fr Fp L

W Spark 2 T A EZFPLF B FELFT S
y-3

The Implementation of Data Storage and Analytics
Platform for Big Data Lake of Electric Loads Using Spark

£ &

"EF B PR g R THRIAAEARDERING B
BRER AT R TE A ITHHR A TR E PRIL e b B f jF o LA
Reh ol B AP ST D EREY LB EGAS B R OTRE S
EARFTRAOFHELL AR A ok BERFTHBNE® LRI L
1emE 7 i B 18 JDBC el 42 & TR B B TR R WA R
F o Fptdeie %Iﬁup ASE N TP S B E - BARE > 0 A BPR
Ahwm R - BERN RGO A RE I TR kT LT
FHE AR A TR 538 Sqoop ¥ i Benfrd TR E S I Hive AT A
fE o TpEag 'Jﬁ?f%}i%ﬁr} Kafka $4F Fiflen= A4 ¢ 1 * Spark Streaming 77
R A 4 g T B » HBase i TP F L enik s 0 1 Hive fv HBase
PAKZEE TR AN EFT RS M ¥ L Impala 2 Phoenix #) $f
Hive v HBase t z #0&F 318 2 o A%< » J1* Spark #& 5% T FF &2 ET7 29
SRR REY THA 0 AT k¢ ¢ & HBase + > A2 o
FAR LR ﬁu‘rﬁ"i%"ﬁé Apache Superset % = o

MEET: B R TR FRES FRREC LR FR

Abstract

With the rapid development of the Internet of Things and Big Data technology,
the speed of data generation and accumulation is quite alarming. The data stor-
age and analysis technology of the traditional architecture has become not suitable
enough by the processing of large amounts of data. Take our campus as example.
In the past,we used the power data from data center and campus to be stored
separately in two different database systems. The amount of data accumulated
is very large over a long period of time. There is no doubt that Big Data tech-
nology brings significant benefits such as efficiency and productivity. However, a
successful approach to Big data migration requires efficient architecture. How to
import existing systems into Data Lake and Big Data technologies is a trend and
a challenge. In this work, we proposed an architecture to import existing power
data storage system of our campus into Big data platform with Data Lake. We
use Apache sqoop to transfer historical data from existing system to Apache Hive
for data storage. Apache Kafka is used for making sure the integrity of streaming
data and as the input source for Spark streaming that writing data to Apache
HBase. To integrate the data, we use the concept of Data Lake which is based
on Hive and HBase. Apache Impala and Apache Phoenix are individually used
as search engines for Hive and HBase. This thesis uses Apache Spark to analyze
power consumption forecasting, and power failure. The results of the analysis
will be stored on HBase. All visualizations of this thesis are presented by Apache

Superset.

Keywords: Big Data, Data Lake, Data Storage, Data Visualization, Power Data

ii

R

AR FThWY GRS A AN D R REFIRE L - 7
FAAZE L4 A e TR HPC R % E > F Y L7 F b
DIRIE L TEARAL AT R AL E DR L P 4 B K A T
R ET BN S KGR R AN B W L F
fei 3 ”erv'fﬂ oo Ap Bl B A A LS ek 2 ’FK’l ik enfles o

ST EL R R TR P SIS RIS MK KRR
FHRNGERCE S ERBREDTR L ELJ’FS% AL {4y o
WA HPC nF Lo~ F 5 i dodp 3o T o #0IBEHET 05 E e A
¢ﬁf¥’$&Wm%”ﬁ%yﬂﬁﬂmpi%i&iﬁ%ﬂo T
AEBEG - T AT R YRS R A &

“@*Z

B i PR SR BEIE § BB TR AR - LR)
LR A Gt A RART SAEL Bk 2 05 B s A2
ﬁ””bﬂméﬁﬁl%w’4ﬁ%ﬁ*ﬁﬁi%gﬁmgﬁ,&T%gw;mﬁmegﬁ%
)ﬁ‘%i d ?‘L ’5’1"‘ %]’F'l) 3\ fr’rﬂ i}" _}\; L;ﬁ,_;l_i_,ﬁ L gﬁ:}‘%@.‘]‘ﬁi ﬂaﬂ .

R EFRIAE S FORPEFHRE M - F= £

iii

Table of Contents

F & i
Abstract ii
R iii
Table of Contents iv
List of Figures vi
List of Tables viii
1 Introduction 1
1.1 Motivatiold . . ot S5 o F ¢ . 2
1.2 Thesis Contributions 3
1.3 Thesis Organization 4

2 Background Review and Related Works 5
2.1 Data Lake . g =3 == =gl)
2.2 Hadoop Ecosystem oo 6
2.2.1 Apache Kafka 6

2.2.2 ApacheSpark 8

2.2.3 Spark Streaming 9

224 Spark MLIib 10

2.2.5 Apache Superset L. 10

2.3 Big Data Storage 11
2.3.1 Apache Sqoop 12

232 HDFS 13

2.3.3 Apache Hive 14

2.3.4 Apache HBase 14

24 Query Engineo Lo 18
24.1 Apache Impala o0 18

2.4.2 Apache Phoenix 19

2.5 Related Works 20

3 System Design and Implementation 23

iv

TABLE OF CONTENTS v
3.1 System Architecture L 23
3.2 System Services 24

3.2.1 Data Transfer 24
3.2.2 Data Collection 25
3.2.3 Data Storage 27
324 DataAnalysis. 30
3.2.5 Data Visualization 33
3.3 System Implementation 35

4 Experimental Results 38
4.1 Experimental Environment L. 38
4.2 The Speed of Transferring Historical Data, 39
4.3 Data Lake’s Comparison of Different Search Engines 41
4.4 Streaming Data Storage 41
4.5 Power Failure Analysis Results 44
4.6 Verify Power Forecasting Accuracy with MAPE 45
4.7 Superset Visualization oL, 48

5 Conclusions and Future Work 50
5.1 Concluding Remarks 50
5288 uture Work T e e e e e W N, o & 51

References 52

Appendix 56

A Cloudera Manager Installation 56

B Kafka Producer for ICEMS 57

C Kafka Producer for IGEMS 60

D Spark Streaming Write ICEMS to HBase 63

E Spark Streaming Write IGEMS to HBase 65

F Power Forecast Using HoltWinters 67

G Power Failure Analysis 71

List of Figures

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17
3.18
3.19
3.20

4.1

The Architecture of Katka 8
Sparkfifibrary®ey . T . K. . " N . W 9
The Architecture of Spark Streaming 10
Spark Streaming Workflow 10
Superset Dashboard00 0. 11
Sqoop Basic Workflowo 12
The Architecture of HDFS 13
The Architecture of Hive 15
The Relationship between Hadoop and Hive 15
The Architecture of HBase Service 16
Data Modelof HBase 17
The Architecture of Impala 18
The Architecture of Phoenix 19
Swistemn Arehitegiiire’ . 4.55-s0% 1% % F. . . 8. 24
Sqoop Workflow for Data Transferring 25
Data Collection Workflow 25
Kafka Producer for IGEMS 26
Kafka Producer for ICEMS 26
Spark Streaming Write Data to HBase for IGEMS 26
Spark Streaming Write Data to HBase for ICEMS 26
The Architecture of Data Storage 27
Phoenix Shell 28
Impala Shell 29
Hue GUI Interface 29
Table Format 30
The Architecture of Supserset 33
The Structure of SQLAlchemy 33
Editing Database’s SQLALchemy 34
Word Cloud Chart 34
Cloudera Manager Web User Interface 36
Nodes of Cloudera Cluster 36
HUE Web User Interface 37
Superset Dashboard for Power Data 37
Cloudera Cluster 39

LIST OF FIGURES vii

4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15
4.16

Comparison of m Number for 7G Table 40
Comparison of m Number for 17G Table 40
Execution Time of Searching by Hive and Impala 41
Execution Time of Ordering by Hive and Impala. 42
Execution Time of Searching by Phoenix, Hive and Impala 42
Execution Time of Searching by Phoenix and Impala 43
Execution Time of Counting by Phoenix, Hive and Impala 43
The Table of Power Failure 44
Bar Chart for Power Failure 44
Comparison of actual and predicted values of 0312 week 46
Comparison of actual and predicted values of 0319 week 47
Time Series Chart for Power Data 48
Bi¥Chant for Poyeigliama . . - " m ey % . s 48
Bar Chart for Power Data 49

Dashboard fro IGEMS 49

List of Tables

2.1

3.1

4.1
4.2
4.3
4.4

Difference between Current Data Lake and Data Lake with Spark . 22

Software Specifications 35
Experimental Environment L0000 39
MAPE error value level 45
Daily MAPE value for 0312 week 46
Daily MAPE value for 0319 week 47

viii

Chapter 1

Introduction

In the current era of the rapid flow of information, there is no doubt that Big
Data [1] brings significant benefits such as efficiency and productivity. If compa-
nies can analyze data in depth, they can mine enormous potential to make decisions
more precise, clear, and quick. In the past, companies were able to face increasing
data and application problems by importing database, data warehouse [2], and
developing business intelligence [3]. With the development of science and technol-
ogy, the amount of data has continued to increase, and the types have become

more complex.

The traditional architecture will not be suitable enough, and it will also lead to
the new construction to deal with the challenge of Big Data. It takes a lot of time
for relational database and data warehouse system to check for user’s confirmation,
data model establishment, data import and verification. And many times in the
collecting of data, it’s not sure how the data model should be established, and

high expansion costs and limitations on vertical architectures is a problem also.

With the rise of the Internet of Things [4] and the increase in the speed of
the Internet, more and more sensors are deployed around our lives, and the speed
and quantity of streaming data generated are quite tremendous. Therefore, how
to properly design a system to store streaming and Big Data is an important issue

to think. Importing Big Data technology has become a trend.

1

Chapter 1 Introduction 2

The traditional architecture of data storage system is insufficient in the search
and analysis of Big Data. We can improve the search speed and keep the integrity
of data by importing existing systems into Big Data platform with Data Lake, if
the traditional architecture data storage system want to use the Big Data platforms
for analysis and storage. We can transfer historical data and write real-time data
to Data Lake without affecting the existing system. In this work, we aim to
implement an architecture that can import existing power data storage system to
Big Data platform with Data Lake and provide Big Data storage, analysis and

visualization module for power data. Specific goals are listed as belows:

1. To transfer historical data from existing system to Data Lake in Hive.
2. To collect streaming data into Data Lake in HBase
3. To analyze the data from Data Lake with Spark MLIlib

4. To utilize Apache Superset to visualize the analysis results by Spark and the
data in Data Lake

1.1 Motivation

The Big Data has 4V characteristics: Volume, Velocity, Variety, and Veracity.
The traditional data storage architecture has been unable to deal with the current
trend of Big Data. Taking our campus as example, we have deployed a lot of smart
meters to collect electricity data in all the campus buildings and data center. In the
past, we have separately stored data center and campus buildings electricity data
in two different database systems. The amount of data accumulated is enormous
over a long period of time. Therefore, if we want to do advanced analysis and
application of these power data, in the current mainstream platform for processing
Big Data is Hadoop [5] and Spark [6] which support the traditional database only
with the JDBC to get data. This makes the time and communication costs of
getting data sources very expensive. Spark supports two types of HDFS-based
data storage and NoSQL [7] databases, Hive and HBase. Therefore, we want to

Chapter 1 Introduction 3

integrate the campus electricity system and the data center electricity system into
our proposed Data Lake system. After the integration, the extraction and use
of data will be more convenient for the analysis of the Big Data platform. After
collecting the data, the most important thing is analysis. How to find out useful
information in the collected data is the main value of Big Data. If we can find out
the trend and distribution of power consumption from power data, even predict
the power usage and abnormal warnings, it is very helpful for making decision

correctly even early when abnormal power usage happened.

In addition to the above mentioned, how to visualize information is also wor-
thy of discussion and research. Currently the mainstream visualization tools in
the market need to be charged. For example, Tableau and Power BI are very pow-
erful which support Hive, Impala, etc and are used by many companies for data
visualization. But what if there is a budget pressure for who wants to visualize
data in a big data database? There is barely no visualization project for big data
database in current Apache Software Foundation open source projects, except for
Apache Superset developed by Airbnb and contributed to the Apache Software
Foundation. Superset is actually a self-service data analysis tool. Its main goal is
to simplify our data exploration and analysis operations and provide data analysts
with a fast data visualization function. The Data Lake visualization part we pro-
posed is presented by Superset. The entire Data Lake platform targets the data
analysts and developers and it is not for an ordinary user. Providing developers

with a unified data source for data analysis and retrieval.

1.2 Thesis Contributions

In this work, we propose a system for power data storage and analysis platform
with Spark and Data Lake. This system is an open source platform which pro-
cesses, analyzes, storing streaming and historical data and visualizes data stored

in Data Lake. These are the main original contributions:

Chapter 1 Introduction 4

1. The design, implementation and test of an entirely open source solution
integrating state-of-the-art components from the Apache ecosystem. This
architecture deals seamlessly with data transfer, collection, storage, analysis

and visualization.

2. Demonstrate how to import an existing storage system to the Big Data
platform With Data Lake and collect data sources from multiple sources
to Data Lake and use Kafka as the message queue to provide data stream

integrity.

3. Power failure analysis and power forecasting modules are proposed in this

work can help schools make better decisions.

4. Integrate Impala and Phoenix as Data Lake’s search engine and provide

better search performance

5. Proposed a complete solution of Data Lake and Big Data platform from the
data transfer, collection, storage, analysis, visualization to campus electricity

environment.

1.3 Thesis Organization

The paper is organized as follows. Chapter 2 introduces the main background
and related works. Chapter 3 gives an overview of the system design and its
implementation of Big data tools from the Apache ecosystem that are integrated
in our framework and shows every component function in the system. Chapter
4 details the experiments and discussion. Finally, in Chapter 5 we provide a

conclusion and the future work for this thesis.

Chapter 2

Background Review and Related
Works

In Chapter 2, we provide several components that are approaching in this
work: Data Lake, Apache Spark, Apache Hive, Apache HBase, Apache Impala,
Apache Kafka, and so on. The next sections discuss each component in more

detail.

