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Abstract

The Lambert W function has many applications in the fields of pure and applied
mathematics as well as physics and engineering. In particular, differential equations which
represent time delay systems are employed to stability analysis and controller synthesis
in the modern control theory.

The main target of this study is to probe the stability of time delay systems and
then to place the system’s poles to desire locations. Firstly, we discuss how to solute the
characteristic equation generated from a single delay system via Lambert W function,
and expand further to two-lag linear delay differential equations. Since the positions of
eigenvalues influence stability, the problem of delay systems with single or two delays
via eigenvalue assignment are then considered. Finally, the pole placement problem is
then solved with considerable controller to drive the delay system to have desire response

implied by the location of system poles.

Keywords: Lambert W function, delay system, characteristic equation, eigenvalue, pole

placement

i



RS

Lambert W R Rk £ e AF B G ~ RRARZARYE ~ TRFABRMA % S 609
Bl o HR| AT RGIER LA » AF Y 7R TIFH A LT WAL AL TR
BAE T ME AT AFE R & A B T

ALH) LR AAR AR AL OE T HEAF A AB » AT R E R AR
B HE IR AL TER Lambert W R BR800 2 » 3 B —Faefpatah
FHFEER) TRLAGR - AERBEGZEZELTHE  RMERT E—RMEH
AR AR, BORBAYR AT ARNERFSCRZARE ALHEBYRELR -

Bl4E3 : Lambert W % > B A 4% » 742 » A BBHRE

il



Contents

1 Introduction

2 Linear Time-Delay Systems
2.1 Time-Delay Systems . . . . . . . . ..

2.2 Lambert W function . . . . . . . . . .

3 Stability Analysis
3.1 Single Delay DDEs . . . . . . . . ..
3.2 DDE with Two Delays . . . . . . . .. .. .

3.3 Extreme Point Results . . . . . . . . . . ..

4 Pole Assignment for the Time-Delay System
4.1 Single Delay Systems . . . . . . . . ..o
4.2 Pole Assignment for Single Delay Systems . . . . . .. .. ... ... ...
4.3 Linear Systems with Two Delays . . . . . . . ... ... ... ... ...,

4.4 Pole Placement for Two-Delay Systems . . . . . ... ... ... ... ...

References

v

10
10
13
15

27
27
28
32
33

36



List of Tables

3.1
3.2
3.3

4.1

4.2
4.3
4.4
4.5

Characteristic roots sg, s; and sy corresponding to various 3. . . . . . . .. 12
Characteristic root s,; with o = -1, f = -1, v = —%, and h=2. .. ... 16
Characteristic roots s ; with a = =1, § = %, v = }L, and h=2.. ... ... 16
The variation of corresponding parameters with respect to three different

pole locations. . . . . . . .. 32
The variation of characteristic roots before and after pole placement. . . . 32
The characteristic roots of the open-loop system. . . .. .. .. ... ... 36
The computed parameters for two desired pole locations. . . . . . . .. .. 37
Variation of characteristic roots. . . . . . . . . . . . . ... ... ... ... 37



List of Figures

2.1 Two real branches of Wy(z): - ---, W_q(z); —, Wo(x). . ... ... ...

2.2 The ranges of Wy(z), k= —-2,—1,0,1,2. . . . . .. ... ... ... ....

2.3 The left graph shows C, in the z-plane with its image W (C,), k = —1,0, 1,
given in the right graph for (a) r = 0.33109 < %, (b) r = 1, and (c)
r = 0.73576 > % The red color line denotes the image of Wi, the yellow

color line for W_y, and the blue color line for Wy,. . . . . . ... ... ...

3.1 The pole distribution corresponding to different 5. . . . . . . . . . ... ..
3.2 The mapping of S, by Wy if g #0and yo #0. . . . . . . ... ... ...
3.3 The mapping of Sy, by Wy if zp =0and yo #0. . . . . . .. .. ... ...
3.4 The mapping of S, by Wy if g #0and yo=0. . . . .. .. .. ... ...
3.5 Robust stability with a =c+d*7 . . . . .. .. ...

3.6 Robust stability with respect to 3 and ~? . . . . . .. ... ...

4.1 Region of W' except for the dashed curves. . . . . .. ... ... ... ..
4.2 Region of W and W} with sgges = —0.092484 +1.97730i . . . . . . . ..

vi



Chapter 1

Introduction

Time delays often arise in dynamical control systems, both from delays in the process
itself and from delays in the processing of sensed signals. In other words, such systems arise
from internal time-delay in the components of the systems or from a external introduction
of time-delay into the systems for the purposes of control.

Time delay widely exists in many fields such as industry processes, ecological groups,
and so on. There is also a small time delays in any networked control systems due to the
cycle time of the computer and the data transmissions. Many examples with delay effects
can be found in [1-3] and reference therein.

There are many stability criteria and performance measures studied. Bellman and
Cooke [4] has a very complex coverage on the distribution of characteristic roots for
differential-difference equations. Kolmanovskii and Nosov [5] has a wide overview of
various methods of stability analysis including both frequency domain and time domain
methods.

Time delay systems representing by delay differential equations which have infinitely
many solutions were introduced by Condorcet and Laplace in the eighteenth century.
An approach to obtain the analytic solution of delay systems based on the concept of
Lambert W function is developed by Corless et al. [6] and Asl and Ulsoy [7] recently.
Shih [8] consists in studying the singular behaviour of each W(—k, z) at the branch point
z=—e 1

The addition of two delay significant increases the difficulty of the stability analysis.
An economic model with two delays has a region of stability that is larger than one

with delays nearby that are irrationally related. Control loops in optics [9] has been



modeled with multiple delays. Huang [10] has developed the technique to compute the
characteristic roots of a scalar system with multiple delays.

In this thesis, a brief introduction of linear time-delay systems and Lambert W func-
tions as a preliminary of this study are given in the Chapter 2. In Chapter 3, we discuss
the stability of linear time-delay system with respect to extreme point results, and in-
troduce the conception of two delays DDE. In Chapter 4, the pole assignment via the
Lambert W function is developed. Conversely, by adjusting the parameters, we try to get

the desired poles of the characteristic equations of linear time-delay systems.



Chapter 2

Linear Time-Delay Systems

Time-delay systems can be represented by delay differential equations, and have been
extensively studied during the past decades. In order to solve the differential equations ,
we bring it to the frequency domain by the Laplace transform. Furthermore, we introduce
the Lambert W function, represented by W(z), and its importance property for stability

of linear time-delay system in this chapter.

