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Estimation of the joint survival function
for three successive duration times

under double truncation and dependent censoring
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Abstract

In incident cohort studies, it is common to include subjects who have ex-
perienced a certain event within a calendar time window. For all the included
individuals, the time of the previous events is retrospectively confirmed and the
occurrence of subsequent events is observed during the follow-up periods. Dur-
ing the follow-up periods, subjects may undergo three successive events. Since
the second/third duration process becomes observable only if the first/second
event has occurred, the data is subject to double truncation and dependent cen-
soring. We consider two cases: the case when the first event time is subject to
double truncation and the case when the second event time is subject to double
truncation. Using the inverse-probability-weighted (IPW) approach, we propose
nonparametric and semiparametric estimators for the estimation of the joint
survival function of three successive duration times. We establish the asymp-
totic properties of the proposed estimators and conduct a simulation study to

investigate the finite sample properties of the proposed estimators.

Key Words: double truncation; dependent censoring; inverse-probability-weighted;

successive duration times.
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1. Introduction

In natural history studies of diseases, each subject can experience a series of
successive events. In many applications, the investigators are interested in the
duration times between two successive events. Let Ey, Fi, Es and E3 denote
the calendar times of the initiation, first, second and third events respectively.
Define T} = By — Ey, 15 = Ey — Ey and 15 = E3 — Es as the first duration
time between Fy and E1, the second duration time between F; and Es, and the
third duration time between Fs and FEj, respectively. One may be interested
in estimating the joint survival function of the three duration times, denoted
by S(ti,te,t3) = P(T} > t1,Ty > to,T5 > t3). In incident cohort studies, sur-
vival data often include subjects who have experienced a first event within a
calendar time window, denoted by [r,71]. As pointed out in Zhu and Wang
(2012,2014,2015), in disease surveillance systems or registries, it is common to
collect data with a first event, such as diagnosis of disease, occurring within
a calendar time interval and then the time of the initiating event can be ret-
rospectively confirmed and the occurrence of the second/third failure event is
observed subject to right censoring. This type of sampling scheme is referred to
“interval sampling”. For instance, in HIV progression through successive stages,
birth (Ep) is the initial event, diagnosed with HIV seroconversion is the first
event (F1), the development of AIDS is the second event (E;) and death is the
third event E3. Define 77 = Ey — Ey, 15 = Ey — Ey and T = E3 — E5 as
the first duration time between Ey and FE;, the second duration time between
E, and E5 and the third duration time between E5 and FEj5 for a subject, re-
spectively. Suppose that a prevalent cohort is defined as a sample of subjects
who have been infected with HIV (E;) within [y, 7], i.e., 70 < Eo + 17 < 74,
or U* =1 — Ey <1} <1 —Ey = U*+dy,. Hence, observation of the first
failure time 77 is doubly truncated by U* and U* + dy. Let D* denote the time
from F; to the right censoring, i.e., the residual censoring time. Note that D*
can be written as D* = min(Dj, D}), where D} = U* + dy — T} denotes the
time from F£; to the end of study and D denotes the time from £, to drop-out
or death due to other causes. In such HIV-prevalent cohort, the time 77 from

infection of HIV to the development of AIDS is doubly truncated by U* and
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Figure 1. Schematic depiction of doubly-truncated and dependent censored data

U* 4 dy. Since the second duration time 75 becomes observable only if the first
event has occurred, the length of T} affects the probability of 75 being censored.
Furthermore, the length of 77 + 77 affects the probability of T3 being censored.
Dependent censoring arises if 77, Ty and 775 are not independent, which is of-
ten the case. Hence, the data is subject to double truncation and dependent
censoring. Figure 1 highlights all the different times for doubly-truncated and
dependent censored (DTDC) data described above.

For DTDC data with the first event subject to doubly truncation, one ob-
serves nothing if 7} < U* or T} > U* +d, and observe (17, X5, X5, U*, 7,05, 0%)
it U* < Ty < U* 4+ dy, where X; = min(7y, D*), X; = 6f min(T5, D* — Ty),
07 = liry<p+), 65 = 01 liry<p=—1z) and 05 = (1 — 67)[[p-=pz. We assume that
(T}, Ty, T3, U*, D3) is continuous and U*, Dj and (17, T5,Ty) are independent.
Note that as pointed out in Zhu and Wang (2015), the independence assumption
between truncation time and failure times may not hold if there exists shift in
factors related to disease progression, such as availability of new therapy in the

context of HIV infection.

In some situations, a prevalent cohort is defined as a sample of subjects who
have experienced the second event within a calendar time window. For example,
in Alzheimer’s disease through successive stages, birth (Fy) is the initial event,
diagnosed with Alzheimer’s disease is the first event (E;), the development of

mild decline in abilities is the second event (E5) and the development of severe
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Figure 2. Schematic depiction of doubly-truncated and censored data

decline in abilities/death is the third event (E3). Suppose that a prevalent cohort
is defined as a sample of subjects who have been diagnosed with Alzheimer’s
disease and experienced mild decline in abilities within a calendar time window,
ie, 0 < By + 17 +T15 < mpor U < Ty +1T5 < U*+dy. Hence, Yy =
Ty + T is doubly truncated by U* and U* + dy. In this case, the censoring
time C* denotes the time from FE5 to the right censoring and C* can be written
as C* = min(CY,C5), where C; = U* 4+ dy — Y, denotes the time from FE,
to the end of study and C3 denotes the time from FE, to drop-out or death
due to other causes. One observe nothing if U* > Y;" or Y, > U* + dy and
observes (17,15, X5, U*, v7,7s) it U* <Yy < U*+dy, where X = min(7y, C*),
7 = Iiry<c+) and 75 = (1=7)[1c+=cz). We assume that U*, C5 and (T}, 715, T5)
are independent. Figure 2 highlights all the different times for this type data

described above.

