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Abstract

In incident cohort studies, it is common to include subjects who have ex-

perienced a certain event within a calendar time window. For all the included

individuals, the time of the previous events is retrospectively confirmed and the

occurrence of subsequent events is observed during the follow-up periods. Dur-

ing the follow-up periods, subjects may undergo three successive events. Since

the second/third duration process becomes observable only if the first/second

event has occurred, the data is subject to double truncation and dependent cen-

soring. We consider two cases: the case when the first event time is subject to

double truncation and the case when the second event time is subject to double

truncation. Using the inverse-probability-weighted (IPW) approach, we propose

nonparametric and semiparametric estimators for the estimation of the joint

survival function of three successive duration times. We establish the asymp-

totic properties of the proposed estimators and conduct a simulation study to

investigate the finite sample properties of the proposed estimators.

Key Words: double truncation; dependent censoring; inverse-probability-weighted;

successive duration times.
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1. Introduction

In natural history studies of diseases, each subject can experience a series of

successive events. In many applications, the investigators are interested in the

duration times between two successive events. Let E0, E1, E2 and E3 denote

the calendar times of the initiation, first, second and third events respectively.

Define T ∗1 = E1 − E0, T
∗
2 = E2 − E1 and T ∗3 = E3 − E2 as the first duration

time between E0 and E1, the second duration time between E1 and E2, and the

third duration time between E2 and E3, respectively. One may be interested

in estimating the joint survival function of the three duration times, denoted

by S(t1, t2, t3) = P (T ∗1 > t1, T
∗
2 > t2, T

∗
3 > t3). In incident cohort studies, sur-

vival data often include subjects who have experienced a first event within a

calendar time window, denoted by [τ0, τ1]. As pointed out in Zhu and Wang

(2012,2014,2015), in disease surveillance systems or registries, it is common to

collect data with a first event, such as diagnosis of disease, occurring within

a calendar time interval and then the time of the initiating event can be ret-

rospectively confirmed and the occurrence of the second/third failure event is

observed subject to right censoring. This type of sampling scheme is referred to

“interval sampling”. For instance, in HIV progression through successive stages,

birth (E0) is the initial event, diagnosed with HIV seroconversion is the first

event (E1), the development of AIDS is the second event (E2) and death is the

third event E3. Define T ∗1 = E1 − E0, T
∗
2 = E2 − E1 and T ∗3 = E3 − E2 as

the first duration time between E0 and E1, the second duration time between

E1 and E2 and the third duration time between E2 and E3 for a subject, re-

spectively. Suppose that a prevalent cohort is defined as a sample of subjects

who have been infected with HIV (E1) within [τ0, τ1], i.e., τ0 ≤ E0 + T ∗1 ≤ τ1,

or U∗ = τ0 − E0 ≤ T ∗1 ≤ τ1 − E0 = U∗ + d0. Hence, observation of the first

failure time T ∗1 is doubly truncated by U∗ and U∗ + d0. Let D∗ denote the time

from E1 to the right censoring, i.e., the residual censoring time. Note that D∗

can be written as D∗ = min(D∗1, D
∗
2), where D∗1 = U∗ + d0 − T ∗1 denotes the

time from E1 to the end of study and D∗2 denotes the time from E1 to drop-out

or death due to other causes. In such HIV-prevalent cohort, the time T ∗1 from

infection of HIV to the development of AIDS is doubly truncated by U∗ and
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Figure 1. Schematic depiction of doubly-truncated and dependent censored data

U∗ + d0. Since the second duration time T ∗2 becomes observable only if the first

event has occurred, the length of T ∗1 affects the probability of T ∗2 being censored.

Furthermore, the length of T ∗1 + T ∗2 affects the probability of T ∗3 being censored.

Dependent censoring arises if T ∗1 , T ∗2 and T ∗3 are not independent, which is of-

ten the case. Hence, the data is subject to double truncation and dependent

censoring. Figure 1 highlights all the different times for doubly-truncated and

dependent censored (DTDC) data described above.

For DTDC data with the first event subject to doubly truncation, one ob-

serves nothing if T ∗1 < U∗ or T ∗1 > U∗+d0 and observe (T ∗1 , X
∗
2 , X

∗
3 , U

∗, δ∗1, δ
∗
2, δ
∗
3)

if U∗ ≤ T ∗1 ≤ U∗ + d0, where X∗2 = min(T ∗2 , D
∗), X∗3 = δ∗1 min(T ∗3 , D

∗ − T ∗2 ),

δ∗1 = I[T ∗
2≤D∗], δ

∗
2 = δ∗1I[T ∗

3≤D∗−T ∗
2 ]

and δ∗3 = (1 − δ∗1)I[D∗=D∗
2 ]

. We assume that

(T ∗1 , T
∗
2 , T

∗
3 , U

∗, D∗2) is continuous and U∗, D∗2 and (T ∗1 , T
∗
2 , T

∗
3 ) are independent.

Note that as pointed out in Zhu and Wang (2015), the independence assumption

between truncation time and failure times may not hold if there exists shift in

factors related to disease progression, such as availability of new therapy in the

context of HIV infection.

In some situations, a prevalent cohort is defined as a sample of subjects who

have experienced the second event within a calendar time window. For example,

in Alzheimer’s disease through successive stages, birth (E0) is the initial event,

diagnosed with Alzheimer’s disease is the first event (E1), the development of

mild decline in abilities is the second event (E2) and the development of severe
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Figure 2. Schematic depiction of doubly-truncated and censored data

decline in abilities/death is the third event (E3). Suppose that a prevalent cohort

is defined as a sample of subjects who have been diagnosed with Alzheimer’s

disease and experienced mild decline in abilities within a calendar time window,

i.e., τ0 ≤ E0 + T ∗1 + T ∗2 ≤ τ1 or U∗ ≤ T ∗1 + T ∗2 ≤ U∗ + d0. Hence, Y ∗2 =

T ∗1 + T ∗2 is doubly truncated by U∗ and U∗ + d0. In this case, the censoring

time C∗ denotes the time from E2 to the right censoring and C∗ can be written

as C∗ = min(C∗1 , C
∗
2), where C∗1 = U∗ + d0 − Y ∗2 denotes the time from E2

to the end of study and C∗2 denotes the time from E2 to drop-out or death

due to other causes. One observe nothing if U∗ > Y ∗2 or Y2 > U∗ + d0 and

observes (T ∗1 , T
∗
2 , X

∗
3 , U

∗, γ∗1 , γ
∗
2) if U∗ ≤ Y ∗2 ≤ U∗+d0, where X∗3 = min(T ∗3 , C

∗),

γ∗1 = I[T ∗
3≤C∗] and γ∗2 = (1−γ∗1)I[C∗=C∗

2 ]
. We assume that U∗, C∗2 and (T ∗1 , T

∗
2 , T

∗
3 )

are independent. Figure 2 highlights all the different times for this type data

described above.