2.1 Time-Delay Systems

A linear time-delay system is defined by

5.
—~
~
SN—
I

azx(t) + Bz(t —h),t >0 (2.1)

8
~~
~~
~—
I

¢(t),t € [=h,0)
where o and [ are scalars . Futhermore, x(t) = ¢(t) is a preshape function, and ¢(0) is
an initial state. By using the Laplace transform,

sX(s)—x(0) = aX(s)+p /OOO z(t — h)e *dt

= aX(s)+p _/h P(t — h)e *'dt + /hoo x(t — h)e_“dt}
LJo
0

= aX(s)+p _/Oh P(t — h)e *'dt + / x(t — h)es(“h)du}

r rh 00
= aX(s)+p /0 G(t — h)e *tdt + e_St/O x(t — h)e‘sudu]

h
= aX(s)+ Be X (s) + ﬂ/ P(t — h)e *dt
0

3



which implies
h
(sI —a — Be™ M X(s) = ¢(0) + 5/ P(t — h)e *dt
0

or equivalently,
h
X(s)= (s —a— Be_Sh)_l [ (0) + 5/ ot — h)e‘“dt} )
0
For this result, we get the characteristic equation
det(s — a — Be™*") = 0. (2.2)

Refer to the paper by Coreless et. al. [6], it is suggested by using Lambert W function to
describe the corresponding solution as
x(t) = Z Crer
k=—0c0

for some ck such that the sum makes sense.

Definition 2.1. The linear time delay system in (2.1) is stable if

lim x(t) = 0. (2.3)

t—o00

Definition 2.2. [12] The linear time-delay system(2.1) is stable if all the roots of (2.2)
lie in the complex left half-plane C~. Furthermore, the real part of the rightmost root is
called stability exponent, which represents the effect of the most dominant characteristic

root on the system behavior.

In this thesis, we will try to solve the characteristic equation in order to find the
positions of the poles and expand the result to probe the time delay systems which have

multiple delays terms.

2.2 Lambert W function

Introduced by Lambert and Euler in the 1700s, the Lambert W function is defined
as the solutions w € C of w(2)e”*) = z for z € C and denoted by w = W (z).
The Lambert W function is a complex multivalued function which has infinite number

of branches, Wy(z), where k = 0,£1,42,--- , £o0. For ease of argument, we make a sort

4



of compactification, i.e., to regard both W, and _, as fixed mappings. As seen in Figure
2.1, there are two possible real values of Wy(z), when —% <z < 0 for any x € R.
We denote the branch which satisfies W (z) > —1 by Wy(x), or W (x) if there is no any
confusion, and the branch satisfies W(x) < —1 by W_;(x), especially Wy is called the

principal branch.

1/ 2 4 6 8 10 12 14

Figure 2.1: Two real branches of Wy(z): - ---, W_q(z); —, Wy(z).

By partitioning the z-plane with horizontal boundaries z = j(2k + 1)7 for k € Z, the

ranges of branches of Wj/(z) are images of the z between branch cuts in the z-plane, as

shown in Figure 2.2.

Branch k=2
R S B
[ Branch k=1 1

Principal Branch k=0

Im(\W)

ol Branch k=1 |
e S S R R R

Branch k=-2

Figure 2.2: The ranges of Wy (z), k = —2,—1,0,1,2.

Lemma 2.3. The range of the Lambert W function is symmetric with respect to the real

axis.



Proof. Let z = red® € C such that ¢ € ((2k — 1)7, (2k + 1)7] for certain k. Then there is
a pair of numbers u and v such that Wy (z) = u + jv, i.e., by definition z = Wj,(2)eV+®
which implies

rel? = (u+ jv)e"Y = (u + jv)e(cosv + jsinv)

= e"(ucosv —vsinv) + je*(v cosv + usinv)

and give us

r=e"y/(ucosv — vsinw)? + (vcosv + usinv)?

1 VCOSVU + usinv
¢ = tan

UWCOSV — vSinv

Now consider the term Wy(z) = u — jv, then

(u — jv)e" 7 = (u — jv)e“(cosv — jsinv)

=e"(ucosv —vsinv) — je*(vcosv + usinv)

= reJ¢

)

and

—p € [(=2k — D), (=2k + 1)) € [2(—k) — D)7, 2(—k) + 17)

thus, the term w — jv belongs to the —k branch of the Lambert W function acting on Z.

That is, W_g(2) = Wi(2). O

Lemma 2.3 is also referred that the Lambert W function has the conjugate sym-
metricity.

Let

1 1
Bcoé{a+j0‘—00<6l§——}7 BClé{a+jO‘——<a§0}
e e
and
Be = Beoo U Bey.

The curve Bgg is the branch cut whose images linking the boundary of W, to W; and
W_y as depicted in Figure 2.2. Also the images of branch cuts B¢ and Be adjoin Wi to

W_, and Wy branches, respectively. The other branches Wy, k = £2,£3,...,£00 have

6



their boundaries as the image of the branch cut B¢ in both of the lower and upper sides.
It is obvious that W, maps the whole complex plane into the region between two images
of consecutive branch cuts.

The derivative of the Lambert W function is computed as following. Since

it follows that

or equivalently,

1
W/ — —W(Z)
(z) =e Wi(z)+1
which shows that the Lambert W function is not differentiable at W(z) = —1, i.e.,
z = —1/e. Hence this function is differentiable on the complex plane except at the branch

cuts Bgg and Bg.

Lemma 2.4. Let L be a curve which has no intersection to the branch cuts in the z-

plane. The mapping Wy acting on the curve L is both continuous and bijective where

k=0,41,42 - +o0.

Proof. Since L N Be = &, then LN Bgg = @ and L N Bey = &. Then Wi (L) is
differentiable, and it is obvious that Wy(L) is continuous.
Let 21, 29 € L where z; = a1+ jby, 20 = as+jby. Suppose Wi(z1) = Wi(z2) = u+jv,

then by the definition

“l(u cos v—v sin v)+ (v cos v+ u sin v)j]

ag + jby = Wi(22)e"s(#) = e¥[(u cos v —v sin v) + (v cos v+ u sin v)j]

{a1 + jby = Wi(2z1)e"r1) =

It is clear that
a; =e€“(u cos v—v sin v) =ay, by =e“(u cos v—v sin v) = by

which implies z; = z5. Since Wy(z) are onto, therefore W are bijective.

Lemma 2.5. [12, Lemma 2.3] The following statements hold:

7



(i) For z ¢ Beo, max Re[Wi(z)] = Re[Wy(2)].

k=0,41,+2, 400

(ii) For z € Beo, max Re[Wk(z)] = Re[Wy(2)] = Re[W_4(2)].

k=0,21,%2 - , %00

From Figure 2.3, Lemma 2.5 can be observed intuitively. Let C, = {re/®|0 € (—x, 7]}
be a circle centered at origin with radius r in the z-plane. In Figure 2.3(a), the curve C,
with r < % has no intersection with Bgg, then Wy(C,) is a closed curve separated from
the other branches in the w-plane. In Figure 2.3(b), C, with r = % contacts Bgo at the
point z = —1, then Wy (C,) is also a closed curve but connected to W1 (C,) and W_;(C,).
In Figure 2.3(c), C, with r > £ intersects to Beg at the point z = —r, then Wy(C;) is an
open curve which connect to the image of W1 (C,) and W_;(C,.). For all the cases, it is
explicit that the curve Wy(C,) is placed in the rightmost among all the branches. Let the
intersection of C, and Bgg be denoted by P. As shown in the cases of Figure 2.3 (b) and
(c), Wi(P) and W_;(P) connect to the upper and lower boundaries of Wy, respectively.

