
東海大學

資訊工程研究所

碩士論文

指導教授: 楊朝棟博士

運用 Spark 於用電大數據湖泊之資料儲存與分析平台
實作

The Implementation of Data Storage and Analytics

Platform for Big Data Lake of Electric Loads Using Spark

研究生: 陳子揚

中華民國一零七年六月

1

摘 要

隨著物聯網大數據技術的快速發展，資料量產生與累積的速度是相當驚人的，

傳統架構的資料儲存與分析技術對現在大資料量的處理已漸漸不堪負荷。以本

校為例，過去我們將機房用電與校園用電個別儲存在兩個不同的資料庫系統，

長久累積下來的資料量是十分龐大的，如果想要將資料取出並用大數據平台分

析的話只能透過 JDBC 的連接或是將資料個別輸出，資料的取出就變得相對繁

雜，因此如何將現有系統導入資料湖泊與大數據技術是一個趨勢，也是個挑戰。

本篇論文提出一個架構能將現有的儲存系統導入至資料湖泊與大數據平台並儲

存與分析電能資料，透過 Sqoop 將舊系統的歷史資料轉存到 Hive 上做資料倉

儲，即時的串流資料藉由 Kafka保持資料的完整性且利用 Spark Streaming的方

式將即時產生的電能資料寫入 HBase 做為即時資料的保存，以 Hive 和 HBase

為基底建置資料湖泊以保持資料的完整性，並整合 Impala 與 Phoenix 個別對

Hive 和 HBase 做為搜尋引擎且。本論文也利用 Spark 提出用電預測與斷電判別

等分析模組來分析校園用電情形，分析的結果將會儲存在 HBase 上，本論文所

有視覺化的呈現都藉由 Apache Superset 完成。

關鍵字: 巨量資料、資料湖泊、資料儲存、資料視覺化、電能資料

i

Abstract

With the rapid development of the Internet of Things and Big Data technology,

the speed of data generation and accumulation is quite alarming. The data stor-

age and analysis technology of the traditional architecture has become not suitable

enough by the processing of large amounts of data. Take our campus as example.

In the past,we used the power data from data center and campus to be stored

separately in two different database systems. The amount of data accumulated

is very large over a long period of time. There is no doubt that Big Data tech-

nology brings significant benefits such as efficiency and productivity. However, a

successful approach to Big data migration requires efficient architecture. How to

import existing systems into Data Lake and Big Data technologies is a trend and

a challenge. In this work, we proposed an architecture to import existing power

data storage system of our campus into Big data platform with Data Lake. We

use Apache sqoop to transfer historical data from existing system to Apache Hive

for data storage. Apache Kafka is used for making sure the integrity of streaming

data and as the input source for Spark streaming that writing data to Apache

HBase. To integrate the data, we use the concept of Data Lake which is based

on Hive and HBase. Apache Impala and Apache Phoenix are individually used

as search engines for Hive and HBase. This thesis uses Apache Spark to analyze

power consumption forecasting, and power failure. The results of the analysis

will be stored on HBase. All visualizations of this thesis are presented by Apache

Superset.

Keywords: Big Data, Data Lake, Data Storage, Data Visualization, Power Data

ii

致謝詞

能夠完成這篇論文必須感謝很多人，首先謝謝我的指導教授楊朝棟博士，不

管是大三的畢業專題，或是大四下開始進入 HPC 實驗室，老師藉由各種不同的

訓練以及工作讓我碩士在學期間能夠快速的累積自己的實力與培養良好的工作

態度，除了學術研究外也教會許多做人處事的態度以及應對，謝謝老師在大學

和研究所的指導，相信這段期間的訓練對我往後的人生都有很大的幫助。

謝謝口試委員許慶賢教授、呂芳懌教授、賴冠州教授、陳牧言教授百忙之中

抽空參加我的論文口試，每個教授的寶貴意見都能夠讓我的碩士論文更加完善。

也謝謝 HPC 的學長姐、學弟們的指教與幫忙。特別謝謝研究所兩年的好夥伴元

廷和靜芳，有你們的陪伴和協助才讓我的研究所生涯更加順利。另外也要謝謝

好朋友羿群跟健翔，大學畢業後一起留在研究所繼續當同學，如果研究所兩年

沒有你們就不會這麼的精彩了。

最後謝謝我的家人，謝謝爸爸、媽媽從小到大對我的栽培、支持與鼓勵，因

為有你們各方面的支持，才能讓我沒有後顧之憂的求學，沒有你們的關心我沒

有辦法獨自完成碩士學位，也謝謝女朋友筠惠的陪伴，妳完整了我的碩士求學

歷程，由衷感謝一路上幫助我和陪伴我的所有人，謝謝你們。

東海大學資訊工程學系 高效能計算實驗室 陳子揚 一零七年六月

iii

Table of Contents

摘要 i

Abstract ii

致謝詞 iii

Table of Contents iv

List of Figures vi

List of Tables viii

1 Introduction 1
1.1 Motivation . 2
1.2 Thesis Contributions . 3
1.3 Thesis Organization . 4

2 Background Review and Related Works 5
2.1 Data Lake . 5
2.2 Hadoop Ecosystem . 6

2.2.1 Apache Kafka . 6
2.2.2 Apache Spark . 8
2.2.3 Spark Streaming . 9
2.2.4 Spark MLlib . 10
2.2.5 Apache Superset . 10

2.3 Big Data Storage . 11
2.3.1 Apache Sqoop . 12
2.3.2 HDFS . 13
2.3.3 Apache Hive . 14
2.3.4 Apache HBase . 14

2.4 Query Engine . 18
2.4.1 Apache Impala . 18
2.4.2 Apache Phoenix . 19

2.5 Related Works . 20

3 System Design and Implementation 23

iv

TABLE OF CONTENTS v

3.1 System Architecture . 23
3.2 System Services . 24

3.2.1 Data Transfer . 24
3.2.2 Data Collection . 25
3.2.3 Data Storage . 27
3.2.4 Data Analysis . 30
3.2.5 Data Visualization . 33

3.3 System Implementation . 35

4 Experimental Results 38
4.1 Experimental Environment . 38
4.2 The Speed of Transferring Historical Data 39
4.3 Data Lake’s Comparison of Different Search Engines 41
4.4 Streaming Data Storage . 41
4.5 Power Failure Analysis Results . 44
4.6 Verify Power Forecasting Accuracy with MAPE 45
4.7 Superset Visualization . 48

5 Conclusions and Future Work 50
5.1 Concluding Remarks . 50
5.2 Future Work . 51

References 52

Appendix 56

A Cloudera Manager Installation 56

B Kafka Producer for ICEMS 57

C Kafka Producer for IGEMS 60

D Spark Streaming Write ICEMS to HBase 63

E Spark Streaming Write IGEMS to HBase 65

F Power Forecast Using HoltWinters 67

G Power Failure Analysis 71

List of Figures

2.1 The Architecture of Kafka . 8
2.2 Spark Library . 9
2.3 The Architecture of Spark Streaming 10
2.4 Spark Streaming Workflow . 10
2.5 Superset Dashboard . 11
2.6 Sqoop Basic Workflow . 12
2.7 The Architecture of HDFS . 13
2.8 The Architecture of Hive . 15
2.9 The Relationship between Hadoop and Hive 15
2.10 The Architecture of HBase Service 16
2.11 Data Model of HBase . 17
2.12 The Architecture of Impala . 18
2.13 The Architecture of Phoenix . 19

3.1 System Architecture . 24
3.2 Sqoop Workflow for Data Transferring 25
3.3 Data Collection Workflow . 25
3.4 Kafka Producer for IGEMS . 26
3.5 Kafka Producer for ICEMS . 26
3.6 Spark Streaming Write Data to HBase for IGEMS 26
3.7 Spark Streaming Write Data to HBase for ICEMS 26
3.8 The Architecture of Data Storage 27
3.9 Phoenix Shell . 28
3.10 Impala Shell . 29
3.11 Hue GUI Interface . 29
3.12 Table Format . 30
3.13 The Architecture of Supserset . 33
3.14 The Structure of SQLAlchemy . 33
3.15 Editing Database’s SQLALchemy 34
3.16 Word Cloud Chart . 34
3.17 Cloudera Manager Web User Interface 36
3.18 Nodes of Cloudera Cluster . 36
3.19 HUE Web User Interface . 37
3.20 Superset Dashboard for Power Data 37

4.1 Cloudera Cluster . 39

vi

LIST OF FIGURES vii

4.2 Comparison of m Number for 7G Table 40
4.3 Comparison of m Number for 17G Table 40
4.4 Execution Time of Searching by Hive and Impala 41
4.5 Execution Time of Ordering by Hive and Impala 42
4.6 Execution Time of Searching by Phoenix, Hive and Impala 42
4.7 Execution Time of Searching by Phoenix and Impala 43
4.8 Execution Time of Counting by Phoenix, Hive and Impala 43
4.9 The Table of Power Failure . 44
4.10 Bar Chart for Power Failure . 44
4.11 Comparison of actual and predicted values of 0312 week 46
4.12 Comparison of actual and predicted values of 0319 week 47
4.13 Time Series Chart for Power Data 48
4.14 Pi Chart for Power Data . 48
4.15 Bar Chart for Power Data . 49
4.16 Dashboard fro IGEMS . 49

List of Tables

2.1 Difference between Current Data Lake and Data Lake with Spark . 22

3.1 Software Specifications . 35

4.1 Experimental Environment . 39
4.2 MAPE error value level . 45
4.3 Daily MAPE value for 0312 week 46
4.4 Daily MAPE value for 0319 week 47

viii

Chapter 1

Introduction

In the current era of the rapid flow of information, there is no doubt that Big

Data [1] brings significant benefits such as efficiency and productivity. If compa-

nies can analyze data in depth, they can mine enormous potential to make decisions

more precise, clear, and quick. In the past, companies were able to face increasing

data and application problems by importing database, data warehouse [2], and

developing business intelligence [3]. With the development of science and technol-

ogy, the amount of data has continued to increase, and the types have become

more complex.

The traditional architecture will not be suitable enough, and it will also lead to

the new construction to deal with the challenge of Big Data. It takes a lot of time

for relational database and data warehouse system to check for user’s confirmation,

data model establishment, data import and verification. And many times in the

collecting of data, it’s not sure how the data model should be established, and

high expansion costs and limitations on vertical architectures is a problem also.

With the rise of the Internet of Things [4] and the increase in the speed of

the Internet, more and more sensors are deployed around our lives, and the speed

and quantity of streaming data generated are quite tremendous. Therefore, how

to properly design a system to store streaming and Big Data is an important issue

to think. Importing Big Data technology has become a trend.

1

Chapter 1 Introduction 2

The traditional architecture of data storage system is insufficient in the search

and analysis of Big Data. We can improve the search speed and keep the integrity

of data by importing existing systems into Big Data platform with Data Lake, if

the traditional architecture data storage system want to use the Big Data platforms

for analysis and storage. We can transfer historical data and write real-time data

to Data Lake without affecting the existing system. In this work, we aim to

implement an architecture that can import existing power data storage system to

Big Data platform with Data Lake and provide Big Data storage, analysis and

visualization module for power data. Specific goals are listed as belows:

1. To transfer historical data from existing system to Data Lake in Hive.

2. To collect streaming data into Data Lake in HBase

3. To analyze the data from Data Lake with Spark MLlib

4. To utilize Apache Superset to visualize the analysis results by Spark and the

data in Data Lake

1.1 Motivation

The Big Data has 4V characteristics: Volume, Velocity, Variety, and Veracity.