2.1 Data Lake

The most commonly cited definition of Big Data is "The huge amount of data
to the database system can not be stored, computed and processed within a rea-
sonable period of time, and it can be analyzed as information that can be inter-
preted.” This definition is relative and will change with the time, industry, and
professional field. The data related to the business activities of many companies or
organizations, regardless of their types, speed, and quantity, are rapidly growing.
Companies are starting to face a lot of data storage problems. In the past, many
companies imported databases, imported data warehouses, and even business in-

telligence. To face the ever-growing data and application problems of the data.

Chapter 2 Background Review and Related Works 6

It’s no doubt that Big Data has brought huge benefits such as efficiency and pro-
ductivity However, as data continues to increase, the traditional architecture will
probably not be sufficient. Enterprises understand that if they can analyze data
in deep, they will be able to use their enormous data potential to make decisions
faster, clearer, and more elaborate. However, the efficiency of data management

and analysis tools must increase dramatically first.

The concept of Data Lake [8] [9] first appeared in an article in the 2011 Forbes
magazine “Big Data Requires a Big, New Architecture” . Data from the data
warehouse is generally of high quality and has been pre-processed, but Data Lake
store any types and as a storage pool for all data, it facilitates user’s analysis
and use. The definition of Data Lake is a super large scale storage space with
low cost. For example, Hadoop [10] can store any type of data until user needs
to do business analysis or data mining. The data stored in Data Lake is the
most original form and has not been processed or managed. There are four main
features of Data Lake: saving Big Data with less cost(Low Cost), maintaining high
fidelity of data(Fidelity), ease of accessibility(Ease of Accessibility), and flexible

data analysis(Flexible)

2.2 Hadoop Ecosystem

2.2.1 Apache Kafka

Kafka [11] [12] [13] is a message queue system that is designed to be fast, scalable,
and durable. It is an open-source stream processing platform. Apache Kafka
originated at LinkedIn and later became an open-source Apache project in 2011,
then a first-class Apache project in 2012. Kafka is written in Scala and Java. It
aims at providing a high-throughput, low-latency platform for handling real-time
data feeds. In Big Data, an enormous volume of data is used. But how are we

going to collect this large volume of data and analyze that data? To overcome this,

Chapter 2 Background Review and Related Works 7

we need a message queue system. That is why we need Kafka. The functionalities

that it provides are well-suited for our requirements, and thus we use Kafka for:

1. Building real-time streaming data pipelines that can get data between sys-

tems and applications.

2. Building real-time streaming applications to react to the stream of data.

Kafka has four core APIs as figure 2.1 shows:

e The Producer API allows an application to publish a stream of records to

one or more Kafka topics.

o The Consumer API allows an application to subscribe to one or more topics

and process the stream of records produced to them.

o The Streams APT allows an application to act as a stream processor, consum-
ing an input stream from one or more topics and producing an output stream
to one or more output topics, effectively transforming the input streams to

output streams.

o The Connector API allows building and running reusable producers or con-

sumers that connect Kafka topics to existing applications or data systems.

Chapter 2 Background Review and Related Works 8

Producers
App App App
App
DB
T Kafka Stream
Connectors Cluster
= Processors
DB \
a5 App
App App App
Consumers

FIGURE 2.1: The Architecture of Kafka

2.2.2 Apache Spark

Apache Spark [6] is an open-source cluster computing framework originally de-
veloped in the AMPLab at UC Berkeley. Compared to the two-stage disk-based
MapReduce paradigm of Hadoop, Spark’s in-memory primitives provide perfor-
mance up to 100 times faster for certain applications. By permitting user pro-
grams to load data into memory of a cluster and repeatedly query it, Spark is well
suited for machine learning algorithms. Spark requires a cluster manager and a
distributed storage system. For cluster management, Spark supports standalone
(native Spark cluster), Hadoop YARN, or Apache Mesos. For distributed storage,
Spark can interface with a wide variety of systems, including Hadoop Distributed
File System (HDFS), Cassandra, OpenStack Swift, and Amazon S3. Spark also
supports a pseudo distributed local mode, usually used only for developing or test-
ing purposes, where distributed storage is not required and the local file system

can be used instead; in this scenario, Spark is running on a single machine with

Chapter 2 Background Review and Related Works 9

one executor per CPU core. In 2014, Spark has more than 465 contributors, mak-
ing it the most vigorous project in the Apache Software Foundation and Big Data

open source projects. Spark provides four main library as the figure 2.2 shown.

Spark MLlib
Streaming @ (machine
learning)

Apache Spark

FIGURE 2.2: Spark Library

2.2.3 Spark Streaming

Spark Streaming is an extension of the core Spark API that enables scalable,
high-throughput, fault-tolerant stream processing of live data streams. Data can
be ingested from many sources like Kafka, Flume, Twitter, ZeroMQ, Kinesis, or
TCP sockets, and can be processed using complex algorithms expressed with high-
level functions like map, reduce, join and window. Finally, processed data can be
pushed out to filesystems, databases, and live dashboards like figure 2.3 shows.
Internally, it works as figure 2.4. Spark Streaming receives live input data streams
and divides the data into batches, which are then processed by the Spark engine

to generate the final stream of results in batches.

Chapter 2 Background Review and Related Works 10

Kafka

Flume HDFS
HDFS/s3 E:> Spark Streaming |:> Databases
Kinesis Dashboards
Twitte

F1cURE 2.3: The Architecture of Spark Streaming

Input data Batches of Batches of
stream input data processed data

Spark Spark
| sueaming |10 frane | I

FIGURE 2.4: Spark Streaming Workflow

2.2.4 Spark MLIlib

MLIib [14] makes practical machine learning scalable and easy. It consists of com-
mon learning algorithms and utilities, including classification, regression, cluster-
ing, collaborative filtering, dimensionality reduction, as well as lower-level opti-

mization primitives and higher-level pipeline APIs. It is divided into 2 packages:

1. mllib contains the original API built on top of RDDs.

2. ml provides higher-level API built on top of dataframes for constructing ML

pipelines.

2.2.5 Apache Superset

Superset is an open source data visualization and exploration platform from Airbnb.
It was launched in March 2016. The platform provides an intuitive and interac-
tive interface for data visualizations. Superset used to be called Caravel, and

Panoramix previously. Superset provides a faster way of visualizing data. It is

Chapter 2 Background Review and Related Works 11

highly extensible platform with built in security controls. Apache Superset pro-
vides a faster way of creating data visualization and analysis models. Superset is a
powerful BI tool that almost matches the power of PowerBI and Tableau. It comes

with tons of features for business users. It consists of two primary interfaces:

1. A Rich SQL IDE (Interactive Development Environment) enabling fast and

flexible access of data.

2. A Data Exploration Interface that converts data tables into rich visual in-

sights.

The combination of these two interfaces enables users to consume data in a
variety of ways. Users can directly visualize data from tables stored a variety
of databases including Presto, Hive, Impala[7], Spark[8] SQL, MySQL, Postgres,
Oracle, Redshift, and SQL Server. With the addition of a SQL IDE, it provides
users with the ability to compose SQL queries to restructure or reduce the size
of your data or union data across tables. Additionally, users can immediately

visualize their query results using Superset’s Visualized flow.

Participants Genders Title Average and Sum Trends

®oy @i @avo_num
. g
‘ Birth Names Dashboard 14
E y
-
1ZDK‘
1106
100
Name Cloud
- P)
’a% 3 % P i 25: \ / wsl
% g & N
N B4t %S
« 6‘00 <, unay é @ Genders by State
X
3 & 2 & \ [————
% 2 &M S SO sam
S § e e
& neg < |
H H A
s & N s\\\\Q\ = E 200
H “‘\\\, = = 3
L < e 5 2 200m
- s{, % » S
% m. 2% ® Sig
=2 = ‘B [3 1.00M!
P) o =S oo™ 1
o E i Thomas N I Y % % 5 < o % % % .
L wony PPOL oy lssish s £ S
Trends Girls Boys
Amanda @Ancrew @Anthony @Ashiey @Brian Chistopher ©Daniel @Davd @Eizabetn @James @Jason @Jennfer @Jessica @uorn name. sum_num ¥ 5 name sum_num F
@uosepn @Joshuz @Kevin Matthew @ Michael @ Nicholas Robet @Ryan @Saah @Tnomas @ Wikam Jonwiier, 134M Michael 24m

Jessica 997k Christopher 173m
Ashley 8% David 157M
Sarah a5k James 151M
Amanda 7206 John 143m
Eiizabeth LZES Matthew 136M
Melissa 665 Roert 131M
Michelle 65% Daniel 116M
Kimberly 648 Joseph 111M
Steohanie 628k Wiliam 111M

FIGURE 2.5: Superset Dashboard

2.3 Big Data Storage

Chapter 2 Background Review and Related Works 12

2.3.1 Apache Sqoop

Apache Sqoop [15] is SQL to Hadoop. Sqoop is a convenient tool that moves
data between traditional relational database and NoSQL. Sqoop takes advantage
of Hadoop MapReduce parallel feature that accelerates data migration by batch
processing.

Sqoop is an import tool that supports data migration from relation database to
Hive, HDFS, and Hbase; it also supports full table import and incremental table
import. Figure 2.6 shows the basic workflow of Sqoop. When Sqoop imports table
data from RDB, it depends on different split-by values to split data; next it lets
segmented blocks assigned in different map, and each map will process its block

data. Finally, it stores data in the Hadoop distributed storage system.

e Sqoop feature:
1. High efficiency resources control; parallel processing task to save pro-
gram execution time.

2. Data type mapping and transforming can be automatically; users can

also define their own data.

3. Supporting multiple relational databases, such as MySQL, Oracle, SQL

Server, DB2.
Sqoop
|
[1
map())} —
— Y | o
E:?RD;—::T» Input Data Output Data »r@@i{@j
T — map()) — S N S—
C] — I
— reduce()
map()

FIGURE 2.6: Sqoop Basic Workflow

Chapter 2 Background Review and Related Works 13

2.3.2 HDFS

HDFS [16] is a distributed file system designed to run on commodity hardware.
The detection of faults and automated recovery is an important architectural goal
of HDFS. HDFS has master-slave architecture with a single Name Node as the
master server to manage the file system [1]. Besides, a number of DataNodes,
usually one per node in the cluster, manage storage attached to the nodes. HDFS
describes a file system namespace and allows user data stored in files. Internally,
a file is split into one or more blocks that are stored in a set of Data Nodes. The
Name Node executes file system namespace operations such as to open, close, and
rename files and directories, and it controls the mapping of blocks to Data Nodes
as well. The Data Nodes are responsible for responding read and write requests
from clients of the file system. HDFS ensures input distribution and provides
the user with an interface whose role is to provide chunks of data files to cluster
nodes. Among its chief advantages, HDFS provides input locality by enabling
nodes hosting input shards to apply their processing on such chunks, rather than

on remotely stored data. Figure 2.7 shows the architecture of HDFS

Metadata(Name, Replicas,...):
NameNode { /home/foo/data, 3, ...

Metadata ops
Block ops

Replication

DataNodes \ / DataNodes

Write Write

FIGURE 2.7: The Architecture of HDFS

Chapter 2 Background Review and Related Works 14

2.3.3 Apache Hive

Apache Hive [17] is a data warehouse solution that has been developed by Apache
software Foundation to integrate data storage and to query and manage large
datasets. Hive as a data warehouse application on top of Hadoop MapReduce,
allows the users to handle the data stored in it as if it was stored in a regular
databases. Hive provides a mechanism to project structure onto this data, and
query the data using a SQL-like language called HiveQL. Hive enables user with
experiences of using traditional RDBMS to do familiar queries on MapReduce.

The advantages of Hive are as follows:

Very powerful.

o Easy to learn and understand.

« Portable and multiple data views.

o Used with and DBMS system with vendor.

o Well defined standards exist and used relational databases.
o High speed, integrating with Java.

Figure 2.8 shows the architecture of Hive, and Figure 2.9 shows the relationship

between Hadoop and Hive.

2.3.4 Apache HBase

Apache HBase [18] [19] is a project undertaken by Powerset to deal with the
huge amount of data generated by natural language searching. But now it is
already a top-level project of the Apache Foundation. HBase runs on HDFS
and has attracted widespread attention. Facebook chose HBase to implement its
messaging platform in November 2010. HBase is distributed database on HDFS

architecture, and is different from general relational database. It is modelled with

Chapter 2 Background Review and Related Works 15

HADOOP

Execution
Engine

Compiler Ll
P Store

I Reduce
Operator

ree

FIGURE 2.8: The Architecture of Hive

lob
Tracker

Driver
DataNode (Compiler, Thrift IDBC/
+ Optimizer, Server ODBC
Task \ Executor)
Web
GUI

Tracker

FIGURE 2.9: The Relationship between Hadoop and Hive

reference of Google’s BigTable, programmed in Java, and fault-tolerant for storing
massive sparse data. The tables from HBase can be used as inputs and outputs
in MapReduce tasks. It can be accessed through the Java API, and it also can
be accessed by REST, Avro or the Thrift API. Today, it has been used in a
number of data-driven sites, including Facebook’s messaging platform. In order
to conveniently separate data and operation work, the entire data table is divided
into many regions. One region is composed of one or more columns, which can be
stored in different hosts called as the region servers; master server is used to record

a region corresponding to each region server; besides, there is the master server to

Chapter 2 Background Review and Related Works 16

record every region server corresponding to every region. The master server will

automatically reassign regions on the region server that cannot provide services to

another region server. The HBase service architecture is shown in Figure 2.10.

MemStore Store
StoreFile || StoreFile
»
: » MemStore
|:> HRegion | | > StoreFile
Client o » |HFile |
o >
H el
I En : % IE> HRegion | [H W .> MemStore Store
-Put() 1) » StoreFile | | StoreFile
-delete() én |HFiIe | |HFiIe |
. KeyValue’s -
-incr() T v
Log Sync()
Flusher
Hlog
Log Il EEEN 'S BN
lush > B BN E e D BN
Flusher rollwriter()
FIGURE 2.10: The Architecture of HBase Service
¢ Data Model

HBase can provide MapReduce programs with data sources or storage space.
After HBase version 0.20, it provides TableMapper and TableReducer cat-
egories to allow inheritance of the Mapper and Reducer classes. And thus,
the key and value in MapReuce can be more easily removed and stored in
HBase. HBase uses the row and column as index to access data. It is more
like using map container when querying. Another feature of HBase is that
each piece of data has a timestamp, so that in a same field there are mul-
tiple sets of data of different time. An HBase data table is composed of a
number of row and column families; each column has a row key as index. A
column family is a set of column labels, which may have many groups of la-
bels. These labels can be added as needed any time without having to reset
the entire data table. When accessing data in data table, one usually uses
a combination of (‘row key’, ‘family: label’) or (‘row key’, ‘family: label’,
‘timestamp’, ‘value’) to retrieve the required fields. Next, we will introduce

the Data Model in HBase, which is shown in Figure 2.11.