These facts just illustrate Lemma 2.5.
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Figure 2.3: The left graph shows C, in the z-plane with its image Wy(C,), k = —1,0,1,
given in the right graph for (a) r = 0.33109 < 2, (b) r = %, and (c) r = 0.73576 > 1. The
red color line denotes the image of Wy, the yellow color line for W_y, and the blue color

line for W,.



Chapter 3

Stability Analysis

During recent decades, the stabilization of time delays systems of linear DDEs using
feedback control has been studied extensively. Originating from the stability analysis of
the scalar time-delay systems, we extend it to a system with feedback control and two
delays. For the purpose of the robust stability conditions, the discussion of extreme point

results are elucidated in this chapter.

3.1 Single Delay DDEs

The most significant use of the Lambert W function in time-delay systems is in
the solutions of the characteristic equations, because its roots can be associated with a
particular branch of the Lambert W function.

Consider a DDE with a single delay
(t) = ax(t) + px(t — h) (3.1)

where h > 0. In order to solve this equation, we guess x = e* being a solution for some

value of s, and then & = se®’. Substituting these relations into (3.1) leads to
Sest _ aest + /Bes(t—h)
and since e* # 0 for all s and ¢ it follows that

s—a=fe "

10



One can deduces some algebraic operations as following;:

(s — a)hel~" = Bhe=oh
1
= s—a= EW(ﬁhe_ah)

1
— s=a+ EW(ﬁhe_“h)
Since the Lambert W function has infinite many branches, thus the form as

1
sp=a+ EWk(ﬁhe_“h), k=0,41,42, -, +oo, (3.2)

is the solution of the equation which describes the characteristic spectrum of (3.1) express-
ing by the k-th branch of the Lambert W function. Furthermore, this time delay system
is stable if and only if the roots of the characteristic equation, sg, all lie in the complex
open left half-plane by Definition 2.2. According to the explicit expression , Lemma 2.5

offers the stability condition for the DDE (3.1) as follow:

Lemma 3.1. [12] The linear time delay system (3.1) is stable if and only if
Sw(a, B,h) = Re |a + %WO(Bhe“"h) <0. (3.3)
Example 3.1. Consider the differential equation with single delay
& = ax(t) + fz(t — h)

with the given data set « = —1, h = 1 and various f, i.e., § € {2,1,—1}. We want to
calculate the characteristic roots according to (3.2) such that the rightmost pole can then
be used to check the stability of this delay equation. Table 3.1 shows that characteristic
roots s, with k = 0,£1,£2 corresponding to the various 5. And characteristic roots s,
k=0,£1,...,4+10 with their rightmost pole corresponding to different value of 3 are also
shown in Figure 3.1. It is obviously that, this delay equation is stable only for the case
when 5 = —1 since Re(sp) = —0.60502 < 0. We can also conclude that the stability of

this equation g < 1 for the fixed parameters a = —1 and h = 1.

11



Table 3.1: Characteristic roots sg, s; and sy corresponding to various .

Sk =2 B=1 B=_1
s | —1.70056 + 10.9316i | —2.39398 + 10.868i | —2.64736 + 14.0202i
51 | —0.863549 + 4.741167 | —1.53209 + 4.59716i | —2.05283 + 7.71841
50 0.374823 0 ~0.605021 + 1.78819

—0.863549 — 4.74116¢

—1.53209 — 4.59716¢

—0.605021 — 1.78819:

—1.70056 — 10.9316¢

—2.39398 — 10.868¢

—2.05283 — 7.71841:

80 T T

Im(s, )
o

20 F
-40 + *O

-60

* O

DT ™
N —

cofp

_80 1 1

Figure 3.1: The pole distribution corresponding to different .
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3.2 DDE with Two Delays

In this section, we develop our serial expansion for the roots of the nonlinear charac-
teristic equation arising from the DDE with two discrete delays.

Consider a DDE with two delay times hy and hy (> h;) described by

Y (<) = ay(s) + Biy(s — h1) + y(s — ha)
(3.4)
y(0) =yo, y(7r)=0(7), —ha <7 <0,
where 1/(¢) denotes the derivative of y(s) with respect to ¢; oy, 81, and 7 are the corre-
sponding coefficients of the equation. Also zy € R and ¢ is the initial function to specify
the initial condition for the delay state y(7), 7 € [—h2,0). We re-scale the variable ¢ by
letting ¢ = thy, x(t) £ y(thy) = y(s), and ¢(t) = p(thy) = ©(s), so that

i) = T = U =y

by using the Chain Rule. Here ¢ is a dimensionless variable for ¢ which is generally
regarded as the “time” variable of the differential equation. Based on these relationships,

(3.4) becomes as

(t) = aphiz(t) + frhaz(t — 1) + yhia(t — Z—j) (3.5)

Moreover, substitute o = ayhy, 8 = Bih1, ¥ = Y1h1, To = yo, and b = 2 (> 1), then the

1

dimensionless form of the DDE (3.4) is expressed as

(t) = ax(t) + Pa(t — 1) + yx(t — h),

(3.6)
z(0) =x9, z(1)=0¢(1), —h<7<0.
Thus the characteristic equation is then given by
s—a—fBe* — e =0. (3.7)

By using the Lambert W function approach for the single delay system, the solution, s,
inside the k-th branch of the Lambert W function, is obtained as
Sp = o+ Wi( fe™@ 4 yesrh=D—a)
(3.8)
— a4+ Wk( Be—a + 76_ha€_(5k_a)(h_1)).

When h € N then there are h numbers of characteristic roots located inside the

branch W}, k # 0. Since the characteristic roots are complex pair, thus only the values

13



of s for £ > 0. Thus when h = 2 the characteristic roots are computed numerically as

following;:

1. Compute s¢; by using MATLAB fsolve command such that
So; = a+ Wo( Be™* + 76_50’1'('1_1)_0‘)
with the initial guess
5(()?2 =a+ Wi(Be ™ +ye ™) — j(i — D)r,

and i = 1,2. When so; € R, then 502 = 50 1; otherwise so; and sp 2 form a complex

pair.
2. Using MATLAB fsolve command to find sj; with & # 0 and ¢ = 1, 2 such that

Ski — & + Wk< 5670‘ + fyefsk,i(hfl)fa)

The associated initial guess s,(fg is constructed as following. When s is real, then

j@2—=im, k>0,

Skt = 0k Wi(Be™" +7e) - {j (i —2)m, k<O0;

and when sg; is complex, then

si) =+ Wi(Be™® + ye ™) — { »
j
with i = 1, 2.

We note that if the value of sy = so; is real, then there is only one root for the
principal branch Wy; otherwise it is a complex conjugate spo = 501 with sp; having
positive imaginary part. Renumber the characteristic roots presented in (3.8) as S,,; for
example, when sg € R,

Sani = Sn,iy n >0
S() = So
Sonto—i = Sni, n <0,
otherwise,
S2n7i = Sn n >0
So = 80,1, 9-1 = S0.2

Son+1—i = Sniis n <0.

