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摘 要

時間序列預測問題是一種具有挑戰性的預測性建模案例研究，因為時間序列增

加了輸入變量之間時間依賴性的捲積。然而，遞歸神經網絡（RNN）是一種功

能強大的神經網絡，除了具有記憶性，且能夠處理時間序列相關的資料。因此

在本文中，我們使用 RNN 進行空氣污染 PM2.5 的分析和其自動化預測。並且

在實驗中，我們建立了一個基於 RHadoop 的分佈式計算環境，分析了空氣污

染。除了將及時資料透過 MySQL 資料庫進行存取，也利用了 Sqoop 對 HBase

進行歷史數據快速存取。此外，我們也針對資料缺值補值進行討論及實驗，求

出不影響預測精度或能提升預測精度的補值方法。並且在實驗中我們使用平均

絕對誤差百分比（MAPE）值將 PM2.5的短期預測精度進行量化，將 MAPE控

制再 0.2 至 0.5 區間。並且在不影響精度下，針對 RNN 各個參數進行實驗和校

調，進一步開發 RNN 自動化訓練程式。最後，由於視覺化對於開發者的幫助以

及使用者的影響，我們也使用 R 及 Shiny 來可視化 RNN 訓練結果，協助優化

RNN 訓練模組的參數，以利於開發者可以快速的分析資料資訊，並將預測為來

PM2.5 數值顯示於地圖上提供使用者參考。

關鍵字: 空汙分析，時間序列，機器學習，自動化預測，遞規神經網路
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Abstract

The time series prediction problem is a challenging case study of predictive mod-

eling because time series increase the time-dependent convolution between input

variables. However, Recurrent Neural Network (RNN) is a powerful neural net-

work that is not only memory but also capable of processing time series-related

data. In this paper, we use RNN to analyze the air pollution PM2.5 and its au-

tomated prediction. Moreover, in the experiment, we established a distributed

computing environment based on RHadoop and analyzed the air pollution. In ad-

dition to accessing timely data through the MySQL database, Sqoop is also used

to access HBase historical data quickly. Also, we also discussed and experimented

with a missing value of data to find a complementary method that does not affect

prediction accuracy or enhance prediction accuracy. Moreover, in the experiment,

we use the average absolute error percentage (MAPE) value to quantify the short-

term prediction accuracy of PM2.5 and control the MAPE by 0.2 to 0.5 intervals.

Moreover, without affecting the accuracy, experiment, and tune for each param-

eter of RNN, and further, develop RNN automated training program. Finally,

because of the help of the visualization for developers and users, we also use R

and Shiny to visualize the RNN training results and help optimize the parameters

of the RNN training module so that developers can quickly analyze the informa-

tion and The predicted PM2.5 value is displayed on the map for user reference.

Keywords: Air pollution, Time series, Machine Learning, Automatic Forecasting,

RNN
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Chapter 1

Introduction

1.1 Motivation

Time series prediction problems [?] are a challenging type of predictive modelling

case study as time series adds the involution of a temporal dependence among the

input variables. Recurrent Neural Network (RNN) [?] [?] are able to handle time

sequence problem because they can retain state from one iteration to the next by

using their own output as input for the next step. Their ability to form a directed

cycle have been proving that RNN are a powerful predictive engines specifically

for time series data. While air pollution dataset is a time series data that have

a natural temporal ordering and continuous data. Therefore, RNN are useful in

time series modelling and prediction for air pollution dataset [?] [?].

In this study, we aim to implement a Recurrent Neural Networks for analysis

and automated air pollution forecasting. Specific goals are:

1. To deploy a distributed computing environment based on RHadoop,

2. To analyze air pollution and presented visualization using HBase from his-

torical data.

3. To analyze the short-term prediction of PM2.5 and measured the prediction

accuracy based on mean absolute percentage error (MAPE) value.

1



Chapter 1 Introduction 2

4. To utilize shiny to visualize the training result for optimizing parameters of

RNN training module.

1.1.1 The Impact of Air Pollution on Health

The level of pollution endangering the health of the body is quite extensive. Be-

cause the pore size of these air pollutants is very small, as the breath enters the

lungs, it is easy to cause inflammation of the lungs first. When these inflammatory

factors in the body are transported to the body with blood, May become blood

vessels, systemic inflammation.

National Institute of Environmental Medicine of the National Guardian Insti-

tute pointed out that airborne air pollution contains fine suspended particulates

(PM2.5), nitrogen oxides, cerium oxides, carbon monoxide, and ozone. Overall,

Taiwan’s ranking of international emissions of PM2.5 is medium exposure, which

is still higher than in North America, some European countries, and Australia.

Many studies have confirmed the harm of PM2.5 to human health.

1.1.2 The Importance of Big Data in Air Pollution

Inhalation of too much-contaminated air or particulate contaminants by the hu-

man body will deprive the respiratory organs of normal defensive and removal

functions and endanger health. Many pollutants in the atmosphere coexist, so

the relationship between air pollutants and human diseases is difficult to confirm

clearly. Diseases such as lung cancer, chronic bronchitis, and pulmonary edema

are considered to be related to air pollution.

For example, sulfur oxides, nitrogen oxides cause acid rain, or carbon dioxide

causes the reduction of heat dissipation in the atmosphere, which causes the surface

temperature of the earth to rise, creating a greenhouse effect and so on, all of which

have an impact on the climate. Also, particles in the air will scatter sunlight,

reducing the energy of sunlight reaching the earth and reducing the temperature of
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the earth. This impact on the climate will create a chain effect because the climate

itself also affects many levels. From this point of view, the scope of influence

mentioned earlier has been almost covered; it can also be said that air pollution

has caused an impact on the entire ecosystem.

1.1.3 Time Series Data Analysis

An extension of historical data, also known as historical extension prediction. It is

based on the development process and regularity of the socio-economic phenomena

that can be reflected by the time series and the method of extrapolation and pre-

diction of its development trend. Time series, also known as time series, historical

plurals, or dynamic sequences. It is to sort the numerical values of certain statis-

tical indicators in order of time into the sequence formed. Time series forecasting

method is to compile and analyze time series and analogize or extend the develop-

ment process, direction, and trend reflected by time series, to predict the level that

may be reached in the next period or the following years. Its contents include:

collecting and sorting historical data of certain social phenomena; examining and

identifying these data and arranging them into series; analyzing the time series,

looking for the law of the social phenomenon changing with time, and drawing a

certain pattern; This model predicts the future of this social phenomenon.

1.2 Thesis Goal and Contributions

As the impact of air pollution on the human body is visible, this paper uses the

prediction analysis of PM2.5 to observe the trend of PM2.5 and provides further

analysis of other studies. It hopes to help improve the air pollution problem.

Therefore, this paper proposes an integrated system architecture that uses R

for time series analysis, starting from the initial data capture, data preprocessing,

and the use of mathematical modules to patch missing data before these analyses.

Then, through machine learning RNN, the parameters of data training prediction
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are corrected, the trend of the parameters is analyzed, and the RNN training

process and forecasting results are visualized. Finally, assisting the experiment

with visualization to obtain better training modules and further analysis.

Integrated R-distributed computing system in the data reading part, HBase

and MySQL are combined through Sqoop, and a large amount of geographic in-

formation can be read directly through RMySQL. In the repair missing data and

remove outliers section, the steps meaningful values and select data parameters.

Due to the need to be able to deal with a large amount of data on the read

and write platforms, it is an indispensable part of data analysis. Moreover, in

the process of Data Transformation and Data Mining in R in the single machines,

the performance is greatly limited by the memory. The R- distributed computing

system uses Rhadoop’s R packages. This package is the API interface to the

Hadoop distributed environments. Rhadoop breaks through the limitations of R in

the single machines, and effectively improves R’s ability to analyze large amounts

of data and speed, and allows R’s analysis environment to connect multiple single

machines to the cluster server.

1.3 Thesis Organization

The chapter 2 explains the relevant knowledge of this article and the application

of R language packages such as Rhadoop, HBase, Sqoop, and visualized shiny

server. Also, it will also analyze the air pollution of this system. Moreover, we

explain the relevant mathematical models in detail, including RNN’s training and

predictive analysis of time series and using MAPE as the quantification of RNN

prediction accuracy. In the chapter 3, we explain how we have integrated the

R language packages into Rhadoop and the shiny visual server into a complete

system, and implement the HDFS decentralized storage and use of Hadoop envi-

ronment in the reading and writing of data. Sqoop makes MySQL, And Hbase

can access each other. It will introduce the importance of Lag-Time for RNN

training module and how it affects the accuracy of RNN. As well as introducing
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the relationship between Rstudio and Shiny Server, and briefly mentioning the

importance of visualization. At the end of this chapter, a brief explanation of the

set of automated training flowcharts designed for the experiment is provided. The

chapter 4 includes experiments from the system design, data capture, data access

to the database, data preprocessing, data missing, RNN training, and predictive

visualization. The focus of this chapter is on the patching of data and RNN’s

experimental analysis of PM2.5 predictions. Finally, this section of the chapter 5

summarizes the system and experiment.



Chapter 2

Background Review and Related

Work

In this section, we review some background knowledges for later use of system

design and implementation.

2.1 Background Review

2.1.1 Machine learning

Machine learning involves recognizing the operating mode through a sample train-

ing machine, rather than programming with specific rules. These samples can be

found in the data. In other words, machine learning is a kind of weak artificial

intelligence . It gets complex functions from data to learn to create an algorithm

and use it to make predictions.