In literature, for data without truncation, several nonparametric methods
for estimating the joint distribution function of successive duration times have
been developed in literature (see Visser (1996), Wang and Wells (1998), and Lin
et al. (1999)). For left-truncated and dependent censored (LTDC) data, Chang
and Tzeng (2006) proposed an inverse-probability-weighted (IPW) approach for
estimating the joint probability function of two successive duration times. Shen
and Yan (2008) proposed an alternative estimator of the joint distribution func-
tion of 77 and T3. Shen (2010a) proposed two IPW estimators of the joint

survival function of 77 and 7} based on the approaches of Chang and Tzeng



(2006) and Wang and Wells (1998). Using the IPW approach, Shen (2017) pro-
posed nonparametric estimators for the estimation of the joint survival function
of three successive duration times. For DTDC data, Zhu and Wang (2012,2015)
considered semiparametric association estimation of (7}, T5) based on a copula
model. Zhu and Wang (2014) proposed nonparametric estimation of the associa-
tion between T} and T35 based on Kendall’s tau and developed a nonparametric
test of quasi-independence. Using the IPW approach, Shen (2016a) propose

nonparametric estimator of the joint survival function of 7} and 73

In this article, we consider the estimation of the joint survival function of
three successive duration times for DTDC data. We consider two cases: the
case when the first event time is subject to double truncation and the case
when the second event time is subject to double truncation. In Section 2,
when the distribution of the truncation time is unspecified, using the IPW
approach, we propose nonparametric estimators of the joint survival function
S(ti,ta,t3) = P(T} > t1, Ty > to, Ty > t3). The asymptotic properties of the
proposed estimators are established. In Section 3, under the assumption that
the distribution of U* is known up to a finite-dimensional parameter vector,
we propose semiparametric estimators of S(t1,ts,%3). In Section 4, a simula-
tion study is conducted to investigate finite sample performance of the proposed

estimators.



2. The Nonparametric Estimators

2.1. When the first event time is subject to dou-
ble truncation

Let Fi(x) = P(Ty < x) (k = 1,2,3) denote the distribution function of T}
Let G(z) = P(U* < z) and Q(z) = P(D* < x) denote the distribution function
of U* and D*, respectively. Let ap, and bp, denote the left and right endpoints
of Fi. Similarly, define (ag,bg) and (ag,bg) for U* and D*, respectively. For
identifiablities of S(t1,t2,t3), we assume that

ag =ap = ap, = apy, =0, bg < bp, < be + do.

Then S(ty,t9, t3) is identifiable for t; < bp,, to < min(bp,, bg) and t3 < min(bp,, bg).
Let (Th‘, XQZ‘, 512'X3i7 Ui) 61i7 527;, (532) (2 = ]_, SN 771) denote the truncated sample.
Let p = P(U* <Tj < U* 4 dy) denote the untruncated probability. Define the

indicator

]i(tl’ t2’ t3) = ‘[[Tli>t17X2i>t27X31'>t3,(51i:1]-

Consider the function
S(t17t2,t3) = P(Ty; > t1, Xo; > to, X3, > t3,01;, = 1)

S(ty, ta, ts) = P(T > t1, X5 > tg, X5 > t5, 05, = 1|U* < TF < U* +dy)

pIPU* < TP < U+do, T > 11, TS > to, TF > ts, min(D}, D3)—T5 > t3, min(D;, DY) > T3)
=p 'P(Ty+T5 +ts—dy <U* < Ty, TF > t, Ty > ty, T5 >t3, D5 — Ty > t3).

For x < y, define K(z,y) = [G(x) — G(z + y — do)]Sp,(y), where Sp,(y) =

P(Dj; > y). Then the expected value of I;(tq,te,t3)/ K (T, Xoi + t3) is

E[Ii(th lo, t3)/K(T1ia Xoi + tg)]

U1+U2+t3—do <U* < ul)P(D>2k >U2—|—t3)
dF
/ / / K(U]_,UQ + tg) (u17u27u3)

= p_ls(tb t27 td)a



where F'(uy,us,u3) denotes the joint distribution function of T}, T and T5.
Since E[1;(0,0,0)/K(Ty;, X2)] = p~ !, given K(x,y), p can be estimated by
n 5 -1
H(K)=n|Y —mrer| .
PK) [; K(Tu, X2¢)]

Thus, given K(z,y), we can estimate S(t1,ts,t3) by

t17t27t3
S (tla t27t3; Z K TlleQZ + t3>
z 01 Ii(t1, 2, t3)
— - 2.1
[; K(mem)] Z K(Tyi, Xoi +t3) 21)

Now, we consider the estimation of K(z,y). Under the assumption that D}
is independent of U* and (77, T3, Ty), §D2 can be estimated using the Kaplan-
Meier (1958) estimate Sp, (t) as follows:

X 5s;
St = 1 (1—%),
Xo;<t T

where n; = >0, I[x,;>x,). Next, we can estimate G(z) using the argument
of Shen (2010b,2016) as follows. Let Si(x) = P(T}y > z) denote the survival

function of 77. Consider the distribution function of U;’s.