Chapter 2 Background Review and Related Works 17

One column family can have variable no of columns

A

Multi-versioned

Rowkey Column Family 1: Column Qualifier 1 Timestamp Value
Rowkey Column Family 1: Column Qualifier 1 Timestamp Value
Rowkey Column Family 1: Column Qualifier 1 Timestamp Value

~/

Call within a Column family are stored physically

FIGURE 2.11: Data Model of HBase

Chapter 2 Background Review and Related Works 18

2.4 Query Engine

2.4.1 Apache Impala

Apache Impala [20] is a real-time SQL query engine that brings scalable parallel
database technology for the Hadoop ecosystem. It allows user use SQL to query
petabytes of data stored in HDFS and HBase without data movement or trans-
formation. Impala uses Hive metastore, and it can be used to querying data from
Hive tables directly. Unlike Hive, Impala SQL does not translate the queries into
MapReduce jobs but executes them natively. However, Impala is memory inten-
sive and does not run effectively for heavy data operations like joins because it is
not possible to push in everything into the memory. The architecture of Impala

is shown in figure 2.12

Common Hive SQL and interface Unified metadata

|

— .-
—»

— [e

— G

e
FIGURE 2.12: The Architecture of Impala

L
Local --

Direct Reads

Chapter 2 Background Review and Related Works 19

2.4.2 Apache Phoenix

Apache Phoenix [21] is an efficient SQL interface for Apache HBase. Many
companies are successfully using this technology, including Salesforce.com, where
Phoenix first started. Phoenix adds SQL to HBase, the distributed, scalable, Big
Data store built on Hadoop. Phoenix aims to ease HBase access by supporting
SQL syntax and allowing inputs and outputs using standard JDBC APIs instead
of HBase’ s Java client APIs. It lets you perform all CRUD and DDL operations
such as creating tables, inserting data, and querying data. SQL and JDBC reduce
the amount of code that users need to write, allow for performance optimizations
that are transparent to the user, and opens the door to leverage and integrate lots

of existing tooling.

Internally, Phoenix as shown in figure 2.13 takes your SQL query, compiles it
into a series of native HBase API calls, and pushes as much work as possible onto
the cluster for parallel execution. It automatically creates a metadata repository
that provides typed access to data stored in HBase tables. Phoenix” s direct use of
the HBase API, along with coprocessors and custom filters, results in performance
on the order of milliseconds for small queries, or seconds for tens of millions of

TOWS.

Phoenix ZooKeeper Quorum m
Client s

y
/

S
'3
™
o
.
™

.
N
.
~

Region Server -

Phoenix

FIGURE 2.13: The Architecture of Phoenix

Chapter 2 Background Review and Related Works 20

2.5 Related Works

Sarathkumar Rangarajan et al. [22] proposed an architecture for Personalized
Healthcare Service Recommendation using Big Data Lake which just simply uses
HDEFS as the base of Data Lake. Their data lake architecture does not use any
search engine to provide data queries. It is simply using HDFS as a data store.
How to manage the data stored on HDFS not explained. Maanak Gupta et al, [23]
are about Data Lake, but also a simple description of HDFS as a storage space,
and there is no further research on how to manage data. The main focus of this
article is on the control of data access rights, which is also very important for this
thesis in the future. How to consider information security in the future is also one

of the directions of this thesis.

The architecture we proposed is close to Pradeeban Kathiravelu and Ashish
Sharma et al. [24] proposed but the difference is that they use Data Café Server
to catch real-world biomedical data repository with various data collections and
multiple relationships across them to Hive and select Apache Drill as the search
engine. In this work we use kafka as the message queue to catch the data generated
from the smart meters we deployed in campus and kafka will form the data stream

as the input source for spark streaming.

Solaimani et al. [13] presented a novel, generic real-time distributed anomaly
detection framework for multi-source stream data. They investigated anomaly
detection for a multi-source VMware-based cloud data center, which maintains
a large number of virtual machines (VMs). This framework continuously moni-
tors VMware performance stream data related to CPU statistics. It collects data
simultaneously from all of the VMs connected to the network and notifies the
resource manager to reschedule its CPU resources dynamically when it identifies
any abnormal behavior from its collected data. Effective anomaly detection in
this case demands a distributed framework with high-throughput and low latency.
Distributed streaming frameworks like Apache Storm, Apache Spark. Kafka is

well compatible with Spark. It provides guaranteed message delivery with proper

Chapter 2 Background Review and Related Works 21

ordering. This means that messages sent by a producer to a particular topic parti-
tion will be delivered in the order they are sent, and a consumer also sees messages
in the order they are stored. Moreover, a Kafka cluster can be formed to lower
processing latency and provide fault tolerance without loss of data. Experimen-
tal results show that the use of spark streaming can effectively detect abnormal
conditions. Therefore, this thesis refers to this paper also uses the framework of

Kakfa and Spark Streaming.

Zhang et al. [25] 2013 used HBase to store big data since HBase provides
the distributed data storage cluster through HDFS in Hadoop, It is good for big
data storage and processing. Their experiments indicate a good performance since
their system use HBase as a big data database. Yue Wang et al. [26] 2015. The
Apache Hive has been widely used for big data analysis. By providing the SQLIlike
query language HiveQL, it lower the threshold of big data query. Hive query
data efficiently since HiveQL convert into MapReduce tasks. Anja Gruenheid et
al. [27] 2011. Hive is a data warehousing solution on top of the Hadoop framework
that store date in the Hadoop distributed file system (HDFS). Through using
MapReduce assisted SQL query, it more efficient than traditional SQL query.
Accordingly, these thesis proposed using HBase or Hive to solve the big data

storage.

Chao-Tung Yang et al. [28] they builds a cloud storage system with HBase of
Hadoop for storing and analyzing big data of medical records and improves the
performance of importing data into database. The data of medical records are
stored in HBase database platform for big data analysis. In [29] Ren-Hao Liu et
al, proposed a system to collect the electricity usage data in campus buildings
through smart meters and environmental sensors, and process the huge amount
of data by big data processing techniques. According to the experimental results
shows [28] [19], this thesis selects HBase as the storage of streaming data and also

this thesis is an extension of the [29]

Their proposed architecture does not support a solution for importing existing

systems into Data Lake. This thesis differs from the above papers in that we

Chapter 2 Background Review and Related Works 22

propose a complete solution for importing the existing system into the Data Lake
and uses the two different natures of the Hive and HBase storage schemes to
form a hybrid rather than a single Data Lake. The above-mentioned Data Lake
architecture does not propose a data visualization solution. Our architecture can

visualize Data Lake’s data.

The biggest difference between the proposed architecture and the current so-
lution is to provide search engine, historical data, streaming data import and

visualization.

TABLE 2.1: Difference between Current Data Lake and Data Lake with Spark

Current Data Lake | Data Lake with Spark

HDFS
Historical Data Import
Streaming Data Import

Search Engine
Visualization

2| 2| 2| 2| =<
=L

Chapter 3

System Design and

Implementation

This section introduces the system design architecture and implementation
of the proposed power data storage and analysis platform with Spark and Data
Lake. The system, based on cloud architecture for Big Data, first collects the
streaming data generated from smart meters with Apache Kafka and transfers
the historical from existing storage system and then processes and analyzes these
data to efficiently obtain real-time power information and perform abnormality
forecast. Moreover, the proposed system supports historical data queries and

behavior analysis.

3.1 System Architecture

This thesis presents an architecture for data collecting, data storage, analysis [13],
and data visualization. In the part of data collecting, the data is divided into
historical data from existing system and streaming data, and all data stores in
Data Lake which is based on Hive and HBase [19]. It also use Apache Phoenix [21]
and Apache Impala as search engine to allow user can search and use data quickly.

Data Lake stores all the original data. We use Spark MLIib [30] to analyze the

23

Chapter 3 System Design and Implementation 24

data and store the result to Data Lake and the results are visualized by Apache

Superset.

Real Time Data

kafka
ke, o

MLlib

s t.r eam i N g The Machine Learning Library

SEEKE

History Data

O E(&SEI\"X cloude

2,

Superset

‘/n;l‘/\ NN /\. -
o/ \‘_ (. /'\,/‘\L ’,/ Y\
' HIES

FIGURE 3.1: System Architecture

3.2 System Services

These section introduces the main service provided by the Data Lake system we
proposed. Including data transfer, data collection, data stoarge, data analysis and

data visualization.

3.2.1 Data Transfer

In order to transfer the data from the existing storage system to Hive, we use
Apache Sqoop [15] to move historical data to the architecture we propose and use
the characteristics of parallelism to speed up the overall movement of data. Sqoop
is a data transfer tool that can transfer data from a traditional relational database
to a Hadoop storage system by using Hadoop MapReduce parallelism to speed up
the process of data migration. It supports not only transfer data from MySQL

Chapter 3 System Design and Implementation 25

to HDF'S but also Hive and HBase. Figure shows the workflow for transferring

historical data from relational data base to Hive table.

)

Sl e

Operational
Database

Hadoop
reduce() Data Warehouse

1)

mapl) |

FI1GURE 3.2: Sqoop Workflow for Data Transferring

3.2.2 Data Collection

For streaming data collecting generated from smart meters deployed all over the
campus, we uses Kafka [11] to catch and form the data stream as stream input
source for Spark Streaming. The time of Spark Streaming calculation interval will
be exactly same as the update speed of the original streaming data. In this way,
the data stream formed by Kafka can be perfectly matched with Spark Streaming.
The data stream received by Spark Streaming will be presented in the form of
DStream. Writing DStream to HBase completes the collection of streaming data.

The overall data collection process is shown in the figure 3.3 below.

Data Source
ICEMS 66/min

(:)(:)(:)(:) Kafka Cluster
Spark HBase
pig by

Kafka Producer —
IGEMS 19/sec

ool N
park R
i — —
s S S S S
FE LS o
Kafka Producer

Spark
Streaming

FIGURE 3.3: Data Collection Workflow

Chapter 3 System Design and Implementation

Figure 3.4 and Figure 3.5 show that Kafka’s producer catch the source APIs

for ICEMS and IGMES and write it to Kafka cluster’s broker.

B hpc@nodeds: -

o ———

Ll_lg g h,g@nems 3

e . iy -

el

I2018-05-30 18:11:05, THUC-M0019-UPS-B, 121.38,14.3,0.98,1701.0

2018-05-30 18:11:15, THUC-MO001-AC-main, 217.4,49.044,0.45,4798.0 | 2018 05-30 18:11:24,5-2,46.92,480716.70,1.00,119.30,160.33,60.03,1.00,119.70,120
2018-05-30 18:11:15, THUC-M0002-AC-R-F,0.0,0.0,1.0,0.0 .72,60.03,1.00,119.80,111.34, 60.03,207.00, 207.40,207.10,8.80,9.40,10.40,0.90,0.7
2018-05-30 18:11:15, THUC-MO00S-server-main, 217.6,108.554,0.866,20456.0 0,1.00,1.00

2018-05-30 18:11:15, THUC-M0004-UPS-H,217.61,17.082,0.799,2970.0 2018-05-30 18:11:11, CAC-WIRED-1,6.90,1.32,1.00,0.00,23.20,60.00,1.00,0.00,28.70

2018-05-30 18:11:16, THUC-M0003-AC-R-R,217.2,42.347,0.47,4323.0 60.00,1.00,0.00,34.20,60.00,120.50,119.60,120.00,1.00,0.00,0.00,0.00,0.00,0.00,1
2018-05-30 18:11:14, THUC-MO008-AC-L-RS,0.0,0.0,1.0,0.0 .00

2018-05-30 18:11:16, THUC-M0009-AC-L-LH,0.0,0.0,1.0,0.0 2018-05-30 18:11:11,CH-WIRED-2,78.10,4.66,1.00,127.30,701.50,60.00,1.00,129.00,8
2018-05-30 18:11:15, THUC-M0007-UPS-T,120.29,3.897,0.977,458.0 0.00,60.00,1.00,128.50,83.50,60.00,221.80,222.90,221.50,0.71,0.00,0.00,0.00,0.00
2018-05-30 18:11:15, THUC-MO011-UPS-J,0.0,0.0,1.0,0.0 ,0.00,0.71

2018-05-30 18:11:15, THUC-M0012-UPS-X,0.0,0.0,1.0,0.0 2018-05-30 18:11:38,A-1,19.46,70135.40,0.98,119.10,63.26,60.03,0.88,119.70,60.25
2018-05-30 18:11:15, THUC-M0010-UPS-G,120.2,10.566,0.648,823.0 ,60.03,0.98,119.80,48.42,60.03,206.80,207.40,206.90,14.80,16.20,13.40,0.90,0.90,

2018-05-30 18:11:14, THUC-MO006-UPS-F, 120.29,10.673,0.87,1117.0 1.00,0.95

2018-05-30 18:11:15, THUC-MO018-UPS-H-Back, 120.8,10.398,0.988,1241.0 |2018-05-15 13:32:21, Lib-MP Panel 1L1,6.26,38247.90,0.97,118.20,11.04,60.01,0.99

2018-05-30 18:11:15, THUC-M0016-UPS-D,121.86,4.9,0.973,581.0 117.90,18.41,60.01,0. 93 118.10,25.98,60.01,204.50,204.40,204.60,17.00,14.50,14.3
2018-05-30 18:11:15, THUC-MO015-UPS-C,121.79,8.3,0.922,932.0 0,2.10,1.90,1.90,0.9