In literature, for data without truncation, several nonparametric methods

for estimating the joint distribution function of successive duration times have

been developed in literature (see Visser (1996), Wang and Wells (1998), and Lin

et al. (1999)). For left-truncated and dependent censored (LTDC) data, Chang

and Tzeng (2006) proposed an inverse-probability-weighted (IPW) approach for

estimating the joint probability function of two successive duration times. Shen

and Yan (2008) proposed an alternative estimator of the joint distribution func-

tion of T ∗1 and T ∗2 . Shen (2010a) proposed two IPW estimators of the joint

survival function of T ∗1 and T ∗2 based on the approaches of Chang and Tzeng
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(2006) and Wang and Wells (1998). Using the IPW approach, Shen (2017) pro-

posed nonparametric estimators for the estimation of the joint survival function

of three successive duration times. For DTDC data, Zhu and Wang (2012,2015)

considered semiparametric association estimation of (T ∗1 , T
∗
2 ) based on a copula

model. Zhu and Wang (2014) proposed nonparametric estimation of the associa-

tion between T ∗1 and T ∗2 based on Kendall’s tau and developed a nonparametric

test of quasi-independence. Using the IPW approach, Shen (2016a) propose

nonparametric estimator of the joint survival function of T ∗1 and T ∗2 .

In this article, we consider the estimation of the joint survival function of

three successive duration times for DTDC data. We consider two cases: the

case when the first event time is subject to double truncation and the case

when the second event time is subject to double truncation. In Section 2,

when the distribution of the truncation time is unspecified, using the IPW

approach, we propose nonparametric estimators of the joint survival function

S(t1, t2, t3) = P (T ∗1 > t1, T
∗
2 > t2, T

∗
3 > t3). The asymptotic properties of the

proposed estimators are established. In Section 3, under the assumption that

the distribution of U∗ is known up to a finite-dimensional parameter vector,

we propose semiparametric estimators of S(t1, t2, t3). In Section 4, a simula-

tion study is conducted to investigate finite sample performance of the proposed

estimators.
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2. The Nonparametric Estimators

2.1. When the first event time is subject to dou-

ble truncation

Let Fk(x) = P (T ∗k ≤ x) (k = 1, 2, 3) denote the distribution function of T ∗k .

Let G(x) = P (U∗ ≤ x) and Q(x) = P (D∗ ≤ x) denote the distribution function

of U∗ and D∗, respectively. Let aFk
and bFk

denote the left and right endpoints

of Fk. Similarly, define (aG, bG) and (aQ, bQ) for U∗ and D∗, respectively. For

identifiablities of S(t1, t2, t3), we assume that

aG = aF1 = aF2 = aF3 = 0, bG ≤ bF1 ≤ bG + d0.

Then S(t1, t2, t3) is identifiable for t1 ≤ bF1 , t2 ≤ min(bF2 , bQ) and t3 ≤ min(bF3 , bQ).

Let (T1i, X2i, δ1iX3i, Ui, δ1i, δ2i, δ3i) (i = 1, . . . , n) denote the truncated sample.

Let p = P (U∗ ≤ T ∗1 ≤ U∗ + d0) denote the untruncated probability. Define the

indicator

Ii(t1, t2, t3) = I[T1i>t1,X2i>t2,X3i>t3,δ1i=1].

Consider the function

S̃(t1, t2, t3) = P (T1i > t1, X2i > t2, X3i > t3, δ1i = 1)

S̃(t1, t2, t3) = P (T ∗1i > t1, X
∗
2i > t2, X

∗
3i > t3, δ

∗
1i = 1|U∗ ≤ T ∗1 ≤ U∗ + d0)

= p−1P (U∗ < T ∗1 < U∗+d0, T
∗
1 > t1, T

∗
2 > t2, T

∗
3 > t3,min(D∗1, D

∗
2)−T ∗2 > t3,min(D∗1, D

∗
2) > T ∗2 )

= p−1P (T ∗1 + T ∗2 + t3 − d0 < U∗ < T ∗1 , T
∗
1 > t1, T

∗
2 > t2, T

∗
3 > t3, D

∗
2 − T ∗2 > t3).

For x < y, define K(x, y) = [G(x) − G(x + y − d0)]SD2(y), where SD2(y) =

P (D∗2 > y). Then the expected value of Ii(t1, t2, t3)/K(T1i, X2i + t3) is

E[Ii(t1, t2, t3)/K(T1i, X2i + t3)]

=

∫ ∞
t3

∫ ∞
t2

∫ ∞
t3

p−1P (u1 + u2 + t3 − d0 < U∗ < u1)P (D∗2 > u2 + t3)

K(u1, u2 + t3)
dF (u1, u2, u3)

= p−1S(t1, t2, t3),
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where F (u1, u2, u3) denotes the joint distribution function of T ∗1 , T ∗2 and T ∗3 .

Since E[Ii(0, 0, 0)/K(T1i, X2i)] = p−1, given K(x, y), p can be estimated by

p̂(K) = n

[
n∑
i=1

δ1i
K(T1i, X2i)

]−1
.