G(t)= P(Ui <t) =p 'P(U* <t,U" < Ty <U” +dy)
t
=p / [S1(u—) — Si(u+ dp)|G(du),
0
Hence, given p and S;, G' can be estimated by an IPW estimator as follows

) i I,
G t, S 7 — n—l [U;<t] ]
(t: 51,p) p; S1(Ui—) — Sy (U; + do)

Let t — o0, it follows that p can be estimated by

-1

{Z S (U Sl(U + do)



and G can be estimated by

71 n

Ty, <
G(t; ) = :
1 |:Z Sl Sl(U + do):| ; Sl(UZ—) - Sl(Uz + dO)

Similarly, consider the survival function of T7;’s.

Si(t)=P(Ty >t)=p 'P(Ty > t,U* < Ty <U* +dy)

- / (Glu) — G((u — do)~ | Fy(du),

where Fi(t) = P(T} < t) is the distribution function of T}. Hence, given p and

G, S; can be estimated by an IPW estimator as follows

R n Iir, .
S t, G’ — n—l [le>t] .
(6Gp) =0 ) G T — )

Let t — 0, it follows that p can be estimated by

G)=n {Z:; (o) = G(l(Tli + do)_)} _1

and S; can be estimated by

_1 n

_ 1 [[T1z>t}
@) = LZI G(Ty) — G((Tu + do)—)} ; G(Tu) — G((Th — do)—)

By the above arguments, the IPW estimators of S; and G can be obtained by

simultaneous solving the following two equations:

A B 1 -1 I[Th>t]
%in(f) = [z:: Go(Thi) — Go((Ty; — do)_)} ; Go(T1i) = Gu((Tys — do)—)’

n

[Z i 1 }12 ] lv.<u '
= Sin(Ui—) — S1n(U; + do)) = Sin(Ui—) — S1n(U; + do)

Hence, K (z,y) can be estimated by K, (z,y) = [Gn(x) — Guly — do)]Sp, (1)



Given K,(z,y), by (2.1) an IPW estimate of S(ty, t,,t5) is given by

-1
A . 51i - I[T i >t1,X0;>t2,X3,>t3,01,=1]
Sn(t17t2,t3> — . 17,A 3227 2,231 3,014 .
Z K, (Thi, Xi) Z K, (Thi, Xoi + t3)

i=1 i=1
For the special case of D} = oo,
g(tl,tg,tg) :pilp(Tl* — do <U*< T1*7Tl* > t17T2* > tQ,T; > tg,DT — T2* > t3>

=p 'P(Ty+T5 +t3—do <U* <TF, T > t1, Ty > ty, Ty > t3). (2.2)

By (2.2)
BE[ILi(ty, ta, t3)/[G(T1;) — G(Ty; + Xoi + t5 — do)]

_IP ’U,1+U2+t3—d0<U <U1)
dF = p1S(ty, to, t
/ / / G(ul +U2 _|_t3 _ dO) (ulyu27u3) p ( 1,02, 3)

and E[I;(0,0, O)/[G(Tu) — G(Ty; + Xa; — dy)] = p. Thus, given G(x), p can be
estimated by

-1
> y
G(Ty) — G(Th; + Xo; — dp)

=n
and (2.1) is reduced to
n -1 5
Sn(tl, ty) t3) _ Z _ i 014 Z _ I[Tli>t1A7X2i>t2,X3i>t37611':1] .
= Gn(T1) — Gp(Thi + Xai — do) = Go(Ty) — Gu(Thi + Xoi +t3 — dy)

In the following Theorem, we show the consistency of S'n(tl, to, t3).

Theorem 1. (a) Let [0,0] = [0,b1] x [0, b2] x [0, b3] such that [G(z) —G((x +y —
do)—)]Sp,(y) > 0 for z € [0,b;] and y € [0, by). beG dx)/[S1(x) — Si(z +
dy)] < 00, (¢) Fy(dz)/G(dz) is uniformly bounded on [ag, bg]. Then S, (ty, ta, t3)

is uniformly consistent on [0, b].

Proof:



Write Sn(tl,tg,tg) as Sn(tl,t27t3; f(n) Thus

S’n(tla to, t3; f(n) — S(t1,ta, t3) = d1(t1, ta, t3) + Pa(t1, ta, t3),

where

O1(ty, ta, ts) = Sp(ty, to, t3; K) — Sy (ty, to, ts; K)

and

Ga(ty, ta, ts) = Sp(ty, to, t3; K) — S(ty, ta, ts).

Let S, denote the empirical function of S and

-1
> = 52i

D Kn =N S EE———— .

PR [Z Kn(Tu,Xzi)]

=1

Then
5( °°S (duy, dug, du . % S (duy, dusy, du
b1 (11, o, ts) = (K /// 1, dug 3)—p(K)// (duy, dug, dus)
t1 Ula U + t3) ta Jt K<u1? up + t3)
°°S (duy, dug, dug) .., .
- [ Sttt — e
6 Kn(uy, up +t3)

///[ ul,u2+t3)_K(ul,zlm+t3)1§"(du1’du2’du3)' (2:3)

By assumptions (a) and (b), it follows by Shen (2010b) that G,, is uniformly con-

sistent. Furthermore, by uniform consistency of Si, K, is uniformly consistent.