Although the predictive power of the model is important, it is not all. Some

algorithms are easy to explain, and some algorithms are very good at dealing

with issues such as noise and missing data. So the algorithm for picking machine

learning is very loyal. No algorithm can solve all problems, but there are many

good algorithms.

6



Chapter 2 Background Review and Related Work 7

Machine learning has been widely used in data mining, computer vision, natu-

ral language processing, biometrics, search engines, medical diagnostics, detection

of credit card fraud, stock market analysis, DNA sequencing, voice and handwrit-

ing recognition, strategy games, and robotics.

2.1.2 Recurrent Neural Networks

RNN is a tier of artificial neural network (ANN) [?] where connections between

units form a directed graph along a sequence. In a traditional neural network [?].

all inputs and outputs are independent of each other. This method is not suitable

for some cases spesifically in time series dataset forecasting. For example, if we

want to predict the next word in a sentence we better know which words came

before it. In this case, RNN are able to solve this problem because their output

being dependent from previous computation. Moreover, RNN have a short-term

memory which captures sequence data about what has been calculated so far.

Figure 2.1 is the concept of RNN module operation, including adjustable pa-

rameters. In order to be able to manually retrain the module, we designed a

process of automatic training.

Figure 2.1: How RNN Works

It can be seen that the final result O (t + 1) of the network at time (t + 1) is

the result of the accumulation and computing between input and all history data

at that moment. The above structure expands RNN into a complete network.
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For example, if you need to process a 5-level sequence, expanding to 5 levels is

necessary.

•‘x’means the network input at a moment;

•‘s’is hidden status, representing the ”memory” of the network;

•‘o’represent the output.

The hidden state‘s’can be thought of as the ”memory” of the network, which

captures information all the times before. The output ‘o’depends only on the

memory at the current moment, and it is very difficult for‘s’to capture long-lived

messages due to long-term dependencies actually. Therefore, the parameters (U,

V and W) in each step of RNN are the same, which reduces the cost of learning a

lot. Depending on the actual task, you don’t need to input/output something for

each step. The algorithm is shown in Figure 1.

Algorithm 1 Recurrent Neural Network forecasting Algorithm
1: Set rnnunits and optimizer to define RNN Network (R);
2: Normalize the dataset (Di) into values from 0 to 1 ;
3: Select training windowsize(tw) and organize Diaccordingly;
4: for number_of_epochs and batch_size do
5: Train the Network(R) ;
6: end for
7: Run Predictions using R;
8: Calculate the loss_function;

In the preprocessing step, the data is normalized to a range of 0 to 1. The

data normalization formula is as follows:

Xmin =
X −Xmin

Xmax −Xmin

Moreover, set RNN parameter input the definition of the completed RNN module,

and it is reconstructed according to the training windowsize(tw). The training

window is defined as a set of patterns for predicting the next pattern. Then repeat

the training through the defined RNN module, using loss_function to observe

the accuracy of the prediction.
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2.1.3 Visualizations R Using the Shiny Server

Visualization of data means visually presenting data [?]. Effective graphs can sim-

plify complicated data into easily absorbed content. Through graphical means, we

can more easily discern Patterns, Trends, and Correlations. The earliest data was

traced back to the 17th century when people plotted maps; in the early 18th cen-

tury, humans invented the Pie Chart. Visualization of data appears in our lives all

the time, magazine articles, news media, academic reports, public transportation

instructions, and more. Infographic Information chart is another term we often

hear. It has the same purpose as data visualization —using graphical methods to

simplify complex information. However, Infographic is more subjective and quali-

tative information, expressing the author’s viewpoints and stories. More emphasis

on visual presentation requires deeper design skills.

Shiny [?], a suite developed by R’s new startup team, R Studio, is now playing

an important role in prototype production in many companies’ internal research

projects. Moreover, Shiny Server [?] is one of a Web development framework in

R language that contains many front-end business intelligence (BI)-packages, like

ShinyBI, ShinyJS, Shinydashboard, etc. Furthermore, Shiny combined with data

visualization packages such as ggplot2, ggmap [?], leaflet, REmap, etc. in the R

language, which can be presented as an interactive web and, moreover, provides

developers analysis and forecasting easier. Shiny’s operation is mainly divided

into front-end ui.R and back-end server.R. These two parts ui.R and server.R

communicate by output $ tag and input $ tag. The ui.R web interface is similar

to HTML in syntax command.

2.2 Related Work

In the training of prediction modules with time series, most of them focus on

the improvement of accuracy and the influence of data correlation on training

results. The main references are as follows: D. Lee et.al. [?] predicted the pro-

environmental consumption index based on Google search query data, using a
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recurrent neural network (RNN) model. Also, they compared the prediction accu-

racy of the RNN model with that of the ordinary least square and artificial neural

network models. Stefan Balluff and Stefan Krauter [?] presented current results

of wind speed forecasts using recurrent neural networks (RNN) and the gradient

descent method plus a backpropagation learning algorithm. Mohamed Akram Za-

ytar and Chaker El Amrani [?] proposed a deep neural network architecture and

use it in time series weather prediction. Camelo, et al. Paper [?] predicted time

series applied in wind generation based on the combination of time series mod-

els with artificial neural networks. Rahman A. et al. In [?] predicted electricity

consumption for commercial and residential buildings using deep recurrent neural

networks. Myttenaere, et al. Many papers compare RNN to LSTM. The conclu-

sion is that no one module is the best, but only suitable for this data. Moreover,

in our paper, we also conducted the prediction of PM2.5 accuracy by RNN and

LSTM.

Machine learning is also a challenge for training from time-series data. Like

the paper [?] [?], they proved although the implementation of National Health

Insurance, it has accumulated enough data to establish a time series forecasting

model. In addition to the previous medical expenses, in order to understand the

impact of other exogenous variables on medical expenses, this paper combines

time series. Models and causal models to predict total health care expenditure for

National Health Insurance.

After deciding which chemical factor to use for the prediction of PM2.5, in

addition to the correlation of each air quality value to the external, we also refer

to the chemical-related papers for corroboration. In the article [?], they analyzed

the data of air quality and found that the relationship between O3 and AQI was

negatively correlated. Also, AQI is a weighted calculation of various air quality

values. PM2.5 is also a part of it. For better accuracy, we do not predict a value

that has already been calculated but instead, forecast for PM2.5. That is why our

paper chose to use O3 to predict PM2.5.
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The quantification of prediction accuracy is also very important. For the se-

lection of quantization modules, we refer to several papers. In the article [?],

they proved the existence of an optimal MAPE model and showed the universal

consistency of Empirical Risk Minimization based on the MAPE. Our work pro-

posed the implementation of RNN in analyzing and automated predicting of air

pollution. Also, in the paper [?], they also use the MAPE value to quantify the

accuracy of the data. In the article [?], due to the inherent nature of memory

design, it is difficult to effectively and reliably analyze air pollution data in stand-

alone environments. Moreover, they use sensors called EdiGreen AirBox to collect

data on air pollution in Taichung. Finally, the experimental results show that

the accuracy of the short-term forecast results of PM 2.5 is analyzed using the

ARIMA model. Also, verifying the prediction accuracy of the MAPE method is

also given in the experimental results. Therefore, this paper decided to use MAPE

to quantify accuracy. Although MAPE can’t see the data trend, it proves that

the MAPE still has its use value through the experimental chart.

Mathematical analysis and other features, through the R language installation

kit, to expand the R language function [?], with the array and matrix calcula-

tion capabilities, display of the drawing tools and simple and easy programming

language. For data screening, repeated calculations, import/export of data, and

development of custom program functions [?]. Compared with other programming

languages, the biggest advantage is the drawing function, which includes a variety

of image rendering effects, visualized graphics after analysis, and a good level of

print quality. The number of Packages supporting R language can be used as a

tool for analyzing R language.



Chapter 3

System Design and

Implementation

3.1 System Architecture

We use python and R language to store the air pollution value of open data and

geographic information of TGOS in the server database, as shown in Fig. 3.1.

Then we apply R language for analysis and prediction. Next, we use the plot in

the shiny server, ggplot2, Plotly packages to visualize the data so that we can

conduct preliminary analysis of the experiment for subsequent prediction module

optimization. Finally, we utilize leaflet, ggmap packages and TGOS geographic

information to present the data to the user in an interactive map.

Figure 3.1: System Analysis Process

12
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We used one master and two slaves for Hadoop cluster as the experimental envi-

ronment and used RHadoop environment. We also built HBase on the master and

used Sqoop as the bidirectional data transfer for MySQL to HBase [?] [?], as a

Figure 3.2. MySQL is used to store the time series data and run it using R-base [?].

For fast data access we used RMySQL package. Since HBase has exclusive access

to big data quickly, we use historical data to access it using HBase. Finally, we

present the data to Shiny-Server via R-base.

Figure 3.2: Hadoop Cluster’s Master Architecture

3.1.1 Rhadoop

R is a popular and influential analytical language. Previously, the stand-alone

R language computing power is limited by memory size, which makes analysis

environment of R hardly to implement in Big Data. By the time, the advanced

Rhadoop architecture enables R’s data analytic [?] environment to have the abil-

ity in dealing with big data using Hadoop. Rhadoop [?] can be seen as Hadoop’s
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environment in R interface, MapReduce [?], HDFS [?], and HBase [?]. The pack-

ages of rmr2, rhdfs, and rhbase are developed for three environments, MapReduce,

HDFS, and HBase.