The traditional data storage architecture has been unable to deal with the current

trend of Big Data. Taking our campus as example, we have deployed a lot of smart

meters to collect electricity data in all the campus buildings and data center. In the

past, we have separately stored data center and campus buildings electricity data

in two different database systems. The amount of data accumulated is enormous

over a long period of time. Therefore, if we want to do advanced analysis and

application of these power data, in the current mainstream platform for processing

Big Data is Hadoop [5] and Spark [6] which support the traditional database only

with the JDBC to get data. This makes the time and communication costs of

getting data sources very expensive. Spark supports two types of HDFS-based

data storage and NoSQL [7] databases, Hive and HBase. Therefore, we want to

Chapter 1 Introduction 3

integrate the campus electricity system and the data center electricity system into

our proposed Data Lake system. After the integration, the extraction and use

of data will be more convenient for the analysis of the Big Data platform. After

collecting the data, the most important thing is analysis. How to find out useful

information in the collected data is the main value of Big Data. If we can find out

the trend and distribution of power consumption from power data, even predict

the power usage and abnormal warnings, it is very helpful for making decision

correctly even early when abnormal power usage happened.

In addition to the above mentioned, how to visualize information is also wor-

thy of discussion and research. Currently the mainstream visualization tools in

the market need to be charged. For example, Tableau and Power BI are very pow-

erful which support Hive, Impala, etc and are used by many companies for data

visualization. But what if there is a budget pressure for who wants to visualize

data in a big data database? There is barely no visualization project for big data

database in current Apache Software Foundation open source projects, except for

Apache Superset developed by Airbnb and contributed to the Apache Software

Foundation. Superset is actually a self-service data analysis tool. Its main goal is

to simplify our data exploration and analysis operations and provide data analysts

with a fast data visualization function. The Data Lake visualization part we pro-

posed is presented by Superset. The entire Data Lake platform targets the data

analysts and developers and it is not for an ordinary user. Providing developers

with a unified data source for data analysis and retrieval.

1.2 Thesis Contributions

In this work, we propose a system for power data storage and analysis platform

with Spark and Data Lake. This system is an open source platform which pro-

cesses, analyzes, storing streaming and historical data and visualizes data stored

in Data Lake. These are the main original contributions:

Chapter 1 Introduction 4

1. The design, implementation and test of an entirely open source solution

integrating state-of-the-art components from the Apache ecosystem. This

architecture deals seamlessly with data transfer, collection, storage, analysis

and visualization.

2. Demonstrate how to import an existing storage system to the Big Data

platform With Data Lake and collect data sources from multiple sources

to Data Lake and use Kafka as the message queue to provide data stream

integrity.

3. Power failure analysis and power forecasting modules are proposed in this

work can help schools make better decisions.

4. Integrate Impala and Phoenix as Data Lake’s search engine and provide

better search performance

5. Proposed a complete solution of Data Lake and Big Data platform from the

data transfer, collection, storage, analysis, visualization to campus electricity

environment.

1.3 Thesis Organization

The paper is organized as follows. Chapter 2 introduces the main background

and related works. Chapter 3 gives an overview of the system design and its

implementation of Big data tools from the Apache ecosystem that are integrated

in our framework and shows every component function in the system. Chapter

4 details the experiments and discussion. Finally, in Chapter 5 we provide a

conclusion and the future work for this thesis.

Chapter 2

Background Review and Related

Works

In Chapter 2, we provide several components that are approaching in this

work: Data Lake, Apache Spark, Apache Hive, Apache HBase, Apache Impala,

Apache Kafka, and so on. The next sections discuss each component in more

detail.

2.1 Data Lake

The most commonly cited definition of Big Data is ”The huge amount of data

to the database system can not be stored, computed and processed within a rea-

sonable period of time, and it can be analyzed as information that can be inter-

preted.” This definition is relative and will change with the time, industry, and

professional field. The data related to the business activities of many companies or

organizations, regardless of their types, speed, and quantity, are rapidly growing.

Companies are starting to face a lot of data storage problems. In the past, many

companies imported databases, imported data warehouses, and even business in-

telligence. To face the ever-growing data and application problems of the data.

5

Chapter 2 Background Review and Related Works 6

It’s no doubt that Big Data has brought huge benefits such as efficiency and pro-

ductivity However, as data continues to increase, the traditional architecture will

probably not be sufficient. Enterprises understand that if they can analyze data

in deep, they will be able to use their enormous data potential to make decisions

faster, clearer, and more elaborate. However, the efficiency of data management

and analysis tools must increase dramatically first.

The concept of Data Lake [8] [9] first appeared in an article in the 2011 Forbes

magazine “Big Data Requires a Big, New Architecture”. Data from the data

warehouse is generally of high quality and has been pre-processed, but Data Lake

store any types and as a storage pool for all data, it facilitates user’s analysis

and use. The definition of Data Lake is a super large scale storage space with

low cost. For example, Hadoop [10] can store any type of data until user needs

to do business analysis or data mining. The data stored in Data Lake is the

most original form and has not been processed or managed. There are four main

features of Data Lake: saving Big Data with less cost(Low Cost), maintaining high

fidelity of data(Fidelity), ease of accessibility(Ease of Accessibility), and flexible

data analysis(Flexible)

2.2 Hadoop Ecosystem

2.2.1 Apache Kafka

Kafka [11] [12] [13] is a message queue system that is designed to be fast, scalable,

and durable. It is an open-source stream processing platform. Apache Kafka

originated at LinkedIn and later became an open-source Apache project in 2011,

then a first-class Apache project in 2012. Kafka is written in Scala and Java. It

aims at providing a high-throughput, low-latency platform for handling real-time

data feeds. In Big Data, an enormous volume of data is used. But how are we

going to collect this large volume of data and analyze that data? To overcome this,

Chapter 2 Background Review and Related Works 7

we need a message queue system. That is why we need Kafka. The functionalities

that it provides are well-suited for our requirements, and thus we use Kafka for:

1. Building real-time streaming data pipelines that can get data between sys-

tems and applications.

2. Building real-time streaming applications to react to the stream of data.

Kafka has four core APIs as figure 2.1 shows:

• The Producer API allows an application to publish a stream of records to

one or more Kafka topics.

• The Consumer API allows an application to subscribe to one or more topics

and process the stream of records produced to them.

• The Streams API allows an application to act as a stream processor, consum-

ing an input stream from one or more topics and producing an output stream

to one or more output topics, effectively transforming the input streams to

output streams.

• The Connector API allows building and running reusable producers or con-

sumers that connect Kafka topics to existing applications or data systems.

Chapter 2 Background Review and Related Works 8

Figure 2.1: The Architecture of Kafka

2.2.2 Apache Spark

Apache Spark [6] is an open-source cluster computing framework originally de-

veloped in the AMPLab at UC Berkeley. Compared to the two-stage disk-based

MapReduce paradigm of Hadoop, Spark’s in-memory primitives provide perfor-

mance up to 100 times faster for certain applications. By permitting user pro-

grams to load data into memory of a cluster and repeatedly query it, Spark is well

suited for machine learning algorithms. Spark requires a cluster manager and a

distributed storage system. For cluster management, Spark supports standalone

(native Spark cluster), Hadoop YARN, or Apache Mesos. For distributed storage,

Spark can interface with a wide variety of systems, including Hadoop Distributed

File System (HDFS), Cassandra, OpenStack Swift, and Amazon S3. Spark also

supports a pseudo distributed local mode, usually used only for developing or test-

ing purposes, where distributed storage is not required and the local file system

can be used instead; in this scenario, Spark is running on a single machine with

Chapter 2 Background Review and Related Works 9

one executor per CPU core. In 2014, Spark has more than 465 contributors, mak-

ing it the most vigorous project in the Apache Software Foundation and Big Data

open source projects. Spark provides four main library as the figure 2.2 shown.

Figure 2.2: Spark Library

2.2.3 Spark Streaming

Spark Streaming is an extension of the core Spark API that enables scalable,

high-throughput, fault-tolerant stream processing of live data streams. Data can

be ingested from many sources like Kafka, Flume, Twitter, ZeroMQ, Kinesis, or

TCP sockets, and can be processed using complex algorithms expressed with high-

level functions like map, reduce, join and window. Finally, processed data can be

pushed out to filesystems, databases, and live dashboards like figure 2.3 shows.

Internally, it works as figure 2.4. Spark Streaming receives live input data streams

and divides the data into batches, which are then processed by the Spark engine

to generate the final stream of results in batches.

Chapter 2 Background Review and Related Works 10

Figure 2.3: The Architecture of Spark Streaming

Figure 2.4: Spark Streaming Workflow

2.2.4 Spark MLlib

MLlib [14] makes practical machine learning scalable and easy. It consists of com-

mon learning algorithms and utilities, including classification, regression, cluster-

ing, collaborative filtering, dimensionality reduction, as well as lower-level opti-

mization primitives and higher-level pipeline APIs. It is divided into 2 packages:

1. mllib contains the original API built on top of RDDs.

2. ml provides higher-level API built on top of dataframes for constructing ML

pipelines.

2.2.5 Apache Superset

Superset is an open source data visualization and exploration platform from Airbnb.

It was launched in March 2016. The platform provides an intuitive and interac-

tive interface for data visualizations. Superset used to be called Caravel, and

Panoramix previously. Superset provides a faster way of visualizing data. It is

Chapter 2 Background Review and Related Works 11

highly extensible platform with built in security controls. Apache Superset pro-

vides a faster way of creating data visualization and analysis models. Superset is a

powerful BI tool that almost matches the power of PowerBI and Tableau. It comes

with tons of features for business users. It consists of two primary interfaces:

1. A Rich SQL IDE (Interactive Development Environment) enabling fast and

flexible access of data.

2. A Data Exploration Interface that converts data tables into rich visual in-

sights.

The combination of these two interfaces enables users to consume data in a

variety of ways. Users can directly visualize data from tables stored a variety

of databases including Presto, Hive, Impala[7], Spark[8] SQL, MySQL, Postgres,

Oracle, Redshift, and SQL Server. With the addition of a SQL IDE, it provides

users with the ability to compose SQL queries to restructure or reduce the size

of your data or union data across tables. Additionally, users can immediately

visualize their query results using Superset’s Visualized flow.

Figure 2.5: Superset Dashboard

2.3 Big Data Storage

Chapter 2 Background Review and Related Works 12

2.3.1 Apache Sqoop

Apache Sqoop [15] is SQL to Hadoop. Sqoop is a convenient tool that moves

data between traditional relational database and NoSQL. Sqoop takes advantage

of Hadoop MapReduce parallel feature that accelerates data migration by batch

processing.

Sqoop is an import tool that supports data migration from relation database to

Hive, HDFS, and Hbase; it also supports full table import and incremental table

import. Figure 2.6 shows the basic workflow of Sqoop. When Sqoop imports table

data from RDB, it depends on different split-by values to split data; next it lets

segmented blocks assigned in different map, and each map will process its block

data. Finally, it stores data in the Hadoop distributed storage system.

• Sqoop feature:

1. High efficiency resources control; parallel processing task to save pro-

gram execution time.

2. Data type mapping and transforming can be automatically; users can

also define their own data.

3. Supporting multiple relational databases, such as MySQL, Oracle, SQL

Server, DB2.

Figure 2.6: Sqoop Basic Workflow

Chapter 2 Background Review and Related Works 13

2.3.2 HDFS

HDFS [16] is a distributed file system designed to run on commodity hardware.

