Upload

Result: +

Upload

Result:

2 WARN util.NativeCodeLoader: Unable o
y for your platform... using builtin-java

FI1GURE 4.3: Portlet: HDFS file upload

Hadoo Overview Datanodes Snapshot Startup Progress Utilities ~
p

Browse Directory

finput Go!
Permission owner Group Size Replication Block Size Name
-TW-F—T-- hduser supergroup 100 MB 1 128 MB 100M.txt

Hadoop, 2014.

FIGURE 4.4: HDFS browser (upload destination)

Second, the full path of the wordcount jar file, input text file and output

destination must to be set. The execution result is shown in the text field below

Chapter 4 Experimental Results 31

after clicking the submission button and waiting for execution finished. Figure 4.5
is the portlet of Hadoop job submission. We also can check the output directory
we set through the HDFS browser shown in Figure 4.6. to upload our sample text
file to the HDFS, browse the directory on the HDFS, execute the wordcount jar

application on Hadoop, and check the output result.

Your request completed successtully.
Jar file full path

opt/WordCountNewAPl jar Jar file full path:

Argument 1: Argument 2:
dfs://master:9000/input/100M.txt | hdfs:/master:9000/output Argument 1 Argument 2
Argument 3: Argument 4:
Argument 3: Argument 4:
Submit
Submit
Result:
Result:

FIGURE 4.5: Portlet: Hadoop job submission

adoo verview atanodes Snapshof Startup Progress ilities
Hadoop [¢; Datanod Snapshot Startup Prog Utiliti

Browse Directory

Joutput Go!
Permission Owner Group Size Replication Block Size Name
-TW-F—T-- hduser supergroup 0B 1 128 MB _SUCCESS
-TW-F—T-- hduser supergroup 54B 1 128 MB part-r-00000

Hadoop, 2014.

FIGURE 4.6: HDF'S browser (output directory)

Last, we can check the output file on the HDFS by downloading it through
the HDF'S browser or using the portlet of command execution shown in Figure 4.7

to show the content of the output file.

Chapter 4 Experimental Results 32

Your request completed successfully.
Command:
Command:

Enter
Enter

Result: +

Result:

FIGURE 4.7: Portlet: Command excution

4.2.3 Performance Comparison between the Portal and the

Command Line

The following are experiments of performance comparison between using the com-
mand line and the portal web user interface. We use the Hadoop and Spark
benchmark suite — HiBench to evaluate the performance of our platform. We run
the three kinds of workloads, sorting, TeraSort and wordcount. Figure 4.8 shows

the result of building HiBench and Figure 4.9 is the process of running HiBench.

hduser@master: ~/HiBench-master

Reactor Summary:

hibench SUCCESS [12.179 s]
hibench-common SUCCESS [@5:48 min]
HiBench data generation tools SUCCESS [33.423 s]

sparkbench SUCCESS [©0.007 5]
sparkbench-common SUCCESS [81:89 min]
sparkbench micro benchmark SUCCESS

sparkbench project assembly

hadoopbench SUCCESS

BUILD SUCCESS

Total time: 07:46 min
Finished at: 2017-086-21T23:42:53+08:00
Final Memory: 57M/789M

[INFO]

hduser@master:~/HiBench-master$ I

FiGURE 4.8: Result of building HiBench

Chapter 4 Experimental Results 33

hduser@master: ~/HiBench-master

conf: /home/hduser /HiBench-master/conffhadoop.conf

conf: fhome/hduser/HiBench-master/conf/hibench.conf

conf: fhome/hduser/HiBench-master/conf/spark.conf

conf: fhome/hduser/HiBench-master/conf/workloads/micro/terasort.conf
probe sleep jar: jfopt/hadoop/hadoop2/share/hadoop/mapreduce/hadoop-mapreduce-cli
ent-jobclient-2.6.0-cdh5.5.1-tests. jar
spark://master:7077 master

bench

Deleted hdfs://master:9000/HiBench/Terasort/Output
hdfs du -s:

17/06/26 06:55:34 WARN util.NativeCodeloader: Unable to load native-hadoop libra
ry for your platform... using builtin-java classes where applicable
Submit MapReduce Job:

FIGURE 4.9: Process of running HiBench

In theory, the execution time of using command line should be better than or
equivalent to the ones of using the portal interface. We run the benchmark with
three kinds of dataset scale. The each experimental data is the average value of
the five times result. The experimental data show that most of them meet the
cognition. In this work, most of the differences of performance are related to the

execution time.