Thus, given K(x, y), we can estimate S(t1, t2, t3) by

Ŝn(t1, t2, t3;K) = n−1p̂(K)
n∑
i=1

Ii(t1, t2, t3)

K(T1i, X2i + t3)

=

[
n∑
i=1

δ1i
K(T1i, X2i)

]−1 n∑
i=1

Ii(t1, t2, t3)

K(T1i, X2i + t3)
. (2.1)

Now, we consider the estimation of K(x, y). Under the assumption that D∗2

is independent of U∗ and (T ∗1 , T
∗
2 , T

∗
3 ), ŜD2 can be estimated using the Kaplan-

Meier (1958) estimate ŜD2(t) as follows:

ŜD2(t) =
∏
X2i≤t

(
1− δ3i

ni

)
,

where ni =
∑n

j=1 I[X2j≥X2i]. Next, we can estimate G(x) using the argument

of Shen (2010b,2016) as follows. Let S1(x) = P (T ∗1 > x) denote the survival

function of T ∗1 . Consider the distribution function of Ui’s.

G̃(t) = P (Ui ≤ t) = p−1P (U∗ ≤ t, U∗ ≤ T ∗1 ≤ U∗ + d0)

= p−1
∫ t

0

[S1(u−)− S1(u+ d0)]G(du),

Hence, given p and S1, G can be estimated by an IPW estimator as follows

Ĝ(t;S1, p) = n−1p

n∑
i=1

I[Ui≤t]

S1(Ui−)− S1(Ui + d0)
.

Let t→∞, it follows that p can be estimated by

p̂(S1) = n

[ n∑
i=1

1

S1(Ui−)− S1(Ui + d0)

]−1
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and G can be estimated by

Ĝ(t;S1) =

[ n∑
i=1

1

S1(Ui−)− S1(Ui + d0)

]−1 n∑
i=1

I[Ui≤t]

S1(Ui−)− S1(Ui + d0)
.

Similarly, consider the survival function of T1i’s.

S̃1(t) = P (T1i > t) = p−1P (T ∗1 > t, U∗ ≤ T ∗1 ≤ U∗ + d0)

= p−1
∫ t

0

[G(u)−G((u− d0)−]F1(du),

where F1(t) = P (T ∗1 ≤ t) is the distribution function of T ∗1 . Hence, given p and

G, S1 can be estimated by an IPW estimator as follows

Ŝ1(t;G, p) = n−1p
n∑
i=1

I[T1i>t]
G(T1i)−G((T1i − d0)−)

.

Let t→ 0, it follows that p can be estimated by

p̂(G) = n

[ n∑
i=1

1

G(T1i)−G((T1i + d0)−)

]−1

and S1 can be estimated by

Ŝ1(t;G) =

[ n∑
i=1

1

G(T1i)−G((T1i + d0)−)

]−1 n∑
i=1

I[T1i>t]
G(T1i)−G((T1i − d0)−)

.

By the above arguments, the IPW estimators of S1 and G can be obtained by

simultaneous solving the following two equations:

Ŝ1n(t) =
[ n∑
i=1

1

Ĝn(T1i)− Ĝn((T1i − d0)−)

]−1 n∑
i=1

I[T1i>t]

Ĝn(T1i)− Ĝn((T1i − d0)−)
,

Ĝn(u) =
[ n∑
i=1

1

Ŝ1n(Ui−)− Ŝ1n(Ui + d0))

]−1 n∑
i=1

I[Ui≤u]

Ŝ1n(Ui−)− Ŝ1n(Ui + d0)
.

Hence, K(x, y) can be estimated by K̂n(x, y) = [Ĝn(x)− Ĝn(y − d0)]ŜD2(y).
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Given K̂n(x, y), by (2.1) an IPW estimate of S(t1, t2, t3) is given by

Ŝn(t1, t2, t3) =

[
n∑
i=1

δ1i

K̂n(T1i, X2i)

]−1 n∑
i=1

I[T1i>t1,X2i>t2,X3i>t3,δ1i=1]

K̂n(T1i, X2i + t3)
.

For the special case of D∗2 =∞,

S̃(t1, t2, t3) = p−1P (T ∗1 − d0 < U∗ < T ∗1 , T
∗
1 > t1, T

∗
2 > t2, T

∗
3 > t3, D

∗
1 − T ∗2 > t3)

= p−1P (T ∗1 + T ∗2 + t3 − d0 < U∗ < T ∗1 , T
∗
1 > t1, T

∗
2 > t2, T

∗
3 > t3). (2.2)

By (2.2)

E[Ii(t1, t2, t3)/[G(T1i)−G(T1i +X2i + t3 − d0)]

=

∫ ∞
t3

∫ ∞
t2

∫ ∞
t3

p−1P (u1 + u2 + t3 − d0 < U∗ < u1)

G(u1)−G(u1 + u2 + t3 − d0)
dF (u1, u2, u3) = p−1S(t1, t2, t3)

and E[Ii(0, 0, 0)/[G(T1i) − G(T1i + X2i − d0)] = p. Thus, given G(x), p can be

estimated by

p̂(G) = n

[
n∑
i=1

δ1i
G(T1i)−G(T1i +X2i − d0)

]−1

and (2.1) is reduced to

Ŝn(t1, t2, t3) =

[
n∑
i=1

δ1i

Ĝn(T1i)− Ĝn(T1i +X2i − d0)

]−1 n∑
i=1

I[T1i>t1,X2i>t2,X3i>t3,δ1i=1]

Ĝn(T1i)− Ĝn(T1i +X2i + t3 − d0)
.

In the following Theorem, we show the consistency of Ŝn(t1, t2, t3).

Theorem 1. (a) Let [0, b] = [0, b1]× [0, b2]× [0, b3] such that [G(x)−G((x+y−

d0)−)]SD2(y) > 0 for x ∈ [0, b1] and y ∈ [0, b2]. (b)
∫ bG
aG
G(dx)/[S1(x) − S1(x +

d0)] <∞, (c) F1(dx)/G(dx) is uniformly bounded on [aG, bG]. Then Ŝn(t1, t2, t3)

is uniformly consistent on [0, b].

Proof:
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Write Ŝn(t1, t2, t3) as Ŝn(t1, t2, t3; K̂n). Thus

Ŝn(t1, t2, t3; K̂n)− S(t1, t2, t3) = φ1(t1, t2, t3) + φ2(t1, t2, t3),

where

φ1(t1, t2, t3) = Ŝn(t1, t2, t3; K̂n)− Ŝn(t1, t2, t3;K)

and

φ2(t1, t2, t3) = Ŝn(t1, t2, t3;K)− S(t1, t2, t3).