The detection of faults and automated recovery is an important architectural goal

of HDFS. HDFS has master-slave architecture with a single Name Node as the

master server to manage the file system [1]. Besides, a number of DataNodes,

usually one per node in the cluster, manage storage attached to the nodes. HDFS

describes a file system namespace and allows user data stored in files. Internally,

a file is split into one or more blocks that are stored in a set of Data Nodes. The

Name Node executes file system namespace operations such as to open, close, and

rename files and directories, and it controls the mapping of blocks to Data Nodes

as well. The Data Nodes are responsible for responding read and write requests

from clients of the file system. HDFS ensures input distribution and provides

the user with an interface whose role is to provide chunks of data files to cluster

nodes. Among its chief advantages, HDFS provides input locality by enabling

nodes hosting input shards to apply their processing on such chunks, rather than

on remotely stored data. Figure 2.7 shows the architecture of HDFS

Figure 2.7: The Architecture of HDFS

Chapter 2 Background Review and Related Works 14

2.3.3 Apache Hive

Apache Hive [17] is a data warehouse solution that has been developed by Apache

software Foundation to integrate data storage and to query and manage large

datasets. Hive as a data warehouse application on top of Hadoop MapReduce,

allows the users to handle the data stored in it as if it was stored in a regular

databases. Hive provides a mechanism to project structure onto this data, and

query the data using a SQL-like language called HiveQL. Hive enables user with

experiences of using traditional RDBMS to do familiar queries on MapReduce.

The advantages of Hive are as follows:

• Very powerful.

• Easy to learn and understand.

• Portable and multiple data views.

• Used with and DBMS system with vendor.

• Well defined standards exist and used relational databases.

• High speed, integrating with Java.

Figure 2.8 shows the architecture of Hive, and Figure 2.9 shows the relationship

between Hadoop and Hive.

2.3.4 Apache HBase

Apache HBase [18] [19] is a project undertaken by Powerset to deal with the

huge amount of data generated by natural language searching. But now it is

already a top-level project of the Apache Foundation. HBase runs on HDFS

and has attracted widespread attention. Facebook chose HBase to implement its

messaging platform in November 2010. HBase is distributed database on HDFS

architecture, and is different from general relational database. It is modelled with

Chapter 2 Background Review and Related Works 15

Figure 2.8: The Architecture of Hive

Figure 2.9: The Relationship between Hadoop and Hive

reference of Google’s BigTable, programmed in Java, and fault-tolerant for storing

massive sparse data. The tables from HBase can be used as inputs and outputs

in MapReduce tasks. It can be accessed through the Java API, and it also can

be accessed by REST, Avro or the Thrift API. Today, it has been used in a

number of data-driven sites, including Facebook’s messaging platform. In order

to conveniently separate data and operation work, the entire data table is divided

into many regions. One region is composed of one or more columns, which can be

stored in different hosts called as the region servers; master server is used to record

a region corresponding to each region server; besides, there is the master server to

Chapter 2 Background Review and Related Works 16

record every region server corresponding to every region. The master server will

automatically reassign regions on the region server that cannot provide services to

another region server. The HBase service architecture is shown in Figure 2.10.

Figure 2.10: The Architecture of HBase Service

• Data Model

HBase can provide MapReduce programs with data sources or storage space.

After HBase version 0.20, it provides TableMapper and TableReducer cat-

egories to allow inheritance of the Mapper and Reducer classes. And thus,

the key and value in MapReuce can be more easily removed and stored in

HBase. HBase uses the row and column as index to access data. It is more

like using map container when querying. Another feature of HBase is that

each piece of data has a timestamp, so that in a same field there are mul-

tiple sets of data of different time. An HBase data table is composed of a

number of row and column families; each column has a row key as index. A

column family is a set of column labels, which may have many groups of la-

bels. These labels can be added as needed any time without having to reset

the entire data table. When accessing data in data table, one usually uses

a combination of (‘row key’, ‘family: label’) or (‘row key’, ‘family: label’,

‘timestamp’, ‘value’) to retrieve the required fields. Next, we will introduce

the Data Model in HBase, which is shown in Figure 2.11.

Chapter 2 Background Review and Related Works 17

Figure 2.11: Data Model of HBase

Chapter 2 Background Review and Related Works 18

2.4 Query Engine

2.4.1 Apache Impala

Apache Impala [20] is a real-time SQL query engine that brings scalable parallel

database technology for the Hadoop ecosystem. It allows user use SQL to query

petabytes of data stored in HDFS and HBase without data movement or trans-

formation. Impala uses Hive metastore, and it can be used to querying data from

Hive tables directly. Unlike Hive, Impala SQL does not translate the queries into

MapReduce jobs but executes them natively. However, Impala is memory inten-

sive and does not run effectively for heavy data operations like joins because it is

not possible to push in everything into the memory. The architecture of Impala

is shown in figure 2.12

Figure 2.12: The Architecture of Impala

Chapter 2 Background Review and Related Works 19

2.4.2 Apache Phoenix

Apache Phoenix [21] is an efficient SQL interface for Apache HBase. Many

companies are successfully using this technology, including Salesforce.com, where

Phoenix first started. Phoenix adds SQL to HBase, the distributed, scalable, Big

Data store built on Hadoop. Phoenix aims to ease HBase access by supporting

SQL syntax and allowing inputs and outputs using standard JDBC APIs instead

of HBase’s Java client APIs. It lets you perform all CRUD and DDL operations

such as creating tables, inserting data, and querying data. SQL and JDBC reduce

the amount of code that users need to write, allow for performance optimizations

that are transparent to the user, and opens the door to leverage and integrate lots

of existing tooling.

Internally, Phoenix as shown in figure 2.13 takes your SQL query, compiles it

into a series of native HBase API calls, and pushes as much work as possible onto

the cluster for parallel execution. It automatically creates a metadata repository

that provides typed access to data stored in HBase tables. Phoenix’s direct use of

the HBase API, along with coprocessors and custom filters, results in performance

on the order of milliseconds for small queries, or seconds for tens of millions of

rows.

Figure 2.13: The Architecture of Phoenix

Chapter 2 Background Review and Related Works 20

2.5 Related Works

Sarathkumar Rangarajan et al. [22] proposed an architecture for Personalized

Healthcare Service Recommendation using Big Data Lake which just simply uses

HDFS as the base of Data Lake. Their data lake architecture does not use any

search engine to provide data queries. It is simply using HDFS as a data store.

How to manage the data stored on HDFS not explained. Maanak Gupta et al, [23]

are about Data Lake, but also a simple description of HDFS as a storage space,

and there is no further research on how to manage data. The main focus of this

article is on the control of data access rights, which is also very important for this

thesis in the future. How to consider information security in the future is also one

of the directions of this thesis.

The architecture we proposed is close to Pradeeban Kathiravelu and Ashish

Sharma et al. [24] proposed but the difference is that they use Data Café Server

to catch real-world biomedical data repository with various data collections and

multiple relationships across them to Hive and select Apache Drill as the search

engine. In this work we use kafka as the message queue to catch the data generated

from the smart meters we deployed in campus and kafka will form the data stream

as the input source for spark streaming.

Solaimani et al. [13] presented a novel, generic real-time distributed anomaly

detection framework for multi-source stream data. They investigated anomaly

detection for a multi-source VMware-based cloud data center, which maintains

a large number of virtual machines (VMs). This framework continuously moni-

tors VMware performance stream data related to CPU statistics. It collects data

simultaneously from all of the VMs connected to the network and notifies the

resource manager to reschedule its CPU resources dynamically when it identifies

any abnormal behavior from its collected data. Effective anomaly detection in

this case demands a distributed framework with high-throughput and low latency.

Distributed streaming frameworks like Apache Storm, Apache Spark. Kafka is

well compatible with Spark. It provides guaranteed message delivery with proper

Chapter 2 Background Review and Related Works 21

ordering. This means that messages sent by a producer to a particular topic parti-

tion will be delivered in the order they are sent, and a consumer also sees messages

in the order they are stored. Moreover, a Kafka cluster can be formed to lower

processing latency and provide fault tolerance without loss of data. Experimen-

tal results show that the use of spark streaming can effectively detect abnormal

conditions. Therefore, this thesis refers to this paper also uses the framework of

Kakfa and Spark Streaming.

Zhang et al. [25] 2013 used HBase to store big data since HBase provides

the distributed data storage cluster through HDFS in Hadoop, It is good for big

data storage and processing. Their experiments indicate a good performance since

their system use HBase as a big data database. Yue Wang et al. [26] 2015. The

Apache Hive has been widely used for big data analysis. By providing the SQLlike

query language HiveQL, it lower the threshold of big data query. Hive query

data efficiently since HiveQL convert into MapReduce tasks. Anja Gruenheid et

al. [27] 2011. Hive is a data warehousing solution on top of the Hadoop framework

that store date in the Hadoop distributed file system (HDFS). Through using

MapReduce assisted SQL query, it more efficient than traditional SQL query.

Accordingly, these thesis proposed using HBase or Hive to solve the big data

storage.

Chao-Tung Yang et al. [28] they builds a cloud storage system with HBase of

Hadoop for storing and analyzing big data of medical records and improves the

performance of importing data into database. The data of medical records are

stored in HBase database platform for big data analysis. In [29] Ren-Hao Liu et

al, proposed a system to collect the electricity usage data in campus buildings

through smart meters and environmental sensors, and process the huge amount

of data by big data processing techniques. According to the experimental results

shows [28] [19], this thesis selects HBase as the storage of streaming data and also

this thesis is an extension of the [29]

Their proposed architecture does not support a solution for importing existing

systems into Data Lake. This thesis differs from the above papers in that we

Chapter 2 Background Review and Related Works 22

propose a complete solution for importing the existing system into the Data Lake

and uses the two different natures of the Hive and HBase storage schemes to

form a hybrid rather than a single Data Lake. The above-mentioned Data Lake

architecture does not propose a data visualization solution. Our architecture can

visualize Data Lake’s data.

The biggest difference between the proposed architecture and the current so-

lution is to provide search engine, historical data, streaming data import and

visualization.

Table 2.1: Difference between Current Data Lake and Data Lake with Spark

Current Data Lake Data Lake with Spark
HDFS Y Y

Historical Data Import N Y
Streaming Data Import N Y

Search Engine N Y
Visualization N Y

Chapter 3

System Design and

Implementation

This section introduces the system design architecture and implementation

of the proposed power data storage and analysis platform with Spark and Data

Lake. The system, based on cloud architecture for Big Data, first collects the

streaming data generated from smart meters with Apache Kafka and transfers

the historical from existing storage system and then processes and analyzes these

data to efficiently obtain real-time power information and perform abnormality

forecast. Moreover, the proposed system supports historical data queries and

behavior analysis.

3.1 System Architecture

This thesis presents an architecture for data collecting, data storage, analysis [13],

and data visualization. In the part of data collecting, the data is divided into

historical data from existing system and streaming data, and all data stores in

Data Lake which is based on Hive and HBase [19]. It also use Apache Phoenix [21]

and Apache Impala as search engine to allow user can search and use data quickly.

Data Lake stores all the original data. We use Spark MLlib [30] to analyze the

23

Chapter 3 System Design and Implementation 24

data and store the result to Data Lake and the results are visualized by Apache

Superset.

Figure 3.1: System Architecture

3.2 System Services

These section introduces the main service provided by the Data Lake system we

proposed. Including data transfer, data collection, data stoarge, data analysis and

data visualization.