2018-05-30 18:11:15,THUC-M0013-UPS-A,121.53,16.7,0.914,1855.0 2018-05-30 11 2,ST 023-L (AC),0.43,22703.90,0.74,218.40,2.60,60.04,0.00,0.00
2018-05-30 18:11:15,THUC-M0017-UPS-E1-E2,119.7,22.123,0.972,2574.0 ,0.00,60.04,0.00,0.00,0.00,60.04,218.40,0.00,0.00,0.40,0.00,0.00,1.00,0.00,0.00

2018-05-30 18:11:15, THUC-MO019-UPS-B,121.9,14.0,0.978,1669.0 0.74

2018-05-30 18:11:25, THUC-MO001-AC-main,217.3,49.142,0.451,4816.0 2018-05-30 18:11:34,ST-023-R (AC),3.87,26046.50,0.96,218.60,18.40,60.04,0.00,0.0
2018-05-30 18:11:26, THUC-M0002-AC-R-F,0.0,0.0,1.0,0.0 0,0.00,60.04,0.00,0.00,0.00,60.04,218.60,0.00,0.00,6.90,0.00,0.00,1.10,0.00,0.00
2018-05-30 18:11:24, THUC-MO005-server-main,217.7,109.2,0.863,20516.0 ,0.96

2018-05-30 18:11:25, THUC-M0004-UPS-H,217.69,17.149,0.791,2953.0 2018-05-30 18:11:20,ST-021 (AC),0.31,44549.80,0.94,218.50,1.50,60.04,0.00,0.00,0
2018-05-30 18:11:26, THUC-MO003-AC-R-R, 217.3,42.394,0.471,4339.0 .00,60.04,0.00,0.00,0.00, 60.04,218.50,0.00,0.00,0.20,0.00,0.00,1.00,0.00,0.00,0

2018-05-30 18:11:25, THUC-MO008-AC-L-RS, 0.0,0.0,1.0,0. o 94

2018-05-30 18:11:25, THUC-M0009-AC-L-LH, 0.0,0.0,1.0,0 2018-05-30 18:11:02,ST-023 (Class-Room),1.24,12906.00,0.67,119.60,4.68,60.02,0.7
2018-05-30 18:11:25, THUC-M0007-UPS-I,120.31,3.844,0. 973 450.0 9,120.00,6.16,60.02,0.59,119.10, 3.98, 60.02,207.50,207.10, 206.80, 51.20, 46.80, 66.0
2018-05-30 18:11:25, THUC-M0011-UPS-J,0.0,0.0,1.0,0.0 0,0.00,0.00,0.00,0.71

2018-05-30 18:11:25, THUC-M0012-UPS-K, 0.0,0.0,1.0,0.0 2018-05-30 18:11:10,ST-021 (Class-Room),1.12,15595.30,0.90,108.10,5.74,60.03,0.7
2018-05-30 18:11:23, THUC-M0010-UPS-G,120.2,10.668,0.673,863.0 7,108.60,3.23,60.03,0.94,108.40,2.88, 60.03,187.70,188.00,187.60, 45.20,79.40,42.8
2018-05-30 18:11:25, THUC-MO006-UPS-F,120.3,10.786,0.884,1147.0 0,0.10,1.10,0.80,0.88

2018-05-30 18:11:25, THUC-MO018-UPS-H-Back, 120.8,10.356,0.992,1241.0 2018-05-30 18:11:05,ST-019 (Class-Room),0.62,4352.40,0.83,107.60,6.83,60.04,-0.8
2018-05-30 18:11:25, THUC-M0016-UPS-D, 121.74,4.9,0.974,581.0 8,107.10,7.08,60.04,0.86,108.50,7.22,60.04,186.00,186.70,187.10,67.90,53.30,56.9
2018-05-30 18:11:23, THUC-MO015-UPS~C,121.21,8.4,0.938,955.0 0,1.10,1.40,0.00,2.72

2018-05-30 18:11:25, THUC-MO013-UPS-A,121.97,16.6,0.93,1883.0 2018-05-30 1 2,57-020 (Class-Room),1.26,17658.50,0.89,108.10,5.71,60.03,0.7
2018-05-30 18:11:23, THUC-M0017-UPS-E1-E2,119.7,22.064,0.978,2583.0 9,108.80,1.71,60.03,0.94,108.10,5.58, 60.03,187.90,187.80,187.30, 49.90,44.00,32.6
2018-05-30 18:11:25, THUC-MO019-UPS-B,121.32,14.3,0.977,1695.0 0,0.90,0.80,1.10,0.90

1 =l]

FIGURE 3.4: Kafka Producer for

IGEMS

FIGURE 3.5: Kafka Producer for
ICEMS

Spark Streaming will receive the data stream from Kafka (Dstream) and write

it to HBase table through HBase API as shown in the figure 3.6 and figure 3.7.

o

[l

2018-05-30
2018-05-30
2018-05-30
2018-05-30
2018-05-30
2018-05-30
2018-05-30
2018-05-30
2018-05-30
2018-05-30
2018-05-30
2018-05-30
2018-05-30
2018-05-30
2018-05-30
2018-05-30
2018-05-30

2018-05-30
2018-05-30
2018-05-30
2018-05-30
2018-05-30
2018-05-30
2018-05-30
2018-05-30
2018-05-30
2018-05-30
2018-05-30
2018-05-30
2018-05-30
2018-05-30
2018-05-30
2018-05-30
2018-05-30
18-05-30

18/05/30 18:
ted to only 0
18:
18:
18:

15, THUC-M0002-AC-R-F5 A HBase

115, THUC-M0005-server-main® A HBase
115, THUC-M0004-UPS-HEZ A\ HBase

115, THUC-M0003-AC-R-REZ_AHBase

115, THUC-M0008-AC-L-RSEZ A HBase
115, THUC-M0009-AC-L-LHXZ A HBase
115, THUC-M0007-UPS-1%% A HBase

115, THUC-M0011-UPS-J%% A HBase

115, THUC-M0012-UPS-KX% A HBase

115, THUC-M0010-UPS-GXZ_A HBase

115, THUC-M0006-UPS-F%%_A HBase

115, THUC-M0018-UPS-H-Back®% A HBase
115, THUC-M0016-UPS-DXE A HBase

:15, THUC-M0015-UPS-C%% A HBase

:15, THUC-M0013-UPS-A%E A HBase

:15, THUC-M0017-UPS-E1-E2%5 A HBase
:15, THUC-M0019-UPS-B%S A HBase
9 WARN storage.BlockManager:
peer (s)
08:
125, THUC-M0002-AC-R-F%5 A HBase

125, THUC-M0005-server-mainZ A HBase
125, THUC-M0004-UPS-HES _A HBase

125, THUC-M0003-AC-R-REZ_A HBase

125, THUC-M0008-AC-L-RSES_A HBase
125, THUC-M0009-AC-L-LHES A HBase
125, THUC-M0007-UPS-I%5_A HBase

125, THUC-M0011-UPS-J% AHBase

125, THUC-M0012-UPS-K%Z AHBase

25, THUC-M0010-UPS-GZZ A\ HBase

25, THUC-M0006-UPS-FZS A\ HBase

25, THUC-M0018-UPS-H-BackE A HBase
25, THUC-M0016-UPS-DES A HBase

25, THUC-M0015-UPS-CEZ A HBase

25, THUC-M0013-UPS-A%E A HBase

25, THUC-M0017-UPS-E1-E2%Z AHBase
25, THUC-M0019-UPS-BES A HBase

Block input-0-1527674899200 replica
instead of 1 peers
25, THUC-M0001-AC-main%$ A HBase

2018-05-30 11 1,BS-635 A\HBase

2018-05-30 11 6,H-2%% A\HBase

2018-05-30 18:04:26,BS-735 AHBase

2018-05-30 11 5, BS-63% AHBase

2018-05-30 11 7, BS-8% AHBase

2018-05-30 11 8,BS-7%5 A\HBase

2018-05-30 11 6,BS-9%% \HBase

2018-05-30 11 9,BS-8%5 \HBase

2018-05-30 1 0,BS-10%_A\HBase

2018-05-30 11 4,BS-9%5 A\HBase

2018-05-30 11 6,5-1%5 A\HBase

2018-05-30 11 5,BS-103% AHBase

2018-05-30 11 9,5-25% A\HBase

2018-05-30 18:05:14,5-1%F AHBase

2018-05-30 1 4,5-25% AHBase

2018-05-30 1 2, CAC-WIRED-1%3 A HBase

2018-05-30 1 07, CAC-WIRED-1%_A HBase

2018-05-30 1 2, CH-WIRED-2%3 A HBase

2018-05-30 1 7, CH-WIRED-2%5 _A HBase

2018-05-30 1 5,A-1%% AHBase

2018-05-30 1 3,A-1% AHBase

2018-05-15 1 1,Lib-MP Panel 1L1%S AHBase

2018-05-15 1 1,Lib-MP Panel 1L1%E AHBase

2018-05-30 1 2,5T-023-1L (AC) % AHBase

2018-05-30 18:05:20,5T-023-L (AC) 3% AHBase

2018-05-30 1 023-R (AC) B AHBase

2018-05-30 1 7,5T-023-R (AC) 3 AHBase

2018-05-30 18:04:10,5T-021 (AC) %% AHBase

2018-05-30 1 6,ST-021 (AC) % AHBase

2018-05-30 1 0,5T-023 (Class-Room) 2% AHBase

2018-05-30 18:05:09,5T-023 (Class-Room) ZZ AHBase

2018-05-30 1 9,5T-021 (Class-Room)Z% AHBase

2018-05-30 1 7,5T-019 (Class-Room) 3 AHBase

2018-05-30 1 1,5T-021 (Class-Room)ZE AHBase

2018-05-30 1 6,ST-020 (Class-Room)XZ AHBase

2018-05-30 1! 3,ST-019 (Class-Room) 2Z A HBase
1 4,ST-020 (Class-Room)XE AHBase

I 018-05-30

FIGURE 3.6:

Spark Streaming

Write Data to HBase for IGEMS

FicUrRe 3.7: Spark Streaming
Write Data to HBase for ICEMS

Chapter 3 System Design and Implementation 27

3.2.3 Data Storage

We use Hive and HBase as the basis for our Data Lake platform, both of them are
based on HDFS. Hive will translates SQL syntax into map-reduce job to search
data on HDFS, usually used for Big Data queries offline like shown in figure 3.8.
We chose to transfer the historical data of the old system to Hive by Apache sqoop
to facilitate the query and analysis of Big Data. HBase is responsible for storing
streaming power data on our system because HBase has high throughput and low
latency. Beasuse of these features. it is very suitable for faster reading and writing
operations in Big Data. In addition, we provide two kinds of search engines for
each of these two different feature databases. Two search engines, Apache Impala
for Hive and Apache Phoenix for HBase, can provide them with excellent query

performance with SQL individually.

Search Engine

Impala :
p Phoenix Real-Time Data by

Historical Data by Sqoop .
Spark Streamin
— “ HBase H

F1cURE 3.8: The Architecture of Data Storage

It is worth noting that Impala also has support for operating HBase, but using
HBase native syntax does not support SQL syntax. But in fact, by mapping the
HBase table to the Hive table, Impala can use Hive to operate HBase and use SQL
syntax. But the reason we chose phoenix is that phoenix is a project specifically
designed to provide SQL syntax for HBase. phoenix will translate the SQL syntax
into HBase syntax to query. The overall performance is better than via Hive or

Impala.

Chapter 3 System Design and Implementation 28

The overall storage architecture is based on HDF'S. Data storage is divided into
streaming and historical data. Streaming data is stored on HBase and phoenix
is used as a search engine that user can use SQL syntax. Figure 3.9 shows the
Phoenix-Shell.

Brozores- T =

TABLE_CAT TABLE_SCHEM TABLE NAME TABLE TYPE REMARKS
SYSTEM CATALOG SYSTEM TABLE
SYSTEM FUNCTION SYSTEM TAEBLE
SYSTEM SEQUENCE SYSTEM TABLE
SYSTEM STATS SYSTEM TABLE
POWERDATA CC_HBASE VIEW
powerdata cc_hbase VIEW
powerdata_minute hbase VIEW
0: jdbc:phoenix:140.128.101.177:2181> select "time", "location”, "kw" from "powerdat
a_minute hbase" where "location" = 'LIB-4' order by "time" DESC limit 30;
time location kw
2018-05-30 14:31:08 LIB-4 334.64
2018-05-30 14:30:19 LIB-4 340.35
2018-05-30 14:29:25 LIB-4 336.90
2018-05-30 14:28:02 LIB-4 329.05
2018-05-30 14:27:23 LIB-4 331.%6
2018-05-30 14:26:30 LIB-4 330.58
2018-05-30 14:25:07 LIB-4 330.80
2018-05-30 14:24:14 LIB-4 333.72
2018-05-30 14:23:17 LIB-4 330.07
2018-05-30 14:22:12 LIB-4 334.64
2018-05-30 14:21:15 LIB-4 341.83
2018-05-30 14:20:37 LIB-4 338.84
2018-05-30 14:19:19 LIB-4 335.00
2018-05-30 14:18:33 LIB-4 314.30
2018-05-30 14:17:18 LIB-4 313.32
2018-05-30 14:16:12 LIB-4 317.12
2018-05-30 14:15:39 LIB-4 321.8¢6
2018-05-30 14:14:21 LIB-4 326.72
2018-05-30 14:13:37 LIB-4 317.21
2018-05-30 14:12:29 LIB-4 320.63
2018-05-30 14:11:01 LIB-4 323.28
2018-05-30 14:10:38 LIB-4 307.09
2018-05-30 14:09:11 LIB-4 297.91
2018-05-30 14:08:31 LIB-4 290.85
2018-05-30 14:07:13 LIB-4 285.83
2018-05-30 14:06:33 LIB-4 289.32
2018-05-30 14:05:14 LIB-4 287.25
2018-05-30 14:04:17 LIB-4 287.61
2018-05-30 14:03:09 LIB-4 281.53
2018-05-30 14:02:01 LIB-4 290.04
30 rows selected (7.43 seconds) E
0: jdbc:phoenix:140.128.101.177:2181> I L

FIGURE 3.9: Phoenix Shell

The reason we don’t using Hive to store streaming data is if we use spark
streaming to write streaming data to Hive in this work, each write will create a
folder in Hive’s directory. As the time past, the overall Hive performance will be
very slow, so we choose HBase as a database for high-speed write of streaming

data.