3.1.2 HBase

HBase is a distributed, column-oriented, open-source database that is derived from

the Google paper“Bigtable: A Distributed Storage System for Structured Data”[?]

by Fay Chang. Just as Bigtable leverages the distributed data storage provided

by the Google File System (File System) [?], HBase provides similar Bigtable

capabilities on top of Hadoop. HBase is a subproject of Apache’s Hadoop project.

HBase is different from the general relational database. It is a database suitable

for unstructured data storage. So we chose to use HBase for historical data access.

3.1.3 Sqoop

Apache Sqoop (SQL to Hadoop) [?] is designed to support bulk import of data

from structured data stores to HDFS, such as relational databases, enterprise data

repositories, and NoSQL systems. Sqoop is based on a connector architecture

that supports plug-ins to provide connectivity to new external systems. Sqoop

Connector works with a variety of popular relational databases, including MySQL,

PostgreSQL, Oracle, SQL Server, and DB2. Each of these connectors knows how

to interact with its associated database management system. There is also a

Universal JDBC Connector for connecting to any database that supports the Java

JDBC protocol. Also, Sqoop offers optimized MySQL and PostgreSQL connectors

using database-specific APIs to perform bulk transfers efficiently.

3.1.4 Mean Absolute Percentage Error

Mean Absolute Percentage Error(MAPE) [?] used as an evaluation indicator for

the prediction model. Because MAPE is a relative value, it is not affected by
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Table 3.1: The Evaluation Criteria of MAPE

MAPE Instructions
<0.1 Highly accurate prediction
0.1-0.2 Excellent forecast
0.2-0.5 Reasonable forecast
>0.5 Inaccurate prediction

the unit and size of the measured value and estimated value, and can objectively

obtain the difference between the estimated value and the assessed value, as shown

in the formula below:

MAPE =
1

M

M∑
k=1

∣∣∣∣x (k)− x′ (k)

x (k)

∣∣∣∣
among them,

x (k)− x′ (k) = εk

Actual value:

x (k)

Estimated value:

x′ (k)

Number of samples:

M

Error per vehicle:

εk

The closer the MAPE value is to 0, the better the estimation effect, as shown

in Table 3.1. Also, Lewis, the scholar, believes that MAPE is the most effective

evaluation indicator and sets the relevant evaluation criteria.

In summary, the operations manager must determine the relative importance

of historical performance on responsiveness and whether MAD, MSE or MAPE??

should be used to measure historical performance.
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• MAD is the easiest to calculate, but it has the same weight for all errors.

• The MSE weight is based on its square value, but it also has a large error

so that it will cause more problems.

• When the error needs to be measured in a relative point of view, MAPE is

used.

3.2 Lag-time in RNN for Forecasting

There are two main ways to make predictions through Lag-Time. The first one is

to do the Lag-Time displacement beforehand and then perform the RNN training,

as a Figure 3.3. The second is to perform the RNN training first and then do the

Lag-Time displacement. We choose the first in this experiment. This method uses

O3 to predict PM2.5, and the two trends are negatively correlated, as a Figure 3.4.

Therefore, if the Lag-Time shift is performed first, the positive correlation of data

increases and the accuracy of RNN prediction [?] will be significantly improved.

Figure 3.3: Using Lag-Time to RNN Training
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Figure 3.4: Different Lag-Time Correlations for PM2.5 and O3

After observing the air pollution data, we observed that Lag-Time is not a fixed

value, so in this work, we designed it to detect the best Lag-Time automatically.

The programming concept is as follows:

1. Input PM25’s data frame and O3’s data frame, which contains air pollution

data and time data.

2. Define the maximum and minimum values of the Lag-Time period.

3. Push back the Lag-Time period at the current time, and grab the highest

PM2.5 time in PM25’s data frame.

4. The receiver pushes back the highest time point of PM2.5 in PM25’s data

frame back to a Lag-Time period and grabs the highest time point of O3 in

O3’s data frame.

5. The highest time point of pm2.5 is subtracted from the highest time point

of O3 and Lag-Time is available.
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3.3 Rstudio and Shiny Server

In this experiment, we use Rstudio and Shiny Server for program writing and

visual interface design. By the official website to provide the steps to install the

Rstudio server environment, and in the IP with http: // <server-address>: 8787

/login to operate Rstudio, as a Figure 3.5.

Figure 3.5: The Rstudio server web image interface

The shiny server and Rstudio server installation method are very similar, ac-

cording to Rstudio official website to provide the steps to install the Shiny server

environment, and use http://<server-address>:3838/ IP login. When us input IP,

We can see the Shiny server’s initial page, as a Figure 3.6.

If ip is changed to http://<server-address>:3838/sample-apps/, it will go to

shiny server sample-apps directory. Developers can build new Shiny web directo-

ries in this directory, as a Figure 3.6.

3.4 RNN Model Optimization

When re-training the RNN model, it is necessary for the developer to adjust the

parameters himself to find a suitable model. However, when the accuracy is re-

duced, the parameters and the training model must be recalibrated. It is difficult
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Figure 3.6: The Shiny server start page

Figure 3.7: The sample-apps directory in the shiny server

to find a significant change in the weather now. A single good model is used for

long-term prediction. In this experiment, we demonstrated not only automatic

Lag-time detected, but also some of the parameters in the RNN are automatically

calibrated. The flowchart is shown in Fig. 3.8. How to select which parameters

are suitable for automatic detection and calibration, is also the focus of this exper-

iment. The adjustment will be mentioned in the fourth chapter of the experiment.
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Figure 3.8: RNN Training Process



Chapter 4

Experimental Results

4.1 Experimental Environment

This experiment uses three physical machines, a Master, and two slaves, as a

Hadoop cluster, its specifications are shown in Table 4.1. Moreover, each version

number is shown in Table 4.2. Also, noteworthy is the Sqoop and HBase version

numbers compatibility in the built environment.

Table 4.1: Distributed Computing Environment

CPU RAM Disk
Master Intel(R) Xeon(R) CPU E5645 @ 2.4GHz * 2 64G 2T * 2
Node1 Intel(R) Xeon(R) CPU E5645 @ 2.4GHz * 2 64G 2T * 2
Node2 Intel(R) Core(TM) i7-4790 CPU @ 3.60GHz 16G 1T

Table 4.2: Software Specification

Version
Ubuntu 16.04.3 LTS
r-base-1.0.136
shiny-server-1.5.1.834
hadoop-2.8.1
hbase-0.95.2-cdh5.0.0
sqoop-1.4.6
zookeeper-3.4.5

21
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4.2 Distributed Computing

To achieve automatic forecasting and retrain when predictions are inaccurate, we

use a decentralized architecture to reduce the overall operating time. Moreover,

through Hadoop-supported HBase access to historical data, to prevent the future

encounter the problem of excessive data capacity.

4.2.1 Multi-core for RNN Training

Because R does not support multi-core computing, we use the parallel package

to use the lapply function to rewrite the program to use multi-core operations.

Experiments are performed using a 4-core machine. The results are shown in

Figure 4.1. The performance of programs optimized in the single core is poor, but

performance is better than that of optimized programs at almost the core, and it

is the best performance at 4 cores.

Figure 4.1: Difference times of Loop
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Then we rewrite the RNN module so that it can use multi-core resource op-

erations, but limited by the package; only the loop program can be optimized.

However, since the RNN core technology is not a combination of loops, it can be

seen that the performance has not greatly improved. The results are shown in

Figure 4.2 and 4.3. R is indeed a big disadvantage in the allocation of computing

resources.

Figure 4.2: Number of Epochs set 2000

4.3 Data Preprocessing

4.3.1 Repair Missing Data

In the automatic Lag-time, the problem of missing data is mainly encountered, as

shown in Figure 4.4. If there are missing values in the data, the prediction must

be a loss of value. Therefore, we must repair the missing data to achieve the use

automatic Lag-Time for RNN prediction.

To achieve the automatic Lag-time, we first need to fill in the missing data.

In this work, we compare the accuracy of four different compensation methods for
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Figure 4.3: Number of Epochs set 4000

Figure 4.4: Impact of Missing Data on Lag-Time Prediction

missing data, including Zero, Mean, Random and Linear Extrapolation. Before

data being repaired, first, we analyze the missing data. As can be seen, the graph

4.5 is visualized using VIM package nested marginplot() function. We can see the

missing data distribution of O3 and pm2.5, and it is Quartile range (QR).
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Figure 4.5: Missing Data Visualization of Distribution

Figure 4.6 is a visual distribution of the NA value to 0. It can be seen that

the values are scattered in the red box.

Figure 4.7 is a visual distribution of the NA value to Mean. It can be seen

that the values are scattered in the red box.

Figure 4.8 is a visual distribution of the NA value to 0; We can see the value

of the distribution of the entire data.

4.3.2 Interpolation and Extrapolation

For the traditional methods of complementarity, simple experiments have found

that there is no obvious help for accuracy, so choose other ways to make up the

value.

The simplest of all the interpolation methods is the linear interpolation method.

Any two adjacent table lists must be connected by a straight line so that thex)x
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Figure 4.6: Using Zero to Fix Missing Data

value between them has a linear function y(x). It can be used to use the property

that the slope on the straight line must be a fixed value. The formula is (take

(x1, y1), (x2,y2) for two adjacent table columns as an example):

(y − y1)/(x− x1) = (y2 − y1)/(x2 − x1)

After rearrange:

y = [(y2 − y1)/(x2 − x1)](x− x1) + y1

The right side of the equal sign is all x) and a constant. Therefore, we have a clear

formula for y(x) available.