Let S̃n denote the empirical function of S̃ and

p̂(K̂n) = n

[
n∑
i=1

δ2i

K̂n(T1i, X2i)

]−1
.

Then

φ1(t1, t2, t3) = p̂(K̂n)

∫ ∞
t3

∫ ∞
t2

∫ ∞
t1

S̃n(du1, du2, du3)

K̂n(u1, u2 + t3)
− p̂(K)

∫ ∞
t2

∫ ∞
t1

S̃n(du1, du2, du3)

K(u1, u2 + t3)

=

∫ ∞
t3

∫ ∞
t2

∫ ∞
t1

S̃n(du1, du2, du3)

K̂n(u1, u2 + t3)
[p̂(K̂n)− p̂(K)]

−p̂(K)

∫ ∞
t3

∫ ∞
t2

∫ ∞
t1

[
1

K̂n(u1, u2 + t3)
− 1

K(u1, u2 + t3)

]
S̃n(du1, du2, du3). (2.3)

By assumptions (a) and (b), it follows by Shen (2010b) that Ĝn is uniformly con-

sistent. Furthermore, by uniform consistency of Ŝ1, K̂n is uniformly consistent.

Thus,

(2.3) = p−1S(t1, t2, t3)[p̂(K̂n)− p̂(K)]

−p
∫ ∞
t3

∫ ∞
t2

∫ ∞
t1

1

K2(u1, u2 + t3)
[K̂n(u1, u2+t3)−K(u1, u2+t3)]S̃(du1, du2, du3)+op(n

−1/2).

Hence, φ1(t1, t2, t3)
p−→0. Next,

φ2(t1, t2, t3) = pn−1
n∑
i=1

ζ(T1i, X2i, X3i, δ1i, t1, t2, t3) + op(n
−1/2),
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where

ζ(T1, X2, X3, δ1, t1, t2, t3) = [I[T1≥t1,X2≥t2,X3≥t,δ2=1] − δ1S(t1, t2, t3)]/K(T1, X2 + t3).

Hence, φ2(t1, t2, t3)
p−→0. The proof is compete.

It is difficult to establish the asymptotic normality of n1/2(Ŝn(t1, t2)−S(t1, t2))

since we have difficulty expressing Ĝn(t) as a sum of i.i.d. random processes.

2.2. When the second event is subject to double

truncation

Let (T1i, T2i, X3i, Ui, γ1i, γ2i) (i = 1, . . . , n) denote the truncated sample. Let

p2 = P (Y ∗2 − d0 ≤ U∗ ≤ Y ∗2 ) denote the untruncated probability. Consider the

function

S̃Y (t1, t2, t3) = P (T1i > t1, T2i > t2, X3i > t3, γ1i = 1)

= p−12 P (U∗ < Y ∗2 < U∗ + d0, T
∗
1 > t1, T

∗
2 > t2, T

∗
3 > t3, C

∗ > T ∗3 )

= p−12 P (Y ∗2 + T ∗3 − d0 < U∗ < Y ∗2 , T
∗
1 > t1, T

∗
2 > t2, T

∗
3 > t3, C

∗
2 > T ∗3 ).

For x < y, define H(x, y) = [G(x) − G(x + y − d0)]SC2(y), where SC2(y) =

P (C∗2 > y). Define the indicator

IYi (t1, t2, t3) = I[T1i>t1,T2i>t2,X3i>t3,γ1i=1].

Then the expected value of IYi (t1, t2, t3)/H(Y2i, X3i) is

E[IYi (t1, t2, t3)/H(Y2i, X3i)]

=

∫ ∞
t3

∫ ∞
t2

∫ ∞
t3

p−12 P (u1 + u2 + t3 − d0 < U∗ < u1)P (C∗2 > u3)

H(u1 + u2, u3)
dF (u1, u2, u2)

= p−12 S(t1, t2, t3).
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Since E[IYi (0, 0, 0)/H(Y2i, X3i)] = p−12 , given H(x, y), p2 can be estimated by

p̂2(H) = n

[
n∑
i=1

γ1i
H(Y2i, X3i)

]−1
.

Thus, given H(x, y), we can estimate S(t1, t2, t3) by

Ŝn(t1, t2, t3;H) =

[
n∑
i=1

γ1i
H(Y2i, X3i)

]−1 n∑
i=1

I[T1i>t1,T2i>t2,X3i>t3,γ1i=1]

H(Y2i, X3i)
.

To obtain an estimate of H(x, y), we need to estimate both G(x) − G(x +

y − d0) and SC2(y). The survival function SC2(y) can be estimated using the

Kaplan-Meier (1958) estimate ŜC2(t) as follows:

ŜC2(y) =
∏
X3i≤y

(
1− γ2i

mi

)
,

where mi =
∑n

j=1 I[X3j≥X3i]. Next, we consider the estimation of G(x). Let

Y2i = T1i + T2i and L(y) = P (Y ∗2 ≤ y). Consider the distribution function of

Ui’s.

G̃(t) = P (Ui ≤ t) = p−12 P (U∗ ≤ t, U∗ ≤ Y ∗2 , Y
∗
2 ≤ U∗ + d0)

= p−12

∫ t

0

[L(u+ d0)− L(u−)]G(du),

Hence, given p2 and L, G can be estimated by an IPW estimator as follows

Ĝ(t;L, p2) = n−1p2

n∑
i=1

I[Ui≤t]

L(Ui + d0)− L(Ui−)
.

Let t→∞, it follows that p2 can be estimated by

p̂2(L) = n

[ n∑
i=1

1

L(Ui + d0)− L(Ui−)

]−1
,

and G can be estimated by

Ĝ(t;L) =

[ n∑
i=1

1

L(Ui + d0)− L(Ui−)

]−1 n∑
i=1

I[Ui≤t]

L(Ui + d0)− L(Ui−)
.
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Similarly, consider the function

L̃(t) = P (Y2i ≤ t) = p−12 P (Y ∗2 ≤ t, Y ∗2 − d0 ≤ U∗ ≤ Y ∗2 )

= p−12

∫ t

0

∫ t2

0

[G(u)−G((u− d0)−]L(du).