Hive is used as a database of existing system data. Because the existing system
data tables are large, Hive is suitable for cleaning and processing large amounts

of data. In this work, Impala was used as Hive’s search engine. Figure 3.10 shows

the Phoenix-Shell.

Chapter 3

System Design and Implementation

29

BB hpe@nodens:~ T o]]|
[node05:21000]) > select "time, "meter_id", "p’ /1000 from powerdata_cc hbase limit 2 -
0;

Query: select “time”, ‘"meter id", "p /1000 from powerdata cc_hbase limit 20

Query submitted at: 2018-05-30 14:36:19 (Coordinator: http://node05:25000)

Query progress can be monitored at: http://node05:25000/query plan?query_id=4%4e914b
6c5a494b:ec28c99500000000

time meter id p / 1000
2018-03-15 22:06:10 THUC-M0005-server-main 19.522
2018-03-15 22:06:20 THUC-M0005-server-main 19.57
2018-03-15 22:06:30 THUC-M0005-server-main 19.525
2018-03-15 22:06:40 THUC-M0005-server-main 19.443
2018-03-15 22:06:50 THUC-M0005-server-main 19.535
2018-03-15 22:07:00 THUC-M0005-server-main 19.463
2018-03-15 22:07:10 THUC-M0005-server-main 19.387
2018-03-15 22:07:20 THUC-M0005-server-main 19.462
2018-03-15 22:07:30 THUC-M0005-server-main 19.532

2018-03-15 22:07:40	THUC-M00O5-server-main	19.652

2018-03-15 22:07:50 THUC-M0005-server-main 15.431
2018-03-15 22:08:00 THUC-MO005-server-main 19.606
2018-03-15 22:08:10 THUC-M0005-server-main 15.478
2018-03-15 22:08:20 THUC-MO005-server-main 19.427
2018-03-15 22:08:30 THUC-M0005-server-main 15.305
2018-03-15 22:08:40 THUC-M0005-server-main 19.415
2018-03-15 22:08:50 THUC-M0005-server-main 15.45¢
2018-03-15 22:09:00 THUC-M0005-server-main 19.391
2018-03-15 22:09:10 THUC-M0005-server-main 19.296
2018-03-15 22:09:20 THUC-M0005-server-main 19.22

Fetched 20 row(s) in 0.31s
[node05:21000] > [

FIGURE 3.10: Impala Shell

You are accessing a non-optimized Hue, please switch to one of the available addresses: ht 10de05:8889

= eue

(0

< Sdefault

Tables
lib_day
powerdata_cc
powerdata_cc_hbase
powerdata_loss_hbase
powerdata_minute
powerdata_minute_hbase
powerminute
powerminute_0317
powerminute_0317_day
powerminute_0411
powerminute_pure
powerrecord

powerrecord_0317

Results (1,024+)

key kw location time totalkwh

" Impala *
a3) 1 LWIRED-12018-0317 21:51 31 LWIRED-1 20180317 21:51:00 404
2 L-WIRED-1.2018-03-17 21552 31 L-WIRED-1 2018-03-17 21:52:00 404
> Aggregate
3 L-WIRED-1.2018-03-1721:53 31 L-WIRED-1 2018-03-17 21:53:00 404
¥ Analytic
4 L-WIRED-1.2018-03-17 21554 3.1 L-WIRED-1 2018-03-17 21:54:00 404 > Bit
5 LWIRED-12018-031721:55 31 LWIRED-1 20180317 21:55:00 404 ¥ Conditional
B ¥ Date
L-WIRED-1_2018-03-17 21:57 31 LWIRED-1 20180317 21:57:00 404 > Mathematical
7 L'WIRED-12018-03-17 21:58 32 LWIRED-1 2018-03-1721:58:00 404 > Misc
8 > String
L-WIRED-1_2018-03-17 22:00 32 LWRED-1 2018-03-1722:00:00 404
> Type Conversion
? LWIRED-1.201803-17 22:01 3.8 LWRED-1 2018-03-172201.00 404
10 LWIRED-1.201803-17 2202 38 LWRED-1 2018-03-1722:02:00 404
" LwiRED-1.2018-0317 22:03 44 L-WIRED-1 2018-03-1722:03.00 404
12
L-WIRED-1_2018-03-17 22:04 35 LWIRED-1 2018-03-1722:04:00 404
13
L-WIRED-1_2018-03-17 22:05 34 LWRED-1 2018-03-1722:05.00 404
14
L-WIRED-1_2018-03-17 22:06 3 LWIRED-1 2018-03-17 22:06:00 404
15
L-WIRED-12018-03-17 22:07 3 LWIRED-1 20180317 22:07:00 404
16
L-WIRED-1_2018-03-17 22:08 3 L-WIRED-1 2018-03-17 22:08:00 404
17
L-WIRED-1_2018-03-17 22:09 3 L-WIRED-1 2018-03-17 22:09:00 404
18
L-WIRED-1_2018-03-17 22:10 3 L-WIRED-1 2018-03-1722:10:00 404
19
L-WIRED-1_2018-03-17 22:11 31 LWIRED-1 20180317 22:11:00 404
20
L-WIRED-1_2018-03-17 22:12 31 L-WIRED-1 2018-03-17 22:12:00 404
21
L-WIRED-1_2018-03-17 22:13 31 L-WIRED-1 2018-03-17 22:13:00 404 a
22

FIGURE 3.11: Hue GUI Interface

In addition, the HBase table can be mapped to Hive to operate HBase through

Hive. Hue is a GUI interface that can operate Hive like Figure 3.11 shows, HBase,

and Impala through web pages. Finally, analysts can use impala and phoenix’s

api to obtain data when intercepting data, or connect Hive and HBase directly

through spark SQL.

Chapter 3 System Design and Implementation 30

3.2.4 Data Analysis

In terms of data analysis, provides three analysis modules for this thesis.

1. Porer failure analysis

2. Power forecasting(time-series)

Using Spark MLIib for machine learning of power data, and also using the time
series model for electricity forecasting. Our proposed Algorithm 1 can calculate
the situation of power failure on campus. First, organize the large amount of
historical data stored on the Hive table into a time and meter ID format as shown
in the Figure 3.12. Then In Algorithm 1, use Spark SQL to read the Hive table and
sort the time difference between the two, as long as more than 5 minutes and less
than 180 minutes, it is determined that the power-off or power failure occurs and
compares the status of these two meters to eliminate the single meter failuration.

The results of the analysis are written to HBase and visualized by Superset.

_c0 meter_id
1 1516269960 THUC-MO0179-UPS-B
2 1516269900 THUC-MO019-UPS-B
3 1516269840 THUC-MO019-UPS-B
4 1516269780 THUC-MOD079-UPS-B
5 1516269720 THUC-MO0179-UPS-B
6 1516269660 THUC-MO019-UPS-B
7 1516269600 THUC-MO019-UPS-B
g 1516269540 THUC-MO019-UPS-B
9 1516269480 THUC-MO0179-UPS-B
10 1516269420 THUC-MO019-UPS-B
1 1516269360 THUC-MO019-UPS-B
12 1516269300 THUC-MO0719-UPS-B

FIGURE 3.12: Table Format

Chapter 3 System Design and Implementation 31

Algorithm 1 Power Failure Algorithm

meterl <— array for Meterl's power data
meter2 < array for Meter2's power data
timeGap < meter(0) — meter(1)
for + = 1; 7 < meterl.length; i + + do
if (five minute < timeGap < three hours) then
ArrayBuf fery < power failure time for meterl
end if
end for
for + = 1; @ < meter2.length; i + + do
if (five minute < timeGap < three hours) then
ArrayBuf fery < power failure time for meter2
end if
: end for
: Power Failure Time < ArrayBuf fery N ArrayBuf fery

T T
ol sl

In terms of predicting electricity use, taking into account that the character-
istics of electricity consumption belong to the time series, it may be quite stable
or present a certain trend over time and have seasonal characteristics. Due to
the above characteristics, this paper uses Holt Winters algorithm to predict the
power trend. After experiments confirmed that the forecast method is to use the
power data of the previous two days as training data, the data of the next day
forecasting will be the most accurate. In addition, due to the relationship between
campus routines, training data set for Monday, Tuesday, Saturday and Sunday
were selected at the same time for last week. HoltWinters provides addition and
multiplication methods. Additive method is preferred when seasonal variations
are roughly constant through the series. Multiplicative method is preferred when
the seasonal variations are changing. However, because we have only one day to
predict, we don’t have too significant seasonal changes and we chose Holt Winters’

additive method.

Chapter 3 System Design and Implementation 32

Algorithm 2 HoltWinters forecasting Algorithm

getTrainData < get training data from DB
ts < transform training data to dense vector
PredictArray < array for writing forecasting data to DB
model = HoltWinters. fitModel(ts, Period,” Method”,” BOBY QA”)
forecast = model. forecast(ts,ts)
for i =0;1<23;i+ + do

Predict Array(i)(0) = Date

Predict Array(i)(1) = Hour

Predict Array(i)(2) = Location

PredictArray(i)(3) = Predicted Value
: end for
. forecastDF = (Predict Array.toRDD, schema)
. forecast D F.write.mode(”append”).(DB)

O s
WD = O

In algorithm 2, First, the data to be trained is obtained from the database.
The data type is dataframe. Then it is transformed into a dense vector and
HoltWinters training model is used. The algorithm has three parameters that can
be optimized. The first is T'S, TS is the training data set, and the second is Period
that means seasonality of data i.e period of time before behavior begins to repeat
itself. The third parameter is modeltype, two variations differ in the nature of the
seasonal component. Additive method is preferred when seasonal variations are
roughly constant through the series, Multiplicative method is preferred when the
seasonal variations are changing proportional to the level of the series. Then the
power forecasting function is used to predict the power consumption trend in the
next 24 hours, and the result is converted into RDD combined with schema and

converts to dataframe and writes back to database.

Chapter 3 System Design and Implementation 33

3.2.5 Data Visualization

Superset supports direct query of multiple data sources, including Hive, Impala
and other data sources. However, HBase is not supported, but by mapping HBase
table to Hive table, Superset can visualize HBase data through Impala. The
visualization part of the system in the thesis is connected to the data source with
Impala. Superset extracts real-time data from HBase and historical data from

Hive. The result of any analysis from this system are stored in HBase.

BTN — Superset

mapping

HBase - 2 Py
e:
&) Sa

F1cURE 3.13: The Architecture of Supserset

Hive

SQLALchemy URI is the way that Superset connects to the database, The
Engine is the starting point for any SQLAlchemy application. It is “home base”
for the actual database and its DBAPI, delivered to the SQLAlchemy application
through a connection pool and a Dialect, which describes how to talk to a specific

kind of database/DBAPI combination. The general structure can be illustrated

BEIW —
/

as 3.14.

EONNECT]) Engine DBAPI Database

Dialect

F1GURE 3.14: The Structure of SQLAlchemy

Chapter 3 System Design and Implementation

34

Therefore, as long as the specified URI is set, the specified database is con-

nected and further data exploration is performed. Taking this thesis as example,

Impala’s URI is impala://140.128.101.177:21050/ and tests whether the connec-

tion connection is ok or not like 3.15.

2 oEEES @ ptic YahooSZ= [Facebock B YouTu _ @ Instagram €)
140.128.101.177:8088 BE=

OO Superset Securty v £ Manage + Seems OKI .

Edit Database

Database
TY's Impala

SQLAIchemy URI
impala://140.128.101.177:21050/

Refer to the SqlAlchemy docs for more information on how to structure your URI.

Test Connection

Cache Timeout

Extra

{
"metadata_params™: {},

"engine_params": {}
1

JSON string containing extra configuration elements. The engine_params object gets unpacked into the
sqlalchemy.create_engine call, while the metadata params gets unpacked into the sqlalchemy MetaData call

Expose in SQL 4

Lab ;
Expose this DB in SQL Lab

FicURE 3.15: Editing Database’s SQLALchemy

applepaco EEET » =fing

Ey &y ¥ (o] g

After completing the connection setting, you can display a lot of charts on the

data of the database. Taking the 3.16 as an example, the electricity consumption

of each meter is displayed in Word Cloud. The larger the font is, the greater the

power consumption is. There are some detailed adjustments on the left side that

can be selected like time, font size range, and so on.

OO Superset ¢ Security v 4 Manage v = Souces v lul Sices @ Dashboards A SQLLab v E. av ¥ 0 8
ICEMS_EH#TFEE v % | | Bison | Bosv | ViewQuery
_EE =

~ Query

E-WIRED-1
location x S
Metric []
o . S-1
Series imi “ 2 C-WIRED-1
Select 7 - =
- - AUDA1
~ Options A I\HG-I

ot e From CHU-1 BS
i BS-6

61 1p-1
$S-1

a1 x~ BS-8
Color Scheme ST-z Bs'3 Bs-z
EEECEEE CEEECEEE NN - c"_WIREn_1 H_1

FI1GURE 3.16: Word Cloud Chart

Font Size To
150

ST-023-R (AC)

-9
BS-1

ARG-2

Chapter 3 System Design and Implementation

3.3 System Implementation

In this work, we have established the Big Data cluster for our Data Lake system
through thirteen physical machines, one node as master, twelve nodes as the com-
puting node to set up Cloudera Big Data platform that including CDH (Cloudera
Distribution Including Apache Hadoop), Apache Spark, Apache Kafka, Apache

Sqoop, Apache Hive, Apache Hive, Apache Phoenix and Apache Impala. Table

3.1 shows the software specification of thirteen cluster nodes.