3.2.1 Data Transfer

In order to transfer the data from the existing storage system to Hive, we use

Apache Sqoop [15] to move historical data to the architecture we propose and use

the characteristics of parallelism to speed up the overall movement of data. Sqoop

is a data transfer tool that can transfer data from a traditional relational database

to a Hadoop storage system by using Hadoop MapReduce parallelism to speed up

the process of data migration. It supports not only transfer data from MySQL

Chapter 3 System Design and Implementation 25

to HDFS but also Hive and HBase. Figure shows the workflow for transferring

historical data from relational data base to Hive table.

Figure 3.2: Sqoop Workflow for Data Transferring

3.2.2 Data Collection

For streaming data collecting generated from smart meters deployed all over the

campus, we uses Kafka [11] to catch and form the data stream as stream input

source for Spark Streaming. The time of Spark Streaming calculation interval will

be exactly same as the update speed of the original streaming data. In this way,

the data stream formed by Kafka can be perfectly matched with Spark Streaming.

The data stream received by Spark Streaming will be presented in the form of

DStream. Writing DStream to HBase completes the collection of streaming data.

The overall data collection process is shown in the figure 3.3 below.

Figure 3.3: Data Collection Workflow

Chapter 3 System Design and Implementation 26

Figure 3.4 and Figure 3.5 show that Kafka’s producer catch the source APIs

for ICEMS and IGMES and write it to Kafka cluster’s broker.

Figure 3.4: Kafka Producer for
IGEMS

Figure 3.5: Kafka Producer for
ICEMS

Spark Streaming will receive the data stream from Kafka (Dstream) and write

it to HBase table through HBase API as shown in the figure 3.6 and figure 3.7.

Figure 3.6: Spark Streaming
Write Data to HBase for IGEMS

Figure 3.7: Spark Streaming
Write Data to HBase for ICEMS

Chapter 3 System Design and Implementation 27

3.2.3 Data Storage

We use Hive and HBase as the basis for our Data Lake platform, both of them are

based on HDFS. Hive will translates SQL syntax into map-reduce job to search

data on HDFS, usually used for Big Data queries offline like shown in figure 3.8.

We chose to transfer the historical data of the old system to Hive by Apache sqoop

to facilitate the query and analysis of Big Data. HBase is responsible for storing

streaming power data on our system because HBase has high throughput and low

latency. Beasuse of these features. it is very suitable for faster reading and writing

operations in Big Data. In addition, we provide two kinds of search engines for

each of these two different feature databases. Two search engines, Apache Impala

for Hive and Apache Phoenix for HBase, can provide them with excellent query

performance with SQL individually.

Figure 3.8: The Architecture of Data Storage

It is worth noting that Impala also has support for operating HBase, but using

HBase native syntax does not support SQL syntax. But in fact, by mapping the

HBase table to the Hive table, Impala can use Hive to operate HBase and use SQL

syntax. But the reason we chose phoenix is that phoenix is a project specifically

designed to provide SQL syntax for HBase. phoenix will translate the SQL syntax

into HBase syntax to query. The overall performance is better than via Hive or

Impala.

Chapter 3 System Design and Implementation 28

The overall storage architecture is based on HDFS. Data storage is divided into

streaming and historical data. Streaming data is stored on HBase and phoenix

is used as a search engine that user can use SQL syntax. Figure 3.9 shows the

Phoenix-Shell.

Figure 3.9: Phoenix Shell

The reason we don’t using Hive to store streaming data is if we use spark

streaming to write streaming data to Hive in this work, each write will create a

folder in Hive’s directory. As the time past, the overall Hive performance will be

very slow, so we choose HBase as a database for high-speed write of streaming

data.

Hive is used as a database of existing system data. Because the existing system

data tables are large, Hive is suitable for cleaning and processing large amounts

of data. In this work, Impala was used as Hive’s search engine. Figure 3.10 shows

the Phoenix-Shell.

Chapter 3 System Design and Implementation 29

Figure 3.10: Impala Shell

Figure 3.11: Hue GUI Interface

In addition, the HBase table can be mapped to Hive to operate HBase through

Hive. Hue is a GUI interface that can operate Hive like Figure 3.11 shows, HBase,

and Impala through web pages. Finally, analysts can use impala and phoenix’s

api to obtain data when intercepting data, or connect Hive and HBase directly

through spark SQL.

Chapter 3 System Design and Implementation 30

3.2.4 Data Analysis

In terms of data analysis, provides three analysis modules for this thesis.

1. Porer failure analysis

2. Power forecasting(time-series)

Using Spark MLlib for machine learning of power data, and also using the time

series model for electricity forecasting. Our proposed Algorithm 1 can calculate

the situation of power failure on campus. First, organize the large amount of

historical data stored on the Hive table into a time and meter ID format as shown

in the Figure 3.12. Then In Algorithm 1, use Spark SQL to read the Hive table and

sort the time difference between the two, as long as more than 5 minutes and less

than 180 minutes, it is determined that the power-off or power failure occurs and

compares the status of these two meters to eliminate the single meter failuration.

The results of the analysis are written to HBase and visualized by Superset.

Figure 3.12: Table Format

Chapter 3 System Design and Implementation 31

Algorithm 1 Power Failure Algorithm
1: meter1← array for Meter1′s power data
2: meter2← array for Meter2′s power data
3: timeGap← meter(0)−meter(1)
4: for i = 1; i < meter1.length; i++ do
5: if (five minute < timeGap < three hours) then
6: ArrayBuffer1 ← power failure time for meter1
7: end if
8: end for
9: for i = 1; i < meter2.length; i++ do

10: if (five minute < timeGap < three hours) then
11: ArrayBuffer2 ← power failure time for meter2
12: end if
13: end for
14: Power Failure T ime← ArrayBuffer1 ∩ ArrayBuffer2

In terms of predicting electricity use, taking into account that the character-

istics of electricity consumption belong to the time series, it may be quite stable

or present a certain trend over time and have seasonal characteristics. Due to

the above characteristics, this paper uses Holt Winters algorithm to predict the

power trend. After experiments confirmed that the forecast method is to use the

power data of the previous two days as training data, the data of the next day

forecasting will be the most accurate. In addition, due to the relationship between

campus routines, training data set for Monday, Tuesday, Saturday and Sunday

were selected at the same time for last week. HoltWinters provides addition and

multiplication methods. Additive method is preferred when seasonal variations

are roughly constant through the series. Multiplicative method is preferred when

the seasonal variations are changing. However, because we have only one day to

predict, we don’t have too significant seasonal changes and we chose Holt Winters’

additive method.

Chapter 3 System Design and Implementation 32

Algorithm 2 HoltWinters forecasting Algorithm
1: getTrainData← get training data from DB
2: ts← transform training data to dense vector
3: PredictArray ← array for writing forecasting data to DB
4: model = HoltWinters.fitModel(ts, Period, ”Method”, ”BOBY QA”)
5: forecast = model.forecast(ts, ts)
6: for i = 0; i < 23; i++ do
7: PredictArray(i)(0) = Date
8: PredictArray(i)(1) = Hour
9: PredictArray(i)(2) = Location

10: PredictArray(i)(3) = Predicted V alue
11: end for
12: forecastDF = (PredictArray.toRDD, schema)
13: forecastDF.write.mode(”append”).(DB)

In algorithm 2, First, the data to be trained is obtained from the database.

The data type is dataframe. Then it is transformed into a dense vector and

HoltWinters training model is used. The algorithm has three parameters that can

be optimized. The first is TS, TS is the training data set, and the second is Period

that means seasonality of data i.e period of time before behavior begins to repeat

itself. The third parameter is modeltype, two variations differ in the nature of the

seasonal component. Additive method is preferred when seasonal variations are

roughly constant through the series, Multiplicative method is preferred when the

seasonal variations are changing proportional to the level of the series. Then the

power forecasting function is used to predict the power consumption trend in the

next 24 hours, and the result is converted into RDD combined with schema and

converts to dataframe and writes back to database.

Chapter 3 System Design and Implementation 33

3.2.5 Data Visualization

Superset supports direct query of multiple data sources, including Hive, Impala

and other data sources. However, HBase is not supported, but by mapping HBase

table to Hive table, Superset can visualize HBase data through Impala. The

visualization part of the system in the thesis is connected to the data source with

Impala. Superset extracts real-time data from HBase and historical data from

Hive. The result of any analysis from this system are stored in HBase.

Figure 3.13: The Architecture of Supserset

SQLALchemy URI is the way that Superset connects to the database, The

Engine is the starting point for any SQLAlchemy application. It is “home base”

for the actual database and its DBAPI, delivered to the SQLAlchemy application

through a connection pool and a Dialect, which describes how to talk to a specific

kind of database/DBAPI combination. The general structure can be illustrated

as 3.14.

Figure 3.14: The Structure of SQLAlchemy

Chapter 3 System Design and Implementation 34

Therefore, as long as the specified URI is set, the specified database is con-

nected and further data exploration is performed. Taking this thesis as example,

Impala’s URI is impala://140.128.101.177:21050/ and tests whether the connec-

tion connection is ok or not like 3.15.

Figure 3.15: Editing Database’s SQLALchemy

After completing the connection setting, you can display a lot of charts on the

data of the database. Taking the 3.16 as an example, the electricity consumption

of each meter is displayed in Word Cloud. The larger the font is, the greater the

power consumption is. There are some detailed adjustments on the left side that

can be selected like time, font size range, and so on.

Figure 3.16: Word Cloud Chart

Chapter 3 System Design and Implementation 35

3.3 System Implementation

In this work, we have established the Big Data cluster for our Data Lake system

through thirteen physical machines, one node as master, twelve nodes as the com-

puting node to set up Cloudera Big Data platform that including CDH (Cloudera

Distribution Including Apache Hadoop), Apache Spark, Apache Kafka, Apache

Sqoop, Apache Hive, Apache Hive, Apache Phoenix and Apache Impala. Table

3.1 shows the software specification of thirteen cluster nodes.

Table 3.1: Software Specifications

Version

Cloudera Manager 5.14.0

Hadoop hadoop-2.6.0+cdh5.14.0+2714

HDFS hadoop-2.6.0+cdh5.14.0+2714

Spark spark-2.0.0+cdh5.14.2+543

Sqoop sqoop2-1.99.5+cdh5.14.0+47

Hive hive-1.1.0+cdh5.14.0+1330

HBase hbase-1.2.0+cdh5.14.0+440

Impala impala-2.11.0+cdh5.14.0+0

Phonenix Phoenix 4.7.0 on CDH5.7

HUE hue-3.9.0+cdh5.14.0+7830

Kafka 0.11.0-kafka-3.0.0

Chapter 3 System Design and Implementation 36

The Data Lake platform was built through cloudera. The monitoring platform

provided by cloudera allows us to clearly understand the health status, CPU usage,

memory usage, cluster network IO, and other related information of cluster services

as the figure 3.17 shows.

Figure 3.17: Cloudera Manager Web User Interface

Figure 3.18: Nodes of Cloudera Cluster

We use HUE to provide a UI interface for Hive, HBase, and Impala. Hue not

only supports to manipulate data in Apache Hadoop ecosystem, but also provides

corresponding dynamical search dashboard with Solr. The most important is that

it support interactive query of HiveQL, Impala and HBase/ In figure 3.19 we can

see the visualization interface of Hue.

Chapter 3 System Design and Implementation 37

Figure 3.19: HUE Web User Interface

The visualization part of this system is to use Apache Superset as our solution.