Figure 4.10 shows that it takes more time to sort data through the portal
web user interface. And we find that the differences of the sorting performance
between using command line and the portal web user interface with Hadoop are

higher than the one with Spark.

We can get the result that it also takes more time to perform the wordcount
application through the portal web user interface from Figure 4.10. But the dif-
ference of the wordcount performance between using command line and the portal
web user interface with Spark and the large scale dataset is quite higher than

others.

Figure 4.12 shows that it takes more time to perform the TeraSort application

through the portal web user interface but Hadoop with the small scale dataset.

Chapter 4 Experimental Results

34

Performance comparison of sort

60.0
mcommand portal 539
7
50.0 /
-a- 43.0
- 39.8
@ 200 39.6
S
'; 31.4 32.2
C 300 -
2
" 22.5
o
o 200 -
x
v 10.2 10.1
100 S AU — T
0o 7 % %, %, 7 %,
Hadoop ‘ Spark Hadoop ‘ Spark Hadoop ‘ Spark
tiny small large
framework & dataset scale
FIGURE 4.10: Sorting performance comparison
Performance comparison of wordcount
300.0
250.4
250.0
E ® command portal 208.4
Q 2000
E
]
C 1500
=
]
o
100.0
g 76.1
()]
39 65 49.0
0.0 326 7 322 -
9.2 100 9.0 101
oo 7/ 7 77 % %
Hadoop ‘ Spark Hadoop ‘ Spark Hadoop ‘ Spark
tiny small large

framework & dataset scale

FIGURE 4.11: Word count performance comparison

Chapter 4 Experimental Results 35

Performance comparison of TeraSort

1200.0 -
Ecommand & portal
1000.0 -
800.0 -

600.0 -

400.0 -

execution time (s)

200.0 4

33.2 408
00 | WA

Hadoop Spark

tiny
framwork & dataset scale

FIGURE 4.12: Terasort performance comparison

4.2.4 Performance Comparison between Hadoop and Spark

In this section, we perform the Hadoop and Spark performance comparison in our
system. We test whether the performance comparison between Hadoop and Spark

in our system is like the results of previous studies or not.

In Figure 4.13 and 4.14, we get that all the execution time of Spark are shorter
than the one of Hadoop. The results of the experiments are similar to those
presented in other works before. The performance of Spark is better than Hadoop
even on our single-node virtual machine. And we find while the dataset scale is

large in three kinds of jobs, the differences of performance are much greater.

4.2.5 OpenCV Environment Validation

For our related research, we need the environment with Hadoop and OpenCV
together. So we have also built the OpenCV support environment in our virtual

machine and make some test about Particle Image Velocimetry (PIV) applications

Chapter 4 Experimental Results 36

Performance comparison of Hadoop and Spark (command)

800.0
m Hadoop Spark 702.3

700.0
A 600.0
e
()
E 500.0
+ 96.3
C 4000
§=
e
= 300.0
o
& 208.4
@ 2000

100.0 5.6 %0

314 322 430, ¢ 33.2 291 326 322 .
9.6 9.0 iﬂ 9.6 - Z 9.2 9.0
oo - W . [.m Z . W .
tiny ‘ small ‘ large tiny small ‘ large tiny ‘ small ‘ large
sort TeraSort wordcount

dataset scale & workload

FIGURE 4.13: Performance comparison between Hadoop and Spark (command)

Performance comparison of Hadoop and Spark (portal)

1200.0

1051.8

1000.0

800.0

25.8

m Hadoop v Spark
400.0

execution time (s)
3
[=]

250.4

200.0
76.1
98, 396 539, 408 04 594405 85, 3950,
ol Y’ % m, % e IR il
tiny ‘ small ‘ large tiny ‘ small ‘ large tiny ‘ small ‘ large
sort TeraSort wordcount

dataset scale & workload

FIGURE 4.14: Performance comparison between Hadoop and Spark (portal)

to validate the OpenCV environment in our system. The Figure 4.15 and 4.16
below show the input images and output results of a application. The example
application can read two pictures and calculate the shift direction and the amount

of displacement by drawing the arrows on the output picture. This application uses

Chapter 4 Experimental Results 37

the OpenCV library and can be developed to determine the water flow direction

using computers.