TABLE 3.1: Software Specifications

Version
Cloudera Manager 5.14.0
Hadoop hadoop-2.6.0+cdhb.14.0+2714
HDFS hadoop-2.6.0+cdh5.14.0+2714
Spark spark-2.0.0+cdh5.14.2+543
Sqoop sqoop2-1.99.54+cdh5.14.0+47
Hive hive-1.1.04+cdh5.14.0+1330
HBase hbase-1.2.04+-cdh5.14.04-440
Impala impala-2.11.0+cdh5.14.0+0
Phonenix Phoenix 4.7.0 on CDH5.7
HUE hue-3.9.0+cdhb.14.0+7830
Kafka 0.11.0-katka-3.0.0

Chapter 3 System Design and Implementation

36

The Data Lake platform was built through cloudera. The monitoring platform

provided by cloudera allows us to clearly understand the health status, CPU usage,

memory usage, cluster network 10, and other related information of cluster services

as the figure 3.17 shows.

cloudera MANAGER

Home status AllHealthIssues

Clusters ~ Hosts ~

Diagnostics ~ Audits

Configuration ~

All Recent Commands

Charts +

Administration ~

&

Add Cluster

You are running Cloudera Manager in non-production mode, which uses an embedded PostgreSQL database. Switch to using a supported external database before moving into production. More Details ('

@ TY's Cluster

© =12Hosts
© K Hease
© @ HOFs
© @ Hive
© e Hue

® Y impala
© ¥ Kae
© @ ooze
© <X spark 2
© @ sqoop2
© I YARN (MR2I

© i Zookeeper

Cloudera Management Service

© [cloudera M.

cloudera MANAGER
All Hosts

Filters

STATUS

© Good Health

CLUSTERS

CORES
COMMISSION STATE
LAST HEARTBEAT
LOAD (1 MINUTE)
LOAD (5 MINUTES)
LOAD (15 MINUTES)
MAINTENANCE MODE
RACK

SERVICES

HEALTH TESTS

SUPPRESSED HEALTH
TESTS

Charts

Cluster CPU

percent

HDFS 10

bytes / second

Cluster Network 10

= Total Bytes Recei.. 999K/s = Total Bytes Trans.

Cluster Disk 10

664K/s

=/defaut 60.96 =TYsC|

S h ‘__M

=Total Bytes Read Across DataNodes 1bfs = Total Bytes Written Across Data... 6.8K/s

= Total Disk Bytes R.. 6.1K/s = Total Disk Bytes ... 1.8M/s

FIGURE 3.17: Cloudera Manager Web User Interface

Clusters ~ Hosts v

Diagnostics ~

Actions for Selectad ~

Status

]

O 0 0 0 0 0 0 0 o0 0 o

Name 4

master

node02

node03

node04

node0s

node0s

node07

node0s

node0d

node10

node11

node12

P

140.128.98.31

140.128.98.33

140.128.98.35

140.128.98.36

140.128.101.177

140.128.101.178

140.128.101.201

140.128.101.202

140.128.98.24

140.128.197.72

140.128.197.79

140.128.197.80

Audits

Charts +

Roles
12 Role(s)
7 Role(s)
7 Role(s)
7 Role(s)
27 Role(s)
5 Role(s)
6 Role(s)
6 Role(s)
6 Role(s)
5 Role(s)
5 Role(s)

5 Role(s)

Administration +

Commission State

Commissioned

Commissioned

Commissioned

Commissioned

Commissioned

Commissioned

Commissioned

Commissioned

Commissioned

Commissioned

Commissioned

Commissioned

Configuration

Last Heartbeat = Load Average

7.63sago 17.40 17.22 16.93
7.66sag0 0.02 0.05 0.07
747sago 0.02 0.10 0.08
142sag0 0.04 0.16 0.18
74sago 0.91 1.59 1.46
7.56sag0 012 0.16 0.18
152sag0 423 450 438
7.63sago 0.09 0.08 0.11
7.50sago 0.06 0.25 0.26
565ag0 0.00 0.00 0.00

13.99sago 10.02 10.01 10.00

549530 0.00 0.00 0.00

Add New Hosts to Cluster

Cores

a2

CDH Version

CDH5.13.0

CDH5.13.0

CDH5.13.0

CDH5.13.0

CDH5.13.0

CDH5.13.0

CDH5.13.0

CDH5.13.0

CDH5.13.0

CDH5.13.0

CDH5.13.0

CDH5.13.0

FIGURE 3.18: Nodes of Cloudera Cluster

&

Disk Usage
_157368/17Ti8
_755G18/901.1 618
_724GB/9089 68
_66.6G18/908.9 6B
_203168/17Ti8
_708Gi8/901.1 618
_714Gi8/9011 618
_71.4GB/901.168
_7266i8/909.1 618
_8166i8/99268
_ 3268/992068

80.3GiB/ 992 GiB

Re-run Up

2 | sea Support = admin ~

Try Cloudera Enterprise for 60 Days

30m 1h 2h 6h 12h 1d 7d 30d &~

uster 60.96

2

grade Wizard

Support + admin

Inspect All Hosts

Columns:| 12 Selected +

Physical Memory
_114cB/62868
__2268/15568
__196B/776iB
__186B/776i8
_31668/125868
__1768/15568
__1968/15568
_ 26B/15568
__160B/766i8
__1668/15768
__1668/15768

16GiB/1576iE

Swap Space

08/1668

08/1668

08/1668

We use HUE to provide a UI interface for Hive, HBase, and Impala. Hue not

only supports to manipulate data in Apache Hadoop ecosystem, but also provides

corresponding dynamical search dashboard with Solr. The most important is that

it support interactive query of HiveQL, Impala and HBase/ In figure 3.19 we can

see the visualization interface of Hue.

Chapter 3 System Design and Implementation

37

http://node05:8889

= e&hue Jobs = D &admin
=] -] | Y% Impala Add a name... Add a descriptio RIS Assistani Functions
¢ Edefault Sdefauitv textv & 7 Impala~ T
Tables 3 T+e 1 -
EF lib_day
B2 powerdata_cc > Aggregate
B powerdata_cc_hbase > Analytic
& powerdata_loss_hbase » Bit
B8 powerdata_minute % Conditional
&= powerdata_minute_hbase ¥ Date
5 powerminute Query History Q 5] Saved Queries Q & > Mathematical
&= powerminute_0317 > Misc
7 powerminute_0317_day EET S5 powerdata_minute_hbasefffE SELECT DISTINCT “time’, > String
B powerminute_0411 1 i FROM 3 Type Conversion
& powerminute_pure
B2 powerrecord
&5 powerrecord 0317 2X8 ! TRUNCATE TABLE
powerdata_loss_hoase
2FR] by SELECT * FROM
powerdata_loss_hbase
2FH 1 powerdata_cc_hbase#ff SELECT DISTIN
“meter_id”, “p’/

FIGURE 3.19: HUE Web User Interface

The visualization part of this system is to use Apache Superset as our solution.
We integrate Hive, HBase, Impala as the data source of Superset. Superset pro-
vides many kinds of charts to user to choose whatever they want to use for their
data like Distribution-Bar Chart, Pie Chart, Dual Axis Line Chart, etc. Each
chart is called a slice, a dashboard can be composed of multiple slices like figure
3.20.

+lojv|a=e|n

IGEMS_E[IF # s

IGEMS_BliEs i LEHKPI) F5598) IGEMS_BliEs i LK Donut) (Fi5y58) #5558
° o THU o @®aa_kw
° sH @ sErE2 UPS A
° 3
° s 50

® THUC-M0007-UPS

“fffﬁl;'}\v\x\\

THUC-M0003

407
LI

18T 25 07 7eem zeem s
m seEm sam
I I i s s e e 20

05-server-main

THUC-M0001-AC-main

IGEMS_5/INRf Hitfst
OTHUC-MO001-AC-main @ THUC-MO0DS-server-ma.

02

2|

18.2

2, K 2, %, %, %, %, 2, %, %, %, 2 2, %, %, %, %, %) %, %, 2, K 2,
%, %,
% % % % % % 3 % % % % % 3 % % % % 3 % % % % %

e
00:00:00 010000 020000 030000 040000 050000 050000 070000 080000 090000 100000 110000 120000 130000 140000 150000 160000 170000 180000 190000 200000 210000 220300

FIGURE 3.20: Superset Dashboard for Power Data

Chapter 4

Experimental Results

In this section, the experimental environment and results of the Power Data
Storage and Analysis Platform with Spark and Data Lake are described. In sec-
tion 4.1, we introduce the experimental environment and implementation of the
proposed system. Sections 4.2 to 4.5 show the experiment of performance tests for

verifying the efficiency of the system.

4.1 Experimental Environment

This section presents our hardware experimental environment. The proposed sys-
tem is implemented with 13 physical servers connected by Gigabit Ethernet to
build a computing cluster. Each physical server consists of Intel Core i7 CPU
with 16 GB Memory and 1TB HD. Besides, Ubuntu 14.04 is adopted as our oper-
ating system. Also, Hadoop 2.6.0-cdh5.14.0, Spark 2.0.0, Sqoop 1.4.5, Hive 1.2.1,
and HBase 1.0.0 are installed, as shown in Table 4.1 and Figure 4.1

38

Chapter 4 Experimental Results

39

TABLE 4.1: Experimental Environment

CPU RAM | DISK
Master | Intel(R) Xeon(R) CPU E5-2630 v3 @ 2.40GHz | 64G | 2T
Node01 | Intel(R) Core(TM) i7-4770 CPU @ 3.40GHz | 16G 1T
Node02 | Intel(R) Core(TM) i7-4770 CPU @ 3.40GHz | 16G 1T
Node03 | Intel(R) Core(TM) i7-4790 CPU @ 3.60GHz 8G 1T
Node04 | Intel(R) Xeon(R) CPU E3-1230 v3 @ 3.30GHz | 8G 1T
Node05 | Intel(R) Core(TM) i7-6950X CPU @ 3.00GHz | 128G | 2T
Node06 | Intel(R) Core(TM) i7-4770 CPU @ 3.40GH 16G 1T
Node07 | Intel(R) Core(TM) i7-4770 CPU @ 3.40GH | 16G | 1T
Node08 | Intel(R) Core(TM) i7-4770 CPU @ 3.40GH | 16G | 1T
Node09 AMD Phenom(tm) II X6 1055T Processor 8G 1T
Nodel0 | Intel(R) Xeon(R) CPU E5-2620 v3 @ 2.40GHz | 16G | 1T
Nodell | Intel(R) Xeon(R) CPU E5-2620 v3 @ 2.40GHz | 16G 1T
Nodel2 | Intel(R) Xeon(R) CPU E5-2620 v3 @ 2.40GHz | 16G 1T

4.2 The Speed of Transferring Historical Data

FIGURE 4.1: Cloudera Cluster

For the transfer of historical data, we use Apache Sqoop to transfer 7G and

17G data separately for the two data tables of the existing storage system, and

Chapter 4 Experimental Results 40

used the characteristics of parallelism to speed up the overall movement of data.
From the experiment as Figure 4.2 and Figure 4.3 show, we can find that increasing
the number of maps can effectively reduce the time for moving, but we must notice
that when the number of maps is too large, the data will take more time on the

network communication to reduce the data.

60 56.83

50
37.22
W Hive
M Impala
17.65 17.79
10
.33
0

1k

Process Time(sec)
W =
[=] [=]

[
(=]

Number of data record

FIGURE 4.2: Comparison of m Number for 7G Table

17G

3000
2506

2500

2000

1842

1623

1500
1224
1142
1000
561
500 I

0

m=1 m=2 m=4

m=16 m=128 m=256

Process Time(sec)

FiGURE 4.3: Comparison of m Number for 17G Table

Chapter 4 Experimental Results 41

4.3 Data Lake’s Comparison of Different Search

Engines

We choose Apache Impala as Hive’s search engine in our system. Figure 4.4
shows that Impala is much better than hive in the performance of searching data
because Hive converts each SQL query to map-reduce job to search data on HDFS
and each stage of reading and writing will access disk. However, Impala reduces
the phase of accessing disk reads and writes and uses a large amount of memory
characteristics to calculate data. So using Impala as a search engine for Hive is
proper.

80 56.83

50
a0 37.22
mHive
HImpala
20 17.65 17.79
0

Number of data record

Process Time(sec)
w
(=]

FIGURE 4.4: Execution Time of Searching by Hive and Impala

Figure 4.5 shows that Hive is suitable for batch processing with complex data,
and Impala can analyze the results of Hive in real time. The combination of these

two component are very effective.

4.4 Streaming Data Storage

For the storage of streaming data, we choose HBase as our system’s database.
However, HBase does not support SQL-like syntax to query data. Instead, it use

its own shell commands to manipulate the data stored in HBase but it’s unfriendly

Chapter 4 Experimental Results 42

120

100 98

92 92 53 91
80 76
u Hive
50
o 47.41 47.42 mimpala
40
20
0
10k 100k im 10m

MNumber of data record
FI1GURE 4.5: Execution Time of Ordering by Hive and Impala

Process Time(sec)
3

for the user who is familiar with SQL-like syntax. So in our architecture we uses
Apache Phoenix as the searching engine for SQL processing over HBase and also
compare Impala, Hive, Phoenix to manage HBase table. Figure 4.6 shows that
Hive takes much more time than the other three because Hive converts the task
of query into the map-reduce type. Both Phoenix and Impala have excellent
performance in query speed in searching one data condition.

14
12

10

Process Time(sec)

0.048 0.15 0.02

Phoexin on HBase Impala on HBase HBase Hive on HBase

FIGURE 4.6: Execution Time of Searching by Phoenix, Hive and Impala

Chapter 4 Experimental Results

Comparing Phoenix and Impala execution times to search for meter’s data
of different unit times.

phoenix performance is better than Impala, because phoenix’s query syntax will

Figure 4.7 shows that no matter what the unit time,

be converted into HBase statement, the optimization of HBase is better

Process Time(sec)

Figure 4.8 shows the speed comparison for counting data in HBase.
experimental result shows that Apache Phoenix has the best performance than

others because Phoenix converts SQL query to HBase-specific grammar for query,

160
140.91
140
123.25
120

=
(=]
o

=2}
o

g

&~
o

N
o

0.061 0.13 0.286
I

minute day month

® Phoenix ®Impala

FIGURE 4.7: Execution Time of Searching by Phoenix and Impala

so it can provide the better performance on HBase.