We integrate Hive, HBase, Impala as the data source of Superset. Superset pro-

vides many kinds of charts to user to choose whatever they want to use for their

data like Distribution-Bar Chart, Pie Chart, Dual Axis Line Chart, etc. Each

chart is called a slice, a dashboard can be composed of multiple slices like figure

3.20.

Figure 3.20: Superset Dashboard for Power Data

Chapter 4

Experimental Results

In this section, the experimental environment and results of the Power Data

Storage and Analysis Platform with Spark and Data Lake are described. In sec-

tion 4.1, we introduce the experimental environment and implementation of the

proposed system. Sections 4.2 to 4.5 show the experiment of performance tests for

verifying the efficiency of the system.

4.1 Experimental Environment

This section presents our hardware experimental environment. The proposed sys-

tem is implemented with 13 physical servers connected by Gigabit Ethernet to

build a computing cluster. Each physical server consists of Intel Core i7 CPU

with 16 GB Memory and 1TB HD. Besides, Ubuntu 14.04 is adopted as our oper-

ating system. Also, Hadoop 2.6.0-cdh5.14.0, Spark 2.0.0, Sqoop 1.4.5, Hive 1.2.1,

and HBase 1.0.0 are installed, as shown in Table 4.1 and Figure 4.1

38

Chapter 4 Experimental Results 39

Table 4.1: Experimental Environment

CPU RAM DISK
Master Intel(R) Xeon(R) CPU E5-2630 v3 @ 2.40GHz 64G 2T
Node01 Intel(R) Core(TM) i7-4770 CPU @ 3.40GHz 16G 1T
Node02 Intel(R) Core(TM) i7-4770 CPU @ 3.40GHz 16G 1T
Node03 Intel(R) Core(TM) i7-4790 CPU @ 3.60GHz 8G 1T
Node04 Intel(R) Xeon(R) CPU E3-1230 v3 @ 3.30GHz 8G 1T
Node05 Intel(R) Core(TM) i7-6950X CPU @ 3.00GHz 128G 2T
Node06 Intel(R) Core(TM) i7-4770 CPU @ 3.40GH 16G 1T
Node07 Intel(R) Core(TM) i7-4770 CPU @ 3.40GH 16G 1T
Node08 Intel(R) Core(TM) i7-4770 CPU @ 3.40GH 16G 1T
Node09 AMD Phenom(tm) II X6 1055T Processor 8G 1T
Node10 Intel(R) Xeon(R) CPU E5-2620 v3 @ 2.40GHz 16G 1T
Node11 Intel(R) Xeon(R) CPU E5-2620 v3 @ 2.40GHz 16G 1T
Node12 Intel(R) Xeon(R) CPU E5-2620 v3 @ 2.40GHz 16G 1T

Figure 4.1: Cloudera Cluster

4.2 The Speed of Transferring Historical Data

For the transfer of historical data, we use Apache Sqoop to transfer 7G and

17G data separately for the two data tables of the existing storage system, and

Chapter 4 Experimental Results 40

used the characteristics of parallelism to speed up the overall movement of data.

From the experiment as Figure 4.2 and Figure 4.3 show, we can find that increasing

the number of maps can effectively reduce the time for moving, but we must notice

that when the number of maps is too large, the data will take more time on the

network communication to reduce the data.

Figure 4.2: Comparison of m Number for 7G Table

Figure 4.3: Comparison of m Number for 17G Table

Chapter 4 Experimental Results 41

4.3 Data Lake’s Comparison of Different Search

Engines

We choose Apache Impala as Hive’s search engine in our system. Figure 4.4

shows that Impala is much better than hive in the performance of searching data

because Hive converts each SQL query to map-reduce job to search data on HDFS

and each stage of reading and writing will access disk. However, Impala reduces

the phase of accessing disk reads and writes and uses a large amount of memory

characteristics to calculate data. So using Impala as a search engine for Hive is

proper.

Figure 4.4: Execution Time of Searching by Hive and Impala

Figure 4.5 shows that Hive is suitable for batch processing with complex data,

and Impala can analyze the results of Hive in real time. The combination of these

two component are very effective.

4.4 Streaming Data Storage

For the storage of streaming data, we choose HBase as our system’s database.

However, HBase does not support SQL-like syntax to query data. Instead, it use

its own shell commands to manipulate the data stored in HBase but it’s unfriendly

Chapter 4 Experimental Results 42

Figure 4.5: Execution Time of Ordering by Hive and Impala

for the user who is familiar with SQL-like syntax. So in our architecture we uses

Apache Phoenix as the searching engine for SQL processing over HBase and also

compare Impala, Hive, Phoenix to manage HBase table. Figure 4.6 shows that

Hive takes much more time than the other three because Hive converts the task

of query into the map-reduce type. Both Phoenix and Impala have excellent

performance in query speed in searching one data condition.

Figure 4.6: Execution Time of Searching by Phoenix, Hive and Impala

Chapter 4 Experimental Results 43

Comparing Phoenix and Impala execution times to search for meter’s data

of different unit times. Figure 4.7 shows that no matter what the unit time,

phoenix performance is better than Impala, because phoenix’s query syntax will

be converted into HBase statement, the optimization of HBase is better

Figure 4.7: Execution Time of Searching by Phoenix and Impala

Figure 4.8 shows the speed comparison for counting data in HBase. The

experimental result shows that Apache Phoenix has the best performance than

others because Phoenix converts SQL query to HBase-specific grammar for query,

so it can provide the better performance on HBase.

Figure 4.8: Execution Time of Counting by Phoenix, Hive and Impala

Chapter 4 Experimental Results 44

4.5 Power Failure Analysis Results

Through the algorithm of power failure we proposed in previous section, we can

calculate the number of power failure from historical data and visualize analysis

results by Apache Superset into table and the chart of Columnar distribution

Figure 4.9: The Table of Power Failure

Figure 4.10: Bar Chart for Power Failure

Chapter 4 Experimental Results 45

4.6 Verify Power Forecasting Accuracy with MAPE

In this work, the HoltWinters algorithm is used for forecasting the power

consumption situation in a day. In order to verify the accuracy of the prediction

and actual values, we use the MAPE test to verify the accuracy of prediction.

Assuming that n group actual values are: v1、v2、v3......vn and the predicted

values are p1、p2、p3......pn.

Calculate the percentage error of the actual value and the predicted value first

from i group. The percentage error is the absolute value of pi minus vi, and then

divided by the i group of actual values vi.

�errori = |
pi − vi
vi
| (4.1)

Find each group’s percentage errors: �error1、�error2、�error3......�errori...�errorn.

the n group’s percentage errors are averaged to find MAPE:

MAPE =

∑n
i=1 |

pi − vi
vi
|

n

(4.2)

From the above formula 4.1, 4.2 can find out that MAPE is the average of the

percentage of the predicted value to the actual value. So the smaller the MAPE

value is, the higher the accuracy is. The higher the MAPE value is , the lower the

accuracy is. If MAPE is greater than 50 %, there is no reference value for this

group of data.

Table 4.2: MAPE error value level

MAPE Ability to predict
<10% high accuracy

10% − 20% good
20% − 50% reasonable

>50% incorrect

Figure 4.11 shows that 3/12 full week power data trend used HoltWinters for

forecasting. Red is the predicted value and blue is the actual value. It can be

Chapter 4 Experimental Results 46

seen that the overall trend from Monday to Friday can be predicted precisely.

However, due to the prediction on Saturday and Sunday, the model can only be

trained through historical data from last week and the number of people may also

change on Saturday and Sunday because of the uncertainty in the weekend.

Figure 4.11: Comparison of actual and predicted values of 0312 week

Table 4.3 shows the daily MAPE values and the weekly average MAPE values.

From the table, we can see that the MAPE values all fall between 10% and 35%,

and the average MAPE value of the week is 20.17%. Overall, the forecasts are in

the range between reasonable and good.

Table 4.3: Daily MAPE value for 0312 week

date MAPE
3/12 17.96%
3/13 11.16%
3/14 11.10%
3/15 13.98%
3/16 35.78%
3/17 25.95%
3/18 25.28%

average 20.17%

Figure 4.12 only shows the actual values and predicted values from Monday

to Friday. Red is the predicted value and blue is the actual value. From 4.12

we can see that Monday to Friday can still accurately predict the trend of power

consumption.

Chapter 4 Experimental Results 47

Figure 4.12: Comparison of actual and predicted values of 0319 week

It can also be seen from the Table 4.4 that the MAPE values from Monday to

Friday are between 11% and 28%, and the average MAPE value is 17.24%.

Table 4.4: Daily MAPE value for 0319 week

date MAPE
3/19 13.04%
3/20 13.44%
3/21 11.78%
3/22 28.14%
3/23 19.80%

average 17.24

From the above two experiments, we can infer that the forecast used by

HoltWinters algorithm has a good accuracy of power consumption. he average

MAPE value is between 10% and 20%, which is a good prediction type. The

proposed platform enables highly accurate trend prediction of power usage data.

Chapter 4 Experimental Results 48

4.7 Superset Visualization

We map the HBase table to Hive, so Superset can visualize the data from

HBase through Impala. The following figures are the results of analysis written

to HBase and visualized by superset. Figure 4.13 shows the times series data

collected by the two power meters of the library in hours.

Figure 4.13: Time Series Chart for Power Data

Figure 4.14 shows the power data collected by Smart Meters deployed over the

campus in the form of Pi Chart.

Figure 4.14: Pi Chart for Power Data

Chapter 4 Experimental Results 49

Figure 4.15 shows the rank of the top 10 power consumption ratios for campus

buildings

Figure 4.15: Bar Chart for Power Data

We also made Superset dashboards for IGEMS and ICEMS individually.

Figure 4.16: Dashboard fro IGEMS

Chapter 5

Conclusions and Future Work

A lot of smart meters to collect electricity data in the campus buildings and

data center have been deployed. In the current mainstream platform for processing

Big Data is Hadoop and Spark which support the traditional database only with

the JDBC to get data, the cost of communication to obtain data for Hadoop or

Spark is too high. To solve this problem, we proposed an architecture to import

existing storage system to Big Data platform with Data Lake.

5.1 Concluding Remarks

This work presents an architecture of entirely open source solution integrating

state-of-the-art components from the Apache ecosystem. It can efficiently import

existing power data storage system into Big Data platform with Data Lake. The

existing system’s historical data is transferred to Apache Hive by Sqoop for the

data warehouse. The streaming data is written into HBase to save the streaming

data. The Data Lake is based on Hive and HBase to keep the integrity of the

original data. We Integrate Impala and Phoenix as Data Lake’s search engine and

provide better search performance and power forecasting models are proposed in

this work by Spark can help schools make better decisions. In conclusion, this

work proposes a complete solution of Data Lake and Big Data platforms from

50

Chapter 5 Conclusions and Future Work 51

the data transfer, collection, storage, analysis, visualization to campus electricity

environment.

5.2 Future Work

Constrained by HBase Scan performance, Superset searches for large data in HBase

and causes the chart to display slowly, failing to reach a second-level response. In

the future, we hope to speed up Superset’s ability to retrieve data from HBase.

In addition, the deployment of the physical machine environment may also be

one of the reasons that affect the overall cluster performance. We hope that we

can unify the machine specifications and cooperate with high-speed networks to

improve the overall performance of Data Lake. In addition, the power forecasting

module can add parameters such as temperature and number of people to achieve

more accurate predictions.

References

[1] Saint John Walker. Big data: A revolution that will transform how we live,

work, and think, 2014.

