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Abstract

In recent years, with the increase in processor computing power, a substantial
increase in the development of many scientific applications, such as weather fore-
cast, financial market analysis, medical technology and so on. Deep Learning can
help the computer understand the abstract information such as images, text and
sound. Through the neural network, the computer can have the same observation
and learning ability as human beings, and even better than human. In this pa-
per, we will use the famous deep learning framework: Caffe, implement to Xeon
Phi through the optimization, including the use of vectorization, OpenMP parallel
processing, message transfer Interface (MPI), etc., To improve the availability of
deep learning framework. Intel recently launched the second generation of Xeon
Phi, in addition to the first generation of coprocessor (Coprocessor) products re-
tained, but also added up to 72 core of the main processor, with the power can
not be ignored. In this paper, we evaluate the performance of the Caffe deep
learning framework across a variety of Intel Xeon platform. The experimental
including the accuracy comparison between the number of iterations of the test
in the training model, and the training time on the different machines before and
after optimization, and the use of two Xeon Phi multi-node tests. The results
will be listed in the comparison of the each test performance and the use of Xeon
Phi can reduce the training time of Caffe, to provide the researchers with a white

paper for measurement.

Keywords: Xeon Phi » OpenMP » MPI » Caffe > High Performance Programming
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Chapter 1

Introduction

In the past few years with the progress of the chip made, CPU computing power
of the repeated peak, accompanied by the emergence of accelerating cards, so that
the overall computing power and a higher level. Regardless of scientific, medical,
climate research and other issues provide excellent help. Accelerator In addition
to the well-known GPU, there are choice of Xeon Phi. Xeon Phi is another choice

since it is hard to learn CUDA programing language in spite of the generality of

GPU [1].

The deep learning framework is the field of rapid growth in artificial intel-
ligence in recent years. However, the earliest concept of neural network can be
traced back to the neuron mathematical model proposed by Warren McCulloch
and Walter Pitts in 1943, the traditional neural network technology. It is done
by randomly assigning weights and using recursive operations to correct weights
one by one compared to the input training data, minimizing the overall error rate.
At that time the class of neural network technology as a wave, but can not be
sustained, because soon encountered a difficult, lack of computing power. Thanks
to the rapid development of computer chips, the deep learning has again become

a research and application of a wide range of scientific projects.
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1.1 Motivation

In the past few years, CPU computing power is increasing. However, with the
application of scientific computing more and more, alone to improve the CPU
computing power seems to be inadequate. Recently, it is common for many people
to use the GPU as a computational accelerator. To use the GPU, one need to
understand the CUDA language; however, it is not easy to learn CUDA and it is
difficult to reuse algorithms written with CUDA. Today, Intel introduces the Xeon
Phi processor family based on the x86 core architecture. Each core of Xeon Phi
supports four hardware threads. The feature is to use C or C ++ programming
language. When a user adds a simple parameter using the compiler, it can be
executed on the multiple consolidation core architecture (MIC). In addition, it
supports open multiprocessing (OpenMP), POSIX threads (PThread), messaging
interfaces (MPI), and other parallel programming languages. Compared with the
GPU, it only needs to pay a small amount of overhead can achieve the same

performance [2].

1.2 Thesis Goal and Contributions

This work will implement caffe deep learning framework into the Intel Xeon Phi
Platform. Through several optimized function such as Vectorization, Parallelism
and OpenMP, can improve the performance and reduce the learning time. Caffe
Also we compare the performance with other CPU product, such as and Intel E5

processor, etc.

1.3 Thesis Organization

Chapter 2 will describe some background information, including Xeon Phi Proces-
sor, OpenMP, MPI, and Caffe Deep Learning Framework. Chapter 3 will introduce

our experimental environment and methods, and the overall architecture. Chapter
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4 presents and analyses experimental results. Finally, Chapter 5 summarizes this

work by pointing out its major contributions and directions for future work.



Chapter 2

Background Review and Related
Work

In this section, we review some background knowledges for later use of system

design and implementation.

2.1 Background Review

2.1.1 Xeon Phi Processor

On June 20, 2016, Intel introduced the code-named Knights Landing’s Intel Xeon
Phi product line x200, emphasizing its not only for traditional analog workloads,
but also for machine learning. It is worth noting that, x200 series Xeon Phi in
addition to the first generation x100, code Knights Corner the same coprocessor
processor version, but also itself is a powerful computing power of the Processor
version. The previously introduced Xeon Phi co-processor family includes the
3100, 5100 and 7100 series, which are installed on the x86 server as a GPU via a
PClIe x16 slot. The process of accessing the main memory of the system requires
control via the CPU’s memory , but this will affect the overall efficiency. The new

x200 series is now a stand-alone Xeon Phi Processor, the difference is that more

4
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than the extension of the finger with the integration of Intel Omni-Path Fabric
(Intel OPA) high-speed network. As shown in figure2.1

Intel Xeon Phi Processor

‘—\
inter)