In the early stages of the experiment was originally expected to use interpola-

tion, but we use of interpolation will A problem is encountered. If the latest data

is missing, it will not be able to be repaired, as shown in figure 4.9. The black

points indicate the actual value, and the red one indicate the value after repair.

Therefore, the Linear Entrapolation method was later used to compensate, and
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Figure 4.7: Using Mean to Fix Missing Data

the method has improved the accuracy of RNN training, as shown in figure 4.10.

4.3.3 Reduce Outliers

Through the first few charts, we discovered the problem of outliers. To further

improve the accuracy, we will reduce the outliers from Quartile Range to improve

the periodicity of the data and avoid outliers causing accuracy. Falling, and Auto-

retraining needs performed multiple times.

Outliers, also known as escape values, mean that one or more values in the

data are quite different from other values. The Chanwennt rule states that if the

probability that a value deviates from the observed mean is less than or equal to

1/(2n), the data should be discarded (where n is the number of observations, and

the probability can be estimated from the distribution of the data). When outliers

occur, they must be handled with care. To combine professional knowledge and

statistical methods, first check the raw data carefully to see if there is a reasonable
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Figure 4.8: Using Random to Fix Missing Data

explanation for the profession. If this is the case, and it cannot be verified by

finding the observation object, the observation value can only be deleted.

There are two main reasons for outliers:

1. The extreme manifestations of the overall are intrinsic variation. This is true

and normal data. It is only extreme in this experiment that these outliers

belong to the same population as the rest of the observations.

2. Due to the contingency of test conditions and experimental methods, or the

results of observations, records, and calculation errors, it is an abnormal and

erroneous data. These data do not belong to the same population as the rest

of the observations.

Graph 4.12 is the result of reducing outliers through R’s built-in quantile()

function. By this method, we remove the extreme values and fill them with ex-

trapolation.
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Figure 4.9: Linear Intrapolation

4.3.4 Results

This experiment uses 400 hours of data in Xitun District for complementation and

10 RNN training, as well as two random complements, as shown in Figure 4.13.

It can be seen that extrapolation greatly improves the accuracy. Random results

Time is good and bad, and the average method is the least accurate, as shown in

Figure 4.14. Therefore, the RNN training of this experiment uses an extrapolation

method for data repair.
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Figure 4.10: Linear Extrapolation

Table 4.3: Data of Training 10 Times using 4 Methods to Fix Missing Data

NA 0 Mean Random A Random B Linear Ex-
trapolation

1 0.524951 0.441387 0.785425 0.228278 0.568871 0.2337555
2 0.608903 0.437471 0.814814 0.318034 0.492818 0.1993717
3 0.426354 0.37555 0.731502 0.33851 0.528137 0.2171834
4 0.484851 0.487092 0.818956 0.377991 0.52594 0.202295
5 0.578627 0.45561 0.901618 0.299305 0.527692 0.2501132
6 0.418446 0.585525 0.809997 0.274876 0.465154 0.1768674
7 0.52999 0.487943 0.679426 0.228497 0.592127 0.2706688
8 0.397076 0.460447 0.8232 0.29986 0.530278 0.3139126
9 0.550512 0.418908 0.726946 0.261572 0.528898 0.2462945
10 0.492725 0.425753 0.871231 0.190296 0.627671 0.2850107
Average 0.501244 0.457569 0.796312 0.281722 0.538759 0.23954728
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Figure 4.11: Quartile Range(QR)

Figure 4.12: Reduce Outliers
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Figure 4.13: Training 10 Times using 4 Methods to Fix Missing Data

Figure 4.14: Average of Training 10 Times using 4 Methods
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4.4 RNN Training for PM2.5 Prediction

4.4.1 Comparison of RNN and LSTM

Before deciding to use RNN, we compared the univariate prediction of RNN and

LSTM. LSTM is an extension of RNN. The main difference is that multivariable

training can be performed, but it is more complex than its algorithm, and it also

requires more training time. In the experiment, 400 units of time data were divided

into a training set of 360 units of time and a test set of 40 units of time, and data

was repaired using extrapolation. Automatically detect the best Lag-Time and

univariate O3 for 10 times of training in pm2.5. The result is shown in Figure 4.15

and Figure 4.16.

Figure 4.15: MAPE of RNN and LSTM Training 10 Times

In general terms, the LSTM effect is better than that of the RNN. The reason

for this result is that the RNN parameters are optimized while the LSTM is not.

Thus, the importance of parameter optimization to a set of modules can be seen.
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Figure 4.16: Average of RNN and LSTM Training 10 Times

4.4.2 RNN Parameters Optimization

To make the RNN parameters automatically detected, overall training time is

much shorter than the data unit time (one hour). Because it is necessary to run

RNN for the best model repeatedly, it will inevitably not consume too much time.

The experiment is conducted through decentralized environment construction and

optimization of the RNN program. The overall training time was much shorter

than the data unit time. To make the RNN parameter automatically calibrated,

we must first observe the relationship between the parameters. If one of the

parameters and the remaining parameters of the parameter correlation is low,

then this parameter can be considered into automatic calibration.

In the experiment of parameter and MAPE, it can be found that the Hidden

layer and Learning rate are similar in the trend of different time series data for

MAPE. Figure 4.17, figure 4.18, figure 4.19, figure 4.20, figure 4.21, and figure 4.22

show the parameter trend when the data size is 400 unit time. The Hidden layer

is determined within the range of 10 to 20, and the learning rate is detemined

within the range of 0.5 to 0.7. In general, the learning rate is between 0.5 and
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0.8, so the experimental results are reasonable. Moreover, the effect of these two

parameters on the MAPE value is not Lag-time, and the parameter Numepochs

is large. So considering the training time, we directly set the Learning rate to 0.5

and the Hidden layer to 10.

Figure 4.17: MAPE of Hidden Layer(1)

Figure 4.18: MAPE of Hidden Layer(2)

Figure 4.19: MAPE of Hidden Layer(3)
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Figure 4.20: MAPE of Learning Rate(1)

Figure 4.21: MAPE of Learning Rate(2)

In the experiment of parameter Numepochs, as Figure 4.23, Figure 4.24 and

Figure 4.25, we found that different data ratios will cause MAPE to have different

trends. We use the ‘optimizer accuracy’in RNN to make it automatically end

when we reach the ideal value we set it, to get the best model to provide more

accurate predictions.

Because the optimal solution of parameter Numepochs is a floating value, we

automatically stop it through the loss function in RNN to find the best accuracy

value and stop automatically. The concept of the loss function is similar to setting

a slope, and a point of the curve automatically stop when it reaches the set slope.

The concept is shown in Figure 4.26.
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Figure 4.22: MAPE of Learning Rate(3)

Figure 4.23: MAPE of Number of Epochs(1)

Figure 4.24: MAPE of Number of Epochs(2)
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Figure 4.25: MAPE of Number of Epochs(3)

Figure 4.26: Use slope to find the optimal solution of the curve
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4.4.3 RNN Model Visualization

In training the RNN model, we show the raw data, training data and test data

on the shiny server interactive visualization chart, and can manually adjust the

RNN parameters on its, as shown in Figure 4.27. This phase is to facilitate the

preliminary analysis of the experiment and follow-up.

In the next step, on automatic adjustment of the parameters, we no longer

need to select the parameter values manually, as shown in Figure 4.28. The top

of the graph is the result of the automatic Lag-Time displacement of the original

data O3 and PM2.5 [?]. To discard the data into the trained model and present

the actual and predicted outcomes and their MAPE.

Figure 4.27: Shiny Website for Training

Figure 4.29 and Figure 4.30 show the results of training in different time zones

in Xitun District, including the original values of PM2.5 and O3 before training, as

well as training data and test data after training. Through RNN training, we can

visualize through MAPE value. To quickly understand the influence of parameters

on training accuracy. Then fine-tune the parameters and improve the module.
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Figure 4.28: Shiny Website for Testing

Figure 4.29: Xitun Training Result (2018/02/13 to 2018/02/17)

Figure 4.30: Xitun Training Result (2018/03/10 to 2018/03/14)
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4.5 Analysis of Forecast Results

4.5.1 Analysis Visualized Station Values

In the experiment, we mainly tested 16 stations, including five stations of Taiwan

Environmental Protection Administration(EPA) and 11 stations of Taiwan Power

Company(TPC).

After we can automatically train the model, we can set the schedule. When

the MAPE is higher than the expected value, it will automatically retrain the

model.

By patching Missing data, Lagtime is automatically calibrated, RNN module

parameters are calibrated, and RNN automation is trained. Finally, the visualized

graphs are presented and discussed , as shown in Figure 4.31.

Figure 4.31: Website for Predict Visualization
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It can be seen from figure 4.32 that the numerical fluctuation of the EPA

station is more than that of the TPC. The reasons for this condition may be due

to the position, type, and environment of the sensor.

Figure 4.32: TPC stations and EPA stations

Then observe and analyze five EPA monitoring stations. The graph 4.33 is the

PM2.5 value of the Dali monitoring station and its prediction result. The current

training MAPE value falls between 0.3 and 0.5 on average, indicating that the

predicted value has a reference value.

Figure 4.33: Prediction of Dali
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It can be seen that both Fengyuan (Figure 4.34) and Shalu (Figure 4.35) have

missing data, but because we do the extrapolation, we do not affect our prediction

and accuracy.

Figure 4.34: Prediction of Fengyuan

Figure 4.35: Prediction of Shalu

The Xitun monitoring station has a maximum value of 75 for one of the periods.