200

350

Process Time(sec)
m W
g E]

g

150

100

50

5089 41.68

23.84 24.76 I
=11l

Hive on HBase

438
189
134
106
2162 4936
31.02
114 13.67
036 052 78 146 476 178 384 l
a— § | JE— L —— |
HBase

Phoexin on HBase Impala on HBase HBase with Cache

m200k W400k W34M WGE4M

FIGURE 4.8: Execution Time of Counting by Phoenix, Hive and Impala

The

Chapter 4 Experimental Results

44

4.5 Power Failure Analysis Results

Through the algorithm of power failure we proposed in previous section, we can

calculate the number of power failure from historical data and visualize analysis

results by Apache Superset into table and the chart of Columnar distribution

ETETE ne

date

2018-04-02 07:04:00
2018-01-19 14:03:00
2018-01-D4 19:35:00
2018-01-D4 18:23:00
2018-01-D4 00:50:00
2017-12-25 17.34.00
2017-12-18 11:25:00
2017-12-18 10:31:00
2017-11-03 09:35:00
2017-09-10 18:14:00
2017-07-06 15:21:00
2017-03-16 14:15:00
2017-02-28 19:31:00
2017-01-18 23:23:.00
2016-12-28 22:20:00
2016-12-28 20:28:00
2016-12-27 17:49:00
2016-12-26 03:27:00
2016-09-23 16:20:00
2016-03-D3 15:50:00

I recovery_date avg__total_time
2018-04-02 07:29:00
2018-01-19 15:02:00
2018-01-04 19:43:00
2018-01-04 18:35:00
2018-01-D4 00:59:00
2017-12-25 18:17.00
2017-12-18 11:35:00
2017-12-18 11:00:00
2017-11-03 09:59:00
2017-09-10 18:30:00
2017-07-06 15:35:00
2017-03-16 14:27.00
2017-02-28 19:44.00
2017-01-18 23:30:00
2016-12-28 22:31:.00
2016-12-28 20:39:00
2016-12-27 19:58:00
2016-12-26 03:34:00
2016-09-23 19:15:00
2016-03-D3 16:02:00

FIGURE 4.9: The Table of Power Failure

Eﬁ%ﬁﬁﬁ(ﬁﬁﬁ) ~@ | % | < | Bison | B.csv | View Query

175 @®avg_total_time.

59.0
430
29.0
240
160
10 10 B0 20 D 100 000
2 2 2 2 2 2, 2 2 2 2, 2 2 2 2,
2, By by % 5, Y, b %, T, B, Y, . 2, Y
2 g . 7 2 o,
ﬁk_, = g ? = . ¢ 7
>, %] € €
K %. [.
N LY >

FIGURE 4.10: Bar Chart for Power Failure

% | | Bison | Besv

View Query

130
7.00
175

120

Chapter 4 Experimental Results 45

4.6 Verify Power Forecasting Accuracy with MAPE

In this work, the HoltWinters algorithm is used for forecasting the power
consumption situation in a day. In order to verify the accuracy of the prediction
and actual values, we use the MAPE test to verify the accuracy of prediction.

Assuming that n group actual values are: vy ~ vy ~ v3...... v, and the predicted

values are p; ~ P ~ P3......pn.

Calculate the percentage error of the actual value and the predicted value first
from ¢ group. The percentage error is the absolute value of p; minus v;, and then

divided by the i group of actual values v;.

LR = |pl ‘| (4.1)
U;
Find each group’s percentage errors: errory ~ errors > errors...... error;... error,,.
the n group’s percentage errors are averaged to find M APE:
Pi —
Z?:l | Vs | (42)
MAPE = ———
n

From the above formula 4.1, 4.2 can find out that MAPE is the average of the
percentage of the predicted value to the actual value. So the smaller the MAPE
value is, the higher the accuracy is. The higher the MAPE value is , the lower the
accuracy is. If MAPE is greater than 50 %, there is no reference value for this
group of data.

TABLE 4.2: MAPE error value level

MAPE Ability to predict
<10% high accuracy
10% — 20% good
20% — 50% reasonable
>50% incorrect

Figure 4.11 shows that 3/12 full week power data trend used HoltWinters for

forecasting. Red is the predicted value and blue is the actual value. It can be

Chapter 4 Experimental Results 46

seen that the overall trend from Monday to Friday can be predicted precisely.
However, due to the prediction on Saturday and Sunday, the model can only be
trained through historical data from last week and the number of people may also

change on Saturday and Sunday because of the uncertainty in the weekend.

(W,

N LN B R
| 4 ”\ ’lv : \Iﬂ
\Y \J 1

e p——

F1GURE 4.11: Comparison of actual and predicted values of 0312 week

Table 4.3 shows the daily MAPE values and the weekly average MAPE values.
From the table, we can see that the MAPE values all fall between 10% and 35%,
and the average MAPE value of the week is 20.17%. Overall, the forecasts are in

the range between reasonable and good.

TABLE 4.3: Daily MAPE value for 0312 week

date | MAPE
3/12 | 17.96%
3/13 | 11.16%
3/14 | 11.10%
3/15 | 13.98%
3/16 | 35.78%
3/17 | 25.95%
3/18 | 25.28%
average | 20.17%

Figure 4.12 only shows the actual values and predicted values from Monday
to Friday. Red is the predicted value and blue is the actual value. From 4.12
we can see that Monday to Friday can still accurately predict the trend of power

consumption.

Chapter 4 Experimental Results 47

3/19-23 EBREUTEH

HNMeMeN ey e R NANARNRRRANAIRRNAReIYITILIIGIIRANAIARGRAB UG IBSEESRANRINRRRABIUNINBLNGR I IRRGRRB B 5885034 258528

FI1GURE 4.12: Comparison of actual and predicted values of 0319 week

It can also be seen from the Table 4.4 that the MAPE values from Monday to
Friday are between 11% and 28%, and the average MAPE value is 17.24%.

TABLE 4.4: Daily MAPE value for 0319 week

date | MAPE
3/19 | 13.04%
3/20 | 13.44%
3/21 | 11.78%
3/22 | 28.14%
3/23 | 19.80%
average | 17.24

From the above two experiments, we can infer that the forecast used by
HoltWinters algorithm has a good accuracy of power consumption. he average
MAPE value is between 10% and 20%, which is a good prediction type. The

proposed platform enables highly accurate trend prediction of power usage data.

Chapter

4 Experimental Results 48

4.7 Superset Visualization

We map the HBase table to Hive, so Superset can visualize the data from

HBase through Impala. The following figures are the results of analysis written

to HBase and visualized by superset. Figure 4.13 shows the times series data

collected

by the two power meters of the library in hours.

IGEMS_5:/)\Frehés FCLEAX

207
200

19.0
180
170
160
150
140
13.0
120
1.0

AREY

100

9.00

8.00

7.00

6.00

5.00

4.00

3.00

2.00

779m

@ THUC-MO001-AC-main @ THUC-MOOD5-server-ma...

WWWWWMWM

Bl

FIGURE 4.13: Time Series Chart for Power Data

Figure 4.14 shows the power data collected by Smart Meters deployed over the

campus i

n the form of Pi Chart.
@LB @®Bs @®sT @CH ®s @®CME
@33 @LA-1 @AH-1 @LAN-1 @®BD30-1 @ AD-WIRED-1
@®ID-1 @ L-WIRED-1 @HT-WIRED-1 @LS-WIRED-1 @G @ C-WIRED-1
[LS @®AUD1 @®AG-WIRED-1 ®G2 @E-WIRED-1 [JcB

@LAN2 @ST-020 (Class-Room) @AUD-2 @CAC-WIRED-1 @ST-023 (Class-Room) @ ST-021 (Class-Room)
@ST021(AC) @ST-019 (Class-Room) @ST-023-R (AC) @ ST-023-L (AC)

-
i
88
ST

H

C

FIGURE 4.14: Pi Chart for Power Data

Chapter 4 Experimental Results 49

Figure 4.15 shows the rank of the top 10 power consumption ratios for campus

buildings

RESTIETELES

®avo_kw

00
s
0
20
12«1
0
oo 756
a9
s

P
209
oo

% < B B *,

FIGURE 4.15: Bar Chart for Power Data

s s
. m
g
%,

. N

%

We also made Superset dashboards for IGEMS and ICEMS individually.

IGEMS_E[fF » o+ o v sl= a[8]

IGEMS_E]E F BB LLHI(Pi) (B %2 88) IGEMS_E]E5 F BLL I (Donut)(B2 8E) $CsBEAX

@ THUC-MO005-serverma... @ THUC-MO001-AC-main @ THUC-MODO3-AC-R-R
@ THUG-M0004-UPS-H @ THUC-M0017-UPS-E1-E2 @ THUC-M0019-UPS-B THUC-M0004-UPS-H 6.78%
@ THUC-M0013-UPS-A @ THUC-MO018-UPS-H-Bac... @ THUC-MOOO-UPS-F -

@ THUC-MOD15-UPS-C @ THUC-MD010-UPS-G @ THUC-MD016-UPS-D
@ THUC-M0007-UPS-|

I&\ 6.78% of total

THUG-MD017-Ul

THUC-MO0D4:

THUC-MO0O003-

THUC-MD001-AC-main

4 a

FIGURE 4.16: Dashboard fro IGEMS

Chapter 5

Conclusions and Future Work

A lot of smart meters to collect electricity data in the campus buildings and
data center have been deployed. In the current mainstream platform for processing
Big Data is Hadoop and Spark which support the traditional database only with
the JDBC to get data, the cost of communication to obtain data for Hadoop or
Spark is too high. To solve this problem, we proposed an architecture to import

existing storage system to Big Data platform with Data Lake.

5.1 Concluding Remarks

This work presents an architecture of entirely open source solution integrating
state-of-the-art components from the Apache ecosystem. It can efficiently import
existing power data storage system into Big Data platform with Data Lake. The
existing system’s historical data is transferred to Apache Hive by Sqoop for the
data warehouse. The streaming data is written into HBase to save the streaming
data. The Data Lake is based on Hive and HBase to keep the integrity of the
original data. We Integrate Impala and Phoenix as Data Lake’s search engine and
provide better search performance and power forecasting models are proposed in
this work by Spark can help schools make better decisions. In conclusion, this

work proposes a complete solution of Data Lake and Big Data platforms from

50

Chapter 5 Conclusions and Future Work 51

the data transfer, collection, storage, analysis, visualization to campus electricity

environment.

5.2 Future Work

Constrained by HBase Scan performance, Superset searches for large data in HBase
and causes the chart to display slowly, failing to reach a second-level response. In
the future, we hope to speed up Superset’s ability to retrieve data from HBase.
In addition, the deployment of the physical machine environment may also be
one of the reasons that affect the overall cluster performance. We hope that we
can unify the machine specifications and cooperate with high-speed networks to
improve the overall performance of Data Lake. In addition, the power forecasting
module can add parameters such as temperature and number of people to achieve

more accurate predictions.

References

1]

Saint John Walker. Big data: A revolution that will transform how we live,

work, and think, 2014.

Ralph Kimball and Margy Ross. The data warehouse toolkit: the complete
guide to dimensional modeling. John Wiley & Sons, 2011.

Hsinchun Chen, Roger HL Chiang, and Veda C Storey. Business intelligence
and analytics: from big data to big impact. MIS quarterly, pages 1165-1188,
2012.

Feng Xia, Laurence T Yang, Lizhe Wang, and Alexey Vinel. Internet of
things. International Journal of Communication Systems, 25(9):1101, 2012.

Tom White. Hadoop: The definitive guide. ” O’Reilly Media, Inc.”, 2012.

Matei Zaharia, Reynold S Xin, Patrick Wendell, Tathagata Das, Michael
Armbrust, Ankur Dave, Xiangrui Meng, Josh Rosen, Shivaram Venkatara-
man, Michael J Franklin, et al. Apache spark: a unified engine for big data
processing. Communications of the ACM, 59(11):56-65, 2016.

Neal Leavitt. Will nosql databases live up to their promise? Computer, 43(2),
2010.

Raghu Ramakrishnan, Baskar Sridharan, John R Douceur, Pavan Kasturi,
Balaji Krishnamachari-Sampath, Karthick Krishnamoorthy, Peng Li, Mitica
Manu, Spiro Michaylov, Rogério Ramos, et al. Azure data lake store: a

hyperscale distributed file service for big data analytics. In Proceedings of the

52

REFERENCES 53

[11]

[14]

[15]

[16]

2017 ACM International Conference on Management of Data, pages 51-63.
ACM, 2017.

Huang Fang. Managing data lakes in big data era: What’s a data lake and
why has it became popular in data management ecosystem. In Cyber Technol-
ogy in Automation, Control, and Intelligent Systems (CYBER), 2015 IEEE
International Conference on, pages 820-824. IEEE, 2015.

Paul Zikopoulos, Chris Eaton, et al. Understanding big data: Analytics for
enterprise class hadoop and streaming data. McGraw-Hill Osborne Media,

2011.

Guozhang Wang, Joel Koshy, Sriram Subramanian, Kartik Paramasivam,
Mammad Zadeh, Neha Narkhede, Jun Rao, Jay Kreps, and Joe Stein. Build-
ing a replicated logging system with apache kafka. Proceedings of the VLDB
Endowment, 8(12):1654-1655, 2015.

Rajiv Ranjan. Streaming big data processing in datacenter clouds. [EEFE

Cloud Computing, 1(1):78-83, 2014.

Mohiuddin Solaimani, Mohammed Iftekhar, Latifur Khan, Bhavani Thurais-
ingham, Joe Ingram, and Sadi Evren Seker. Online anomaly detection for
multi-source vmware using a distributed streaming framework. Software:

Practice and Experience, 46(11):1479-1497, 2016.

Xiangrui Meng, Joseph Bradley, Burak Yavuz, Evan Sparks, Shivaram
Venkataraman, Davies Liu, Jeremy Freeman, DB Tsai, Manish Amde, Sean
Owen, et al. Mllib: Machine learning in apache spark. The Journal of Ma-
chine Learning Research, 17(1):1235-1241, 2016.

Liu Chen, Junghyun Ko, and Jeongmo Yeo. Analysis of the influence factors of
data loading performance using apache sqoop. KIPS Transactions on Software

and Data Engineering, 4(2):77-82, 2015.

Amrit Pal, Kunal Jain, Pinki Agrawal, and Sanjay Agrawal. A performance

analysis of mapreduce task with large number of files dataset in big data using

REFERENCES 54

[17]

[20]

[21]

[22]

23]

hadoop. In Communication Systems and Network Technologies (CSNT), 201}
Fourth International Conference on, pages 587-591. IEEE, 2014.