[2] Ralph Kimball and Margy Ross. The data warehouse toolkit: the complete

guide to dimensional modeling. John Wiley & Sons, 2011.

[3] Hsinchun Chen, Roger HL Chiang, and Veda C Storey. Business intelligence

and analytics: from big data to big impact. MIS quarterly, pages 1165–1188,

2012.

[4] Feng Xia, Laurence T Yang, Lizhe Wang, and Alexey Vinel. Internet of

things. International Journal of Communication Systems, 25(9):1101, 2012.

[5] Tom White. Hadoop: The definitive guide. ” O’Reilly Media, Inc.”, 2012.

[6] Matei Zaharia, Reynold S Xin, Patrick Wendell, Tathagata Das, Michael

Armbrust, Ankur Dave, Xiangrui Meng, Josh Rosen, Shivaram Venkatara-

man, Michael J Franklin, et al. Apache spark: a unified engine for big data

processing. Communications of the ACM, 59(11):56–65, 2016.

[7] Neal Leavitt. Will nosql databases live up to their promise? Computer, 43(2),

2010.

[8] Raghu Ramakrishnan, Baskar Sridharan, John R Douceur, Pavan Kasturi,

Balaji Krishnamachari-Sampath, Karthick Krishnamoorthy, Peng Li, Mitica

Manu, Spiro Michaylov, Rogério Ramos, et al. Azure data lake store: a

hyperscale distributed file service for big data analytics. In Proceedings of the

52

REFERENCES 53

2017 ACM International Conference on Management of Data, pages 51–63.

ACM, 2017.

[9] Huang Fang. Managing data lakes in big data era: What’s a data lake and

why has it became popular in data management ecosystem. In Cyber Technol-

ogy in Automation, Control, and Intelligent Systems (CYBER), 2015 IEEE

International Conference on, pages 820–824. IEEE, 2015.

[10] Paul Zikopoulos, Chris Eaton, et al. Understanding big data: Analytics for

enterprise class hadoop and streaming data. McGraw-Hill Osborne Media,

2011.

[11] Guozhang Wang, Joel Koshy, Sriram Subramanian, Kartik Paramasivam,

Mammad Zadeh, Neha Narkhede, Jun Rao, Jay Kreps, and Joe Stein. Build-

ing a replicated logging system with apache kafka. Proceedings of the VLDB

Endowment, 8(12):1654–1655, 2015.

[12] Rajiv Ranjan. Streaming big data processing in datacenter clouds. IEEE

Cloud Computing, 1(1):78–83, 2014.

[13] Mohiuddin Solaimani, Mohammed Iftekhar, Latifur Khan, Bhavani Thurais-

ingham, Joe Ingram, and Sadi Evren Seker. Online anomaly detection for

multi-source vmware using a distributed streaming framework. Software:

Practice and Experience, 46(11):1479–1497, 2016.

[14] Xiangrui Meng, Joseph Bradley, Burak Yavuz, Evan Sparks, Shivaram

Venkataraman, Davies Liu, Jeremy Freeman, DB Tsai, Manish Amde, Sean

Owen, et al. Mllib: Machine learning in apache spark. The Journal of Ma-

chine Learning Research, 17(1):1235–1241, 2016.

[15] Liu Chen, Junghyun Ko, and Jeongmo Yeo. Analysis of the influence factors of

data loading performance using apache sqoop. KIPS Transactions on Software

and Data Engineering, 4(2):77–82, 2015.

[16] Amrit Pal, Kunal Jain, Pinki Agrawal, and Sanjay Agrawal. A performance

analysis of mapreduce task with large number of files dataset in big data using

REFERENCES 54

hadoop. In Communication Systems and Network Technologies (CSNT), 2014

Fourth International Conference on, pages 587–591. IEEE, 2014.

[17] Aditya Bhardwaj, Ankit Kumar, Yogendra Narayan, Pawan Kumar, et al. Big

data emerging technologies: A casestudy with analyzing twitter data using

apache hive. In Recent Advances in Engineering & Computational Sciences

(RAECS), 2015 2nd International Conference on, pages 1–6. IEEE, 2015.

[18] Apache HBase Team. Apache hbase reference guide. Apache, version, 2(0),

2016.

[19] Chao-Tung Yang, Shuo-Tsung Chen, Walter Den, Yun-Ting Wang, and En-

dah Kristiani. Implementation of an intelligent indoor environmental moni-

toring and management system in cloud. Future Generation Computer Sys-

tems, 2018.

[20] Devadutta Ghat, David Rorke, and Dileep Kumar. New sql benchmarks:

Apache impala (incubating) uniquely delivers analytic database performance,

2016.

[21] Kunal Gupta, Astha Sachdev, and Ashish Sureka. Empirical analysis on

comparing the performance of alpha miner algorithm in sql query language

and nosql column-oriented databases using apache phoenix. arXiv preprint

arXiv:1703.05481, 2017.

[22] Sarathkumar Rangarajan, Huai Liu, Hua Wang, and Chuan-Long Wang. Scal-

able architecture for personalized healthcare service recommendation using

big data lake. In Service Research and Innovation, pages 65–79. Springer,

2015.

[23] Maanak Gupta, Farhan Patwa, James Benson, and Ravi Sandhu. Multi-layer

authorization framework for a representative hadoop ecosystem deployment.

In Proceedings of the 22nd ACM on Symposium on Access Control Models

and Technologies, pages 183–190. ACM, 2017.

REFERENCES 55

[24] Pradeeban Kathiravelu and Ashish Sharma. A dynamic data warehousing

platform for creating and accessing biomedical data lakes. In VLDB Workshop

on Data Management and Analytics for Medicine and Healthcare, pages 101–

120. Springer, 2016.

[25] Chen Zhang and Xue Liu. Hbasemq: A distributed message queuing system

on clouds with hbase. In INFOCOM, 2013 Proceedings IEEE, pages 40–44.

IEEE, 2013.

[26] Yue Wang, Yingzhong Xu, Yue Liu, Jian Chen, and Songlin Hu. Qmapper

for smart grid: Migrating sql-based application to hive. In Proceedings of

the 2015 ACM SIGMOD International Conference on Management of Data,

pages 647–658. ACM, 2015.

[27] Anja Gruenheid, Edward Omiecinski, and Leo Mark. Query optimization

using column statistics in hive. In Proceedings of the 15th Symposium on In-

ternational Database Engineering & Applications, pages 97–105. ACM, 2011.

[28] Chao-Tung Yang, Jung-Chun Liu, Shuo-Tsung Chen, and Hsin-Wen Lu. Im-

plementation of a big data accessing and processing platform for medical

records in cloud. Journal of medical systems, 41(10):149, 2017.

[29] Ren-Hao Liu, Chan-Fu Kuo, Chao-Tung Yang, Shuo-Tsung Chen, and Jung-

Chun Liu. On construction of an energy monitoring service using big data

technology for smart campus. In Cloud Computing and Big Data (CCBD),

2016 7th International Conference on, pages 81–86. IEEE, 2016.

[30] Fabrizio Carcillo, Andrea Dal Pozzolo, Yann-Aël Le Borgne, Olivier Caelen,

Yannis Mazzer, and Gianluca Bontempi. Scarff: a scalable framework for

streaming credit card fraud detection with spark. Information fusion, 41:182–

194, 2018.

Appendix A

Cloudera Manager Installation

Set host
$ sudo vim /etc/hostname

$ sudo vim /etc/hosts

Install and set ntp
$ sudo apt-get install ntp

$ sudo ntpdate –s ntp.ubuntu.com pool.ntp.org

Download Cloudera
$ wget http://archive.cloudera.com/cm5/installer/latest/cloudera-manager-installer.bin

Give the access permission
$ sudo chmod 775 cloudera-manager-installer.bin

Install Cloudera
$ sudo ./cloudera-manager-installer.bin

Login Cloudera Browser
$ http://IP-Address:7180/

56

Appendix B

Kafka Producer for ICEMS

import org.apache.kafka.clients.producer.KafkaProducer;

import org.apache.kafka.clients.producer.Producer;

import org.apache.kafka.clients.producer.ProducerRecord;

import org.codehaus.jettison.json.JSONArray;

import org.codehaus.jettison.json.JSONException;

import org.codehaus.jettison.json.JSONObject;

import java.io.IOException;

import java.net.URL;

import java.net.URLConnection;

import java.text.SimpleDateFormat;

import java.util.Date;

import java.util.Properties;

import java.util.Scanner;

public class Producer_PowerData_Minute_HBase {

public static void main(String[] args) throws JSONException, IOException {

Properties props = new Properties();

props.put("bootstrap.servers", "140.128.98.31:9092");

props.put("acks", "all");

props.put("retries", 0);

props.put("batch.size", 16384);

props.put("linger.ms", 1);

props.put("buffer.memory", 33554432);

props.put("key.serializer", "org.apache.kafka.common.serialization.StringSerializer");

props.put("value.serializer", "org.apache.kafka.common.serialization.StringSerializer");

props.put("enable.auto.commit", "false");

props.put("auto.offset.reset", "earliest");

Producer<String, String> producer = new KafkaProducer <>(props);

System.out.println("準備傳送 ");

57

Appendix 58

URLConnection connection =

new URL("http://140.128.197.129:8080/rest/buildingMeter/powerUsage/")

.openConnection();

Scanner scanner = new Scanner(connection.getInputStream());

String PowerData = scanner.useDelimiter("\\A").next();

System.out.println(PowerData);

JSONArray k;

JSONObject i;

k = new JSONArray(PowerData);

System.out.println("傳送開始 ");

for (int p = 0; p < k.length(); p++) {

i = k.getJSONObject(p);

long unixSeconds = Long.parseLong(k.getJSONObject(p).getString("time_stamp"));

Date date = new Date(unixSeconds);

SimpleDateFormat sdf = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss");

String formattedDate = sdf.format(date);

producer.send(new ProducerRecord<String, String>("PowerData_Minute_HBase",

i.getString("location"), formattedDate + ","

+ i.getString("location") + ","

+ i.getString("KW") + ","

+ i.getString("totalKWH") + ","

+ i.getString("ch1_pf") + ","

+ i.getString("ch1_voltage") + ","

+ i.getString("ch1_current") + ","

+ i.getString("ch1_hz") + ","

+ i.getString("ch2_pf") + ","

+ i.getString("ch2_voltage") + ","

+ i.getString("ch2_current") + ","

+ i.getString("ch2_hz") + ","

+ i.getString("ch3_pf") + ","

+ i.getString("ch3_voltage") + ","

+ i.getString("ch3_current") + ","

+ i.getString("ch3_hz") + ","

+ i.getString("voltage12") + ","

+ i.getString("voltage23") + ","

+ i.getString("voltage31") + ","

+ i.getString("ch1_THDi") + ","

+ i.getString("ch2_THDi") + ","

+ i.getString("ch3_THDi") + ","

+ i.getString("ch1_THDv") + ","

+ i.getString("ch2_THDv") + ","

Appendix 59

+ i.getString("ch3_THDv") + ","

+ i.getString("total_pf")

));

System.out.println(new ProducerRecord<String, String>("PowerData_Minute_HBase",

i.getString("location"), formattedDate + ","

+ i.getString("location") + ","

+ i.getString("KW") + ","

+ i.getString("totalKWH") + ","

+ i.getString("ch1_pf") + ","

+ i.getString("ch1_voltage") + ","

+ i.getString("ch1_current") + ","

+ i.getString("ch1_hz") + ","

+ i.getString("ch2_pf") + ","