FIGURE 4.15: PIV result - river

FIGURE 4.16: PIV result - campus [29]

Chapter 5

Conclusions and Future Work

5.1 Concluding Remarks

In this work, we developed and implemented a portal web user interface and
portlets that facilitated the use of the Hadoop ecosystem and integrated the in-
terface with the Hadoop ecosystem into a virtual machine image file. It provides
a fast and convenient way to set up the platform for users. The processes of
building the whole system were described and the implementation of our system
was presented. We have actually tested how quick the process of using the vir-
tual machine image file to deploy our system on several desktop environments.
And we had executed the Hadoop job through the portlets we developed on the
web user interface to validate the functionality. The differences of performance
between using the portal web user interface and the command line to perform
several works with Hadoop and Spark in our system are also tested. Executing
the jobs with the large scale dataset by using the portlets takes more time than
using the command line. The differences of performance between Hadoop and
Spark are also presented. The result of the performance comparisons are similar
to those presented in other studies before. In theory, the execution time of us-

ing command-line should be better than or equivalent to the execution time of

38

Chapter 5 Conclusions and Future Work 39

using the portal web user interface. Our experimental data show the actual test

comparison results. That also shows that there is still room for improvement.

5.2 Future Work

This study is mainly the implementation of the functional part of the system. The
performance of our system needs to be enhanced. The results of the works can
be produced into a chart or other ways to show, in order to achieve the effect of
visualization of data. In the course of the study, the possibility of using the portal
interface of the machine to connect to other Hadoop servers had been thought
about. We will keep studying on the feasibility of that function in the future so
that the use environment of this portal web user interface can be more extensive.
In addition, the current study of the Spark machine learning library to join the
platform. We hope this platform not only has the ability to handle huge amounts
of data, but also extends to the field of machine learning. With the increment of
capabilities, the volume of our system may be more and more larger. It may be
possible that we will provide the customized system that users can choose which
features they want and exclude the unnecessary parts to reduce the volume of the

system. The multi-node version of the system is also worth to be developed.

References

1]

Min Chen, Shiwen Mao, and Yunhao Liu. Big data: A survey. Mobile Net-
works and Applications, 19(2):171-209, 2014.

Chao-Tung Yang ; Yin-Zhen Yan ; Ren-Hao Liu ; Shuo-Tsung Chen. Cloud
City Traffic State Assessment System Using a Novel Architecture of Big Data.
2015 International Conference on Cloud Computing and Big Data (CCBD),
2015.

Search interest of big data - Google Trends, 2017. https://trends.google.

com/trends/explore?date=all&q=big},20data&hl=en.

Douglas Laney. 3D data management: Controlling data volume, velocity, and

variety. Technical report, META Group, February 2001.

Apoorva Gupta. Big data analysis using computational intelligence and
hadoop: A study. In 2015 International Conference on Computing for Sus-
tainable Global Development, INDIACom 2015, pages 13971401, 2015.

Apache hadoop, 2014. http://hadoop.apache.org/.
Hadoop, 2017. http://en.wikipedia.org/wiki/Apache_Hadoop.

Mapreduce, 2017. https://hadoop.apache.org/docs/r1.2.1/mapred_

tutorial.html.

Jens Dittrich and Jorge-arnulfo Quian. Efficient Big Data Processing in
Hadoop MapReduce. Proceedings of the VLDB Endowment, 5(12):2014-2015,
2012.

40

https://trends.google.com/trends/explore?date=all&q=big%20data&hl=en
https://trends.google.com/trends/explore?date=all&q=big%20data&hl=en
http://hadoop.apache.org/
http://en.wikipedia.org/wiki/Apache_Hadoop
https://hadoop.apache.org/docs/r1.2.1/mapred_tutorial.html
https://hadoop.apache.org/docs/r1.2.1/mapred_tutorial.html

References 41

[10]

[11]

[17]

[18]

[19]

[20]

[21]

Dhruba Borthakur. The hadoop distributed file system: Architecture and de-
sign, 2007. http://hadoop.apache.org/docs/r0.18.0/hdfs_design.pdf.