Xeon ppi-

Intel Xeon Phi Coprocessor

Processo,

Intel Xeon Phi Processor with
Intel Omni-Path Fabric

—\_

Xeon Phi™ process,

FIGURE 2.1: Intel Xeon Phi x200 Series Product

The Intel Xeon Phi series, based on Many Integrated Core (MIC) architec-
ture, provides high-performance computing capabilities that were never available
on the Multi-Core architecture. Intel MIC architecture integrates the core of mul-
tiple Intel processors on a single chip, and the use of standard C, C + + and
FORTAN program code, the code written for Intel MIC architecture can also use
the standard Intel Xeon processing to compile and execute, and provide developers
with the well-known programming model used directly on Xeon Phi, eliminating
the need to redesign software engineering time and improve the efficiency of solving
problems. The new Knights Landing core architecture, which uses more than 60
Silvermont architecture cores, not only achieves 3 TFLOPS computing power on
the overall processor performance, but also faster in single-threaded performance
than the first generation of Knights Corner architecture three times. Moreover,
the processor built-in 16GB memory, bandwidth almost reached DDR4 5 times,
and the use of 6-channel memory technology, the maximum support 384GB DDR4

memory capacity. As shown in figure2.2
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The new KNL consists of a 14-nanometer process, with more than 8 billion
transistors in the 72-core processor, and is divided into up to 36 dual-core distri-
butions in the grid configuration. Each quad-threaded Silvermont core has two
AVX-512 VPUs (vector processing units) with a total of 144 VPUs. In addition
to each dual-core with 1MB shared L2 cache, equal to a total of up to 36 MB L2
cache. The second generation of Intel Xeon Phi contains several types, divided

into 7210 series, 7230 series, 7250 series and 7290 series. As shown in 2.1.

TABLE 2.1: Intel Xeon Phi x200 Series Specification

7210 Series 7230 Series 7250 Series 7290 Series
Cores 64 64 68 72
Processor Freq. 1.30 GHz 1.30 GHz 1.40 GHz 1.50 GHz
L2 Cache 32 MB 32 MB 34 MB 36 MB
Mem. Capacity 384 GB 384 GB 384 GB 384 GB
Mem. Channels 6 6 6 6
Mem. Bandwidth 102 GB/s 115.2 GB/s 115.2 GB/s 115.2 GB/s
TDP 215 W 215 W 215 W 245 W

On the instruction set, the new Xeon Phi supports Intel Advanced Vector
Extensions 512 (AVX-512) with 512-bit vector scratchpad, hardware convergence
/ divergence, DP-superior feature support, and non-Intel compilers such as GCC.

Details of the AVX-512 categories are as follows:
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o AVX-512F (Fundamentals) extends most of the AVX2 instruction set to a

512-bit vector register.

o AVX-512CD (Conflict Detection) Effective conflict detection, such as Data

Bining.

o AVX-512ER (Exponential and Reciprocal) beyond the function support,

such as exp, rcp and rsqrt.

o AVX-512PF (Prefetch) pre-fetch for divergence and convergence.

In the KNL memory structure is directly access to MCDRAM (Multi-Channel
DRAM) and the system of DDR4 memory. Which MCDRAM has three kinds of
memory mode, respectively, Flat Mode, Cache Mode and Hybrid Mode.

o Flat Mode: In this mode, MCDRAM is treated as a NUMA node, and the
user can control what is going to enter MCDRAM.

e Cache Mode: In Cache Mode MCDRAM is considered Last Level Cache
(LLC) and automatically uses MCDRAM.

o Hybrid Mode: Combines the above two modes, the assigned ratio can be

selected in the BIOS.

Which in the cluster mode there are several different ways to control, the

demand is from the core memory, a detailed description of the following;:

o All-to-All: In this mode, memory access can be from any core to any mem-
ory channel while supporting user optimization MPI and OpenMP or Intel
Threading Building Blocks.

e Quadrant: Quadrant mode can be selected if the user wants to achieve a
higher performance than All-to-All without having to change the code. The
benefit of this mode is that as long as the symmetric configuration of DIMMs
is used, the Quadrant is selected as the default mode at the beginning of the
KNL system.
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e SNC (Sub NUMA Clustering): There are three parts that support the mem-
ory access requirements, include the core, the tag directory and the memory
channel. In order to achieve consistent performance optimization in this
mode, the need for code changes or the control of the NUMA environment.

This mode is suitable for decentralized memory models such as MPI or mixed

MPI-OpenMP.

2.1.2 OpenMP

OpenMP [3] [4] [5] [6] is an application programming interface (API) that sup-
ports multi-platform shared memory multiprocessing programming in C, C++,
and Fortran, on most platforms, instruction set architectures and operating sys-
tems, including Solaris, AIX, HP-UX, Linux, macOS, and Windows. It consists
of a set of compiler directives, library routines, and environment variables that
influence run-time behavior. OpenMP uses a portable, scalable model that gives
programmers a simple and flexible interface for developing parallel applications
for platforms ranging from the standard desktop computer to the supercomputer.
An application built with the hybrid model of parallel programming can run on a
computer cluster using both OpenMP and Message Passing Interface (MPI), such
that OpenMP is used for parallelism within a (multi-core) node while MPT is used
for parallelism between nodes. There have also been efforts to run OpenMP on
software distributed shared memory systems, to translate OpenMP into MPI and
to extend OpenMP for non-shared memory systems. The architecture of OpenMP

is shown as figure2.3.
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Application

Directive Environment
Compiler Variables

Threads in Operating System

F1GURE 2.3: OpenMP Architecture

OpenMP is an implementation of multithreading, a method of parallelizing
whereby a master thread (a series of instructions executed consecutively) forks a
specified number of slave threads and the system divides a task among them. The
threads then run concurrently, with the runtime environment allocating threads
to different processors. As shows on figure2.4, OpenMP is an implementation of
multithreading, a method of parallelizing whereby a master thread (a series of
instructions executed consecutively) forks a specified number of slave threads and
the system divides a task among them. The threads then run concurrently, with
the runtime environment allocating threads to different processors. The section
of code that is meant to run in parallel is marked accordingly, with a compiler
directive that will cause the threads to form before the section is executed. Each

thread has an id attached to it which can be obtained using a function (called
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omp_ get_thread num()). The thread is an integer, and the master thread has
an id of 0. After the execution of the parallelized code, the threads join back into
the master thread, which continues onward to the end of the program. By default,
each thread executes the parallelized section of code independently. Work-sharing
constructs can be used to divide a task among the threads so that each thread
executes its allocated part of the code. Both task parallelism and data parallelism

can be achieved using OpenMP in this way.