Hence, given p2 and G, L(t) can be estimated by an IPW estimator as follows

L̂(t;G, p2) = n−1p2

n∑
i=1

I[Y2i≤t]
G(Y2i)−G((Y2i − d0)−)

.

Let t→ 0, it follows that p2 can be estimated by

p̂2(G) = n

[ n∑
i=1

1

G(Y2i)−G((Y2i − d0)−)

]−1

and L can be estimated by

L̂(t;G) =

[ n∑
i=1

1

G(Y2i)−G((Y2i − d0)−)

]−1 n∑
i=1

I[Y2i≤t]
G(Y2i)−G((Y2i − d0)−)

.

By the above arguments, the IPW estimators of L and G can be obtained by

simultaneous solving the following two equations:

L̂n(t) =
[ n∑
i=1

1

ĜY
n (Y2i)− ĜY

n ((Y2i − d0)−)

]−1 n∑
i=1

I[Y2i≤t2]

ĜY
n (Y2i)− ĜY

n ((Y2i − d0)−)
,

ĜY
n (u) =

[ n∑
i=1

1

L̂n(Ui + d0)− L̂n(Ui−)

]−1 n∑
i=1

I[Ui≤u]

L̂n(Ui + d0)− L̂n(Ui−)
.

Thus, H(x, y) can be estimated by Ĥn(x, y) = [ĜY
n (x, y) − ĜY

n (x + y −

d0)]ŜC2(y), and an IPW estimator of S(t1, t2, t3) is given by

ŜYn (t1, t2, t3) =

[
n∑
i=1

γ1i

Ĥn(Y2i, X3i)

]−1 n∑
i=1

I[T1i>t1,T2i>t2,X3i>t3,γ1i=1]

Ĥn(Y2i, X3i)
.

Theorem 2. (a) [0, c] = [0, c1] × [0, c2] × [0, c3] such that H(x, y) > 0 for

x ∈ [0, c1 + c2] and y ∈ [0, c3]. (b)
∫ bG
aG
G(dx)/[L(x + d0) − L(x−)] < ∞, (c)

L(dx)/G(dx) is uniformly bounded on [aG, bG]. Then ŜYn (t1, t2, t3) is uniformly

12



consistent on [0, c].

Proof: The proof is similar to that of Theorem 1 and is omitted.

13



3. Semiparametric Estimators

In some cases, there is sufficient information on the initial event E0 to as-

sume that the left-truncated time U∗ has a parametric density function g(x; θ)

with corresponding distribution function G(x; θ), where θ ∈ Θ, Θ is a known

compact set in Rq and θ is a q-dimensional vector. For prevalent data with

fixed recruitment time, the truncation distribution G can be interpreted as the

distribution of the initial event E0. For example, when E0 corresponds to birth,

one might parameterize G so that the parameterization reflects the growth of

the birth over time. When G(x) is parameterized as G(x; θ), Moreira and de

Uña-Álvarez (2010b) and Shen (2010c) proposed a semiparametric estimator of

F1(t) that is more efficient than the NPMLE F̂1n(t) = 1 − Ŝ1n(t). Using their

approach, we consider the conditional likelihood function for Ui’s given T1i’s:

Lc(θ) =
n∏
i=1

P (U∗i = Ui|T1i − d0 ≤ U∗i ≤ T1i)

=
n∏
i=1

g(Ui; θ)

G(T1i; θ)−G(T1i − d0; θ)
.

Let θ̂n denote the MLE by maximizing Lc(θ). Given θ̂n, K(x, y) can be estimated

by Kθ̂n
(x, y) = [G(x; θ̂n) − G(y − d0; θ̂n)]ŜD2(y). When the first event time

is subject to double truncation, given Kθ̂n
(x, y), by (2.1) an IPW estimate of

S(t1, t2, t3) is given by

Ŝθ̂n(t1, t2, t3) =

[
n∑
i=1

δ1i
Kθ̂n

(T1i, X2i)

]−1 n∑
i=1

I[T1i>t1,X2i>t2,X3i>t3,δ1i=1]

Kθ̂n
(T1i, X2i + t3)

.

Similarly, when the second event time is subject to double truncation, H(x, y)

can be estimated by Hθ̂n
(x, y) = [G(x, y; θ̂n)−G(x+ y − d0; θ̂n)]ŜC2(y), and an

IPW estimator of S(t1, t2, t3) is given by

ŜY
θ̂n

(t1, t2, t3) =

[
n∑
i=1

γ1i
Hθ̂n

(Y2i, X3i)

]−1 n∑
i=1

I[T1i>t1,T2i>t2,X3i>t3,γ1i=1]

Hθ̂n
(Y2i, X3i)

.
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Theorem 3. Under condition (a) in Theorem 1, assume that (b) G(x; θ) is

continuous in x ∈ [aG, bG] for each θ ∈ Θ and (c) θ̂n
a.s.−→ θ implies that

G(x; θ̂n)
a.s.−→ G(x; θ) for each x ∈ [aG, bG]. Then Sθ̂n(t1, t2, t3) is uniformly

consistent on [0, b].

Proof:

By Anderson (1970), θ̂n converges to θ with probability one. By assumption,

G(x; θ̂n)
a.s.−→ G(x; θ). By the continuity of G(x; θ) in x ∈ [aG, bG] and the mono-

tonicity property ofG(x; θ), it follows that with probability one, supx∈[aG,bG] |G(x; θ̂n)−

G(x; θ)| → 0 as n → ∞. The rest of proof is similar to that of Theorem 1 and

is omitted.

Theorem 4. Under condition (a) in Theorem 2 and the assumptions (b) and

(c) in Theorem 3, SY
θ̂n

(t1, t2, t3) is uniformly consistent on [0, c].

Proof: The proof is similar to that of Theorem 3 and is omitted.