Farag Azzedin. Towards a scalable HDFS architecture. In Proceedings of the
2013 International Conference on Collaboration Technologies and Systems,

CTS 2013, pages 155-161, 2013.

What Is a Portlet - O'Reilly Media, 2017. http://archive.oreilly.com/

pub/a/java/archive/what-is-a-portlet.html.

Portals and Portlets: The Basics, 2017. http://editorial .mcpressonline.

com/web/mcpdf .nsf/wdocs/5232/$file/5232 exp.pdf.

Introduction to Liferay development, 2017. https://dev.
liferay.com/zh/develop/tutorials/-/knowledge_base/7-0/

introduction-to-liferay-development.
About - OpenCV, 2017. http://opencv.org/about.html.

OpenCV | NVIDIA Developer, 2017. https://developer.nvidia.com/

opencv.

Introduction - OpenCV 2.4.4.0 documentation, 2017. http://docs.opencv.

org/2.4.4/modules/core/doc/intro.html.

Virtualization Technology & Virtual Machine Software - VMware, 2017.

https://www.vmware.com/il/solutions/virtualization.html.

Yukio Tsuruoka. Cloud computing - current status and future directions.

Journal of Information Processing, 24(2):183-194, 2016.

Xiuqin Lin, Peng Wang, and Bin Wu. Log analysis in cloud computing envi-
ronment with Hadoop and Spark. 2013 5th IEEE International Conference
on Broadband Network € Multimedia Technology, pages 273-276, 2013.

[lias Mavridis and Helen Karatza. Performance evaluation of cloud-based log
file analysis with apache hadoop and apache spark. Journal of Systems and

Software, 125:133-151, 2017.

http://hadoop.apache.org/docs/r0.18.0/hdfs_design.pdf
http://archive.oreilly.com/pub/a/java/archive/what-is-a-portlet.html
http://archive.oreilly.com/pub/a/java/archive/what-is-a-portlet.html
http://editorial.mcpressonline.com/web/mcpdf.nsf/wdocs/5232/$file/5232_exp.pdf
http://editorial.mcpressonline.com/web/mcpdf.nsf/wdocs/5232/$file/5232_exp.pdf
https://dev.liferay.com/zh/develop/tutorials/-/knowledge_base/7-0/introduction-to-liferay-development
https://dev.liferay.com/zh/develop/tutorials/-/knowledge_base/7-0/introduction-to-liferay-development
https://dev.liferay.com/zh/develop/tutorials/-/knowledge_base/7-0/introduction-to-liferay-development
http://opencv.org/about.html
https://developer.nvidia.com/opencv
https://developer.nvidia.com/opencv
http://docs.opencv.org/2.4.4/modules/core/doc/intro.html
http://docs.opencv.org/2.4.4/modules/core/doc/intro.html
https://www.vmware.com/il/solutions/virtualization.html

References 42

[22]

[24]

[26]

[27]

28]

[29]

[30]

Chien-Heng Wu, Franco Lin, Wen-Yi Chang, Whey-Fone Tsai, Hsi-Ching
Lin, and Chao-Tung Yang. Big data development platform for engineering
applications. In Proceedings - 2016 IEEE International Conference on Big
Data, Big Data 2016, pages 2699-2702, 2017.

Shengsheng Huang, Jie Huang, Jinquan Dai, Tao Xie, and Bo Huang. The hi-
bench benchmark suite: Characterization of the mapreduce-based data anal-
ysis. In Proceedings - International Conference on Data Engineering, pages

41-51, 2010.

Timofei Epanchintsev and Andrey Sozykin. Processing large amounts of im-
ages on Hadoop with OpenCV. In CEUR Workshop Proceedings, volume
1513, pages 137-143, 2015.

T.L.S.R. Krishna, T. Ragunathan, and S.K. Battula. Customized web user
interface for Hadoop Distributed File System. Advances in Intelligent Systems
and Computing, 380:567-576, 2016.

Determine if your processor supports Intel Virtualization Technology
- Intel, 2017. https://www.intel.com/content/www/us/en/support/
processors/000005486 . html.