PM2.5 unavoidably reduces the accuracy of the prediction. Therefore, extreme

values must be removed and extrapolated using Linear Extrapolation. Avoids

extreme values that necessitate automatic retraining.
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Figure 4.36: Prediction of Xitun

It can be seen that in addition to Loyalty’s PM2.5 projections (Figure 4.37),

Fengyuan, Dali, Xitun, and Shalu’s predictions all have more than expected ac-

curacy. It is presumed that the position and environmental factors of the Loyalty

monitoring station may cause the correlation between PM2.5 and O3 values to be

relatively insignificant. Therefore, it is impossible to apply the same module for

prediction.

Figure 4.37: Prediction of Loyalty
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Table 4.4: Retraining time statistics of EPA

2018/04/01 to 2018/04/30 | total 744hrs
PublishTime Fengyuan Dali Xitun Shalu Loyalty
2018/4/1
01:00 0 0 0 0 0

2018/4/1
02:00 0 0 0 0 0

2018/4/1
03:00 0 0 0 0 0

2018/4/1
04:00 0 0 0 0 0

2018/4/1
05:00 0 0 0 0 1

2018/4/1
06:00 1 1 0 0 0

2018/4/1
07:00 0 0 0 0 0

2018/4/1
08:00 0 0 0 0 0

2018/4/1
09:00 0 0 0 0 0

2018/4/1
10:00 0 0 0 1 1

... ... ... ... ... ...
Retraining times 41 35 32 37 61

Average 18.1463414 21.25714 23.25 20.10811 12.19672

4.5.2 Analysis RNN Model Retraining time

In addition to using visualization to analyze numerical fluctuations and predictive

trends, we also recorded the frequency of retraining redesigns we designed. In

addition to using visualization to analyze numerical fluctuations and predictive

trends, we also recorded the frequency of retraining redesigns we designed.

At the time of retraining, we marked 1 and the rest 0. Finally, we added up

the number of retrains. The total duration divided by the number of retraining

hours. In Table 4.4, we can observe that the duration of retraining at the EPA

station is about 20, and only the loyalty station falls at 12. After half a day, it

needs to be retraining.
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However, TPC stations will almost always be retraining for more than 24

hours, and most of the interesting retraining time fall in a similar period.

Table 4.5: Retraining time statistics of TPC

2018/04/01 to 2018/04/30 | total 744hrs
PublishTime Houli Wenshan Taiping Qingshui Wufeng
2018/4/1
01:00 0 0 0 0 0

2018/4/1
02:00 0 0 0 0 0

2018/4/1
03:00 0 0 0 0 0

2018/4/1
04:00 0 0 1 0 0

2018/4/1
05:00 0 0 0 0 0

2018/4/1
06:00 1 1 0 0 1

2018/4/1
07:00 0 0 0 0 0

2018/4/1
08:00 0 0 0 0 0

2018/4/1
09:00 0 0 0 0 0

2018/4/1
10:00 0 0 0 0 0

... ... ... ... ... ...
Retraining times 30 29 22 25 28

Average hrs 24.8 25.65517 33.8182 29.76 26.57142

In comparison between the two, we can see that TPC retraining time is almost

always longer than that of the EPA. Apart from the fact that it also protects the

fluctuations in numerical values, it may also be caused by differences in sensor

position, height, and humidity.
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Conclusions and Future Work

5.1 Conclusions

This work integrates the distributed system and the RNN module to predict PM2.5

in the air pollution data. Increase the correlation between O3 and PM2.5 through

automatic detection of Lag-Time. Moreover, we observed the trend of the relation-

ship between running time and MAPE through experiments from each parameter.

Based on these experiments, we determined to set the parameters to a fixed value

of 0.5 for the learning rate and 10 for the hidden layer. To make a more accurate

prediction, we use the ’optimizer accuracy’ in RNN which allow to detect them au-

tomatically. Therefore, the training module can adapt to the trend change of each

segment and increase its prediction accuracy. Finally, by detecting the MAPE,

the system recognizes the changes, then specify whether to retraining model or

not. Therefore, this system gives beneficial effort as able to retraining the model

automatically.

5.2 Future Works

In the future work, the main goal will be to increase the forecasting time and

improve the accuracy of the training module. Compare the merits and demerits of

47
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different training modules for the air pollution data and further explore whether

to use the training module to find the sensing. The abnormality of the instrument,

such as its poor position and insufficient environment, helps improve the sensor’s

erection position.
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Appendix A

Hadoop-2.8.1 Installation

I. Modify hosts

# sudo vim /etc/hosts

II. Modify hostname

# sudo vim /etc/hostname

# sudo service hostname start

III. Install Java JDK

# sudo apt-get -y install openjdk-7-jdk

# sudo ln -s /usr/lib/jvm/java-7-openjdk-amd64 /usr/lib/jvm/jdk

IV. Add hadoop user

# sudo addgroup hadoop

# sudo adduser --ingroup hadoop hduser

# sudo adduser hduser sudo

V. Creat SSH authentication login

53
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# ssh-keygen -t rsa -f \~{}/.ssh/id\_{}rsa -P ""

# cp \~{}/.ssh/id\_{}rsa.pub ~/.ssh/authorized\_{}keys

# scp –r ~/.ssh hduser:~/

VI. Download hadoop

# cd ~

# wget http://ftp.twaren.net/Unix/Web/apache/hadoop/common \\

/hadoop -2.6.0/hadoop -2.6.0.tar.gz

# tar zxf hadoop -2.6.0.tar.gz

# mv hadoop -2.6.0.tar.gz hadoop

VII. Add the environment variable

# vim .bashrc

export JAVA_HOME=/usr/lib/jvm/jdk/

export HADOOP_INSTALL=/home/hduser/hadoop

export PATH=$PATH:$HADOOP_INSTALL/bin

export PATH=$PATH:$HADOOP_INSTALL/sbin

export HADOOP_MAPRED_HOME=$HADOOP_INSTALL

export HADOOP_COMMON_HOME=$HADOOP_INSTALL

export HADOOP_HDFS_HOME=$HADOOP_INSTALL

export YARN_HOME=$HADOOP_INSTALL

VIII. Set hadoop config

# cd hadoop/etc/hadoop

# vim hadoop-env.sh

export JAVA_HOME=/usr/lib/jvm/jdk/

# vim core-site.xml

<property>

<name>fs.default.name</name>

<value>hdfs://hadoop-master:9000</value>

</property>

# vim yarn-site.xml

<property>
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<name>yarn.nodemanager.aux-services</name>

<value>mapreduce_shuffle </value>

</property>

<property>

<name>yarn.resourcemanager.hostname</name>

<value>hduser</value>

</property>

# cp mapred-site.xml.template mapred-site.xml

# vim mapred-site.xml

<property>

<name>mapreduce.framework.name</name>

<value>yarn</value>

</property>

# mkdir -p ~/mydata/hdfs/namenode

# mkdir -p ~/mydata/hdfs/datanode

# vim hdfs-site.xml

<property>

<name>dfs.replication </name>

<value>2</value>

</property>

<property>

<name>dfs.namenode.name.dir</name>

<value>/home/hduser/mydata/hdfs/namenode</value>

</property>

<property>

<name>dfs.datanode.data.dir</name>

<value>/home/hduser/mydata/hdfs/datanode</value>

</property>

# vim slaves

hadoop-master

node01

node02

IX. Copy hadoop to all nodes

# scp -r /home/hduser/hadoop node01:/home/hduser

# scp -r /home/hduser/hadoop node02:/home/hduser

X. Format HDFS
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# hdfs namenode -format

XI. Start hadoop

# start-all.sh

XII. Use jps to see java running program

# jps

XIII. MapReduce JobTracker monitoring website

# hadoop-master:50030



Appendix B

HBase-0.95.2 Installation

I. Download HBase

# cd ~

# wget http://ftp.twaren.net/Unix/Web/apache/hbase\\

/hbase-0.95.2/hbase-0.95.2-hadoop2-bin.tar.gz

II. Unzip hbase-0.95.2-hadoop2-bin.tar.gz

# tar zxf hbase-0.95.2-hadoop2-bin.tar.gz

III. Move the File of HBase

# mv hbase-0.95.2-hadoop2 hbase

IV. Set HBase config

# cd hbase

# vim conf/hbase-env.sh

export JAVA_HOME=/usr/lib/jvm/jdk

export HBASE_HOME=/home/hduser/hbase

# hadoop fs -mkdir /hbase

# vim conf/hbase-site.xml
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<property>

<name>hbase.rootdir</name>

<value>hdfs://hadoop-master:9000/hbase</value>

</property>

<property>

<name>hbase.cluster.distributed </name>

<value>true</value>

</property>

<property>

<name>hbase.zookeeper.quorum</name>

<value>Test-master</value>

</property>

# vim conf/regionservers

hadoop-master

node01

node02

III. Copy jar to hbase/lib

# rm lib/hadoop-*

# cd /home/hduser/hadoop/share/hadoop

# cp *.jar /home/hduser/hbase/lib/

IV. Copy hbase to all nodes

# scp -r /home/hduser/hbase node01:/home/hduser

# scp -r /home/hduser/hbase node02:/home/hduser

# bin/start-hbase.sh

V. HBase monitoring website

# hduser:60010
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Sqoop-1.4.6 Installation

I. Download Apache Sqoop

# sudo wget http://apache.stu.edu.tw/sqoop/1.4.6/sqoop-1.4.6.tar.gz

II. Unzip sqoop-1.4.6.tar.gz

# tar -zxvf sqoop-1.4.6.tar.gz

# mv sqoop-1.4.6/ sqoop

III. Setting .bashrc

# sudo vim ~/.bashrc

export SQOOP_HOME=/home/hduser/sqoop

export SQOOP_CONF_DIR="$SQOOP_HOME/conf"

export SQOOP_CLASSPATH="$SQOOP_CONF_DIR"

export PATH=$PATH:$SQOOP_HOME/bin

# source ~/.bashrc

IV. Create empty accumulo directory

# sudo mkdir accumulo

# sudo chown hadoop:hduser accumulo
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V. Create and edit sqoop-env.sh

# sudo cp sqoop/conf/sqoop-env-template.sh sqoop/conf/sqoop-env.sh

# sudo vim sqoop/conf/sqoop-env.sh

export HADOOP_COMMON_HOME=/home/hduser/hadoop

export HADOOP_MAPRED_HOME=/home/hduser/hadoop

export HCAT_HOME=/home/hduser/hive/hcatalog

export HBASE_HOME=/home/hduser/hbase

export HIVE_HOME=/home/hduser/hive

export ACCUMULO_HOME=/home/hduser/accumulo

VI. Download MySql connector

# wget http://dev.mysql.com/get/Downloads/Connector-J/mysql-connector-java-5.1.36.zip

# sudo mv mysql-connector-java-5.1.36-bin.jar sqoop/lib
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Prediction Script Code