14



Thus the solution of the scalar homogeneous DDE (3.6) is presented as

p(t)= > Cpe™ (3.9)

k=—o0
where C} is computed such that the sum makes sense and satisfying the initial condition
z(0) = zg and z(7) = ¢(7) with 7 € [h,0). Once the function z(t) is computed, we then
can obtain the solution of (3.6) as y(s) = z(s/hy), i.e.,

y(s) = Y Cpelh/hs

k=—00
which depicts that the characteristic roots of the original delay equation is obtained by

scaling those corresponding roots of the dimensionless delay equation with a factor 1/h;.

Example 3.2. Consider the DDE in (3.6) whose characteristic roots are given by
Ski = o+ Wi( fe * + yeskil=h)—a ), =1,2. (3.10)

When k£ = 0, if the characteristic root s; € R then there is only one root, otherwise
there are two roots for sy which also denoted by sq; and sg2. Consider the following two

parameter set:

and the fsolve command in Matlab is used to compute sy, ; as the solutions of the equation
(3.8). Tables 3.2 and 3.3 show that computation result for si; for these two parameter

sets, respectively.

3.3 Extreme Point Results

Since the rightmost eigenvalues determine system stability, to determine it in the
infinite eigenspectrum is important. However this is difficult, because one cannot be sure
that the rightmost eigenvalue is included in a finite set.

For a scalar time-delay system, the root obtained using the principal branch (k =
0) always decides the stability of the system using monotinicity of the real part of the

Lambert W function with respect to its other branch k& # 0 [11]. In this section, we
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Table 3.2: Characteristic root s,; with a = =1, f = -1, v =

1
—3,and h = 2.

k|1 the initial guess Sy = Sk
22| —1.78811 + 14.0813¢ S3 = 899 = —1.50747 + 13.46571
21| —1.78810 4 7.79810z Sy = 891 = —1.66427 + 10.0261¢
112 —1.19980 + 7.82850¢ S1 = 512 = —1.14680 + 7.24010¢
11| —1.19980 + 1.54530: Sy = 511 = —1.27050 — 3.64510¢
01 0.03177 + 2.03920¢ So = 501 = —0.27495 + 1.47520¢
012 0.03177 — 1.10240¢ | S_1 = sp2 = —0.27495 — 1.47520¢
—1]1 0.03177 — 2.03920¢ | S_3 = s_11 = —1.27050 — 3.64510:
—11]2 0.03177 — 8.322407 | S_9 = s5_1 2 = —1.14680 — 7.24000¢
—2 1] —1.19980 — 7.82850¢ | S_5 = s_91 = —1.66427 — 10.0261%
—2 12| —1.19979 — 14.11170¢ | S_4 = 5_90 = —1.50747 — 13.4657%

Table 3.3: Characteristic roots s;; with a = -1, f = %, v = }1, and h = 2.

k|1 the initial guess Sy = Sk
22| —2.22840 + 10.8832¢ | S5 = sy = —1.82137 4 11.6390¢
21| —2.22840+4.60000¢ | Sy = sy1 = —1.89200 + 8.71330:
1|2| —1.37110 +4.63240¢ | Sy = s12 = —1.37970 + 5.304507
1]1]—1.37110 — 1.65070¢ | Sy = s11 = —1.36930 + 2.51760:
0] - 0.084256 So = so = —0.11929
—1] 1] —1.37110 + 1.65070¢ | S_3 = s_11 = —1.36930 — 2.51760:
—1]2 ] —1.37110 — 4.63240¢ | S_o = s_12 = —1.37970 — 5.30450¢
—2 | 1| —2.22840 — 4.60000¢ | S_5 = s_91 = —1.89200 — 8.71330:
—2 | 2| —2.22840 — 10.8832i¢ | S_4 = 5_99 = —1.82137 — 11.6390¢

expound where the eigenvalues of time-delay systems are maximized in order to associated
with Lemma 3.1.

Consider the scalar time-delay system with two delays
(t) = ax(t) + px(t — 1) + ya(t — h)

which is induced from (3.4) and described in (3.5). Let a = ¢+ jd , 8 = rie/” and
v = ree’® with ¢, d , 71, 79, 01, and 6, € R. Also x(t) € C and h > 0 is fixed.
We follow the idea proposed by Shinozaki [12] to discuss the robust behavior of

Lambert W function. Define Q%, Q7 and Q7 as

0o L {c—i—jd‘ce [c.d],d € [d, 7},

0f & {Tlejel ry € [r1,71), 01 € [0, 01)

N :
Q= {7’26]92

T2 € [Qa T_Q],QQ € [&70_2]

where ¢ < ¢, d <dand 0 <7y <77, 0 <1y <73, 0 <01, 0, <0

Suppose that the

16



time-delay system (3.6) has uncertainties prescribed by
aeQ* BeQ’ vye helhhl, (3.11)

with 1 < h < h € R. Based on the concept proposed by Hiroshi Shinozaki, 2007 [12], we

obtain the stability condition as following:

Lemma 3.2. The linear scalar time-delay system (3.4) with the uncertainties prescribed

by (3.9) is robustly stable if and only if

ma; Sw(a, B,7v,h) <0 3.12
aGQO‘,ﬁEQﬁ,Wé(QV,hG[@,E] W( ny ) ( )

where

Swi(a, B,7,h) = Re(So) = Refar + Wy (Be™* + ye~ D))
In order to discuss the monotonicity of Sy, we refer to the differentiability condition
first.
Lemma 3.3. Wj,(z) is analytic in B, = {a+j0|—1 < a < oo} where k = 0,£1,42,--- , +o0.

Proof. Let Z(w) = we™, then Z(w) is an analytic function and

dZ (w)
dw

=we” +e¥ = (1 +w)e” # 0 for w # —1.

Therefore, there is an analytic inverse function of Z(w) in a neighborhood of w # —1.

Then Wy(z) is the inverse function of Z(w) in Wi (Bg,) for k = £1,42, ..., +o0. O

In the following paragraphs, we discuss the monotonicity condition with respect to
¢ = Re(), i.e., the other parameters d, ri, ro, 01, and 0y are kept fixed. Although the
case for single delay is studied by Hiroshi Shinozaki, 2007 [12], we present an different
approach.

Next, we turn to discuss the effect of 5 and ~, i.e., r; and ry, respectively. Let

z =a+ jb,w = u + jv, and setting to the definition z = we", then
a=e"(ucos v—uvsin v),b=e“(vcos v+ usin v) (3.13)

In order to identify the rightmost point of Sy («a, 3,7, h) with respect to ri, 7y, consider

Wo, the image of a line segment S, := {p(wo + jyo)|p € [ p,p]} , where zg,y0 € R. Then

a = xop = e“(ucosv —vsinw),b = yop = e“(vcosv + usinv).
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Suppose that z¢ # 0 and yy # 0 for
a = xop = e“(ucosv —vsinw),b = yop = e“(vcosv + usinv).

Then
Top UCOS U —vsinv

Yo vV COoSV + usinv

which implies

Ty COSV + Yo Sin v

7o COS U — T SN v

t
_ . Totetany (v, ) (3.14)
Yo — o tanv

where v = tan™'(£) — 7 and v = tan™'(£) for tan~'(-) € (0, ).