Thus,
(2.3) = p~'S(t, to, t3) [p(K,) — P(K)]

[e'S) 1 . B
— K ~-K 2,
10/7f3 /t2 /t1 K2 1 13) (K (g, us+ts) — K (ug, ug+ts)]S(duy, dus, dus)+o,(n=*)

HGDCG, le (tl, ta, t3)i>0 Next,

oty ta, ts) = pn" Z (i, Xoi, Xaiy 0i tr, b, t3) + 0p(n71?),

=1



where

(T, Xa, X3, 01, t1, o, t3) = [Ty 501, Xo>t0, Xs>t,80=1] — 015 (L1, t2, )]/ K (T, Xo + t3).

Hence, ¢(ty, ta, t5)—=0. The proof is compete.

It is difficult to establish the asymptotic normality of n/2(S, (t1, t2)—S(t1, t2))

since we have difficulty expressing én(t) as a sum of i.i.d. random processes.

2.2. When the second event is subject to double
truncation

Let (T14, Toi, X3i, Ui, 14, 72i) (1 =1,...,n) denote the truncated sample. Let
pa = P(Yy —dy < U* <Y5) denote the untruncated probability. Consider the
function

Sy(tl,tz,t:s) = P(Ty; > t1,To > to, X3, > t3,71: = 1)
=py 'P(U* <Yy < U +do,TF > t1,Ty > to, Ty > t3,C* > T¥)
=py Py + Ty —do <U* < Y5, Ty > t1, Ty > ty, T5 >t3,C5 > T5).

For x < y, define H(x,y) = [G(z) — G(z + y — do)]Sc,(y), where S¢,(y) =
P(C3 > y). Define the indicator

]iY(tb lo, t3) = I[T1i>t17T2i>t27X3i>t37'Yli:1]‘
Then the expected value of IY (ty,ty,t3)/H (Yo, X3;) is

B[} (ty, b, t3) /H (Yo, X37)]

:/w/oo/oopglp(ul+u2+t3_d0 <Ur <u1)P(C§ >u3)dF('LL1,U2,U2)
t3 to t3

H(uy + ug, u3)

= py ' S(t1, ta, t3).

10



Since E[IY(0,0,0)/H (Y, X3;)] = py ', given H(x,y), po can be estimated by

o) = n lz _ (yffm] |

Thus, given H(z,y), we can estimate S(t1,ts,t3) by

2 : [T1i>11,T2;>t2,X3;>t3,71:=1]

H<)/217 X3l)

Sn(tla t27 t3? H) - [Z ﬁ]
— 79 ?

=1

To obtain an estimate of H(x,y), we need to estimate both G(z) — G(z +
y — dp) and Sc,(y). The survival function S¢,(y) can be estimated using the

Kaplan-Meier (1958) estimate Se, () as follows:

St = IT (1-22).
X3i<y !
where m; = > 7 Iix;;>x,). Next, we consider the estimation of G(x). Let
Yo, = Ty + Ty and L(y) = P(Y5" < y). Consider the distribution function of
U/S.

Gt)=PU; <t)=p,'P(U* < t,U* <Yy, Yy <U*+dy)
t

=p2_1/ [L(u+ dy) — L(u—)|G(du),
0

Hence, given p; and L, G can be estimated by an IPW estimator as follows

G(t; Lypa) =~ pzz U+d0Ul<tL(U-—)'

Let t — o0, it follows that py can be estimated by

BaAL) = {é L(U; + do)l— L(Ui—)} _1’

and G can be estimated by

li,<

Ly= {; L(U; + do) — L(Ui—)] £ L(U; + dy) — L(U;=)’

11



Similarly, consider the function
L(t) = P(Ya; <) = py ' P(Yy < 1,Yy —dy <U* <Y)

/ (G () — G((u — do)—]L(du).

Hence, given py and G, L(t) can be estimated by an IPW estimator as follows

I[YQiSﬂ

L(t; G,ps) = 0" 'pa ZI: G(Yai) = G((Yai — do)—)

Let t — 0, it follows that py can be estimated by

@ [Z crmec sl

and L can be estimated by

71 n

G) = Y21<t] '
) {; G(Yy) -G Yzz—do ] ZG (Ya;) — G((Yai — do)—)

By the above arguments, the IPW estimators of L. and G can be obtained by

simultaneous solving the following two equations:

n n

1 -1 ][Y2i§t2]

Ln _ _ — ’
" 0 do) ) 2 G0 Gl (Y —do) )

[Z GY (Vo) — G

n

. - 1 U1<u]
W=D ; (U +dy) = Lo(Ui=)

=1

Thus, H(x,y) can be estimated by H,(z,y) = [GY(z,y) — GY(x +y —
do))Sc, (y), and an IPW estimator of S(t1,t,,t3) is given by

n -1 n
N Y14 ‘[[Tli>t1,T2i>t2,X3i>t3y’Yli:1}
SY(ty,ta,t3) = _— 2 :
(i t2,15) [ZH (Y2i7X3i)] Z H,, (Ya;, X3i)

i=1 i=1

Theorem 2. (a) [0,¢] = [0, cl] X [0,¢2] x [0, ¢3] such that H(xz,y) > 0 for
z € [0,c; + o] and y € [0, c3). bede L(z + dy) — L(z—)] < o0, (c)
L(dz)/G(dz) is uniformly bounded on [ag, bg]. Then SY (t1,ts,t5) is uniformly

12



consistent on [0, c].