Master
Thread
— —_— _—
Parallel Regions
FIGURE 2.4: Threads process
2.1.3 MPI

Message Passing Interface (MPI) [7] [8] [9] [10] is a standardized and portable
message-passing system designed by a group of researchers from academia and
industry to function on a wide variety of parallel computing architectures. The
standard defines the syntax and semantics of a core of library routines useful
to a wide range of users writing portable message-passing programs in C, C+
+, and Fortran. There are several well-tested and efficient implementations of
MPI, many of which are open-source or in the public domain. These fostered
the development of a parallel software industry, and encouraged development of
portable and scalable large-scale parallel applications. The architecture of MPI is

shown as figure2.5.
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MPI is a communication protocol for programming parallel computers. Both
point-to-point and collective communication are supported. MPI is a message-
passing application programmer interface, together with protocol and semantic
specifications for how its features must behave in any implementation. MPI’s
goals are high performance, scalability, and portability. MPI remains the dominant
model used in high-performance computing today. Most messaging interfaces are

implemented as libraries and do not require compiler support.

2.1.4 Caffe Deep Learning Framework

Caffe is a deep learning framework made with expression, speed, and modularity
in mind. It is developed by the Berkeley Vision and Learning Center (BVLC) and
by community contributors. Yangqing Jia created the project during his PhD at
UC Berkeley. Caffe is released under the BSD 2-Clause license. Caffe support C+
+ / CUDA, command line, Python, MATLAB interfaces. Also Caffe has features

below:

o Expression: models and optimizations are defined as plaintext schemas in-

stead of code.

o Speed: for research and industry alike speed is crucial for state-of-the-art

models and massive data.

o Modularity: new tasks and settings require flexibility and extension.
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e Openness: scientific and applied progress call for common code, reference

models, and reproducibility.

o Community: academic research, startup prototypes, and industrial appli-
cations all share strength by joint discussion and development in a BSD-2

project.

Caffe’s command line tool has several functions, it can train a model, or use a
well-trained model for the effectiveness of the test. When it was training, it would
build a Solver object, and its main function was to coordinate the operation of the
neural network to carry out training. One can use a configuration file to specify
the Solver parameters, such as learning rate or Solver types, like SGD Solver and
so on. In the profile, user can specify a training net parameters, testing nets may
have more than one. For example, if user want to use different data set to verify
the effectiveness of the model can be used. Although the network definition can
also be written directly in the Solver configuration file, but the example code is

usually written in a separate profile.

Next, Solver will create the corresponding training and testing Net objects
based on these profiles. Then Net will according to the definition of the entire
network to establish each Layer, also create a lot of Blobs to place the Layer
and Layer between the input and output information, and they are connected.
Among them, a layer of input is called bottom blobs, the output is top blobs.
Blob is basically a multidimensional array, except to its use of data, it contains
a corresponding set of Diff, Gradient can be used to calculate the results. These

Blobs provide a simple interface that allows Layer to access the data from the

GPU or CPU.

In addition to the computational functions of Layers, there are some special
data layers that can be read from the file, or write the output results to a specific
file. Moreover, there are some loss layer is used to calculate the final results of the
score, and this information is used to optimize all the parameters in Solver. Each

layer will create additional blobs to place these trained parameters, and Net will
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collect these blobs when the layer is built, making it easy for Solver to calculate
the updated value for each parameter based on the learning rate. When Solver
calls Net Forward and Backward, the data is calculated along a layer of layer. The

hole architecture of the process is shown in figure2.6

Data
Blob
Blob
Param Param
Blob Blob Blob
Net Net
Solver ®™==) Net == ... Net ™= Net
Data Layer
prototxt prototxt Data

FIGURE 2.6: Caffe Architecture

2.2 Related Works

Zhang,C et .al [11] design and implement Caffeine, a hardware/software co-designed
library to efficiently accelerate the entire CNN on FPGAs.Their Caffeine achieves
a peak performance of 365 GOPS on Xilinx KU060 FPGA and 636 GOPS on
Virtex7 690t FPGA. This is the best published result to their best knowledge.
They achieve more than 100x speedup on FCN layers over previous FPGA accel-

erators. An end-to-end evaluation with Caffe integration shows up to 7.3x and
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43.5x performance and energy gains over Caffe on a 12-core Xeon server, and 1.5x
better energy-efficiency over the GPU implementation on a medium-sized FPGA
(KU060). Performance projections to a system with a high-end FPGA (Virtex7
690t) shows even higher gains.

Hegde,G. et .al [12] present CaffePresso, a Caffe-compatible framework for
generating optimized mappings of user-supplied ConvNet specifications to target
various accelerators such as FPGAs, DSPs, GPUs, RISC-multicores. They use
an automated code generation and autotuning approach based on knowledge of
the ConvNet requirements, as well as platform-specific constraints such as on-
chip memory capacity, bandwidth and ALU potential. While one may expect the
Jetson TX1 + cuDNN to deliver high performance for ConvNet configurations,
they observe a flipped result with slower GPU processing compared to most other
systems for smaller embeddedfriendly datasets such as MNIST and CIFAR10, and
faster and more energy efficient implementation on the older 28nm TI Keystone

II DSP over the newer 20nm NVIDIA TX1 SoC in all cases.