D.1 MainFunction.R Code

library("RMySQL" , lib.loc="/usr/local/lib/R/site-library")

library("rnn" , lib.loc="/usr/local/lib/R/site-library")

library("rlist" , lib.loc="/usr/local/lib/R/site-library")

### Require function

source("/srv/shiny-server/sample-apps/RNN/prediction/func/mainf.R")

source("/srv/shiny-server/sample-apps/RNN/prediction/func/rnn_model.R")

source("/srv/shiny-server/sample-apps/RNN/prediction/func/auto_lagtime.R")

source("/srv/shiny-server/sample-apps/RNN/prediction/func/linear_extrapolation.R")

source("/srv/shiny-server/sample-apps/RNN/prediction/func/retraining.R")

### Connect to MySQL db

conn <- dbConnect(MySQL(),dbname = "Environment", username="root",password="hpc123",

host="140.128.101.210")

dbSendQuery(conn,"SET NAMES utf8")

# Get the air quality data

senser_taichung_db <- dbGetQuery(conn, "select * from airquality WHERE County ='臺中市

'")

# Catch the 16 sitenames from air quality db

senser_sitename_df <- as.data.frame(table(senser_taichung_db$SiteName))

senser_sitename_df <- data.frame(sitename=senser_sitename_df[(which(nchar(as.vector(

senser_sitename_df$Var1)) < 3)),][,-2])

#x=1

### Get the data of every sitenames (500 hours)

for(x in c(1:length(senser_sitename_df[,1]))){

# Use sitename to get the data from mysql db

sitename<-as.character(senser_sitename_df[x,])
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sitename_str <- paste0("select Sitename,O3,PM25,PublishTime from airquality WHERE

Sitename ='",sitename,"' ORDER BY ID DESC limit 500")

senser_db <- dbGetQuery(conn,sitename_str)

# Call linear_Extrapolation & main_data_clean functions

senser_clear_db<-main_data_clean(linear_Extrapolation(senser_db[,-1]))

# Combine every db to one list

if (x ==1){

sensor_list<-list(list(Sitename=senser_sitename_df[x,1],PM25_t=

senser_clear_db$PM25_t ,O3_t=senser_clear_db$O3_t ,Time=senser_clear_db$Time ,O3_p=

senser_clear_db$O3_p,Time_O3_p=senser_clear_db$Time_O3_p ,lagtime=

senser_clear_db$lagtime))

}else{

sensor_list[[length(sensor_list)+1]] <- list(list(Sitename=senser_sitename_df[x

,1],PM25_t=senser_clear_db$PM25_t ,O3_t=senser_clear_db$O3_t,Time=

senser_clear_db$Time,O3_p=senser_clear_db$O3_p ,Time_O3_p=senser_clear_db$Time_O3_p

,lagtime=senser_clear_db$lagtime))

}

}

# Change format for list

sensor_list_df <- lapply(sensor_list, data.frame, stringsAsFactors = FALSE)

### Do training & prediction

for(x in c(1:length(senser_sitename_df[,1]))){

sensor_not_list_df<-as.data.frame(sensor_list_df[x])

ttable<-data.frame(Sitename=sensor_not_list_df$Sitename ,PM25_t=

sensor_not_list_df$PM25_t ,O3_t=sensor_not_list_df$O3_t ,Time=

sensor_not_list_df$Time ,O3_p=sensor_not_list_df$O3_p ,Time_O3_p=

sensor_not_list_df$Time_O3_p ,lagtime=sensor_not_list_df$lagtime)

senser_predict_df<-retraining(ttable)

PM25_pred_df <- data.frame(PM25_pred=senser_predict_df$PM25_p ,Time=ttable$Time_O3_p,

sitename=ttable[x,1])

#PM25_pred_df$PM25_pred <-abs(PM25_pred_df$PM25_pred -(abs(median(tail(ttable,8)

$PM25_t)-tail(tail(PM25_pred_df,ttable[1,4]+1),1)$PM25_pred))+runif(1, -1.5, 1.5))

PM25_pred_df$PM25_pred <-PM25_pred_df$PM25_pred+abs(median(tail(ttable,8)$PM25_t)-

tail(tail(PM25_pred_df,ttable[1,6]+1),1)$PM25_pred)

# Get the last 8 hours data

l_fen<-1:8+length(PM25_pred_df[,1])-head(ttable$lagtime ,1)

PM25_pred_df<-PM25_pred_df[l_fen,]

# Combine every data to one list

if (x ==1){

sensor_list<-list(list(PM25_pred=PM25_pred_df$PM25_pred ,Time=PM25_pred_df$Time ,

sitename=PM25_pred_df$sitename))

}else{
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sensor_list[[length(sensor_list)+1]] <-list(list(PM25_pred=PM25_pred_df$PM25_pred

,Time=PM25_pred_df$Time ,sitename=PM25_pred_df$sitename))

}

}

# Change format for list

sensor_list_df <- lapply(sensor_list, data.frame, stringsAsFactors = FALSE)

for(x in c(1:length(senser_sitename_df[,1]))){

if (x ==1){

PM25_pred_df <- rbind(as.data.frame(sensor_list_df[x]))

}else{

PM25_pred_df <- rbind(as.data.frame(sensor_list_df[x]),PM25_pred_df)

}

}

### Save back to mysql db

conn_rnn <- conn#dbConnect(MySQL(),dbname = "rnn", username="root",password="hpc123",

host="140.128.101.210")

dbSendQuery(conn_rnn,"SET NAMES utf8")

# History Data Save to MySQL

PM25_Taichung_4hrs_pred_history_db <- dbGetQuery(conn_rnn, "SELECT PM25_pred,Time,

sitename FROM PM25_Taichung_4hrs_pred_history_16")

PM25_Taichung_4hrs_pred_history_df <- data.frame(PM25_Taichung_4hrs_pred_history_db)

PM25_pred_hisrtory_df <- rbind(PM25_pred_df

,PM25_Taichung_4hrs_pred_history_df

)

# Remove Duplicate data form db

ts<-c(2,3)

PM25_pred_hisrtory_df <-PM25_pred_hisrtory_df[!duplicated(PM25_pred_hisrtory_df[,ts]),

]

dbWriteTable(conn_rnn ,"PM25_Taichung_4hrs_pred_history_16",PM25_pred_hisrtory_df , row

.names=FALSE,overwrite = TRUE)

D.2 AutoLagtime.R Code

# Auto_lagtime function ----------------------------------------

auto_lagtime<-function(senser_df) {

# auto lagtime

lagtime_24hr<-c(8:48)

#lagtime_for_pm25 <-5:28

lagtime_for_pm25 <- 48:(length(senser_df[,1])-47)

lagtime_PM25_df <- senser_df[lagtime_for_pm25 ,]

lagtime_PM25_df <- lagtime_PM25_df[order(lagtime_PM25_df[,1],decreasing = TRUE),]
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lagtime_max_PM25 <- as.numeric(matrix(rownames(lagtime_PM25_df[]), nrow = length(

lagtime_PM25_df[,1]))[1])

lagtime_for_O3 <- lagtime_max_PM25-lagtime_24hr

lagtime_O3_df <- senser_df[lagtime_for_O3 ,]

lagtime_O3_df <- lagtime_O3_df[order(lagtime_O3_df[,2],decreasing = TRUE),]

lagtime_max_O3 <- as.numeric(matrix(rownames(lagtime_O3_df[]), nrow = length(

lagtime_O3_df[,1]))[1])

lagtime <- lagtime_max_PM25-lagtime_max_O3

#class(lagtime)

return(lagtime)

}

D.3 LinearExtrapolation.R Code

library("Hmisc" , lib.loc="/usr/local/lib/R/site-library")

linear_Extrapolation <- function(senser_db){

senser_db$PM25[which(senser_db$PM25 %in% c("ND","",NA,0))] <- NA

senser_db$O3[which(senser_db$O3 %in% c("ND","",NA,0))] <- NA

senser_NA_db<-senser_db

senser_NA_db_length <- c(1:length(senser_NA_db[,1]))

O3 <- as.numeric(senser_NA_db$O3)

PM25 <-as.numeric(senser_NA_db$PM25)

senser_linear_Extrapolation_db <-senser_NA_db

senser_linear_Extrapolation_db$O3 <- as.data.frame(approxExtrap(

senser_NA_db_length , O3,xout=senser_NA_db_length))$y

senser_linear_Extrapolation_db$PM25 <- as.data.frame(approxExtrap(

senser_NA_db_length , PM25,xout=senser_NA_db_length))$y

return(senser_linear_Extrapolation_db)

}

D.4 RemoveOutliers.R Code

remove_outliers <- function(x, na.rm = TRUE, ...) {

qnt <- quantile(x, probs=c(.25, .75), na.rm = na.rm, ...)