When the parametric information is correct, it is expected the semiparamet-

ric estimator Ŝθ̂n outperforms the estimator Ŝn, but may behave badly when the

assumed parametric model is incorrect. Moreira et al. (2014) proposed several

Kolmogorov-Smirnov and Cramér-von Mises type test statistics, by which we

can check if G can be parameterized as G(t; θ).
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4. Simulation Study

Case 1: When the first event is doubly truncated

To investigate the performance of the proposed estimator Ŝn and Ŝθ̂n , we

conduct simulations under the recruiting criterion U∗ ≤ T ∗1 ≤ U∗ + d0. The

joint distribution of (T ∗1 , T
∗
2 , T

∗
3 )’s are generated using Clayton’s (1978) bivariate

exponential survival function with association parameter β1 between T ∗1 and T ∗2 ,

and association parameter β2 between T ∗2 and T ∗3 , i.e. S12(t1, t2) = P (T ∗1 >

t1, T
∗
2 > t2) = [S1(t1)

1−β1 +S2(t2)
1−β1−1]1/1−β1 and S23(t1, t2) = P (T ∗2 > t1, T

∗
3 >

t2) = [S1(t1)
1−β2 +S2(t2)

1−β2 − 1]1/1−β2 with marginal survival functions Si(t) =

e−t/µi (i = 1, 2, 3) with µ1 = 5, µ2 = 1 and µ3 = 0.5. The values of β1 and β2

are chosen as β1 = β2 = 2 such that the Kendall’s tau of (T ∗1 , T
∗
2 ), (T ∗2 , T

∗
3 ) and

(T ∗1 , T
∗
3 ) are equal to 0.5, 0.5 and 0.35, respectively. The left truncation time U∗ is

exponentially distributed with mean µg and the right truncation time V ∗ = U∗+

d0. The value of (µg, d0) are chosen as (4, 8) and (2, 6) such that the proportions

of left truncation (denoted by ql) and right truncation (denoted by qr) are equal

to (ql, qr) = (0.45, 0.10) and (0.28, 0.22), respectively. The censoring time D∗2

is exponentially distributed with mean µD. The values of µD are chosen as 2

and 4 such that (p1, p2, p3) = (0.60, 0.47, 0.31) and (0.71, 0.60, 0.18), respectively,

for (ql, qr) = (0.28, 0.22), and (p1, p2, p3) = (0.6, 0.48, 0.36) and (0.72, 0.62, 0.20),

respectively, for (ql, qr) = (0.45, 0.10), where p1 = P (δ1i = 1), p2 = P (δ2i =

1) and p3 = P (δ3i = 1). We keep the sample if U∗ ≤ T ∗1 ≤ U∗ + d0 and

obtain the truncated observations (X1i, X2i, X3i, Ui, δ1i, δ2i, δ3i). We regenerate

a sample if T ∗1 < U∗ or T ∗1 > U∗ + d0 such that the untruncated sample size

is equal to n. We consider the estimation of S(t0) for some selected points

of t0 = (1.0, 0.1, 0.1), (1.0, 0.5, 0.1), (4.0, 1.0, 0.1), (1.0, 0.1, 0.25), (1.0, 0.5, 0.25)

and (4.0, 1.0, 0.25) with corresponding true values equal to 0.74, 0.58, 0.27, 0.14,

0.56, 0.49, 0.24 and 0.13, respectively. The sample size is chosen as n = 200, 400

and the replication is 1000 times. Tables 1 and 2 show the biases, standard

deviations (std) and root meas squared errors (rmse) of the two estimators Ŝn(t)

and Ŝθ̂n(t) for the selected points.
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Case 2: When the second event is doubly truncated

To investigate the performance of the proposed estimator ŜYn and ŜY
θ̂n

(t),

we conduct simulations under the recruiting criterion U∗ ≤ Y ∗2 ≤ U∗ + d0. The

distribution of (T ∗1 , T
∗
2 , T

∗
3 ), U∗ and V ∗ are the same as those used in Section 3.1.

The value of (µg, d0) are chosen as (4, 8) and (2, 6) such that the proportions of

left truncation (denoted by ql) and right truncation (denoted by qr) are equal to

(ql, qr) = (0.38, 0.15) and (0.28, 0.23), respectively. The distribution of censoring

time C∗2 is the same as D∗2 is Section 3.1. We keep the sample if U∗ ≤ Y ∗2 ≤

U∗ + d0 and regenerate a sample if Y ∗2 < U∗ or Y ∗2 > U∗ + d0 such that the

untruncated sample size is equal to n. We also calculate the simulated proportion

r1 = P (γ1i = 1) and r2 = P (γ2i = 1). Tables 3 and 4 show the simulation results

for the two estimators ŜYn (t) and ŜY
θ̂n

(t).

Based on the results of Tables 1 and 4, we conclude that:

(i) For case 1, the biases and standard deviations of both Ŝn and Ŝθ̂n decrease

as sample size increases. When left truncation is mild (ql = 0.28) and right

truncation is not light (qr = 0.22), the biases of Ŝn and Ŝθ̂n can be large for the

estimation of S(t0) at non-early time points t0 = (4.0, 1.0, 0.1), (1.0, 0.1, 0.25)

and (4.0, 1.0, 0.25). This is improved when the proportion of left truncation

is increased to ql = 0.45 since more failure times with larger values can be

observed. For case 2, the biases of both ŜYn and ŜY
θ̂n

(t) are small for most of the

cases considered and the standard deviations decrease as sample size increases.

(ii) For both cases, the standard deviations of the semiparametric estimator Ŝθ̂n

(ŜY
θ̂n

(t)) are smaller than that of the nonparametric estimator Ŝn (ŜYn ). In terms

of rmse, the semiparametric estimator outperforms the nonparametric estimator.
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5. Discussion

In this article, for doubly-truncated and dependent censored data, we have

proposed inverse-probability weighted estimators for the estimation of the joint

survival function of three successive duration times. Simulation results indicate

that both nonparametric estimator Ŝn and semiparametric estimator Ŝθ̂n per-

form well. Our proposed approach can be extended to the case of more than

three successive duration times. In some cases, the calendar times of the ini-

tiation E0 or the subsequent events E1 and E2 are only known to fall within

intervals, leading to doubly censored data. Further research is needed to extend

our approach to deal with such data.
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Table 1. Simulation results for Ŝn and Ŝθ̂n (ql = 0.28, qr = 0.22)

(p1, p2, p3) = (0.60, 0.47, 0.31)

Ŝn(t) Ŝθ̂n(t)