Cloudera enterprise 5.5.x documentation, 2017. https://www.cloudera.

com/documentation/enterprise/5-5-x.html.

Installation in linux —OpenCV 2.4.13.3 documentation, 2017.
http://docs.opencv.org/2.4/doc/tutorials/introduction/linux_

install/linux_install.html.

Tunghai University - Google Maps, 2017. https://www.google.com.tw/
maps/024.1786972,120.6000693, 3a, 75y, 139.52h,91.5t/data=!3m5!
1e1!3m3!2e0!17113312!816656.

M. Mazhar, Anand Paul, Awais Ahmad, and Suengmin Rho. Urban planning
and building smart cities based on the Internet of Things using Big Data

analytics. Computer Networks, 2016.

https://www.intel.com/content/www/us/en/support/processors/000005486.html
https://www.intel.com/content/www/us/en/support/processors/000005486.html
https://www.cloudera.com/documentation/enterprise/5-5-x.html
https://www.cloudera.com/documentation/enterprise/5-5-x.html
http://docs.opencv.org/2.4/doc/tutorials/introduction/linux_install/linux_install.html
http://docs.opencv.org/2.4/doc/tutorials/introduction/linux_install/linux_install.html
https://www.google.com.tw/maps/@24.1786972,120.6000693,3a,75y,139.52h,91.5t/data=!3m5!1e1!3m3!2e0!7i13312!8i6656
https://www.google.com.tw/maps/@24.1786972,120.6000693,3a,75y,139.52h,91.5t/data=!3m5!1e1!3m3!2e0!7i13312!8i6656
https://www.google.com.tw/maps/@24.1786972,120.6000693,3a,75y,139.52h,91.5t/data=!3m5!1e1!3m3!2e0!7i13312!8i6656

References 43

[31]

[32]

[33]

Lars George. HBase: The Definitive Guide. O’'REILLY, 2012.

Yang Jin, Tang Deyu, and Zhou Yi. A distributed storage model for ehr
based on hbase. In Information Management, Innovation Management and
Industrial Engineering (ICII), 2011 International Conference on, volume 2,
pages 369-372, Nov 2011.

Haijie Ding, Yuehui Jin, Yidong Cui, and Tan Yang. Distributed storage of
network measurement data on hbase. In Cloud Computing and Intelligent
Systems (CCIS), 2012 IEEE 2nd International Conference on, volume 02,
pages 716-720, Oct 2012.

Jun Bai. Feasibility analysis of big log data real time search based on hbase
and elasticsearch. In Natural Computation (ICNC), 2013 Ninth International
Conference on, pages 11661170, July 2013.

Chen Zhang and Xue Liu. Hbasemq: A distributed message queuing system
on clouds with hbase. In INFOCOM, 2013 Proceedings IEEFE, pages 40-44,
April 2013.

Appendix A

Hadoop Installation

I. Modify hosts

sudo vim /etc/hosts

IT. Modify hostname

sudo vim /etc/hostname

sudo service hostname start

III. Install Java JDK

sudo apt-get -y install openjdk-7-jdk
sudo 1ln -s /usr/lib/jvm/java-7-openjdk-amd64 /usr/lib/jvm/jdk

IV. Add hadoop user

sudo addgroup hadoop
sudo adduser --ingroup hadoop hduser

sudo adduser hduser sudo

V. Creat SSH authentication login

44

Appendix 45

ssh-keygen -t rsa -f \~{}/.ssh/id_{}rsa -P ""
cp \~{}/.ssh/id_{}rsa.pub ~/.ssh/authorized_{}keys

scp -r ~/.ssh hduser:~/

VI. Download hadoop

cd ~

wget http://ftp.twaren.net/Unix/Web/apache/hadoop/common \\
/hadoop-2.6.0/hadoop-2.6.0.tar.gz

tar zxf hadoop-2.6.0.tar.gz

mv hadoop-2.6.0.tar.gz hadoop

VII. Add the environment variable

vim .bashrc

export JAVA_HOME=/usr/1lib/jvm/jdk/

export HADOOP_INSTALL=/home/hduser/hadoop
export PATH=$PATH: $HADOOP_INSTALL/bin
export PATH=$PATH: $HADOOP_INSTALL/sbin
export HADOOP_MAPRED_HOME=$HADOOP_INSTALL
export HADOOP_COMMON_HOME=$HADOOP_INSTALL
export HADOOP_HDFS_HOME=$HADOOP_INSTALL
export YARN_HOME=$HADOOP_INSTALL