Proof: The proof is similar to that of Theorem 1 and is omitted.

13



3. Semiparametric Estimators

In some cases, there is sufficient information on the initial event Ey to as-
sume that the left-truncated time U* has a parametric density function g(z;60)
with corresponding distribution function G(z;6), where § € O, © is a known
compact set in R? and 6 is a ¢-dimensional vector. For prevalent data with
fixed recruitment time, the truncation distribution G can be interpreted as the
distribution of the initial event Ej. For example, when Ej corresponds to birth,
one might parameterize GG so that the parameterization reflects the growth of
the birth over time. When G(x) is parameterized as G(z;6), Moreira and de
Utia-Alvarez (2010b) and Shen (2010c) proposed a semiparametric estimator of
Fi(t) that is more efficient than the NPMLE F,(t) = 1 — Sy,(t). Using their

approach, we consider the conditional likelihood function for U;’s given T};’s:

L(0) = [[ P(U; = Uil Th; — do < U7 < Ty)

Let 6,, denote the MLE by maximizing Lc(). Given 6,, K (,) can be estimated
by K; (z,y) = [G(x; 0,) — G(y — dy:0,)]Sp,(y). When the first event time
is subject to double truncation, given Kj (v,y), by (2.1) an IPW estimate of
S(ty,ta,t3) is given by

i= =1

-1
A . 51‘ - [[T i >t1,X0;>t2,X3;>t3,01,=1]
SA t7t 7t — ? 14 1,224 2, 3¢ 3,014 .
AT [21 Ky (T1i7X2i)] Z Ky (T, Xoi + t3)

Similarly, when the second event time is subject to double truncation, H (z,y)
can be estimated by Hy (7,y) = [G(z,y; 0,) — G(x +y — dy; 0,)]5¢, (y), and an
IPW estimator of S(t1,ts,t3) is given by

A - Y1i . IT17,>tl Toi>t2,X3;>t3,71:=1]
SY (1, tg,t3) = —_— .
9n( 1,t2,t3) LZ: Hé"(y2i7X3i)] 5, (Yo, X3;)

i=1 i=1
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Theorem 3. Under condition (a) in Theorem 1, assume that (b) G(x;0) is
continuous in x € [ag,bg| for each § € © and (c) 0, 2% ¢ implies that
G(x:0,) £ G(x:0) for each x € |ag,bg]. Then Sg (t1,ta,t3) is uniformly

consistent on [0, b].
Proof:

By Anderson (1970), 6, converges to @ with probability one. By assumption,
G(x:0,) 22 G(x;0). By the continuity of G(z;6) in z € [ag, bs] and the mono-
tonicity property of G(z; 0), it follows that with probability one, sup (., sq |G (7 én)—
G(z;0)] — 0 as n — oo. The rest of proof is similar to that of Theorem 1 and

is omitted.

Theorem 4. Under condition (a) in Theorem 2 and the assumptions (b) and

(¢) in Theorem 3, Sg/ (t1,t2,t3) is uniformly consistent on [0, c].
Proof: The proof is similar to that of Theorem 3 and is omitted.

When the parametric information is correct, it is expected the semiparamet-
ric estimator gén outperforms the estimator S'n, but may behave badly when the
assumed parametric model is incorrect. Moreira et al. (2014) proposed several
Kolmogorov-Smirnov and Cramér-von Mises type test statistics, by which we

can check if G can be parameterized as G(t;0).
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4. Simulation Study
Case 1: When the first event is doubly truncated

To investigate the performance of the proposed estimator S, and gém we
conduct simulations under the recruiting criterion U* < T} < U* + dy. The
joint distribution of (T7, Ty, T5)’s are generated using Clayton’s (1978) bivariate
exponential survival function with association parameter 3; between T} and 75,
and association parameter 3, between Tj and T3, i.e. Sio(t1,t2) = P(TY >
t1, Ty > ty) = [S1(t1) P4y (1) =P —1)V1781 and Sys(ty,t2) = P(Ty > t1, T35 >
to) = [S1(t1) % + Sy(ty)' P2 — 1]V/1782 with marginal survival functions S;(t) =
e t/mi (i = 1,2,3) with p; = 5, pp = 1 and pz = 0.5. The values of 3, and $3,
are chosen as ; = > = 2 such that the Kendall’s tau of (17, 7%), (175, T5) and
(T7,T3) are equal to 0.5, 0.5 and 0.35, respectively. The left truncation time U* is
exponentially distributed with mean p, and the right truncation time V* = U* 4
do. The value of (p,, do) are chosen as (4,8) and (2, 6) such that the proportions
of left truncation (denoted by ¢;) and right truncation (denoted by ¢,) are equal
to (qi,qr) = (0.45,0.10) and (0.28,0.22), respectively. The censoring time Dj
is exponentially distributed with mean pup. The values of up are chosen as 2
and 4 such that (pq, p2, p3) = (0.60,0.47,0.31) and (0.71,0.60, 0.18), respectively,
for (q;,¢,) = (0.28,0.22), and (p1, p2, p3) = (0.6,0.48,0.36) and (0.72,0.62,0.20),
respectively, for (q;,q.) = (0.45,0.10), where p; = P(01; = 1), po = P(d9 =
1) and ps = P(d3; = 1). We keep the sample if U* < T} < U* 4+ dy and
obtain the truncated observations (X7i;, Xo;, X3;, U;, 015, 02;, 03;). We regenerate
a sample if 77 < U* or 17 > U* + dy such that the untruncated sample size
is equal to n. We consider the estimation of S(¢y) for some selected points
of to = (1.0,0.1,0.1), (1.0,0.5,0.1), (4.0,1.0,0.1), (1.0,0.1,0.25), (1.0,0.5,0.25)
and (4.0,1.0,0.25) with corresponding true values equal to 0.74, 0.58, 0.27, 0.14,
0.56, 0.49, 0.24 and 0.13, respectively. The sample size is chosen as n = 200, 400
and the replication is 1000 times. Tables 1 and 2 show the biases, standard
deviations (std) and root meas squared errors (rmse) of the two estimators S, (t)