(t1, t2, t3) S(t0) n bias std rmse bias std rmse

(1.0,0.1,0.1) 0.74 200 -0.034 0.129 0.133 -0.031 0.107 0.111

(1.0,0.1,0.1) 0.74 400 -0.013 0.083 0.084 -0.021 0.072 0.075

(1.0,0.5,0.1) 0.58 200 -0.048 0.124 0.133 -0.041 0.111 0.118

(1.0,0.5,0.1) 0.58 400 -0.021 0.099 0.101 -0.034 0.081 0.088

(4.0,1.0,0.1) 0.27 200 -0.068 0.127 0.144 -0.043 0.120 0.127

(4.0,1.0,0.1) 0.27 400 -0.053 0.095 0.108 -0.037 0.092 0.099

(1.0,0.1,0.25) 0.56 200 -0.072 0.122 0.142 -0.067 0.121 0.138

(1.0,0.1,0.25) 0.56 400 -0.050 0.091 0.104 -0.056 0.085 0.102

(1.0,0.5,0.25) 0.49 200 -0.084 0.127 0.152 -0.092 0.119 0.150

(1.0,0.5,0.25) 0.49 400 -0.040 0.095 0.103 -0.064 0.088 0.109

(4.0,1.0,0.25) 0.24 200 -0.064 0.119 0.135 -0.076 0.107 0.131

(4.0,1.0,0.25) 0.24 400 -0.036 0.095 0.102 -0.043 0.086 0.096

(p1, p2, p3) = (0.71, 0.60, 0.18)

(t1, t2, t3) S(t0) n bias std rmse bias std rmse

(1.0,0.1,0.1) 0.74 200 -0.018 0.105 0.107 -0.027 0.083 0.087

(1.0,0.1,0.1) 0.74 400 -0.005 0.079 0.078 -0.019 0.067 0.070

(1.0,0.5,0.1) 0.58 200 -0.033 0.124 0.128 -0.045 0.089 0.100

(1.0,0.5,0.1) 0.58 400 -0.022 0.094 0.097 -0.033 0.073 0.081

(4.0,1.0,0.1) 0.27 200 -0.056 0.130 0.131 -0.055 0.102 0.116

(4.0,1.0,0.1) 0.27 400 -0.045 0.087 0.098 -0.043 0.081 0.092

(1.0,0.1,0.25) 0.56 200 -0.067 0.124 0.141 -0.081 0.085 0.117

(1.0,0.1,0.25) 0.56 400 -0.030 0.092 0.097 -0.067 0.079 0.085

(1.0,0.5,0.25) 0.49 200 -0.070 0.129 0.147 -0.080 0.098 0.127

(1.0,0.5,0.25) 0.49 400 -0.032 0.096 0.101 -0.052 0.081 0.096

(4.0,1.0,0.25) 0.24 200 -0.059 0.121 0.135 -0.074 0.097 0.122

(4.0,1.0,0.25) 0.24 400 -0.036 0.083 0.090 -0.052 0.075 0.083
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Table 2. Simulation results for Ŝn and Ŝθ̂n (ql = 0.45, qr = 0.10)

(p1, p2, p3) = (0.60, 0.48, 0.36)

Ŝn(t) Ŝθ̂n(t)

(t1, t2, t3) S(t0) n bias std rmse bias std rmse

(1.0,0.1,0.1) 0.74 200 -0.021 0.122 0.124 0.005 0.082 0.082

(1.0,0.1,0.1) 0.74 400 -0.008 0.093 0.093 -0.006 0.070 0.070

(1.0,0.5,0.1) 0.58 200 -0.022 0.127 0.129 -0.002 0.078 0.078

(1.0,0.5,0.1) 0.58 400 -0.009 0.094 0.094 -0.008 0.069 0.069

(4.0,1.0,0.1) 0.27 200 -0.024 0.118 0.120 -0.020 0.078 0.080

(4.0,1.0,0.1) 0.27 400 -0.012 0.085 0.086 -0.008 0.067 0.067

(1.0,0.1,0.25) 0.56 200 -0.054 0.126 0.137 -0.051 0.077 0.092

(1.0,0.1,0.25) 0.56 400 -0.018 0.097 0.099 -0.046 0.065 0.080

(1.0,0.5,0.25) 0.49 200 -0.052 0.119 0.130 -0.058 0.072 0.092

(1.0,0.5,0.25) 0.49 400 -0.010 0.092 0.093 -0.045 0.066 0.080

(4.0,1.0,0.25) 0.24 200 -0.041 0.113 0.120 -0.040 0.073 0.083

(4.0,1.0,0.25) 0.24 400 -0.012 0.087 0.088 -0.037 0.059 0.070

(p1, p2, p3) = (0.72, 0.62, 0.20)

(t1, t2, t3) S(t0) n bias std rmse bias std rmse

(1.0,0.1,0.1) 0.74 200 -0.011 0.107 0.108 -0.009 0.083 0.083

(1.0,0.1,0.1) 0.74 400 -0.009 0.095 0.095 -0.002 0.061 0.061

(1.0,0.5,0.1) 0.58 200 -0.012 0.112 0.113 -0.019 0.081 0.083

(1.0,0.5,0.1) 0.58 400 -0.005 0.088 0.088 -0.004 0.058 0.058

(4.0,1.0,0.1) 0.27 200 -0.009 0.106 0.106 -0.033 0.066 0.074

(4.0,1.0,0.1) 0.27 400 -0.005 0.078 0.078 -0.010 0.051 0.052

(1.0,0.1,0.25) 0.56 200 -0.013 0.113 0.114 -0.050 0.075 0.090

(1.0,0.1,0.25) 0.56 400 -0.009 0.095 0.095 -0.037 0.058 0.069

(1.0,0.5,0.25) 0.49 200 -0.010 0.111 0.111 -0.051 0.074 0.090

(1.0,0.5,0.25) 0.49 400 -0.005 0.088 0.088 -0.035 0.054 0.064

(4.0,1.0,0.25) 0.24 200 -0.015 0.107 0.108 -0.048 0.062 0.078

(4.0,1.0,0.25) 0.24 400 -0.005 0.078 0.078 -0.026 0.048 0.054
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Table 3. Simulation results for ŜYn and ŜY
θ̂n