Differentiating u with respect to v, we have

du (23 + 42)(1 + tan®v) N Yo tan v + xg
—_— v .
dv (yo — xp tan v)? Yo — Totan v

and
du®  2(zf + y5)(1 4 tan®v)
v (yo — zo tanv)?

(u+1)

Since v = tanfl(%) —7 and tanfl(%) with € > 0, so % > 0 for u > —1, and then 2*
is monotone increasing for [v, v ]. By Intermediate Value Theorem, there exist a v € [v, ¥ |
such that Z—’; = 0. Hence, the graph of (3.11) is leftward convex.

Let z = p(wo + jyo) and Z = p(xo + jyo) are points on the segment S,, and suppose
that max Re[lWy(Sg)] is taken at a point between z and z. Then Wy(zy) lies on more
right than Wy(z) and Wy(2) in the w-plane. However, the curve Wy (.S,) is continuous and
bijective, and the leftward convexity implies that the graph is concave rightward, then
the curve Wy (S,) must be overlapped in some interval, a contradition to the fact that the
mapping is bijection. Hence, the maximal values of Re[IV,(5,)] must be taken at z or z
(see Figure 3.2).

Secondly, if g = 0 and yy # 0, it is the extreme cases of case(1). Figure (3.3) shows
that it leads to the same result with similar argument.

Consider the last case xg # 0, yo = 0, as show in Figure 3.4, there exist one singularity
at Wo(—1), and Wy(S,) is a continuous curve and bijective.

e

Finally, we transform to discuss d and 6, 05, the image of «, S and =, respectively.
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Im(z)

»Re(z)

> Re(W)
Wy(z)

Figure 3.2: The mapping of S, by W, if 2y # 0 and yy # 0.

Tm(W)

Im(z) / Wo(z)
&
Z 71 ° — Re(W)
Wo(z)
—w 2
*Re(zy | TTeeeall
o e(z)
—
z

Im(z)
4

Figure 3.3: The mapping of S, by W, if o = 0 and y, # 0.

Rl

Tm(W)
w__
/——— Wo(z)
f
> Re(W
-1 o Wo(z) M
+Re(z) _ n'\.;é‘ o
-7 T

Figure 3.4: The mapping of S, by W, if 2y # 0 and yo = 0.
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Lemma 3.4. [12] Re[Wy(re?)] is a monotone increasing function in 6 € (—x,0] and a
monotone decreasing function in 0 € [0,7]. Re[Wi(rel?)], k = —1,--- , —00 are monotone
increasing function in 0 € (—m,w]. Re[Wy(re®)] k =1,--- 0o are monotone decreasing

function in 6 € (—m, 7]

Before discuss the monotonicity of the function Sy, dependence on the parameters
a, f and 7. We need to calculate the partial derivative of the characteristic roots with

respect to these parameters. Since the characteristic equation is given by
s—a—fef —ye =0

then the derivative to « is derived as follows:

O0s 0s 0s
Yo 1 —s 2 h —sh_ — 0
Jda + e Jda + e Oa
or equivalently,
O0s B 1
da 14 Be=s + hye—sh’
Similarly,
0s B e”s
0B 1+ fe=s + hye—sh’
0s e—sh

Oy T 1+ Ber+ hrye—sh’

We note that the following relationship holds:

whenever

1+ Be ™ 4+ hye " #£0.

Also by substituting Be~* with s — o — ye~*", these three derivatives become

ds 1

da 1+s—a+ (h—1)yesh

s e ®

08 1+s—a+ (h—1)yesh (3.15)
Os e~ sh

8_7: I14+s—a+(h—1)yesh
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It is then obviously that the characteristic root s is not differential with respect to

parameters «,  and ~ at those s such that
1+ Be ™ +hye " =0

but these s must also satisfy

It turns out that

ie.,

s —a—ye "= —(1+4 hye ")
—s—a+1l=—(h—1)ye "

— (s —a+ 1) het7otDh — _p(p — 1)ye (@~ D0
Hence these non-differentiable points for Sy are given by
1
Se=a—1+ EW (—=h(h — 1)ye (e bhy (3.16)

Alternatively, we can replace ve™*" instead of Be~*, and after some algebraic operation

we obtain another form for non-differentiable sg:

Si=o— 3+ W ((1 _ %)56—@—}1)) |
For simplicity, let z = Be~® + ye~5o(h=D=a and 2* & Be=* 4 ye~ % (h=1=2 and then
Wo(2)e"® = 2 Sy = a + Wy(z).
Suppose z # z*, i.e. Sy is differentiable. Let
So—a=Wy(z) =u+jv, u>-1
or equivalently,

So = (u+c)+j(v+d) # S,
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and since Sy must satisfy the implicit equation
Sy — a = fe 50 4 ye=0h

we have

u + jv = rlej91 6*(“+C)*j(”+d)) + r26j92€fh(u+c)fjh(v+d)
that is,

u+ jv = rie” " cos(0; — (v + d)) + jsin(@; — (v + d))]

+ e M [cos(0y — h(v + d)) + jsin(fy — h(v + d))]
or equivalently,

(3.17)

u = re” ) cos(0) — (v + d)) + ree 4 cos(fy — h(v + d)),
v =re” ) sin(@; — (v 4 d)) 4+ ree MU sin(0y — h(v 4 d)).

We observe that
re SR = e hlute) [cos(0y — h(v + d)) + jsin(f2 — h(v + d))]
and hence

14 Sy — a+ (b — 1)ye "

= [1 4 u+79e7" ) cos(0y — h(v + d))] + j [v+ r2e 7" sin(fy — h(v + d))]

In advance to discuss the effect of ¢ with other parameters are fixed, we need to know

the partial derivative of Sy w.r.t. ¢, i.e.,

dSy  dSpda  dSp

de  do de da
1

[1 4w+ ree= "t cos(0y — h(v + d))] + j [v + r2e M+ sin(fy — h(v + d))]

and then
dSw dSy
de Re ( dc )

B 1+ u + roe 49 cos(6y — h(v + d))

1+ u A rae ) cos(By — h(v + )] + [v + rae @+ sin(6y — h(v + d))]
(3.18)

Lemma 3.5. The following properties of Sw(c, 5,7, h) with respect to the parameter ¢
hold:
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1. When v = 0, i.e., a single delay system, Sw(c, 8,h) is a monotone increasing

function of ¢
2. When v # 0, Sw(a, 8,7, h) is a monotone increasing function of ¢ in the large.

Proof. Since the partial derivative of Sy w.r.t. ¢ is given by (3.18), then we discuss the

monotocity of Sy, as following:

1. Suppose v =0 and g = 0, Sw(a, B,7,h) = Sw(a,h) = a = ¢+ jd is an increasing

function of c.
Assume v = 0 and 8 # 0, we have from (3.16) that
Se=a—1
and this S§ must also satisfy (3.7), i.e.,
Sg—a = Be %
thus the corresponding z* becomes
* —« -8 _St—a 1
z = ﬁe = ﬁe 0e~0 = ——,

When z # z* = —1/e, the substitution of 7 = 0 into (3.15) leads to

dc 1+ u]? + v?

which is positive (since u > —1). Since Sy is a continuous function, i.e., di—c‘” at the
both sides of z* are also positive by limiting processing. Hence Sy (o, 5, h) is an

increasing function of c.