and gén (t) for the selected points.
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Case 2: When the second event is doubly truncated

To investigate the performance of the proposed estimator 5?; and 5‘;; (1),
we conduct simulations under the recruiting criterion U* < Yy" < U* + dy. The
distribution of (77,75, T5), U* and V* are the same as those used in Section 3.1.
The value of (u,,dy) are chosen as (4, 8) and (2,6) such that the proportions of
left truncation (denoted by ¢;) and right truncation (denoted by ¢,) are equal to
(g1, q-) = (0.38,0.15) and (0.28,0.23), respectively. The distribution of censoring
time C5 is the same as D3 is Section 3.1. We keep the sample if U* < Yy <
U* + dy and regenerate a sample if Y," < U* or Yy > U* 4 dj such that the
untruncated sample size is equal to n. We also calculate the simulated proportion
r1 = P(y; = 1) and ro = P(79; = 1). Tables 3 and 4 show the simulation results

for the two estimators S (¢) and Sg/ (t).

Based on the results of Tables 1 and 4, we conclude that:

(i) For case 1, the biases and standard deviations of both S, and S’én decrease
as sample size increases. When left truncation is mild (¢ = 0.28) and right
truncation is not light (¢, = 0.22), the biases of S, and Sén can be large for the
estimation of S(¢y) at non-early time points tqo = (4.0,1.0,0.1), (1.0,0.1,0.25)
and (4.0,1.0,0.25). This is improved when the proportion of left truncation
is increased to ¢ = 0.45 since more failure times with larger values can be
observed. For case 2, the biases of both 5”}; and S’;; (t) are small for most of the

cases considered and the standard deviations decrease as sample size increases.

(ii) For both cases, the standard deviations of the semiparametric estimator Sén
(S;/ (t)) are smaller than that of the nonparametric estimator S, (S¥). In terms

of rmse, the semiparametric estimator outperforms the nonparametric estimator.
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5. Discussion

In this article, for doubly-truncated and dependent censored data, we have
proposed inverse-probability weighted estimators for the estimation of the joint
survival function of three successive duration times. Simulation results indicate
that both nonparametric estimator S, and semiparametric estimator Sén per-
form well. Our proposed approach can be extended to the case of more than
three successive duration times. In some cases, the calendar times of the ini-
tiation Ej or the subsequent events F; and FE, are only known to fall within
intervals, leading to doubly censored data. Further research is needed to extend

our approach to deal with such data.
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Table 1. Simulation results for S, and Sén (@ = 0.28,¢q. = 0.22)

(p1,p2,p3) = (0.60,0.47,0.31)

Sa(t) S; (#)

(t1,ta,t3) S(to) n  bias std rmse bias std rmse
(1.0,0.1,0.1) 0.74 200 -0.034 0.129 0.133 -0.031 0.107 0.111
(1.0,0.1,0.1)  0.74 400 -0.013 0.083 0.084 -0.021 0.072 0.075
(1.0,0.5,0.1) 0.58 200 -0.048 0.124 0.133 -0.041 0.111 0.118
(1.0,0.5,0.1)  0.58 400 -0.021 0.099 0.101 -0.034 0.081 0.088
(4.0,1.0,0.1) 0.27 200 -0.068 0.127 0.144 -0.043 0.120 0.127
(4.0,1.0,0.1)  0.27 400 -0.053 0.095 0.108 -0.037 0.092 0.099
(1.0,0.1,0.25)  0.56 200 -0.072 0.122 0.142 -0.067 0.121 0.138
(1.0,0.1,0.25)  0.56 400 -0.050 0.091 0.104 -0.056 0.085 0.102
(1.0,0.5,0.25)  0.49 200 -0.084 0.127 0.152 -0.092 0.119 0.150
(1.0,0.5,0.25)  0.49 400 -0.040 0.095 0.103 -0.064 0.088 0.109
(4.0,1.0,0.25) 0.24 200 -0.064 0.119 0.135 -0.076 0.107 0.131
(4.0,1.0,0.25) 0.24 400 -0.036 0.095 0.102 -0.043 0.086 0.096

(p1, pasp3) = (0.71,0.60,0.18)