(ql = 0.23, qr = 0.28)

(γ1, γ2) = (0.75, 0.19)

ŜYn (t) ŜY
θ̂n

(t)

(t1, t2, t3) S(t0) n bias std rmse bias std rmse

(1.0,0.1,0.1) 0.74 200 -0.024 0.108 0.111 -0.026 0.083 0.087

(1.0,0.1,0.1) 0.74 400 -0.009 0.063 0.063 -0.007 0.057 0.057

(1.0,0.5,0.1) 0.58 200 -0.025 0.130 0.132 -0.039 0.098 0.105

(1.0,0.5,0.1) 0.58 400 -0.008 0.091 0.091 -0.016 0.080 0.081

(4.0,1.0,0.1) 0.27 200 -0.017 0.175 0.176 -0.040 0.138 0.144

(4.0,1.0,0.1) 0.27 400 -0.012 0.143 0.144 -0.024 0.112 0.115

(1.0,0.1,0.25) 0.56 200 -0.025 0.126 0.128 -0.037 0.100 0.107

(1.0,0.1,0.25) 0.56 400 -0.010 0.095 0.096 -0.013 0.081 0.082

(1.0,0.5,0.25) 0.49 200 -0.026 0.137 0.139 -0.047 0.104 0.114

(1.0,0.5,0.25) 0.49 400 -0.009 0.099 0.099 -0.017 0.089 0.091

(4.0,1.0,0.25) 0.24 200 -0.021 0.185 0.186 -0.042 0.143 0.149

(4.0,1.0,0.25) 0.24 400 -0.011 0.133 0.133 -0.016 0.114 0.116

(γ1, γ2) = (0.84, 0.12)

(t1, t2, t3) S(t0) n bias std rmse bias std rmse

(1.0,0.1,0.1) 0.74 200 -0.008 0.087 0.087 -0.011 0.082 0.082

(1.0,0.1,0.1) 0.74 400 -0.002 0.065 0.065 -0.008 0.050 0.051

(1.0,0.5,0.1) 0.58 200 -0.010 0.118 0.118 -0.022 0.091 0.094

(1.0,0.5,0.1) 0.58 400 -0.003 0.089 0.089 -0.015 0.064 0.066

(4.0,1.0,0.1) 0.27 200 -0.016 0.180 0.180 -0.035 0.121 0.126

(4.0,1.0,0.1) 0.27 400 -0.007 0.145 0.145 -0.028 0.088 0.092

(1.0,0.1,0.25) 0.56 200 -0.010 0.111 0.111 -0.016 0.087 0.088

(1.0,0.1,0.25) 0.56 400 -0.004 0.098 0.098 -0.022 0.070 0.073

(1.0,0.5,0.25) 0.49 200 -0.014 0.128 0.129 -0.022 0.090 0.093

(1.0,0.5,0.25) 0.49 400 -0.007 0.103 0.103 -0.027 0.071 0.076

(4.0,1.0,0.25) 0.24 200 -0.013 0.176 0.176 -0.027 0.120 0.123

(4.0,1.0,0.25) 0.24 400 -0.011 0.137 0.137 -0.023 0.078 0.083

21



Table 4. Simulation results for ŜYn and ŜY
θ̂n

(ql = 0.38, qr = 0.15)

(γ1, γ2) = (0.75, 0.21)

ŜYn (t) ŜY
θ̂n

(t)

(t1, t2, t3) S(t0) n bias std rmse bias std rmse

(1.0,0.1,0.1) 0.74 200 0.003 0.128 0.128 -0.013 0.076 0.077

(1.0,0.1,0.1) 0.74 400 0.002 0.083 0.083 0.002 0.061 0.061

(1.0,0.5,0.1) 0.58 200 0.009 0.135 0.135 -0.018 0.073 0.075

(1.0,0.5,0.1) 0.58 400 0.004 0.095 0.095 -0.004 0.065 0.065

(4.0,1.0,0.1) 0.27 200 0.015 0.152 0.152 -0.021 0.093 0.095

(4.0,1.0,0.1) 0.27 400 0.010 0.113 0.113 0.003 0.074 0.074

(1.0,0.1,0.25) 0.56 200 0.004 0.135 0.135 -0.016 0.082 0.084

(1.0,0.1,0.25) 0.56 400 0.002 0.102 0.102 0.001 0.065 0.065

(1.0,0.5,0.25) 0.49 200 0.008 0.147 0.147 -0.012 0.087 0.088

(1.0,0.5,0.25) 0.49 400 0.002 0.107 0.107 0.004 0.067 0.067

(4.0,1.0,0.25) 0.24 200 0.012 0.160 0.160 -0.017 0.096 0.097

(4.0,1.0,0.25) 0.24 400 0.006 0.119 0.119 0.004 0.074 0.074

(γ1, γ2) = (0.84, 0.12)

(t1, t2, t3) S(t0) n bias std rmse bias std rmse

(1.0,0.1,0.1) 0.74 200 0.015 0.111 0.111 0.006 0.071 0.071

(1.0,0.1,0.1) 0.74 400 0.008 0.084 0.084 0.009 0.047 0.048

(1.0,0.5,0.1) 0.58 200 0.010 0.120 0.120 0.008 0.084 0.084

(1.0,0.5,0.1) 0.58 400 0.008 0.097 0.097 0.003 0.050 0.050

(4.0,1.0,0.1) 0.27 200 0.017 0.140 0.140 0.004 0.081 0.081

(4.0,1.0,0.1) 0.27 400 0.012 0.107 0.107 0.008 0.055 0.055

(1.0,0.1,0.25) 0.56 200 0.023 0.123 0.125 0.007 0.075 0.075

(1.0,0.1,0.25) 0.56 400 0.007 0.094 0.094 0.004 0.050 0.050

(1.0,0.5,0.25) 0.49 200 0.028 0.127 0.130 0.010 0.084 0.085

(1.0,0.5,0.25) 0.49 400 0.007 0.097 0.097 0.003 0.049 0.049

(4.0,1.0,0.25) 0.24 200 0.023 0.136 0.135 0.002 0.081 0.081

(4.0,1.0,0.25) 0.24 400 0.018 0.100 0.102 0.006 0.051 0.051
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