2. Suppose that v # 0. Since z # z* (or Sy # S*) then the denominator of “’g—c‘”, ie.,
1+ So—a+ (h—1)ye %" is not equal to zero. From (3.15), it can then be discussed

according to the positiveness of the real part of dfl—ZV into the following three cases:

e Assume 1+ u + roe ) cos(fy — h(v + d)) > 0. Note that 14 u > 0 holds.
When c increasing, then e~ is decreasing and hence this term remains positive.

Hence Sy is an increasing function of ¢ in this case.
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e Assume 1+ u + 797"+ cog(fy — h(v + d)) = 0 and v + ree "4+ sin (G —
h(v+d)) # 0. When ¢ increasing, then e~ is decreasing and hence this term

will becomes positive. Hence Sy is increasing when c¢ increases.

o Assume 1+ u+ roe "+ cos(fy — h(v+d)) < 0. When c increasing, then "¢
is decreasing and hence this term remains increasing. And it becomes positive
eventually. Hence Sy is initially decreasing but increasing when ¢ increases.

In this case Sy has a global min w.r.t. c.

Therefore, S(«, 3,7, h) is not necessary a monotone increasing function of ¢. Con-

sider the smallest value of 14 u + 79+ cos(fy — h(v + d)), i.e.

1+u—re ") =0 = ¢ = —u+ -1
+u — rqe c u—l—hn1+u

And when c is large enough (for example ¢ > ¢*) | it becomes an increasing function

of c. Figure (3.3) depicts the result with different d. 0O

Robust stability, a=c+d*i

=
Ry
s 2
3
%)
1L
d=-0.2
d=-0.1
0 d=0
d=0.1
d=0.2
-1 L
-1 0 1 2 3 4 5

Figure 3.5: Robust stability with a = ¢ + d*j

The following lemma illustrates where Sy, (o, 3,7, h) is maximized with respect to d,

0, and 0y, respectively.

Lemma 3.6. Let ¢, ry and ro be constant and define

CoP = (=D ==l g c [d d],0, € [0, ,0,],0o€[ 05,0, }  (3.19)
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(1)If C°P7 crosses the positive real axis, then
max Sw (e, 8,7) = Sw(c,r1,72)
(2)If C°P7 does not cross the positive real azis, then
max Sy (a, 8,7) = max{Sw(c + jd, rleje_l,mejg), Sw(c+ jd, el rye?2)}

Proof. Base on rq, 7y, it divides into the following cases:
Case I If r; = ry = 0, it is obvious since Sy («, 5,7) = Sw(c,0) = c.
Case II: Let r1,79 > 0. Define

CoP = {2 = Be ™ +ye st | g e [ d,d ],0, € [ 01,05],05 € [ 02,00]}
, so that C*%7 is the argument of C*%7.

(1) CP7 crosses the positive real axis.

Since C%?7 is a cylinder, then

_ ma} _ SW<05767/7) :SW(C7T17T2)
deld,d],01€[01,01],02€[02,02]

is the crucial point of C*?7 by Lamma (3.5).

(2) C*%7 does not cross the positive real axis.

Obviously, by the monotone, C®7 is an arc in this case, and it has two possible

extreme points corresponding to {d, 0y, 0} and {d, 01,65}. This case holds.
]

Figure 3.5 shows the robust stability with respect to 8% and 47, i.e., 61, 05, respectively.

Here depicts the non-differentiable points for Sy.
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Figure 3.6: Robust stability with respect to 3% and ~ .
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Chapter 4

Pole Assignment for the Time-Delay
System

The approach to assign eigenvalue using the Lambert W function is used to design
robust linear feedback control law. In this chapter, we will discuss the pole assignment
with single delay and two delays, respectively, in the framework of the Lambert W function
approach. The first section discuss the system with single delay and two delays under the
action of linear feedback control law. The prescribed eigenvalue assignments are discuss
in §4.2. Conversely, we use the fsolve command in Matlab to get the desired poles in

the §4.2, and expand it to deal with two delays in §4.3.

4.1 Single Delay Systems

We here consider a scalar delay system with an exogenous input from environment:

& = ax(t) + argx(t — h) + u(t), h >0,
(4.1)
z(0) =x9, z(7)=0¢(1), —h<71<0,

where xg, h € R, and ¢ is the initial function to specify the initial condition for the delay
state z(7), 7 € [—h,0). Suppose a proportional control is proposed to drive this delay

system to a desired state, i.e., a constant state feedback is applied to this system
u=kx(t) + kigz(t — h)

where k, k15 € R are the designed parameters for the state feedback law.

The closed-loop system is then given by

= (a+k)x(t) + (a1qg + kig)z(t — h)

£ az(t) + Bx(t — h)
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where o = a + k and 8 = ai1q + k14. Thus the closed-loop system is obvious in the form
of (3.1), and the associated roots (or poles, si, k € Z) of the closed-loop system are then
defined by (3.2):

Sp=a+ %Wk(ﬁhe_o‘h),

with £ =0,£1,£2,--- , +00. By using Lemma 3.1, the closed-loop system is stable if the

feedback parameters k and k4 are designed such that

1
Sw(a + k,a1q + ki, h) = Re |la+ k + EWO ((ald + kld)he_(a+k)h> < 0. (4.2)

4.2 Pole Assignment for Single Delay Systems
As see in §4.1, the roots of the single delay system
& = ax(t) + fz(t — h)
are expressed as

1
Sk =a+ EWk(ﬁhe*ah)7 k=0,4£1,42,---  +o0,

Furthmore, the root

So = o+ %Wo(ﬂhe_ah) (4.3)

is always in the rightmost of all the roots by Lemma (2.5). Suppose the desired pole is
So.des € C, we insert it into s, so that the problem is to solve (4.3) for a and f such that
the rightmost root sy = sg ges. T'wo different approaches are proposed. The first approach

is to determine « first and then compute § accordingly. From (4.3) it follows that
1 —ah
=8y — EWg(ﬁhe ),
and set zy = She™" to define

lI/V()(Z[/V)

a A
W() = {SO,des - h

2w € C} . (4.4)

The region W' is as shown in Figure 4.1. Select an oo € W' N R and let

B = (S0.des — oz)ehs“’d“ (4.5)
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—t z/h
______ — 72k
o\
o — Re(W)
— -z izh
— -zt

Figure 4.1: Region of Wj' except for the dashed curves.

that is,

h(SO,des - a)eh(s()’dgs—a) = ﬁhe_ha

or equivalently,

1
50,des — QO = EWO(ﬁhe_ha),

then comparing with (4.3) it follows that sgg.s must be the rightmost root sy of the
characteristic equation. We also note that the corresponding value zy, for the selection

of the real parameter a must be equal to Bhe™"?, i.c.,
2w = ﬁheiha = (SO,des - a)eh80’d857

which means zy € R to obtain another real parameter 3, and thus

g = Ezweha.