(t1,ta,t3) S(to) n  bilas std rmse bias std rmse
(1.0,0.1,0.1) 0.74 200 -0.018 0.105 0.107 -0.027 0.083 0.087
(1.0,0.1,0.1)  0.74 400 -0.005 0.079 0.078 -0.019 0.067 0.070
(1.0,0.5,0.1) 0.58 200 -0.033 0.124 0.128 -0.045 0.089 0.100
(1.0,0.5,0.1) 0.58 400 -0.022 0.094 0.097 -0.033 0.073 0.081
(4.0,1.0,0.1)  0.27 200 -0.056 0.130 0.131 -0.055 0.102 0.116
(4.0,1.0,0.1)  0.27 400 -0.045 0.087 0.098 -0.043 0.081 0.092
(1.0,0.1,0.25)  0.56 200 -0.067 0.124 0.141 -0.081 0.085 0.117
(1.0,0.1,0.25)  0.56 400 -0.030 0.092 0.097 -0.067 0.079 0.085
(1.0,0.5,0.25)  0.49 200 -0.070 0.129 0.147 -0.080 0.098 0.127
(1.0,0.5,0.25)  0.49 400 -0.032 0.096 0.101 -0.052 0.081 0.096
(4.0,1.0,0.25)  0.24 200 -0.059 0.121 0.135 -0.074 0.097 0.122
(4.0,1.0,0.25)  0.24 400 -0.036 0.083 0.090 -0.052 0.075 0.083
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Table 2. Simulation results for gn and Sén (@ = 0.45,¢q. = 0.10)

(p1, 2, p3) = (0.60,0.48,0.36)

Salt) 55,1

(t1,ta,t3) S(to) n  bias std rmse bias std rmse
(1.0,0.1,0.1)  0.74 200 -0.021 0.122 0.124 0.005 0.082 0.082
(1.0,0.1,0.1)  0.74 400 -0.008 0.093 0.093 -0.006 0.070 0.070
(1.0,0.5,0.1)  0.58 200 -0.022 0.127 0.129 -0.002 0.078 0.078
(1.0,0.5,0.1)  0.58 400 -0.009 0.094 0.094 -0.008 0.069 0.069
(4.0,1.0,0.1)  0.27 200 -0.024 0.118 0.120 -0.020 0.078 0.080
(4.0,1.0,0.1)  0.27 400 -0.012 0.085 0.086 -0.008 0.067 0.067
(1.0,0.1,0.25)  0.56 200 -0.054 0.126 0.137 -0.051 0.077 0.092
(1.0,0.1,0.25)  0.56 400 -0.018 0.097 0.099 -0.046 0.065 0.080
(1.0,0.5,0.25)  0.49 200 -0.052 0.119 0.130 -0.058 0.072 0.092
(1.0,0.5,0.25)  0.49 400 -0.010 0.092 0.093 -0.045 0.066 0.080
(4.0,1.0,0.25) 0.24 200 -0.041 0.113 0.120 -0.040 0.073 0.083
(4.0,1.0,0.25) 0.24 400 -0.012 0.087 0.088 -0.037 0.059 0.070

(p1,p2,p3) = (0.72,0.62,0.20)

(t1,ta,t3) S(tg) n  bias std rmse bias std rmse
(1.0,0.1,0.1) 0.74 200 -0.011 0.107 0.108 -0.009 0.083 0.083
(1.0,0.1,0.1)  0.74 400 -0.009 0.095 0.095 -0.002 0.061 0.061
(1.0,0.5,0.1) 0.58 200 -0.012 0.112 0.113 -0.019 0.081 0.083
(1.0,0.5,0.1)  0.58 400 -0.005 0.088 0.088 -0.004 0.058 0.058
(4.0,1.0,0.1)  0.27 200 -0.009 0.106 0.106 -0.033 0.066 0.074
(4.0,1.0,0.1)  0.27 400 -0.005 0.078 0.078 -0.010 0.051 0.052
(1.0,0.1,0.25)  0.56 200 -0.013 0.113 0.114 -0.050 0.075 0.090
(1.0,0.1,0.25)  0.56 400 -0.009 0.095 0.095 -0.037 0.058 0.069
(1.0,0.5,0.25)  0.49 200 -0.010 0.111 0.111 -0.051 0.074 0.090
(1.0,0.5,0.25)  0.49 400 -0.005 0.088 0.088 -0.035 0.054 0.064
(4.0,1.0,0.25)  0.24 200 -0.015 0.107 0.108 -0.048 0.062 0.078
(4.0,1.0,0.25)  0.24 400 -0.005 0.078 0.078 -0.026 0.048 0.054
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Table 3. Simulation results for S”Z and S’;/ (@ = 0.23,¢. = 0.28)