H <- 1.5 * IQR(x, na.rm = na.rm)
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y <- x

y[x < (qnt[1] - H)] <- NA

y[x > (qnt[2] + H)] <- NA

y

}

D.5 Retraining.R Code

library("rnn" , lib.loc="/usr/local/lib/R/site-library")

library("rlist" , lib.loc="/usr/local/lib/R/site-library")

retraining<-function(senser_train_df

,learning_rate = 0.5

,hidden_dim = 12

,num_epochs = 300)

{

rnn_t_df_move <- data.frame(PM25=senser_train_df[,1],O3=senser_train_df[,2],Time=

senser_train_df[,4])

O3_o <- matrix((rnn_t_df_move$O3)/2, nrow = 5)

PM25_o <- matrix((rnn_t_df_move$PM25)/2, nrow = 5)

Omax <- max(PM25_o)

Omin <- min(PM25_o)

# Standardize in the interval 0 - 1

O3_t <- (O3_o - min(O3_o)) / (max(O3_o) - min(O3_o))

PM25_t <- (PM25_o - min(PM25_o)) / (max(PM25_o) - min(PM25_o))

# Transpose

O3_t <- t(O3_t)

PM25_t <- t(PM25_t)

# Training-testing sets

tnum <- length(rnn_t_df_move[,1])/100

train <- 1:tnum

test <- (tnum+1):(length(rnn_t_df_move[,1])/5)

time_test_range <- (length(rnn_t_df_move[,1])/5*4+1):length(rnn_t_df_move[,1])

# Train model. Keep out the last two sequences.

model<-model(O3_t[train,],PM25_t[train,],learning_rate,hidden_dim,num_epochs)

# Predicted values

PM25_p <- predict(model, O3_t)

PM25_pb <- PM25_p*(Omax-Omin)+Omin

# MAPE 1hr to 8hrs
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actual <- data.frame(as.vector(PM25_o[,test]))

pred <- data.frame(as.vector(t(PM25_pb[test,])))

mape <- mean(abs((actual[,1]-pred[,1])/actual[,1]))

mape

PM25_pred_result<-data.frame(PM25_p=pred$as.vector.t.PM25_pb.test.....)

return(PM25_pred_result)

}

D.6 DataPrediction.R Code

# Main_Data_Clean-----------------------------------------------------------------

source("/srv/shiny-server/sample-apps/RNN/prediction/func/wash_data.R")

source("/srv/shiny-server/sample-apps/RNN/prediction/func/auto_lagtime.R")

main_data_clean<-function(senser_db,num=400)

{

senser_df<-wash_data(senser_db)

# Call auto_lagtime function

auto_lagtime<-auto_lagtime(senser_df)

# Get the last Time (100hrs)

hrs_100 <- ((length(senser_df[,1])-num+1):length(senser_df[,1]))

# For Pred

senser_Fengyuan_O3_pred <- data.frame( O3 =senser_df[hrs_100,2],Time=senser_df[

hrs_100 ,3]+(auto_lagtime*60*60))

# For Train

senser_Fengyuan_O3_ture <- data.frame( O3 =senser_df[hrs_100-auto_lagtime ,2],Time

=senser_df[hrs_100-auto_lagtime ,3]+auto_lagtime*60*60 )

senser_Fengyuan_PM25_ture <- data.frame( PM25=senser_df[hrs_100,1],Time=senser_df[

hrs_100,3] )

senser_PM25_O3_df<-data.frame(PM25_t=senser_Fengyuan_PM25_ture$PM25

,O3_t=senser_Fengyuan_O3_ture$O3

,Time=senser_Fengyuan_O3_ture$Time

,O3_p=senser_Fengyuan_O3_pred$O3

,Time_O3_p=senser_Fengyuan_O3_pred$Time

,lagtime=auto_lagtime)

return(senser_PM25_O3_df)

}
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D.7 WashData.R Code

wash_data<-function(senser_db){

#senser_db<-senser_real

senser_db <- senser_db[order(senser_db$PublishTime),]

senser_df <- data.frame(PM25=senser_db$PM25,O3=senser_db$O3,Time=

senser_db$PublishTime)

# Data format

senser_df$Time <- factor(senser_df$Time)

senser_df$Time <- as.POSIXct(strptime(senser_df$Time,format='%Y-%m-%d %H'))

senser_df$PM25 <- as.numeric(senser_df$PM25)

senser_df$O3 <-as.numeric(senser_df$O3)

# Data Cleaning

senser_df <- senser_df[!senser_df$PM25 %in% c("ND","",NA), ]

row.names(senser_df) <- c(1:length(senser_df[,1]))

return(senser_df)

}

D.8 RNNmodel.R Code

### RNN model Functions

--------------------------------------------------------------------------

PM25_pred<-function(senser_O3_pred,model,PM25_o){

# PM25_o<-main_data_clean(senser_Fengyuan_db)$PM25_t

# senser_O3_pred<-main_data_clean(senser_Fengyuan_db)$O3_t

# model<-model_Fengyuan

Omax <- max(PM25_o)

Omin <- min(PM25_o)

O3_o <- matrix((senser_O3_pred)/2, nrow = 5)

PM25_p <- predict(model, O3_o[])

PM25_pb <- PM25_p*(Omax-Omin)+Omin

return(as.vector(t(PM25_pb)))

}

predict<-function(model, O3_t) {

return(predictr(model, O3_t))

}

model<-function(X,Y,learning_rate,hidden_dim,num_epochs) {

model <- trainr(Y = Y,
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X = X,

learningrate = learning_rate,

hidden_dim = hidden_dim,

numepochs = num_epochs

#,

#loss_function = 1

)

return(model)

}
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RNN Training Visualization Code

E.1 Server.R Code

library(RMySQL)

library(dplyr)

library(rnn)

library(reshape2)

library(plotly)

library(tictoc)

library(rlist)

conn <- dbConnect(MySQL(),dbname = "idw&ipdw", username="root",password="123", host

="140.128.101.187")

dbSendQuery(conn,"SET NAMES utf8")

rnn_1hr_db <- dbGetQuery(conn, "select * from opendata_hr_Dali")

rnn_1hr_db<-rnn_1hr_db[order(rnn_1hr_db$date),]

# db to df

rnn_o_df <- data.frame(PM25=rnn_1hr_db$PM25,O3=rnn_1hr_db$O3,Time=paste(

rnn_1hr_db$date ," ",rnn_1hr_db$hour,sep = ""))

# Time format

rnn_o_df$Time<-factor(rnn_o_df$Time)

rnn_o_df$Time<-as.POSIXct(strptime(rnn_o_df$Time,format='%Y/%m/%d %H'))

xx<-rnn_o_df[length(rnn_o_df),3]-as.POSIXct(Sys.time())

rnn_o_df[,3]<-rnn_o_df[,3]-xx

data_size<-function(num_data_size) {

#data_size <- "400, 2800"

data_size <- toString(num_data_size)

data_size<-strsplit(data_size,split=", ",fixed=T)

69
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data_size_df<-data.frame(matrix(unlist(data_size), nrow=1, byrow=T))

#class(data_size_df[,1])

num_data_size_df<-data.frame(max_size=as.numeric(as.character(data_size_df[,2])),

min_size=as.numeric(as.character(data_size_df[,1])))

#min_size<-as.numeric(as.character(data_size_df[,1]))

return(num_data_size_df)

}

predict<-function(model, O3_t) {

return(predictr(model, O3_t))

}

model<-function(X,Y,learning_rate,hidden_dim,num_epochs) {

tic()

model <- trainr(Y = Y,

X = X,

learningrate = learning_rate,

hidden_dim = hidden_dim,

numepochs = num_epochs

)

ttime <- toc()

ttime <- ttime$toc - ttime$tic3

list.save(model, file="model.RData")

}

function(input, output) {

output$plot_t <- renderPlotly({

num_data_size_df<-data_size(input$num_data_size)

input$lagtime

#num_data_size<-input$num_data_size

train_test <- (2571+num_data_size_df$min_size):(2570+num_data_size_df$max_size)#

train_test <- 2871:2970

# #rnn_t_df<-rnn_o_df[train_test ,]

train_test_move <- (2570+num_data_size_df$min_size+input$lagtime -4):(2569+

num_data_size_df$max_size+input$lagtime -4)#train_test_move <- 2570:2969

rnn_t_df_move <- data.frame(PM25=rnn_o_df[train_test ,1],O3=rnn_o_df[

train_test_move ,2],Time=rnn_o_df[train_test ,3])

plot_ly(rnn_t_df_move, x = ~Time , y = ~O3, name = "O3", type = 'scatter', mode =

'lines') %>%

add_trace(y = ~PM25, name = "PM2.5", connectgaps = TRUE) %>%

layout(title = "Original Data",xaxis=list(title = "",fixedrange=FALSE),yaxis=

list(title = "Value",fixedrange=TRUE))
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})

output$plot_p <- renderPlotly({

num_data_size_df<-data_size(input$num_data_size)

input$lagtime

#num_data_size<-input$num_data_size

train_test <- (num_data_size_df$min_size):(num_data_size_df$max_size)#train_test

train_test_move <- (num_data_size_df$min_size+input$lagtime):(

num_data_size_df$max_size+input$lagtime -4)#train_test_move

rnn_t_df_move <- data.frame(PM25=rnn_o_df[train_test ,1],O3=rnn_o_df[

train_test_move ,2],Time=rnn_o_df[train_test ,3])