Tanno,R et .al [13] create "Caffe2C” which converts CNN (Con-volutional
Neural Network) models trained with the existing CNN framework, Caffe, C-
language source codes for mobile devices. Since Caffe2C generates a single C
code which includes everything needed to execute the trained CNN, csCaffe2C
makes it easy to run CNN-based applications on any kinds of mobile devices and
embedding devices without GPUs. Moreover, Caffe2C achieves faster execution
speed compared to the existing Caffe for iOS/Android and the OpenCV iOS/
Android DNN class. The reasons are as follows: (1) directly converting of trained
CNN models to C codes, (2) efficient use of NEON/BLAS with multi-threading,
and (3) performing pre-computation as much as possible in the computation of
CNNs. In addition, in this pa-per, they demonstrate the availability of Caffe2C

by showing four kinds of CNN-base object recognition mobile applications.

Jia,Y et .al [14] separating model representation from actual implementation,
Caffe allows experimentation and seamless switching among platforms for ease of

development and deployment from prototyping machines to cloud environments.
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Caffe is maintained and developed by the Berkeley Vision and Learning Center
(BVLC) with the help of an active community of contributors on GitHub. It
powers ongoing research projects, large-scale industrial applications, and startup

prototypes in vision, speech, and multimedia.

Bottleson,J et .al [15] present OpenCL acceleration of a well-known deep
learning framework, Caffe, while focusing on the convolution layer which has been
optimized with three different approaches, GEMM, spatial domain, and frequency
domain. In their work, clCaffe, greatly enhances the ability to leverage deep learn-
ing use cases on all types of OpenCL devices, particularly on small form factor
devices in which discrete GPUs are rare and integrated GPUs are much more
common. Our benchmark shows 2.5x speedup on the Intel integrated-GPU, com-
pared to CPU-only AlexNet on ImageNet dataset. As such, their work provides
the deep learning community with the opportunity to embrace a broad range of

devices through OpenCL.



Chapter 3

System Design and

Implementation

In the section, we will introduce the system design and implementation. Section

3.1 describes the system design. Section 3.2 describes the System implementation.

3.1 System Design

3.1.1 Caffe

Caffe architecture, we use the CIFAR-10 [16] [17] [18] full sigmoid model, CNN
model [19] [20] [21] includes convolution, the largest pool, batch normalization,
full connection, multi-layer and softmax layer. The CIFAR-10 dataset, shown
as Figure3.1, consists of 60000 color images, each with 32 x 32, equally divided
and marked as "to the following 10 categories of sizes: aircraft, car, bird, catalog,
deer, dog, frog, horse, (Such as sedans or sports utility tools) or defeated all trucks
(which contain only large trucks) without overlapping, none of the groups included

to charge to defeat all the trucks.

16
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FIGURE 3.1: CIFAR-10 Dataset

L

3.1.2 System Flow

Caffe, optimized for the Intel architecture, now incorporates the latest version
of the Intel Math Core Library (Intel MKL) 2017 Optimized Advanced Vector
Extensions (AVX) -2 and the avx-512 instruction to support Intel Xeon with the
Intel Xeon Phi processor (and others). That is, Caffe, which is optimized for the
Intel architecture, contains all the advantages found in BVLC Caffe not only that,
but also efficiently, on Intel architectures and training courses that can be used

for various nodes. The system flow for our design is

o Install Caffe on Xeon Phi Processor
 Train and test on LeNet MNIST [22] [23]

o Test pre-trained models such as bvlc_googlenet.caffemodel, certain images,

such as catalogs and fish-locomotives
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e Fine-tune the Cats vs Dog Challenge the trained model

3.2 System Implementation

3.2.1 Vectorization

In the analysis of the BVLC Caffe code, and find the wireless Internet site - function
call, consume the maximum CPU time, we apply the vectorization optimization.

These optimizations include the following:

» Basic Linear Algebra Complex (BLAS) [24] Library (Intel MKL to Switch
from Auto-Adjust Linear Algebra System [ATLAS] [25])

« Optimized components (Xbyak just-in-time [JIT] [26] group translator)

« GNU Compiler Collection (GCC) and OpenMP code vectorization

BVLC Caffe has used the Intel MKL BLAS feature call or other implemen-
tation options. For example, for vectorization, multi-threading, and better cache
memory traffic optimization GEMM functions. For better vectorization, we also
use the Xbyak-JIT translator (ia-32) for x86 and x64 (AMD64 or x86-64). Xbyak
currently supports vector instruction sets for MMX, Intel SSE, Intel SSE3, Intel
SSE4, floating point units, Intel AVX, Intel AVX2 and Intel avx-512.

The Xbyak translator is an ¢ ++ x86 / x64 JIT translator, especially for
libraries that efficiently develop code. The code that is executed only on the title
is provided by the Xbyak group translator. It can also dynamically combine x86
and x64 amusement keys. The JIT binary code generated by the code is executed
while allowing several optimizations, quantization, such as using a job that can
be used to specify the array of elements of the second array, with the polynomial
calculated item, Stable, variable x, new, sub, mul, div, etc. Intel Advanced Vector

Extensions and Intel AVX2 Vector Instruction Set support, Xbyak can achieve a
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better vectorization of Caffe’s optimized for Intel architecture. The latest version
of Xbyak with Intel avx-512 vector instruction set support, which can improve
operational efficiency, using Intel Xeon Phi processor x200 products. This im-
proved vectorization ratio allows Xbyak to process more information, along with
single instruction, multiple data (SIMD) instructions, and more efficient use of
data parallel processing. We use the Xbyak vector for this job, which can improve
the performance of the large shared layer of the program. If we all know the
parameters of the cluster, we can generate the code of the component to handle
the particular shared model that applies to a particular shared window or shared
algorithm. The result is that the proven, more efficient than the C ++ code is

superior to the general component.