Therefore if there is no zy € R such that o € W' N R means there is no real parameters
a and [ such that the rightmost eigenvalue sy is assigned to sg 4es € C. Furthermore, W)
has the range Re[Wy(z)] > —1 so that Re(soaes) < 7 + a.

Conversely, the second approach is to determine § first, and then to compute the

corresponding «. The following two relationships

B = (so — a)eh®

{so = o+ 3 Wo(Bhe ")

induce to

1
Wo(Bhe ™) = so — a = g,
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so that

ehso L
g = - Wo(Bhe™").
Define the set
A ehso,des
5€WB:{ Wo(zw) ZWE(C},
and hence § € WéB NR. Once 3 is determined with a selected zy = She ™"
ehso,des
B = . Wo(zw)

then we can deduce a by the definition of the Lambert W function as follow:

Wolzw) = Bhe™ oo

_hSO,des

= [heso.des gBhe = zw = Bhe

ha _hSO,deS eﬂhe—hso’dﬁs = e_hso,des'f'ﬁhe_hso’des

— e T =e€

— —ha = —hspges + Bhe~hsodes 4 j2rk, k € Z

Thus

2k
Q= S0.des — Besodes j—Z kel

But from the original characteristic equation we know

Sg — a = Behso

(4.6)

(4.7)

hence k = 0 is necessary in (4.7) if 8 is given as in (4.6), otherwise a deviates from W'

Thus, a ought to be as

—hs
O = 50,des — 66 0:des

or from zy = Bhe " to be

1
a= E(ln@—{—lnh—lnzw).

(4.8)

As we discuss in previous approach, there must be a condition on s 4. such that real

parameters a and [ can be computed in this approach.

Remark. For arbitrary sy € C, suppose that « is given as in (4.4), and 5 which is an

unknown quantity as in (4.5), or conversely, /3 is given in (4.6) and o an unknown quantity

as in (4.8). Then, the characteristic equation has sy as the rightmost root.
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Example 4.1. Consider a single delay system
& = ax(t) + argx(t — h) + u(t)
under the influence of feedback control law
u(t) = kx(t) + kigx(t — h)
then the closed loop system is given by

= (a+k)x(t)+ (a1qg + kig)z(t — h)

= ax(t) + Px(t — h)

Consider the following given data set a = 1, a1y = —1, and h = 1. We want to determine
the values of k and k14 such that the rightmost closed-loop pole is located at —0.092484 +
1.9973¢, —0.60502 4 1.7882%, and —1, respectively.

Firstly, we compute the set W§* and adjust the parameter a in W' MR such that the
rightmost pole is assigned to s4.s. Secondly, we compute the value 8 by using the equation
(4.5). Once these two values are determined, we then calculate the corresponding values
for k and k4, respectively. Table 4.1 shows that three desired rightmost poles are assigned
by adjusting the corresponding parameters. Figure 4.2 depicts the region of W' and WOB
when s 4.5 = —0.092484 + 1.97730:. And the corresponding variation of characteristic

roots of the delay system before and after pole assignment is also shown in Table 4.2.

-
- -
-~
-

-5 -4 -3 -2 -1 0 1 2 -5 -4 -3 -2 -1 0 1 2 3 4 5
Re(a) Re(5)

Figure 4.2: Region of W' and Woﬁ with sg ges = —0.092484 4 1.977307
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Table 4.1: The variation of corresponding parameters with respect to three different pole
locations.

| Sodes | —0.092484 + 1.99730i | —0.60502 + 1.78820i | —1.0 + 0i |
So.des + 3 | 0.9007516 + 1.99730i | 0.39498 4 1.78820: 0
o) -1 -1 -1
3 —2 —1 0
a 1 1 1
(14 -1 —1 —1
k —2 —2 —2
k1 -1 0 1

Table 4.2: The variation of characteristic roots before and after pole placement.

| | a=lay=-1 | a=-1,=-2 | a=-1,=-1 |a=-1,5=0]|
s3 | —3.02630 + 20.223807 || —2.32231 + 20.3555i | —3.01658 + 20.32141 —
Sy | —2.66407 4+ 13.87915 || —1.95315 + 14.0695: | —2.64736 + 14.0202: —
s; | —2.08880 + 7.46150i || —1.36300 + 7.80750i | —2.05280 + 7.71840: —
S0 0 —0.092484 + 1.99730i | —0.60502 + 1.78820: -1
s_1 | —2.08880 — 7.46150i || —0.092484 — 1.99730i | —0.60502 — 1.78820: —
s_o | —2.66407 — 13.87910i || —1.36300 — 7.80750i | —2.05280 — 7.718403 —
s_5 | —3.02630 — 20.22380i || —1.95315 — 14.0695¢ | —2.64736 — 14.0202: —
s_4 | —3.29168 — 26.54320i || —2.32231 — 20.3555¢ | —3.01658 — 20.32144 —

4.3 Linear Systems with Two Delays

In recent decades, great attention has been paid to differential equations with two de-
lays which not only have considerable physical background but also exhibit very abundant
in dynamics.

Consider a DDE with two delay times hy and hy (> hq) in §3.2 described by

Y (<) = ony(S) + Pry(s — ) + ny(s — ha)
y(0) =vo, y(r)=¢(1), —hy <7 <0.

After re-scaling the variables, the DDE is converted to
i(t) = ax(t) + px(t — 1) + ya(t — h),

2(1) = ¢(7),

By the same approach which deals with the single time delay systems, the roots of the

(4.9)

z(0) = o, —h <71 <0.

characteristic equation

s—a— et —ye " =0
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are

sp = a + Wi( fe® 4 reski=h=ay, (4.10)

with £ =0,+1,+2,--- ,+00. And we renumber the characteristic roots as .S,, as depicted
in §3.2. The solution is the form as [7]

o0 t

=Y Cpe’'+ / eSEE=Opy(€)de. (4.11)
0

k=—o00
By using the result of Lemma 3.2, the linear scalar time-delay system (4.9) with the

uncertainties prescribed by (3.11) is robustly stable if and only if

max ~Sw(a,B,7,h) <0 (4.12)
aee BeNP v helh,h]

where

Sw (e, B,7,h) = Re[So] = Re[a + Wy( Se ™ + fye—so(h—l)—a)]'

4.4 Pole Placement for Two-Delay Systems

In this section, we continue to discuss the pole placement for two delays system.

Consider a DDE with state feedback and two delay times hy and hy (> hy) described by

y/(g) =a Z/(§) + ayq y(< - hl) + agq y(< - hz) + u(g)
(4.13)
y(0) =10, y(r)=¢(1), —hy <71<0,

where

u(s) = kx(s) + kigx(s — hy) + kogz(s — ha).

As seen in §3.2, after rescaling the variables, the DDE is converted to

(t) = (a+ k)hiz(t) + (a1q + kra)hix(t — 1) + (agq + kog) Rz (t — Z_?)