O3_o <- matrix((rnn_t_df_move$O3)/2, nrow = 5)

PM25_o <- matrix((rnn_t_df_move$PM25)/2, nrow = 5)

Omax <- max(PM25_o)

Omin <- min(PM25_o)

# Standardize in the interval 0 - 1

O3_t <- (O3_o - min(O3_o)) / (max(O3_o) - min(O3_o))

PM25_t <- (PM25_o - min(PM25_o)) / (max(PM25_o) - min(PM25_o))

## Transpose

O3_t <- t(O3_t)

PM25_t <- t(PM25_t)

# Training-testing sets

tnum<-length(rnn_t_df_move[train_test ,1])/5/5*4

train <- 1:tnum

test <- (tnum+1):(length(rnn_t_df_move[train_test ,1])/5)

time_test_range <-(length(rnn_t_df_move[train_test ,1])/5*4+1):length(rnn_t_df_move

[train_test ,1])

learning_rate = as.numeric(toString(input$learning_rate))

hidden_dim = as.numeric(toString(input$hidden_dim))+1

num_epochs = as.numeric(toString(input$num_epochs))+1

# Train model. Keep out the last two sequences.

tic()

model(O3_t[train,],PM25_t[train,],learning_rate,hidden_dim,num_epochs)

# model<-model(O3_t[train,],PM25_t[train,],learning_rate,hidden_dim,num_epochs)

ttime <- toc()

ttime <- ttime$toc - ttime$tic3

#

model = list.load("model.RData")
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# Predicted values

PM25_p <- predict(model, O3_t)

PM25_pb <- PM25_p*(Omax-Omin)+Omin

# MAPE 1hr to 8hrs

actual<-data.frame(as.vector(PM25_o[,test]))

pred<-data.frame(as.vector(t(PM25_pb[test,])))

mape<-mean(abs((actual[,1]-pred[,1])/actual[,1]))

# print mape

mape_str<-paste("MAPE = ", mape)

# print train time

ttime_str<-paste("Training time = ", ttime,"(sec)")

# Plot predicted vs actual. Training set + testing set

p1<-plot_ly(rnn_t_df_move, x = rnn_t_df_move[,3] , y = as.vector(PM25_o), name = "

Actual PM2.5", type = 'scatter',fill = 'tozeroy', mode = 'lines', fill = "tozeroy

",fillcolor = 'rgba(168, 23, 123, 0)') %>%

add_trace(y = as.vector(t(PM25_pb)), name = "predicted PM2.5", connectgaps =

TRUE , fill = "tonexty", fillcolor = 'rgba(190, 190, 190, 0.1)') %>%

layout(title = "PM2.5 Actual vs predicted",xaxis=list(title = ttime_str,

fixedrange=FALSE),yaxis=list(title = "Value",fixedrange=TRUE))

# Plot predicted vs actual. Testing set only.

p2<-plot_ly(rnn_t_df_move, x = rnn_t_df_move[time_test_range ,3] , y = as.vector(

PM25_o[,test]), name = "Actual PM2.5", type = 'scatter',fill = 'tozeroy', mode =

'lines', fill = "tozeroy",fillcolor = 'rgba(168, 23, 123, 0)') %>%

add_trace(y = as.vector(t(PM25_pb[test,])), name = "predicted PM2.5",

connectgaps = TRUE, fill = "tonexty", fillcolor = 'rgba(190, 190, 190, 0.1)') %>%

layout(title = "PM2.5 Actual vs predicted",xaxis=list(title = mape_str,

fixedrange=FALSE),yaxis=list(title = "Value",fixedrange=TRUE))

p <- subplot(p1, p2, shareY = TRUE, titleX = TRUE )

})

}

E.2 ui.R Code

library(shiny)

library(shinydashboard)

library(plotly)
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actionLink <- function(inputId, ...) {

tags$a(href='javascript:void',

id=inputId,

class='action-button',

...)

}

header <- dashboardHeader(

title = "Recurrent Neural Networks Model Training (Taichung Dali)",# Model Training(

台中大里)

titleWidth = "100%"

)

body <- dashboardBody(

includeCSS("css/bgcolor.css"),

fluidPage(

#titlePanel("Movie explorer"),

fluidRow(

column(3,

wellPanel(

sliderInput("num_data_size",

"Number of Data Size:",

min = 0,#1

max = 1600,

#value = 80

step = 100,

value = c(600,700),

round = TRUE

),

sliderInput("lagtime", "Lagtime", 0, 24,

value = 4, step = 4 ),

sliderInput("learning_rate", "Learning Rate", 0, 1,

value = 0.5, step = 0.1 ),

sliderInput("num_epochs", "Number of Epochs", 0, 1000,#1

value = 100, step = 100),

sliderInput("hidden_dim", "Hidden Layer", 0, 50,#1

value = 10, step = 5),

# Include clarifying text ----

#helpText("Notice: Lagtime=4"),

submitButton("Let's Training!"),
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conditionalPanel(condition="$('html').hasClass('shiny-busy')",

tags$div("Loading...",id="loadmessage"))

)

),

column(9,

plotlyOutput("plot_t"),

plotlyOutput("plot_p")#,

)

)

)

)#body end

dashboardPage(

header,

dashboardSidebar(disable = TRUE),

body

)

E.3 custom.css Code

.plotly.html-widget.html-widget-output.shiny-bound-output.js-plotly-plot {

z-index: 22;

position: relative;

}

.plotlybars {

padding: 0 10px;

vertical-align: bottom;

width: 100%;

height: 100%;

overflow: hidden;

position: relative;

box-sizing: border-box;

}

.plotlybars-wrapper {

width: 165px;

height: 100px;

margin: 0 auto;

left: 0;

right: 0;

position: absolute;

z-index: 1;
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}

.plotlybars-text {

color: #447adb;

font-family: 'Open Sans', verdana, arial, sans-serif;

font-size: 80%;

text-align: center;

margin-top: 5px;

}

.plotlybars-bar {

background-color: #447adb;

height: 100%;

width: 13.3%;

position: absolute;

-webkit-transform: translateZ(0);

transform: translateZ(0);

animation-duration: 2s;

animation-iteration-count: infinite;

animation-direction: normal;

animation-timing-function: linear;

-webkit-animation-duration: 2s;

-webkit-animation-iteration-count: infinite;

-webkit-animation-direction: normal;

-webkit-animation-timing-function: linear;

}

.b1 { left: 0%; top: 88%; animation-name: b1; -webkit-animation-name: b1; }

.b2 { left: 14.3%; top: 76%; animation-name: b2; -webkit-animation-name: b2; }

.b3 { left: 28.6%; top: 16%; animation-name: b3; -webkit-animation-name: b3; }

.b4 { left: 42.9%; top: 40%; animation-name: b4; -webkit-animation-name: b4; }

.b5 { left: 57.2%; top: 26%; animation-name: b5; -webkit-animation-name: b5; }

.b6 { left: 71.5%; top: 67%; animation-name: b6; -webkit-animation-name: b6; }

.b7 { left: 85.8%; top: 89%; animation-name: b7; -webkit-animation-name: b7; }

@keyframes b1 { 0% { top: 88%; } 44% { top: 0%; } 94% { top: 100%; } 100% { top: 88%;

} }

@-webkit-keyframes b1 { 0% { top: 88%; } 44% { top: 0%; } 94% { top: 100%; } 100% {

top: 88%; } }

@keyframes b2 { 0% { top: 76%; } 38% { top: 0%; } 88% { top: 100%; } 100% { top: 76%;

} }

@-webkit-keyframes b2 { 0% { top: 76%; } 38% { top: 0%; } 88% { top: 100%; } 100% {

top: 76%; } }
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@keyframes b3 { 0% { top: 16%; } 8% { top: 0%; } 58% { top: 100%; } 100% { top: 16%; }

}

@-webkit-keyframes b3 { 0% { top: 16%; } 8% { top: 0%; } 58% { top: 100%; } 100% { top

: 16%; } }

@keyframes b4 { 0% { top: 40%; } 20% { top: 0%; } 70% { top: 100%; } 100% { top: 40%;

} }

@-webkit-keyframes b4 { 0% { top: 40%; } 20% { top: 0%; } 70% { top: 100%; } 100% {

top: 40%; } }

@keyframes b5 { 0% { top: 26%; } 13% { top: 0%; } 63% { top: 100%; } 100% { top: 26%;

} }

@-webkit-keyframes b5 { 0% { top: 26%; } 13% { top: 0%; } 63% { top: 100%; } 100% {

top: 26%; } }

@keyframes b6 { 0% { top: 67%; } 33.5% { top: 0%; } 83% { top: 100%; } 100% { top:

67%; } }

@-webkit-keyframes b6 { 0% { top: 67%; } 33.5% { top: 0%; } 83% { top: 100%; } 100% {

top: 67%; } }

@keyframes b7 { 0% { top: 89%; } 44.5% { top: 0%; } 94.5% { top: 100%; } 100% { top:

89%; } }

@-webkit-keyframes b7 { 0% { top: 89%; } 44.5% { top: 0%; } 94.5% { top: 100%; } 100%

{ top: 89%; } }
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