+ i.getString("ch2_voltage") + ","

+ i.getString("ch2_current") + ","

+ i.getString("ch2_hz") + ","

+ i.getString("ch3_pf") + ","

+ i.getString("ch3_voltage") + ","

+ i.getString("ch3_current") + ","

+ i.getString("ch3_hz") + ","

+ i.getString("voltage12") + ","

+ i.getString("voltage23") + ","

+ i.getString("voltage31") + ","

+ i.getString("ch1_THDi") + ","

+ i.getString("ch2_THDi") + ","

+ i.getString("ch3_THDi") + ","

+ i.getString("ch1_THDv") + ","

+ i.getString("ch2_THDv") + ","

+ i.getString("ch3_THDv") + ","

+ i.getString("total_pf")

));

}

System.out.println("傳送結束 ");

producer.close();

System.out.println("Message sent successfully");

}

}

Appendix C

Kafka Producer for IGEMS

import org.apache.kafka.clients.producer.KafkaProducer;

import org.apache.kafka.clients.producer.Producer;

import org.apache.kafka.clients.producer.ProducerRecord;

import org.codehaus.jettison.json.JSONArray;

import org.codehaus.jettison.json.JSONException;

import org.codehaus.jettison.json.JSONObject;

import java.io.IOException;

import java.net.URL;

import java.net.URLConnection;

import java.text.DecimalFormat;

import java.util.Properties;

import java.util.Scanner;

public class Producer_PowerData_CC_HBase {

public static void main(String[] args) throws JSONException, IOException {

Properties props = new Properties();

props.put("bootstrap.servers", "140.128.98.31:9092");

props.put("acks", "all");

props.put("retries", 0);

props.put("batch.size", 16384);

props.put("linger.ms", 1);

props.put("buffer.memory", 33554432);

props.put("key.serializer", "org.apache.kafka.common.serialization.StringSerializer");

props.put("value.serializer", "org.apache.kafka.common.serialization.StringSerializer");

props.put("enable.auto.commit", "false");

props.put("auto.offset.reset", "earliest");

Producer<String, String> producer = new KafkaProducer <>(props);

System.out.println("準備傳送 ");

60

Appendix 61

URLConnection connection =

new URL("http://icems.thu.edu.tw/config/getpower.php").openConnection();

Scanner scanner = new Scanner(connection.getInputStream());

String PowerData_CC = scanner.useDelimiter("\\A").next();

//System.out.println(PowerData_CC);

JSONArray k;

JSONObject i;

k = new JSONArray(PowerData_CC);

for (int p = 0; p < k.length() - 1; p++) {

i = k.getJSONObject(p);

if (i.getDouble("11") == 0 || i.getDouble("14") == 0 || i.getDouble("8") == 0) {

double v = 0;

producer.send(new ProducerRecord<String, String>("PowerData_CC_HBase", i.getString("0"),

i.getString("1").substring(0, 19) + ","

+ i.getString("0") + ","

+ v + ","

+ i.getString("8") + ","

+ i.getString("14") + ","

+ i.getString("11")

));

System.out.println(new ProducerRecord<String, String>("PowerData_CC_HBase",

i.getString("0"),

i.getString("1").substring(0, 19) + ","

+ i.getString("0") + ","

+ v + ","

+ i.getString("8") + ","

+ i.getString("14") + ","

+ i.getString("11")

));

} else {

double v = i.getDouble("11") / i.getDouble("14") / i.getDouble("8");

DecimalFormat df = new DecimalFormat("##.00");

v = Double.parseDouble(df.format(v));

Appendix 62

producer.send(new ProducerRecord<String, String>("PowerData_CC_HBase", i.getString("0"),

i.getString("1").substring(0, 19) + "," 間

+ i.getString("0") + ","

+ v + ","

+ i.getString("8") + ","

+ i.getString("14") + ","

+ i.getString("11")

));

System.out.println(new ProducerRecord<String, String>("PowerData_CC_HBase",

i.getString("0"),

i.getString("1").substring(0, 19) + "," //時間

+ i.getString("0") + "," //電表 ID

+ v + "," //V值

+ i.getString("8") + "," //I

+ i.getString("14") + "," //PF

+ i.getString("11") //P

));

}

}

int count_data = k.length() - 1;

System.out.println("共傳送了 " + count_data + "筆資料 ");

producer.close();

}

}

Appendix D

Spark Streaming Write ICEMS to

HBase

import org.apache.spark.streaming._

import org.apache.spark.streaming.kafka._

import org.apache.spark.sql.Row

import org.apache.spark.sql._

import org.apache.hadoop.hbase._

import org.apache.hadoop.hbase.client._

import org.apache.hadoop.hbase.HBaseConfiguration

import org.apache.hadoop.hbase.client.HTable

import org.apache.hadoop.hbase.TableName

import org.apache.hadoop.hbase.client.Put

import org.apache.hadoop.hbase.util._

import scala.collection.JavaConversions._

import org.apache.hadoop.hbase.io.ImmutableBytesWritable

val ssc = new StreamingContext(sc, Seconds(60))

val topicMap = "PowerData_Minute_HBase".split(":").map((_, 1)).toMap

val zkQuorum = "140.128.98.31:2181";

val group = "test-consumer-group"

val lines = KafkaUtils.createStream(ssc, zkQuorum, group, topicMap).map(_._2)

val lines_split = lines.map(x => x.split(",")).map(x => {(x(0), x(1), x(2), x(3))})

lines_split.foreachRDD(rdd => {

rdd.foreachPartition(partitionRecords => {

val conf = HBaseConfiguration.create();

//val conf = new HBaseConfiguration

conf.set("hbase.zookeeper.property.clientPort", "2181")

conf.set("hbase.zookeeper.quorum", "140.128.98.31")

val connection = ConnectionFactory.createConnection(conf);

63

Appendix 64

partitionRecords.foreach(s => {

val table = connection.getTable(TableName.valueOf("powerdata_minute_hbase"))

val put = new Put(Bytes.toBytes(s._2.toString + "_" + s._1.toString.substring(0, 16)))

put.addColumn(Bytes.toBytes("powerdata_minute"), Bytes.toBytes("time")

, Bytes.toBytes(s._1.toString))

put.addColumn(Bytes.toBytes("powerdata_minute"), Bytes.toBytes("location")

, Bytes.toBytes(s._2.toString))

put.addColumn(Bytes.toBytes("powerdata_minute"), Bytes.toBytes("kw")

, Bytes.toBytes(s._3.toString))

put.addColumn(Bytes.toBytes("powerdata_minute"), Bytes.toBytes("totalkwh")

, Bytes.toBytes(s._4.toString))

table.put(put)

table.close()

println(s._1.toString + ","+ s._2 + "寫入 HBase")

})

})

})

ssc.start()

ssc.awaitTermination()

Appendix E

Spark Streaming Write IGEMS

to HBase

import org.apache.spark.streaming._

import org.apache.spark.streaming.kafka._

import org.apache.spark.sql.Row

import org.apache.spark.sql._

import org.apache.hadoop.hbase._

import org.apache.hadoop.hbase.client._

import org.apache.hadoop.hbase.HBaseConfiguration

import org.apache.hadoop.hbase.client.HTable

import org.apache.hadoop.hbase.TableName

import org.apache.hadoop.hbase.client.Put

import org.apache.hadoop.hbase.util._

import scala.collection.JavaConversions._

import org.apache.hadoop.hbase.io.ImmutableBytesWritable

val ssc = new StreamingContext(sc, Seconds(10))

val topicMap = "PowerData_CC_HBase".split(":").map((_, 1)).toMap

val zkQuorum = "140.128.98.31:2181";

val group = "test-consumer-group"

val lines = KafkaUtils.createStream(ssc, zkQuorum, group, topicMap).map(_._2)

val lines_split = lines.map(x => x.split(","))

.map(x => {(x(0), x(1), x(2), x(3), x(4), x(5))})

lines_split.foreachRDD(rdd => {

rdd.foreachPartition(partitionRecords => {

val conf = HBaseConfiguration.create();

//val conf = new HBaseConfiguration

conf.set("hbase.zookeeper.property.clientPort", "2181")

65

Appendix 66

conf.set("hbase.zookeeper.quorum", "140.128.98.31")

val connection = ConnectionFactory.createConnection(conf);

partitionRecords.foreach(s => {

val table = connection.getTable(TableName.valueOf("powerdata_cc_hbase"))

val put = new Put(Bytes.toBytes(s._2.toString + "_" + s._1.toString

.substring(0, 18)+"0"))

put.addColumn(Bytes.toBytes("powerdata_cc"), Bytes.toBytes("time")

, Bytes.toBytes(s._1.toString))

put.addColumn(Bytes.toBytes("powerdata_cc"), Bytes.toBytes("meter_id")

, Bytes.toBytes(s._2.toString))

put.addColumn(Bytes.toBytes("powerdata_cc"), Bytes.toBytes("v")

, Bytes.toBytes(s._3.toString))

put.addColumn(Bytes.toBytes("powerdata_cc"), Bytes.toBytes("i")

, Bytes.toBytes(s._4.toString))

put.addColumn(Bytes.toBytes("powerdata_cc"), Bytes.toBytes("pf")

, Bytes.toBytes(s._5.toString))

put.addColumn(Bytes.toBytes("powerdata_cc"), Bytes.toBytes("p")

, Bytes.toBytes(s._6.toString))

table.put(put)

table.close()

println(s._1.toString + ","+ s._2 + "寫入 HBase")

})

})

})

ssc.start()

ssc.awaitTermination()

Appendix F

Power Forecast Using

HoltWinters

package Data_Lake

import java.text.SimpleDateFormat

import java.util.{Calendar, Date, Properties}

import com.cloudera.sparkts.models.HoltWinters

import org.apache.spark.mllib.linalg.Vectors

import org.apache.spark.sql.{Row, SparkSession}

import org.apache.spark.sql.types._

import org.apache.spark.{SparkConf, SparkContext}

object HoltWintersDate {

def main(args: Array[String]): Unit = {

val conf = new SparkConf().setAppName("Simple Application")

val sc = new SparkContext(conf)

val spark = SparkSession

.builder()

.appName("Spark Hive Example")

.getOrCreate()

val jdbcDF = spark.read.format("jdbc")

.option("url", "jdbc:mysql://120.109.150.175:3306/power")

.option("driver", "com.mysql.jdbc.Driver")

.option("dbtable", "PowerHour").option("user", "hpc")

.option("password", "hpcverygood").load()

jdbcDF.createOrReplaceTempView("PowerHour_test")

def getNowDate(): String = {

var now: Date = new Date()

67

Appendix 68

var dateFormat: SimpleDateFormat = new SimpleDateFormat("yyyy-MM-dd")

var hehe = dateFormat.format(now)

hehe

}

def determineDayOfTheWeek(a: Int): Int = {

var dayForWeek = 0

if (a == 1) {

dayForWeek = 7

return dayForWeek

} else {

dayForWeek = a - 1

return dayForWeek

}

}

def trainAndPredict(a: String) = {

var test = spark.sql(a)

println("query:" + a)

println("訓練集 ")

test.show(48)

val dataTrain = test.select("x").rdd.map(r => r(0)).map(_.toString).map(_.toDouble)

.collect()

val ts = Vectors.dense(dataTrain)

val hModel = HoltWinters.fitModel(ts, 24, "Additive", "BOBYQA")