= ax(t) + Bt — 1) + yx(t — h)

where (a + k)hy = «, (a1qg + k14)h1 = 5, (a2q + kag)h1 = v and Z—f = h(> 1). Then the

—sh

roots of s — a — fe™® — ye™*" = 0 are expressed as

Sp =+ sz( Be—a —l—’yesk(l_h)_a )

which has been renumbered as .5, as described in §3.2. By Lemma 2.5, Sy is always in the

rightmost of all the characteristic roots. In this section we try to assign the values of S,
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for n =0 or n = 0, +1 into prescribed locations by selecting appropriate real parameters

a, B and ~. The following cases are considered:
1. Assign the rightmost root Sy to sp4es € R,
2. Assign the rightmost root Sy to sgqes € C,

3. Assign the rightmost root Sy to sp4es € R and S1, S_1 to Sy ges and 5 ges, respec-

tively, with sy 4.5 € C.

Firstly, we try to assign the value Sy to the desired pole s 4es € R. Since
So = a4+ Wy( e + yeoll=h=a (4.14)

must hold, hence the problem is to solve (4.15) for real o, 8 and v. Let zy = fe™® +

yeSol=h)=a then from (4.15) we obtain
a = S() — Wo(Zw),
or equivalently,

a = So,4es — Wolzw).
Since sg 4es and « are real numbers, thus the corresponding Wy (zy) must also belong to
R, i.e., Wy(zw) > —1 and the corresponding zy > —1/e. Define the following feasible
set W
We = {S0,4es — Wolzw)|zw = —1/e}. (4.15)
We choose a from W and set the corresponding zy to an appropriate z{}, = (S0 des —

a)e®0des=*  Then the values of f and v from the following set of equations:

56_a + ,-Yeso,des(l_h)_a — Z‘?V?
ﬁefso,des + ,-Ye*hso,des — SO,des — Q.
or equivalently,
B+ yetodes M) — (50 100 — q)e0des = 2@ ¢, (4.16)
Since 2§}, > —1/e, we can obtain that

(50.des — Qv)e0des > — 1
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which implies that
1

(50,des - O‘)eso’d‘es*a > —e

S0.des — @ > Wo(—e ') = —1

or equivalently,

a < 50,des + 1.

There are infinitely many solution pairs for (f3,7).

Secondly, we try to assign the value Sy to the desired pole s¢ 4.5 € C. Since
a = S0,4es — Wolzw),
we define the feasible set W' by:
W £ {50.des — Wo(zw)’zw € C}. (4.17)

We choose o from W NR and then the values of 5 and v solve from real and imaginary

parts of the following equation:
B 4 yesodes(1=h) — (S0.des — Qv)e0des, (4.18)

After some algebraic operation, we obtain

Re [eso,des (lih):l

B = Re[(SO’des - Oé)eso’des] - Im[(So’des — Q)eso’des]m,

v = Im[(Sg.des — )€ %].
The third case, given s 4.5 € R and sy g5 € C, then the following equations hold:

SO,des = _|_ W()(/Be—a + ’yeso’dES(l_h)_a) Wlth ﬁe—a + 7680‘d65(1_h)_a 2 _1/6

Stdes = O + Wi(Be™® + yetaes(1-1)7e)

for some k # 0 and we want to solve for o, S and «. In advance we select o from W
as given in (4.16). Select a k such that s; 4.5 — o belongs to the range of Wy. And then

apply it to find the possible solution for § and ~ such that
S1des = @+ Wi(Be™® 4 yetraes(1-h)=ay

35



and satisfy the following condition
Be 4 yetodes(I=h)=a > 1 /¢

Consider the case which the desired pole sp4es € R. If s 4es is inserted into (4.15),

by Lemma 2.3, it is ensured that sg 45 exist in the right position than the others.

Example 4.2. Consider a DDE with two time delays and state feedback

(t) = (a+ k)hiz(t) + (arg + kra)hax(t — 1) + (agq + kag)x(t — ho)

= az(t) + fx(t — 1) + ya(t — h)

with a = —1, a14 = 2, and agq = —1/2. Then the open-loop characteristic roots are shown

in Table 4.3 and since sy = 0.25222 > 0 this system is unstable.

Table 4.3: The characteristic roots of the open-loop system.

| k] Sk |
2| 2| —1.92417 + 13.0581¢
2| 1] —1.20198 + 10.4954¢
11]2] —-1.71720 + 6.67350¢
111 —0.60716 4 4.42870:
01 0.25222
0|2 0.25222
—1|1] —0.60716 — 4.42870¢
—11]2] —-1.71720 — 6.67350¢
—2 | 1] —1.20198 — 10.4954¢
—2 | 2| —1.92417 — 13.0581¢

Now we want to find the feedback control law such that the desired rightmost pole
is placed at sgges = —0.11929 or spges = —0.27495 £+ 1.47520. As seen in Example 4.1,
we can calculate Wy' first, and determine o from the set W' NR. Once « is selected, we
then compute two other parameters 5 and ~ accordingly. Afterward, parameters k, kiq,
and koq are adjusted such that the k = a —a, kg = 8 — a4, and kyg = v — agq. Two set of
solutions are presented in Table 4.4 to two desired close-loop poles sy ges = —0.11929 or
50,des = —0.27495 £ 1.47520, respectively, whose closed-loop characteristic roots are also
described in Example 3.2. Table 4.5 shows the variation of characteristic roots for two

set of designed parameters.
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Table 4.4: The computed parameters for two desired pole locations.

| Sodes || —0.11929 || —0.27495 & 1.475204 |
Sodes +1 ]| 0.88071 || 1.27495 + 1.47520:
« —1 -1
B 5 —1
v i —
a —1 —1
aid 2 2
Q2d —% —%
k 0 0
k1q —g -3
kaa 2 0

Table 4.5: Variation of characteristic roots.

open-loop poles

close-loop poles

close-loop poles

E | a:—l,ald:2,a2d:—% az—l,ﬁz%ﬁ:i az—l,ﬁz—l,’y:—%

k=0,kia=—3koa=23| k=0,kig=—3kog=0
2|2 —1.92417 + 13.0581¢ —1.82137 4 11.6390: —1.50747 4 13.4657:
2|1 —1.20198 + 10.4954¢ —1.89200 + 8.71330: —1.66427 4 10.0261%
112 —1.71720 + 6.673501¢ —1.37970 + 5.304501 —1.14680 + 7.24010:
111 —0.60716 + 4.42870¢ —1.36930 + 2.517601 —1.27050 + 3.64510¢
0|1 0.25222 —0.11929 —0.27495 4 1.47520¢
0|2 0.25222 —0.11929 —0.27495 — 1.47520¢
—-11 —0.60716 — 4.42870¢ —1.36930 — 2.51760¢ —1.27050 — 3.64510¢
—112 —1.71720 — 6.67350¢ —1.37970 — 5.30450¢ —1.14680 — 7.24010¢
-21 —1.20198 — 10.4954% —1.89200 — 8.71330¢ —1.66427 — 10.02612
-2 12 —1.92417 — 13.0581% —1.82137 — 11.6390¢ —1.50747 — 13.4657¢
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