3.2.2 Parallelism and OpenMP

The following of neural networks layers are optimized by using Parallel processing

of OpenMP threads

Convolution layers

Convolution layers, as the name suggests, convolves learn to weight or filter, with
the program input each generating a function graph in the output image. This
optimization, which prevents the infrequent input function from being used to a

group of hardware.

Shared or Subsampling

The largest pool, the average area, and the stochastic area are different methods
that can downsampling the most popular methods with the largest pool. The
common layers are usually not overlapping with the results of a layer of rectangle
dynamic bricks. Each of these sub-regions, the layer re-output, the maximum

value, the arithmetic meaning, or the stochastic value of the samples formed by
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each partition is enabled for multinomial delivery. The Pooling function is useful

for CNNs in three main reasons:

o The area can be reduced and the dimension of the layer at the top right of

the load is calculated.

o The lower level of shared functionality allows the core convolutional to be
higher in multi-layered coverage of larger areas of input data and thus learn
more complex functions. For example, lower-level cores usually learn to
identify small edges, while high-level cores may learn to judge forests or

beaches.

o The largest pool can provide some form of translation invariance. FEight
possible directions, a 2 x 2 partition (a typical partition of the area) can
convert it to a single pixel, from three will return the same maximum. 3 x

3 windows, the five will not return the same maximum value.

Pooling a single function on the map of the job mode, so we used Xbyak
to build efficient programs with the largest average shared one or more input
feature maps. This set of programs can be implemented as a batch input function

corresponding to the execution program when parallel to OpenMP.

Shared levels are parallel and multi-threaded; OpenMP images are indepen-

dent because they can handle different threads in parallel.

Softmax and the loss layer

The lost (cost) function is a key component that compares the predicted output to
the target or the label that will guide the network training program to the machine,
and then readjusting the calculation of the gradient to minimize the cost, for the
weighting part of the lost part of the derivative project. Softmax [27] [28] (through
the normalization index) is the classification of the probability of distribution gra-

dient - logon normalization program function. In general, this is used to calculate
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the possible results of a random event that allows one of the possible outcomes
of K, with the probability of specifying each result individually. Specifically, in
the multinomial logistic regression (multilevel classification problem), the input of
this function is the result of a different linear function of K and the possibility of
j prediction. For example the vector x class is:

I
el‘ wi

P(ZJZ]W)ZW

(3.1)

Multi-threading, OpenMP applies these calculations, is a bifurcation of a
specific number of subordinate threads, and a way of working between them to
use the main thread parallel processing. Threads are executed at the same time,

and they are assigned to different processors.

Rectified Linear Unit (ReLU)

ReLUs [29] [30] are currently using the most popular non-linear features of the
depth learning algorithm. Enables the element-wise operator of the neuron layer
to put a lower point block and produce a top dot of the same size. (Point-for-
architecture integrated memory interface with standard array. With information
on products and derivatives through the Internet, Caffe storage, communication,
and management information to use.) The ReLU layer needs to enter the value
X X positive values to calculate the output and extend them to negative slope

negative values:

x, ifx>0
flw) = (3.2

negativeslope x x, otherwise
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Experimental Results

In this section, we will introduce the experiment. Section 4.1 describes the ex-
perimental environment, including experimental hardware, experimental software

and experimental design.

4.1 Experimental Environment

In our experimental environment, including one Xeon E5 and one Xeon Phi 7210
spect processor. In multinode distributed training, we use two Xeon E5 and two

Xeon Phi 7210 spect processor.

4.1.1 Experimental Hardware

We list our hardware detail as shown in the table 4.1.

22
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TABLE 4.1: Hardware Specification

Intel Xeon E5-2650 Intel Xeon Phi 7210
CPU Clock 2 GHz 1.30 GHz
CPU Core 12 core 64 core
RAM 132 GB 384 GB
Disk 1TB 10 TB
OS CentOS 6.6 CentOS 7.2
Linux Kernel 2.6.32-504.e16.x86_ 64 3.10.0-327.el7.x86_ 64

4.1.2 Experimental Software

We list the software version used in the experiment, and describe its function. As

shown in the table 4.2.
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TABLE 4.2: Software Specification

Name

Version

Description

Intel Parallel
Studio XE

2017 update 3

Includes compilers, performance li-
braries, and parallel models opti-

mized to build fats parallel code.

Intel Advisor
XE

2017 update 2

Intel Advisor XE is a threading pro-
totyping tool for C, C++, C# and

Fortran software architects.

Intel Inspec- | XE 2017 Intel Inspector XE is an easy to use

tor XE memory and threading error debug-
ger for C, C++, C# and Fortran ap-
plications that run.

Intel VTune | 2017 update 2 Intel Inspector XE is an easy to use

Amplifier memory and threading error debug-
ger for C, C++, C# and Fortran ap-
plication that run

Intel MPI 2017 update MPI library, along with MPI error
checking and tuning to design, build,
debug and tune fast parallel code that
includes MPI.

Intel MPSS 3.8.1 Is necessary to run the Intel Xeon Phi

Coprocessor.
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4.2 Experimental Results

We train the LeNet, which is the MNIST Classification Model with Caffe. We
start the experiment by the following main step: preparing the dataset, training
a model, and timing the model. First we download MNIST dataset and create
dataset in LMDB format. Next at training the dataset, we reduce the number
of iterations from 10K to 1K to quickly run. Then we timing the forward and
backward propagations. Finally we test the trained model in the validation test.

The results shown in Figure4.1.