VIII. Set hadoop config

cd hadoop/etc/hadoop

vim hadoop-env.sh
export JAVA_HOME=/usr/1lib/jvm/jdk/
vim core-site.xml
<property>
<name>fs.default.name</name>
<value>hdfs://hadoop-master:9000</value>
</property>

vim yarn-site.xml

<property>

Appendix

46

<name>yarn.nodemanager.aux-services</name>
<value>mapreduce_shuffle</value>
</property>
<property>
<name>yarn.resourcemanager .hostname</name>
<value>hduser</value>

</property>

cp mapred-site.xml.template mapred-site.xml

vim mapred-site.zxml

<property>
<name>mapreduce.framework.name</name>
<value>yarn</value>

</property>

mkdir -p ~/mydata/hdfs/namenode
mkdir -p ~/mydata/hdfs/datanode

vim hdfs-site.xml

<property>

<name>dfs.replication</name>
<value>2</value>

</property>

<property>
<name>dfs.namenode.name.dir</name>
<value>/home/hduser/mydata/hdfs/namenode</value>

</property>

<property>
<name>dfs.datanode.data.dir</name>
<value>/home/hduser/mydata/hdfs/datanode</value>

</property>

vim slaves
hadoop-master
node0O1
node02
node03
node04
node05
node06
node07
node08
node09
nodel0
nodell
nodel2

Appendix

IX. Copy hadoop to all nodes

scp -r /home/hduser/hadoop nodeO1l:/home/hduser
scp -r /home/hduser/hadoop node02:/home/hduser
scp -r /home/hduser/hadoop node03:/home/hduser
scp -r /home/hduser/hadoop node0O4:/home/hduser
scp -r /home/hduser/hadoop node05:/home/hduser
scp -r /home/hduser/hadoop node06:/home/hduser
scp -r /home/hduser/hadoop nodeO7:/home/hduser
scp -r /home/hduser/hadoop node08:/home/hduser
scp -r /home/hduser/hadoop node09:/home/hduser
scp -r /home/hduser/hadoop node010:/home/hduser
scp -r /home/hduser/hadoop node0O11:/home/hduser

#+ O # # O # H O OH O H O H

scp -r /home/hduser/hadoop node012:/home/hduser

X. Format HDFS

hdfs namenode -format

XI. Start hadoop

start-all.sh

XII. Use jps to see java running program

jps

XIII. MapReduce JobTracker monitoring website

hadoop-master:50030

Appendix B

Spark Installation

I. Download and Unzip Scala

#uget

\\

http://ftp.twaren.net/Unix/Web/apache/spark/spark-1.4.1/spark-1.4.1-bin-hadoop2.6.tgz

#tar zxf spark-1.4.1-bin-hadoop2.6.tgz

#mv spark-1.4.1-bin-hadoop2.6 spark

#cd spark/conf

IV. Set Spark config

#vim spark-env.sh

export
export
export
export
export
export

export

SCALA_HOME=/usr/lib/scala

JAVA_HOME=/usr/1lib/jvm/jdk

SPARK_MASTER=master

HADOOP_HOME=/home/hduser/hadoop

SPARK_HOME=/home/hduser/spark
SPARK_LIBARY_PATH=.:$JAVA_HOME/1ib:$JAVA_HOME/jre/lib:$HADOOP_HOME/lib/native
YARN_CONF_DIR=$HADOOP_HOME/etc/hadoop

#vim slaves

hadoop-

node01
node02
node03
node04
node05
node06

master

48

Appendix

node07
node08
node09
nodel0
nodell
nodel2

III. Copy spark to all nodes

scp
scp
scp
scp
scp
scp
scp
scp
scp
scp
scp

scp

#+ O # # O # #H O O#H H O O H

/home /hduser/spark
/home/hduser/spark
/home/hduser/spark
/home/hduser/spark
/home/hduser/spark
/home/hduser/spark
/home /hduser/spark
/home/hduser/spark
/home/hduser/spark
/home/hduser/spark
/home/hduser/spark
/home/hduser/spark

bin/start-hbase.sh

node0O1:/home/hduser
node02:/home/hduser
node03:/home/hduser
node04:/home/hduser
node05:/home/hduser
node06:/home/hduser
node07:/home/hduser
node08:/home/hduser
node09:/home/hduser
node010:/home/hduser
node011:/home/hduser
node012:/home/hduser