//Multiplicative, Additive

val forecast = hModel.forecast(ts, ts)

val forecastArray = forecast.toArray

println("開始預測 ")

forecastArray.foreach(println)

println("共預測了 " + forecastArray.length + "筆資料 ")

val writeToMySQLArray = Array.ofDim[String](24, 4)

for (i <- 0 to 23) {

writeToMySQLArray(i)(0) = getNowDate()

writeToMySQLArray(i)(1) = i.toString

writeToMySQLArray(i)(2) = "LIB-4"

writeToMySQLArray(i)(3) = forecastArray(i).toString

}

println("寫入開始 ...")

val predictRDD = spark.sparkContext.parallelize(writeToMySQLArray)

val schema = StructType(List(StructField("date", StringType, true)

, StructField("hr", IntegerType, true), StructField("Meter_id", StringType, true)

, StructField("P", DoubleType, true)))

val rowRDD = predictRDD

.map(p => Row(p(0).toString, p(1).toInt, p(2).toString, p(3).toDouble))

Appendix 69

val predictDF = spark.createDataFrame(rowRDD, schema)

val prop = new Properties()

prop.put("user", "hpc")

prop.put("password", "hpcverygood")

prop.put("driver", "com.mysql.jdbc.Driver")

predictDF.write.mode("append")

.jdbc("jdbc:mysql://120.109.150.175:3306/power", "power.PowerHourPredict", prop)

println("已寫入 24筆資料至 MySQL")

}

val sdf = new SimpleDateFormat("yyyy-MM-dd")

val cal = java.util.Calendar.getInstance();

val cal_1 = java.util.Calendar.getInstance();

val cal_2 = java.util.Calendar.getInstance();

val cal_6 = java.util.Calendar.getInstance();

val cal_8 = java.util.Calendar.getInstance();

cal.setTime(sdf.parse(getNowDate()))

cal.add(java.util.Calendar.DATE, -7)

cal_1.setTime(sdf.parse(getNowDate()))

cal_1.add(java.util.Calendar.DATE, -1)

cal_2.setTime(sdf.parse(getNowDate()))

cal_2.add(java.util.Calendar.DATE, -2)

cal_6.setTime(sdf.parse(getNowDate()))

cal_6.add(java.util.Calendar.DATE, -6)

cal_8.setTime(sdf.parse(getNowDate()))

cal_8.add(java.util.Calendar.DATE, -8)

val day = determineDayOfTheWeek(cal.get(Calendar.DAY_OF_WEEK))

println("現在日期 :" + getNowDate() + " 星期 " + day)

println("上週日期 :" + sdf.format(cal.getTime))

day match {

case 1 =>

var sqlDate = "'" + sdf.format(cal.getTime) + "'"

var sqlDate_1 = "'" + sdf.format(cal_6.getTime) + "'"

var sqlQuery = "select round(`p`/1000, 1) as x from PowerHour_test

where `Meter_id` = 'LIB-4' and `p`/1000 > 10

and `date` in " + "(" + sqlDate + ", " + sqlDate_1 + ")"

trainAndPredict(sqlQuery)

case 2 =>

var sqlDate = "'" + sdf.format(cal.getTime) + "'"

var sqlDate_1 = "'" + sdf.format(cal_8.getTime) + "'"

Appendix 70

var sqlQuery = "select round(`p`/1000, 1) as x from PowerHour_test

where `Meter_id` = 'LIB-4' and `p`/1000 > 10

and `date` in " + "(" + sqlDate_1 + ", " + sqlDate + ")"

trainAndPredict(sqlQuery)

case 3 =>

var sqlDate = "'" + sdf.format(cal_1.getTime) + "'"

var sqlDate_1 = "'" + sdf.format(cal_2.getTime) + "'"

var sqlQuery = "select round(`p`/1000, 1) as x from PowerHour_test

where `Meter_id` = 'LIB-4' and `p`/1000 > 10

and `date` in " + "(" + sqlDate_1 + ", " + sqlDate + ")"

trainAndPredict(sqlQuery)

case 4 =>

var sqlDate = "'" + sdf.format(cal_1.getTime) + "'"

var sqlDate_1 = "'" + sdf.format(cal_2.getTime) + "'"

var sqlQuery = "select round(`p`/1000, 1) as x from PowerHour_test

where `Meter_id` = 'LIB-4' and `p`/1000 > 10

and `date` in " + "(" + sqlDate_1 + ", " + sqlDate + ")"

trainAndPredict(sqlQuery)

case 5 =>

var sqlDate = "'" + sdf.format(cal_1.getTime) + "'"

var sqlDate_1 = "'" + sdf.format(cal_2.getTime) + "'"

var sqlQuery = "select round(`p`/1000, 1) as x from PowerHour_test

where `Meter_id` = 'LIB-4' and `p`/1000 > 10

and `date` in " + "(" + sqlDate_1 + ", " + sqlDate + ")"

trainAndPredict(sqlQuery)

case 6 =>

var sqlDate = "'" + sdf.format(cal.getTime) + "'"

var sqlDate_1 = "'" + sdf.format(cal_6.getTime) + "'"

var sqlQuery = "select round(`p`/1000, 1) as x from PowerHour_test

where `Meter_id` = 'LIB-4' and `p`/1000 > 10

and `date` in " + "(" + sqlDate + ", " + sqlDate_1 + ")"

trainAndPredict(sqlQuery)

case 7 =>

var sqlDate = "'" + sdf.format(cal.getTime) + "'"

var sqlDate_1 = "'" + sdf.format(cal_8.getTime) + "'"

var sqlQuery = "select round(`p`/1000, 1) as x from PowerHour_test

where `Meter_id` = 'LIB-4' and `p`/1000 > 10

and `date` in " + "(" + sqlDate_1 + ", " + sqlDate + ")"

trainAndPredict(sqlQuery)

}

}

}

Appendix G

Power Failure Analysis

import org.apache.hadoop.hbase._

import org.apache.hadoop.hbase.client._

import org.apache.hadoop.hbase.HBaseConfiguration

import org.apache.hadoop.hbase.client.HTable

import org.apache.hadoop.hbase.TableName

import org.apache.hadoop.hbase.client.Put

import org.apache.hadoop.hbase.util._

import scala.collection.JavaConversions._

import org.apache.hadoop.hbase.io.ImmutableBytesWritable

val df = sql("SQLQUERY")

val df_1 = sql("SQLQUERY")

val data_RDD = df.rdd

val data_RDD_1 = df_1.rdd

val data = data_RDD.map(_.mkString(",")).take(data_RDD.count().toInt)

.map(x => x.split(","))

val data_1 = data_RDD_1.map(_.mkString(",")).take(data_RDD_1.count().toInt

.map(x => x.split(","))

import java.text.SimpleDateFormat

import scala.collection.mutable.ArrayBuffer

val data_ArrayBuffer = new ArrayBuffer[Long]()

val data_0_ArrayBuffer = new ArrayBuffer[Long]()

val data_1_ArrayBuffer = new ArrayBuffer[Long]()

// val data_2_ArrayBuffer = new ArrayBuffer[Long]()

for(i <- 0 to data.length-2) {

if(data(i)(0).toLong - data(i+1)(0).toLong > 300

&& data(i)(0).toLong - data(i+1)(0).toLong < 10800){

71

Appendix 72

val df = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss")

val date = df.format(data(i+1)(0).toLong * 1000L)

data_ArrayBuffer += data(i+1)(0).toLong

data_0_ArrayBuffer += data(i+1)(0).toLong

data_0_ArrayBuffer += data(i)(0).toLong

println(date + "," + data(i+1)(0) +"斷電 ")

}

}

println("化學系館預估共斷電了 " + data_0_ArrayBuffer.length/2+ "次")

for(i <- 0 to data_1.length-2) {

if(data_1(i)(0).toLong - data_1(i+1)(0).toLong > 300

&& data_1(i)(0).toLong - data_1(i+1)(0).toLong < 10800){

val df = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss")

val date = df.format(data_1(i+1)(0).toLong * 1000L)

data_1_ArrayBuffer += data_1(i+1)(0).toLong

println(date + "," + data_1(i+1)(0) +"斷電 ")

}

}

println("圖書館預估共斷電了 " + data_1_ArrayBuffer.length + "次")

val final_data = data_ArrayBuffer.intersect(data_1_ArrayBuffer)

for(i <-0 to final_data.length-1){

val df = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss")

val date = df.format(final_data(i) * 1000L)

val recovery_date =

df.format(data_0_ArrayBuffer(data_0_ArrayBuffer.indexOf(final_data(i))+1) * 1000L)

val total_time = {(data_0_ArrayBuffer(data_0_ArrayBuffer.indexOf(final_data(i))+1))

-data_0_ArrayBuffer(data_0_ArrayBuffer.indexOf(final_data(i)))} / 60

val conf = HBaseConfiguration.create();

conf.set("hbase.zookeeper.property.clientPort", "2181")

conf.set("hbase.zookeeper.quorum", "140.128.98.31")

val connection = ConnectionFactory.createConnection(conf);

val table = connection.getTable(TableName.valueOf("powerdata_loss_hbase"))

val put = new Put(Bytes.toBytes(date.toString + "_" + recovery_date.toString

.substring(0, 16)))

put.addColumn(Bytes.toBytes("powerdata_loss"), Bytes.toBytes("date"),

Bytes.toBytes(date.toString))

put.addColumn(Bytes.toBytes("powerdata_loss"), Bytes.toBytes("recovery_date")

, Bytes.toBytes(recovery_date.toString))

put.addColumn(Bytes.toBytes("powerdata_loss"), Bytes.toBytes("total_time"),

Bytes.toBytes(total_time.toString))

Appendix 73

table.put(put)

table.close()

println(date + "," + "發生斷電 , " + recovery_date + "復電 ,共斷電了 " + total_time +

"分鐘 ")

}

println("全校預估共斷電了 " + final_data.length + "次")

	摘要
	Abstract
	致謝詞
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivation
	1.2 Thesis Contributions
	1.3 Thesis Organization

	2 Background Review and Related Works
	2.1 Data Lake
	2.2 Hadoop Ecosystem
	2.2.1 Apache Kafka
	2.2.2 Apache Spark
	2.2.3 Spark Streaming
	2.2.4 Spark MLlib
	2.2.5 Apache Superset

	2.3 Big Data Storage
	2.3.1 Apache Sqoop
	2.3.2 HDFS
	2.3.3 Apache Hive
	2.3.4 Apache HBase

	2.4 Query Engine
	2.4.1 Apache Impala
	2.4.2 Apache Phoenix

	2.5 Related Works

	3 System Design and Implementation
	3.1 System Architecture
	3.2 System Services
	3.2.1 Data Transfer
	3.2.2 Data Collection
	3.2.3 Data Storage
	3.2.4 Data Analysis
	3.2.5 Data Visualization

	3.3 System Implementation

	4 Experimental Results
	4.1 Experimental Environment
	4.2 The Speed of Transferring Historical Data
	4.3 Data Lake's Comparison of Different Search Engines
	4.4 Streaming Data Storage
	4.5 Power Failure Analysis Results
	4.6 Verify Power Forecasting Accuracy with MAPE
	4.7 Superset Visualization

	5 Conclusions and Future Work
	5.1 Concluding Remarks
	5.2 Future Work

	References
	Appendix
	A Cloudera Manager Installation
	B Kafka Producer for ICEMS
	C Kafka Producer for IGEMS
	D Spark Streaming Write ICEMS to HBase
	E Spark Streaming Write IGEMS to HBase
	F Power Forecast Using HoltWinters
	G Power Failure Analysis