LeNet Model Training Result on Intel Xeon Phi 7210

0.9825
0.9807 0.9807 0.980697 0.980691 0.980742
0.
0.9775
0.975
0.9736

0.9725

50 100 500 1000 2000 10000

lterations

]
-]

Accuracy

FIGURE 4.1: LeNet Model Trainig Results

Next we use the time command to benchmarking BLVC Caffe and Intel op-
timized Caffe in two platform, Intel Xeon E5-2560 and Intel Xeon Phi 7210. The
time command will compute the layer-by-layer forward and backward propagation
time. It measure the time which spent in each layer and for providing the relative

execution times for different model. The results shown in Figure4.2 and Figure4.3.
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Caffe CIFAR-10 Dataset Execution Time Output before Intel optimized

Intel Xeon
E5-2650

Intel Xeon
Phi 7210

0 100

200 300 400

Time(sec)

FIGURE 4.2: BLVC Caffe Execution Time Comparison

Caffe CIFAR-10 Dataset Execution Time Output after Intel optimized

Intel X

EES 50.237
Intel X

wetses JEREEE

FI1GURE 4.3: Intel Optimized Caffe Execution Time Comparison

Time(sec)

Also we use multinodes distributed training on two Intel Xeon Phi 7210.
There are two main approaches to distribute the training across multiple nodes:
model parallelism and data parallelism. In model parallelism, the model is divided
among the nodes and each node has the full data batch. In data parallelism, the
data batch is divided among the nodes and each node has the full model. Data
parallelism is especially useful when the number of weights in a model is small
and when the data batch is large. A hybrid model and data parallelism is possible
where layers with few weights such as the convolutional layers are trained using the

data parallelism approach and layers with many weights such as fully connected
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layers are trained using the model parallelism approach. The training results shows

as Figured.4

Mutinode Execution Time Output

Intel Xeon
E5-2650 *2

Nodes

Intel Xeon Phi
7210 *2

0 5 10 15 20 25

execution time (s)

FIGURE 4.4: Mutilnode execution results
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Conclusions and Future Work

5.1 Concluding Remark

This work has optimized Caffe, the deep learning framework implement on Intel
Xeon Phi Processor. By using optimization method such as vectorization and
parallelism OpenMP, the training time output can reduce 6.059 times at Intel
Xeon E5-2650, 2.010 times at Intel Xeon Phi 7210. We successfully optimized the
code of Caffe also reduce the training consume, make this deep learning framework
become more useful on training model. We can understand that the performance
without optimized is pretty poor at Intel Xeon E5-2650, but for Intel Xeon Phi 7210
it can get 3.795 times reduce. However, after optimization, Intel Xeon E5-2650 can
reduce 3 times training time than Intel Xeon Phi 7210. Although its performance
still not better than Intel Xeon Phi 7210. Also the LeNet Model training results
shows that on Intel Xeon Phi 7210 can get high accuracy at 0.980742. Moreover,
we use multinode such as two Intel Xeon Phi 7210, to get even better performance

on training model as the 9.327 second.

28
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5.2 Future Works

Our evaluation only done by the environment of Intel Xeon Phi product. However,
we hope in the future GPU testing can be perform. Due to GPU extraordinary
computing capability, we are happy to see the competitive between two HPC
devies. Moreover, we would like to try more nodes on multinode distributed dis-
tributed training. In addition, we could compare with three kinds of platform:
Multinode CPU/GPU, Intel Xeon Phi, GPU and to find which gets better perfor-

mance on Caffe deep learning framework.



References

1]

[9]

A. Heinecke. Accelerators in scientific computing is it worth the effort? In
2013 International Conference on High Performance Computing Simulation

(HPCS), pages 504-504, July 2013.

C. Rosales. Porting to the intel xeon phi: Opportunities and challenges. In
Proceedings - 2013 Extreme Scaling Workshop, XSW 2013, pages 1-7, 2014.

Leonardo Dagum and Ramesh Menon. Openmp: an industry standard api for

shared-memory programming. IEEE computational science and engineering,

5(1):46-55, 1998.

Barbara Chapman, Gabriele Jost, and Ruud Van Der Pas. Using OpenMP:

portable shared memory parallel programming, volume 10. MIT press, 2008.
Rohit Chandra. Parallel programming in OpenMP. Morgan kaufmann, 2001.
Openmp, 2017. https://www.openmp.org.

William Gropp, Ewing Lusk, Nathan Doss, and Anthony Skjellum. A high-
performance, portable implementation of the mpi message passing interface

standard. Parallel computing, 22(6):789-828, 1996.

William Gropp, Ewing Lusk, and Anthony Skjellum. Using MPI: portable
parallel programming with the message-passing interface, volume 1. MIT

press, 1999.

William Gropp, Ewing Lusk, and Rajeev Thakur. Using MPI-2: Advanced
features of the message-passing interface. MIT press, 1999.

30


https://www.openmp.org

References 31

[10]

[11]

[12]

[14]

[15]

[16]

[17]

[18]

Openmpi, 2017. https://www.open-mpi.org/.

C. Zhang, 7. Fang, P. Zhou, P. Pan, and J. Cong. Caffeine: Towards uni-
formed representation and acceleration for deep convolutional neural net-
works. In IEEE/ACM International Conference on Computer-Aided Design,
Digest of Technical Papers, ICCAD, volume 07-10-November-2016, 2016.

G. Hegde, Siddhartha, N. Ramasamy, and N. Kapre. Caffepresso: An opti-
mized library for deep learning on embedded accelerator-based platforms. In

Proceedings of the International Conference on Compilers, Architectures and

Synthesis for Embedded Systems, CASES 2016, 2016.

R. Tanno and K. Yanai. Caffe2c: A framework for easy implementation of
cnn-based mobile applications. In ACM International Conference Proceeding

Series, volume 28-November-2016, pages 159-164, 2016.

Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick,
S. Guadarrama, and T. Darrell. Caffe: Convolutional architecture for fast
feature embedding. In MM 2014 - Proceedings of the 2014 ACM Conference
on Multimedia, pages 675678, 2014.

J. Bottleson, S. Kim, J. Andrews, P. Bindu, D. N. Murthy, and J. Jin. Clcaffe:
Opencl accelerated caffe for convolutional neural networks. In Proceedings -
2016 IEEFE 30th International Parallel and Distributed Processing Symposium,
IPDPS 2016, pages 50-57, 2016.

Alex Krizhevsky and G Hinton. Convolutional deep belief networks on cifar-

10. Unpublished manuscript, 40, 2010.

Adam Coates, Andrew Ng, and Honglak Lee. An analysis of single-layer
networks in unsupervised feature learning. In Proceedings of the fourteenth
international conference on artificial intelligence and statistics, pages 215—

223, 2011.

Cifar10, 2017. https://www.cs.toronto.edu/~kriz/cifar.html.


https://www.open-mpi.org/
https://www.cs.toronto.edu/~kriz/cifar.html

References 32

[19]

[20]

[21]

[23]

[24]

[25]

[20]

Yoon Kim. Convolutional neural networks for sentence classification. arXiv

preprint arXiv:1408.5882, 2014.

Tamas Roska, Jozef Hamori, Elemer Labos, Karloy Lotz, Laszlé Orzé, Jozsef
Takacs, Peter L Venetianer, Zoltan Vidnyanszky, and Akos Zardndy. The
use of cnn models in the subcortical visual pathway. IEEE Transactions on
Circuits and Systems I: Fundamental Theory and Applications, 40(3):182-195,
1993.

Akos Zardndy, Laszl6 Orzé, Edward Grawes, and Frank Werblin. Cnn-based
models for color vision and visual illusions. IEEE transactions on circuits and

systems I: Fundamental theory and applications, 46(2):229-238, 1999.

Léon Bottou, Corinna Cortes, John S Denker, Harris Drucker, Isabelle Guyon,
Lawrence D Jackel, Yann LeCun, Urs A Muller, Edward Sackinger, Patrice
Simard, et al. Comparison of classifier methods: a case study in handwrit-
ten digit recognition. In Pattern Recognition, 1994. Vol. 2-Conference B:
Computer Vision & Image Processing., Proceedings of the 12th IAPR Inter-
national. Conference on, volume 2, pages 77-82. IEEE, 1994.

Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights
and connections for efficient neural network. In Advances in Neural Informa-

tion Processing Systems, pages 1135-1143, 2015.

L Susan Blackford, Antoine Petitet, Roldan Pozo, Karin Remington, R Clint
Whaley, James Demmel, Jack Dongarra, lain Duff, Sven Hammarling, Greg
Henry, et al. An updated set of basic linear algebra subprograms (blas). ACM
Transactions on Mathematical Software, 28(2):135-151, 2002.

Rajib Nath, Stanimire Tomov, and Jack Dongarra. Accelerating gpu kernels

for dense linear algebra. In VECPAR, pages 83-92. Springer, 2010.

Xbyak, 2017. https://github.com/herumi/xbyak.


https://github.com/herumi/xbyak

References 33

[27]

[28]

[30]

Steven Gold, Anand Rangarajan, et al. Softmax to softassign: Neural net-
work algorithms for combinatorial optimization. Journal of Artificial Neural

Networks, 2(4):381-399, 1996.

Michel Tokic and Giinther Palm. Value-difference based exploration: adaptive
control between epsilon-greedy and softmax. KI 2011: Advances in Artificial

Intelligence, pages 335-346, 2011.

Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted
boltzmann machines. In Proceedings of the 27th international conference on

machine learning (ICML-10), pages 807-814, 2010.

George E Dahl, Tara N Sainath, and Geoffrey E Hinton. Improving deep
neural networks for lvesr using rectified linear units and dropout. In Acoustics,
Speech and Signal Processing (ICASSP), 2013 IEEE International Conference
on, pages 8609-8613. IEEE, 2013.



Appendix A

Caffe Installation

1. Basic Installation

sudo apt-get update &&

sudo apt-get -y install build-essential git cmake &&

sudo apt-get -y install libprotobuf-dev libleveldb-dev libsnappy-dev &&

sudo apt-get -y install libopencv-dev libhdf5-serial-dev protobuf-compiler &&
sudo apt-get -y install --no-install-recommends libboost-all-dev &&

sudo apt-get -y install libgflags-dev libgoogle-glog-dev liblmdb-dev &&

¥ H H B P L B

sudo apt-get -y install libatlas-base-dev

II. Ubuntu libraries

$ find . -type f -exec sed -i -e 's""hdf5.h"""hdf5/serial/hdf5.h""g' -e
's""hdf5_hl.h"""hdf5/serial/hdf5_hl.h""g' '{}' ;

$ cd /usr/1lib/x86_64-linux-gnu

$ sudo 1ln -s libhdf5_serial.so.10.1.0 1libhdf5.so

$ sudo 1ln -s libhdf5_serial_hl.so0.10.0.2 1libhdf5_hl.so

III. CentOS 7 install

sudo yum -y update &&

sudo yum -y groupinstall "Development Tools" &&

sudo yum -y install wget cmake git &&

sudo yum -y install protobuf-devel protobuf-compiler boost-devel &&

sudo yum -y install snappy-devel opencv-devel atlas-devel &&

¥ H H B N B

sudo yum -y install gflags-devel glog-devel 1lmdb-devel leveldb-devel hdf5-devel

34
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The following steps are only required if some packages failed to install
add EPEL repository then install missing packages

wget https://dl.fedoraproject.org/pub/epel/epel-release-latest-7.noarch.rpm
sudo rpm -ivh epel-release-latest-7.noarch.rpm

sudo yum -y install gflags-devel glog-devel 1lmdb-devel leveldb-devel hdf5-devel &&