Appendix C

HBase Installation

1. Download HBase

cd ~
wget http://ftp.twaren.net/Unix/Web/apache/hbase\\
/hbase-1.0.0/hbase-1.0.0-hadoop2-bin.tar.gz

I1. Unzip hbase-1.0.0-hadoop2-bin.tar.gz

tar zxf hbase-1.0.0-hadoop2-bin.tar.gz

III. Move the File of HBase

mv hbase-1.0.0-hadoop2 hbase

IV. Set HBase config

cd hbase

vim conf/hbase-env.sh

export JAVA_HOME=/usr/lib/jvm/jdk
export HBASE_HOME=/home/hduser/hbase

hadoop fs -mkdir /hbase

vim conf/hbase-site.xml

50

Appendix

o1

<property>
<name>hbase.rootdir</name>
<value>hdfs://hadoop-master:9000/hbase</value>

</property>

<property>
<name>hbase.cluster.distributed</name>
<value>true</value>

</property>

<property>
<name>hbase.zookeeper.quorum</name>
<value>Test-master</value>

</property>

vim conf/regionservers
hadoop-master
node0O1

node02

node03

node04

node05

node06

node07

node08

node09

nodel0

nodell

nodel2

IT1. Copy jar to hbase/lib

rm lib/hadoop-*
cd /home/hduser/hadoop/share/hadoop
cp *.jar /home/hduser/hbase/lib/

IV. Copy hbase to all nodes

scp -r /home/hduser/hbase nodeOl:/home/hduser
scp -r /home/hduser/hbase node02:/home/hduser
scp -r /home/hduser/hbase node03:/home/hduser
scp -r /home/hduser/hbase node04:/home/hduser
scp -r /home/hduser/hbase node05:/home/hduser

scp -r /home/hduser/hbase node06:/home/hduser

#+= OH O #H O O #H

scp -r /home/hduser/hbase nodeO7:/home/hduser

Appendix

52

scp -r /home/hduser/hbase node08:/home/hduser
scp -r /home/hduser/hbase node09:/home/hduser
scp -r /home/hduser/hbase node010:/home/hduser
scp -r /home/hduser/hbase node0O11:/home/hduser
scp -r /home/hduser/hbase node012:/home/hduser

O H O #H O H# H

bin/start-hbase.sh

V. HBase monitoring website

hduser:60010

	摘要
	Abstract
	致謝詞
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivation
	1.2 Contributions
	1.3 Thesis Organization

	2 Background Review and Related Works
	2.1 Big Data
	2.2 Hadoop Ecosystem
	2.2.1 Hadoop
	2.2.2 HDFS
	2.2.3 Spark

	2.3 Portal and Portlet
	2.4 OpenCV
	2.5 Virtualization
	2.6 Related Works

	3 System Design and Implementation
	3.1 System Design
	3.2 System Implementation
	3.2.1 Virtualization Platform Installation and Virtual Machine Setup
	3.2.2 Hadoop Ecosystem Installation
	3.2.3 Liferay Portal server and Integrated Development Environment Installation
	3.2.4 OpenCV Environment Setup
	3.2.5 Liferay Portal, Portlet Development and Virtual Machine Image File Export

	4 Experimental Results
	4.1 Experimental Environment
	4.2 Experimental Results
	4.2.1 Virtual Machine Deployment in Different Virtualization Environments
	4.2.2 Functionality Validation of Portlets
	4.2.3 Performance Comparison between the Portal and the Command Line
	4.2.4 Performance Comparison between Hadoop and Spark
	4.2.5 OpenCV Environment Validation

	5 Conclusions and Future Work
	5.1 Concluding Remarks
	5.2 Future Work

	References
	Appendix
	A Hadoop Installation
	B Spark Installation
	C HBase Installation