(71,72) = (0.75,0.19)

aYy Gy
S0 5.0

(t1,ta,t3) S(to) n  bias std rmse bias std rmse
(1.0,0.1,0.1)  0.74 200 -0.024 0.108 0.111 -0.026 0.083 0.087
(1.0,0.1,0.1)  0.74 400 -0.009 0.063 0.063 -0.007 0.057 0.057
(1.0,0.5,0.1)  0.58 200 -0.025 0.130 0.132 -0.039 0.098 0.105
(1.0,0.5,0.1)  0.58 400 -0.008 0.091 0.091 -0.016 0.080 0.081
(4.0,1.0,0.1)  0.27 200 -0.017 0.175 0.176 -0.040 0.138 0.144
(4.0,1.0,0.1)  0.27 400 -0.012 0.143 0.144 -0.024 0.112 0.115
(1.0,0.1,0.25)  0.56 200 -0.025 0.126 0.128 -0.037 0.100 0.107
(1.0,0.1,0.25)  0.56 400 -0.010 0.095 0.096 -0.013 0.081 0.082
(1.0,0.5,0.25)  0.49 200 -0.026 0.137 0.139 -0.047 0.104 0.114
(1.0,0.5,0.25)  0.49 400 -0.009 0.099 0.099 -0.017 0.089 0.091
(4.0,1.0,0.25) 0.24 200 -0.021 0.185 0.186 -0.042 0.143 0.149
(4.0,1.0,0.25) 0.24 400 -0.011 0.133 0.133 -0.016 0.114 0.116

(")/1,’)/2) = (084,012)

(t1,t2,t3) S(tp) n  bias std rmse bias std rmse
(1.0,0.1,0.1)  0.74 200 -0.008 0.087 0.087 -0.011 0.082 0.082
(1.0,0.1,0.1) 0.74 400 -0.002 0.065 0.065 -0.008 0.050 0.051
(1.0,0.5,0.1)  0.58 200 -0.010 0.118 0.118 -0.022 0.091 0.094
(1.0,0.5,0.1)  0.58 400 -0.003 0.089 0.089 -0.015 0.064 0.066
(4.0,1.0,0.1)  0.27 200 -0.016 0.180 0.180 -0.035 0.121 0.126
(4.0,1.0,0.1)  0.27 400 -0.007 0.145 0.145 -0.028 0.088 0.092
(1.0,0.1,0.25)  0.56 200 -0.010 0.111 0.111 -0.016 0.087 0.088
(1.0,0.1,0.25)  0.56 400 -0.004 0.098 0.098 -0.022 0.070 0.073
(1.0,0.5,0.25)  0.49 200 -0.014 0.128 0.129 -0.022 0.090 0.093
(1.0,0.5,0.25)  0.49 400 -0.007 0.103 0.103 -0.027 0.071 0.076
(4.0,1.0,0.25) 0.24 200 -0.013 0.176 0.176 -0.027 0.120 0.123
(4.0,1.0,0.25)  0.24 400 -0.011 0.137 0.137 -0.023 0.078 0.083
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Table 4. Simulation results for S”Z and S’;/ (@ = 0.38,¢. = 0.15)

(1,72) = (0.75,0.21)

S0 5.0
(t1,ta,t3) S(to) n  bias std rmse bias std rmse
(1.0,0.1,0.1) 0.74 200 0.003 0.128 0.128 -0.013 0.076 0.077
(1.0,0.1,0.1)  0.74 400 0.002 0.083 0.083 0.002 0.061 0.061
(1.0,0.5,0.1)  0.58 200 0.009 0.135 0.135 -0.018 0.073 0.075
(1.0,0.5,0.1)  0.58 400 0.004 0.095 0.095 -0.004 0.065 0.065
(4.0,1.0,0.1) 0.27 200 0.015 0.152 0.152 -0.021 0.093 0.095
(4.0,1.0,0.1)  0.27 400 0.010 0.113 0.113 0.003 0.074 0.074
(1.0,0.1,0.25)  0.56 200 0.004 0.135 0.135 -0.016 0.082 0.084
(1.0,0.1,0.25)  0.56 400 0.002 0.102 0.102 0.001 0.065 0.065
(1.0,0.5,0.25)  0.49 200 0.008 0.147 0.147 -0.012 0.087 0.088
(1.0,0.5,0.25)  0.49 400 0.002 0.107 0.107 0.004 0.067 0.067
(4.0,1.0,0.25) 0.24 200 0.012 0.160 0.160 -0.017 0.096 0.097
(4.0,1.0,0.25)  0.24 400 0.006 0.119 0.119 0.004 0.074 0.074

(1,72) = (0.84,0.12)
(t1,ta,t3) S(tg) n  bias std rmse bias std rmse
(1.0,0.1,0.1) 0.74 200 0.015 0.111 0.111 0.006 0.071 0.071
(1.0,0.1,0.1)  0.74 400 0.008 0.084 0.084 0.009 0.047 0.048
(1.0,0.5,0.1)  0.58 200 0.010 0.120 0.120 0.008 0.084 0.084
(1.0,0.5,0.1)  0.58 400 0.008 0.097 0.097 0.003 0.050 0.050
(4.0,1.0,0.1)  0.27 200 0.017 0.140 0.140 0.004 0.081 0.081
(4.0,1.0,0.1) 0.27 400 0.012 0.107 0.107 0.008 0.055 0.055
(1.0,0.1,0.25)  0.56 200 0.023 0.123 0.125 0.007 0.075 0.075
(1.0,0.1,0.25)  0.56 400 0.007 0.094 0.094 0.004 0.050 0.050
(1.0,0.5,0.25)  0.49 200 0.028 0.127 0.130 0.010 0.084 0.085
(1.0,0.5,0.25)  0.49 400 0.007 0.097 0.097 0.003 0.049 0.049
(4.0,1.0,0.25)  0.24 200 0.023 0.136 0.135 0.002 0.081 0.081
(4.0,1.0,0.25) 0.24 400 0.018 0.100 0.102 0.006 0.051 0.051
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