©® B » L H

sudo yum -y install protobuf-devel protobuf-compiler boost-devel

# if packages are still not found--download and install/build the packages, e.g.,
# snappy:

$ wget http://mirror.centos.org/centos/7/0s/x86_64/Packages/snappy-
devel-1.1.0-3.el7.x86_64.rpm

$ sudo yum -y install http://mirror.centos.org/centos/7/0s/x86_64/Packages/snappy-
devel-1.1.0-3.el7.x86_64.rpm

# atlas:

$ wget http://mirror.centos.org/centos/7/0s/x86_64/Packages/atlas-
devel-3.10.1-10.e17.x86_64.rpm

$ sudo yum -y install http://mirror.centos.org/centos/7/os/x86_64/Packages/atlas-
devel-3.10.1-10.el17.x86_64.rpm

# opencv:

$ wget https://github.com/Itseez/opencv/archive/2.4.13.zip

$ unzip 2.4.13.zip

cd opencv-2.4.13/

mkdir build && cd build

cmake -DCMAKE_INSTALL_PREFIX:PATH=/usr/local

NUM_THREADS=$ (($(grep 'core id' /proc/cpuinfo | sort -u | wc -1)%2))

make all -j $NUM_THREADS

®B P LB H N B

sudo make install -j $NUM_THREADS

# Once installed, the correct environment libraries can be set as follows
(the path may need

to be modified)

$ echo 'source /opt/intel/bin/compilervars.sh intel64' >> ~/.bashrc

# alternatively edit <mkl_path>/mkl/bin/mklvars.sh replacing INSTALLDIR in

# CPRO_PATH=<INSTALLDIR> with the actual mkl path: CPRO_PATH=<full mkl path>
#

echo 'source <mkl path>/mkl/bin/mklvars.sh intel64' >> ~/.bashrc

Clone and prepare Caffe optimized for Intel architecture for compiling as follows
cd ~

For BVLC caffe use:

git clone https://github.com/BVLC/caffe.git

For intel caffe use:

git clone https://github.com/intel/caffe.git

cd caffe

echo "export CAFFE_ROOT="pwd " >> ~/.bashrc

source ~/.bashrc

® N L L L H O H O H &L H

cp Makefile.config.example Makefile.config
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# Open Makefile.config and modify it (see comments in the Makefile)

$ vi Makefile.config

# Edit the Makefile.config
# To run on CPU only and to avoid installing CUDA installers, uncomment

CPU_ONLY := 1

# To use MKL, replace atlas with mkl as follows

# (make sure that the BLAS_DIR and BLAS_LIB paths are correct)
$ BLAS := mkl

$ BLAS_DIR := $(MKLROOT)/include

$ BLAS_LIB := $(MKLROOT)/lib/intel64

# To use MKL2017 DNN primitives as the default engine, uncomment
# (however leave it commented if using multinode training)

# USE_MKL2017_AS_DEFAULT_ENGINE := 1

# To customized compiler choice, uncomment and set the following

# CUSTOM_CXX := g++

# To train on multinode uncomment and verify path
# USE_MPI := 1

# CXX := /usr/bin/mpicxx

IV. Build Caffe optimized for Intel architecture

# If using Ubuntu 16.04, edit the Makefile

%

and create symlinks
cd /usr/lib/x86_64-linux-gnu
sudo 1n -s libhdf5_serial.so.10.1.0 libhdf5.so
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sudo 1n -s libhdf5_serial_hl.so.10.0.2 libhdf5_hl.so

# If using Cent0S 7 and ATLAS (instead of the recommended MKL library),
edit the Makefile

# Change this line

$ LIBRARIES += cblas atlas

# to

$ LIBRARIES += satlas

Build Caffe optimized for Intel architecture
NUM_THREADS=$ (($(grep 'core id' /proc/cpuinfo | sort -u | wc -1)%*2))
make -j $NUM_THREADS

To save the output stream to file makestdout.log use this instead

# H® & » H

make -j $NUM_THREADS 2>&1 | tee makestdout.log

INCLUDE_DIRS := $(PYTHON_INCLUDE) /usr/local/include /usr/include/hdf5/serial/
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V. LeNet on MNIST

Preparing datasets
cd $CAFFE_ROOT

./data/mnist/get_mnist.sh # downloads MNIST dataset

©® N L H

./examples/mnist/create_mnist.sh # creates dataset in LMDB format

# Training datasets

# Reduce the number of iterations from 10K to 1K to quickly run through this example
$ sed -i 's/max_iter: 10000/max_iter: 1000/g' examples/mnist/lenet_solver.prototxt
$

./build/tools/caffe train -solver examples/mnist/lenet_solver.prototxt

# Timing the forward and backward propagations (not including weight updates)
$ ./build/tools/caffe time --model=examples/mnist/lenet_train_test.prototxt
-iterations 50

# runs on CPU

# For consistency in the timings, the utility numactl can be used to allocate memory
buffers in MCDRAM
$ numactl -i all /path/to/caffe/build/tools/caffe time --model=train_val.prototxt -

iterations $NUMITER

# Testing the trained model
# the file with the model should have a 'phase: TEST'
$ ./build/tools/caffe test -model examples/mnist/lenet_train_test.prototxt

-weights examples/mnist/lenet_iter_1000.caffemodel -iterations 50

VI. Caffe Execution

# Initial Performance Profiling
$ ./build/tools/caffe time \
--model=examples/cifar10/cifar10_full_sigmoid_train_test_bn.prototxt \

—iterations 1000
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