Aditya Bhardwaj, Ankit Kumar, Yogendra Narayan, Pawan Kumar, et al. Big
data emerging technologies: A casestudy with analyzing twitter data using
apache hive. In Recent Advances in Engineering € Computational Sciences

(RAECS), 2015 2nd International Conference on, pages 1-6. IEEE, 2015.

Apache HBase Team. Apache hbase reference guide. Apache, version, 2(0),
2016.

Chao-Tung Yang, Shuo-Tsung Chen, Walter Den, Yun-Ting Wang, and En-
dah Kristiani. Implementation of an intelligent indoor environmental moni-

toring and management system in cloud. Future Generation Computer Sys-

tems, 2018.

Devadutta Ghat, David Rorke, and Dileep Kumar. New sql benchmarks:
Apache impala (incubating) uniquely delivers analytic database performance,

2016.

Kunal Gupta, Astha Sachdev, and Ashish Sureka. Empirical analysis on
comparing the performance of alpha miner algorithm in sql query language
and nosql column-oriented databases using apache phoenix. arXiv preprint

arXi:1705.05481, 2017.

Sarathkumar Rangarajan, Huai Liu, Hua Wang, and Chuan-Long Wang. Scal-
able architecture for personalized healthcare service recommendation using
big data lake. In Service Research and Innovation, pages 65-79. Springer,
2015.

Maanak Gupta, Farhan Patwa, James Benson, and Ravi Sandhu. Multi-layer
authorization framework for a representative hadoop ecosystem deployment.
In Proceedings of the 22nd ACM on Symposium on Access Control Models
and Technologies, pages 183-190. ACM, 2017.

REFERENCES 95

[24]

[28]

[29]

[30]

Pradeeban Kathiravelu and Ashish Sharma. A dynamic data warehousing
platform for creating and accessing biomedical data lakes. In VLDB Workshop
on Data Management and Analytics for Medicine and Healthcare, pages 101—
120. Springer, 2016.

Chen Zhang and Xue Liu. Hbasemq: A distributed message queuing system
on clouds with hbase. In INFOCOM, 2013 Proceedings IEFE, pages 40—44.
[EEE, 2013.

Yue Wang, Yingzhong Xu, Yue Liu, Jian Chen, and Songlin Hu. Qmapper
for smart grid: Migrating sql-based application to hive. In Proceedings of
the 2015 ACM SIGMOD International Conference on Management of Data,
pages 647-658. ACM, 2015.

Anja Gruenheid, Edward Omiecinski, and Leo Mark. Query optimization
using column statistics in hive. In Proceedings of the 15th Symposium on In-

ternational Database Engineering € Applications, pages 97-105. ACM, 2011.

Chao-Tung Yang, Jung-Chun Liu, Shuo-Tsung Chen, and Hsin-Wen Lu. Im-
plementation of a big data accessing and processing platform for medical

records in cloud. Journal of medical systems, 41(10):149, 2017.

Ren-Hao Liu, Chan-Fu Kuo, Chao-Tung Yang, Shuo-Tsung Chen, and Jung-
Chun Liu. On construction of an energy monitoring service using big data
technology for smart campus. In Cloud Computing and Big Data (CCBD),
2016 7th International Conference on, pages 81-86. IEEE, 2016.

Fabrizio Carcillo, Andrea Dal Pozzolo, Yann-Aél Le Borgne, Olivier Caelen,
Yannis Mazzer, and Gianluca Bontempi. Scarff: a scalable framework for
streaming credit card fraud detection with spark. Information fusion, 41:182—

194, 2018.

Appendix A

Cloudera Manager Installation

Set host

$ sudo vim /etc/hostname

$ sudo vim /etc/hosts

Install and set ntp

$ sudo apt-get install ntp

$ sudo ntpdate - s ntp.ubuntu.com pool.ntp.org

Download Cloudera

$ wget http://archive.cloudera.com/cmb/installer/latest/cloudera-manager-installer.bin

Give the access permission

$ sudo chmod 775 cloudera-manager-installer.bin

Install Cloudera

$ sudo ./cloudera-manager-installer.bin

Login Cloudera Browser

$ http://IP-Address:7180/

56

Appendix B

Kafka Producer for ICEMS

import org.apache.kafka.clients.producer.KafkaProducer;
import org.apache.kafka.clients.producer.Producer;
import org.apache.kafka.clients.producer.ProducerRecord;
import org.codehaus.jettison.json.JSONArray;

import org.codehaus.jettison. json.JSONException;

import org.codehaus.jettison. json.JSONObject;

import java.io.IOException;

import java.net.URL;

import java.net.URLConnection;

import java.text.SimpleDateFormat;

import java.util.Date;

import java.util.Properties;

import java.util.Scanner;

public class Producer_PowerData_Minute_HBase {

public static void main(String[] args) throws JSONException, IOException {

Properties props = new Properties();

props.put ("bootstrap.servers", "140.128.98.31:9092");

props.put ("acks", "all");

props.put("retries", 0);

props.put("batch.size", 16384);

props.put("linger.ms", 1);

props.put ("buffer.memory", 33554432);

props.put ("key.serializer", "org.apache.kafka.common.serialization.StringSerializer");
props.put("value.serializer", "org.apache.kafka.common.serialization.StringSerializer");
props.put ("enable.auto.commit", "false");

props.put ("auto.offset.reset", "earliest");

Producer<String, String> producer = new KafkaProducer<>(props);

System.out.println (" & & & ");

o7

Appendix

o8

URLConnection connection =
new URL("http://140.128.197.129:8080/rest/buildingMeter/powerUsage/")
.openConnection();

Scanner scanner = new Scanner (connection.getInputStream());

String PowerData = scanner.useDelimiter ("\\A").next();

System.out.println(PowerData);

JSONArray k;
JSONObject 1ij;

k = new JSONArray(PowerData);

System.out.println(" & # B 4~ ");

for (int p = 0; p < k.length(); p++) {

i = k.getJSONObject(p);

long unixSeconds = Long.parselong(k.getJSONObject(p).getString("time_stamp"));

Date date = new Date(unixSeconds);

SimpleDateFormat sdf = new SimpleDateFormat ("yyyy-MM-dd HH:mm:ss");

String formattedDate = sdf.format(date);

producer.send(new ProducerRecord<String, String>("PowerData_Minute_HBase",
i.getString("location"), formattedDate + ","

+ i.getString("location") + ","

+ i.getString ("KwW") + ",

+ i.getString("totalKWH") + ", "

+ i.getString("chil_pf") + ", "

+ i.getString("chl_voltage") + ",

+ i.getString("chl_current") + ","

+ i.getString("chl_hz") + ","

+ i.getString("ch2_pf") + ","

+ i.getString("ch2_voltage") + ","

+ i.getString("ch2_current") + ","

+ i.getString("ch2_hz") + ","

+ i.getString("ch3_pf") + ","

+ i.getString("ch3_voltage") + ","

+ i.getString("ch3_current") + ","

+ i.getString("ch3_hz") + ","

+ i.getString("voltagel2") + ", "

+ i.getString("voltage23") + ","

+ i.getString("voltage31") + ","

+ i.getString("chli_THDi") + ",

+ i.getString("ch2_THDi") + ","

+ i.getString("ch3_THDi") + ","

+ i.getString("chl_THDv") + ", k"

+ i.getString("ch2_THDv") + ","

Appendix

99

+ i.getString("ch3_THDv") + ","

+ 1.

));

getString("total_pf")

System.out.println(new ProducerRecord<String, String>("PowerData_Minute_HBase",

i.getString("location"),

formattedDate + ","

+ i.getString("location") + ","

+ i
+ i

+ i

+ i
+ i
));
}

System.out.println(" & # % &

.getString ("KW") + ","

i.getString ("ch2_THDi")
i.getString ("ch3_THDi")
i.getString ("chl_THDv")
i.getString ("ch2_THDv")
.getString ("ch3_THDv")

.getString("total_pf")

producer.close();

i.getString("chl_voltage") + ",

i.getString("voltage23") +

i.getString("voltage31") +

+

+

+

System.out.println("Message

}
}

.getString ("totalKWH") + ", 6"

.getString("chil_pf") + ","

i.getString("chl_current") + ","
i.getString("chl_hz") + ","
i.getString("ch2_pf") + ","
i.getString("ch2_voltage") + ","
i.getString("ch2_current") + ","
i.getString ("ch2_hz") + ", "
i.getString("ch3_pf") + ","
i.getString("ch3_voltage") + ","
i.getString("ch3_current") + ","
i.getString("ch3_hz") + ", "

i.getString("voltagel2") + ","

non

non

i.getString("ch1_THDi") + ","

u);

sent successfully");

Appendix C

Kafka Producer for IGEMS

import org.apache.kafka.clients.producer.KafkaProducer;
import org.apache.kafka.clients.producer.Producer;
import org.apache.kafka.clients.producer.ProducerRecord;
import org.codehaus.jettison. json.JSONArray;

import org.codehaus. jettison. json.JSONException;

import org.codehaus.jettison. json.JSONObject;

import java.io.IOException;
import java.net.URL;

import java.net.URLConnection;
import java.text.DecimalFormat;
import java.util.Properties;

import java.util.Scanner;

public class Producer_PowerData_CC_HBase {

public static void main(String[] args) throws JSONException, IOException {

Properties props = new Properties();

props.put ("bootstrap.servers", "140.128.98.31:9092");
props.put("acks", "all");

props.put("retries", 0);

props.put("batch.size", 16384);
props.put("linger.ms", 1);

props.put ("buffer.memory", 33554432);

props.put ("key.serializer", "org.apache.kafka.common.serialization.StringSerializer");

props.put("value.serializer", "org.apache.kafka.common.serialization.StringSerializer") |

props.put("enable.auto.commit", "false");
props.put("auto.offset.reset", "earliest");
Producer<String, String> producer = new KafkaProducer<>(props);

System.out.println(" # # & i ");

60

Appendix 61

URLConnection connection =
new URL("http://icems.thu.edu.tw/config/getpower.php").openConnection();

Scanner scanner = new Scanner (connection.getInputStream());

String PowerData_CC = scanner.useDelimiter ("\\A").next();

//System.out.println(PowerData_CC);

JSONArray k;
JSONObject 1ij;

k = new JSONArray(PowerData_CC);

for (int p = 0; p < k.length() - 1; p++) {

i = k.getJSONObject(p);

if (i.getDouble("11") == 0 || i.getDouble("14") == 0 || i.getDouble("8") == 0) {

double v = 0;

producer.send(new ProducerRecord<String, String>("PowerData_CC_HBase", i.getString("0")
i.getString("1").substring (0, 19) + ","

+ i.getString("0") + ","

+ v + ",

+ i.getString("8") + ","

+ i.getString("14") + ","

+ i.getString("11")

));

System.out.println(new ProducerRecord<String, String>("PowerData_CC_HBase",
i.getString("0"),

i.getString("1").substring(0, 19) + ", k"

+ i.getString("0") + ","

+ v + ",

+ i.getString("8") + ","

+ i.getString("14") + ", "

+ i.getString("11")

));

} else {

double v = i.getDouble("11") / i.getDouble("14") / i.getDouble("8");

DecimalFormat df = new DecimalFormat ("##.00");

v = Double.parseDouble (df.format(v));

Appendix

62

producer.send(new ProducerRecord<String, String>("PowerData_CC_HBase", i.getString("O0")

i
+
+
+
+

+

.getString("1").substring(0, 19) + "," [

i.getString("0") + ","
v + ||,ll

i.getString("8") + ","
i.getString("14") + ","

i.getString("11")

));

System.out.println(new ProducerRecord<String, String>("PowerData_CC_HBase",

i.getString("0"),
.getString("1").substring(0, 19) + "," //F/F

i.getString("0") + "," // % % ID
v+, //ViE

i.getString("8") + "," //I
i.getString("14") + "," //PF
i.getString("11") //P

));

int count_data = k.length() - 1;

System.out.println(" % # ¥ 7 " + count_data + "&£ FH");

producer.close();

Appendix D

Spark Streaming Write ICEMS to
HBase

import org.apache.spark.streaming._
import org.apache.spark.streaming.kafka._
import org.apache.spark.sql.Row
import org.apache.spark.sql._
import org.apache.hadoop.hbase._
import org.apache.hadoop.hbase.client._

import org.apache.hadoop.hbase.HBaseConfiguration
import org.apache.hadoop.hbase.client.HTable
import org.apache.hadoop.hbase.TableName

import org.apache.hadoop.hbase.client.Put

import org.apache.hadoop.hbase.util. _

import scala.collection.JavaConversions._

import org.apache.hadoop.hbase.io.ImmutableBytesWritable

val ssc = new StreamingContext(sc, Seconds(60))

val topicMap = "PowerData_Minute_HBase".split(":").map((_, 1)).toMap

val zkQuorum = "140.128.98.31:2181";

val group = "test-consumer-group"

val lines = KafkaUtils.createStream(ssc, zkQuorum, group, topicMap).map(_._2)

val lines_split = lines.map(x => x.split(",")).map(x => {(x(0), x(1), x(2), x(3))})

lines_split.foreachRDD(rdd => {
rdd.foreachPartition(partitionRecords => {

val conf = HBaseConfiguration.create();

//val conf = new HBaseConfiguration

conf.set ("hbase.zookeeper.property.clientPort", "2181")
conf.set ("hbase.zookeeper.quorum", "140.128.98.31")

val connection = ConnectionFactory.createConnection(conf);

63

Appendix 64
partitionRecords.foreach(s => {

val table = connection.getTable(TableName.valueOf ("powerdata_minute_hbase"))

val put = new Put(Bytes.toBytes(s._2.toString + "_" + s._1.toString.substring(0, 16)))

put.addColumn (Bytes.toBytes ("powerdata_minute"), Bytes.toBytes("time")

, Bytes.toBytes(s._1.toString))

put.addColumn (Bytes.toBytes ("powerdata_minute"), Bytes.toBytes("location")
, Bytes.toBytes(s._2.toString))

put.addColumn(Bytes.toBytes ("powerdata_minute"), Bytes.toBytes("kw")

, Bytes.toBytes(s._3.toString))

put.addColumn (Bytes.toBytes ("powerdata_minute"), Bytes.toBytes("totalkwh")
, Bytes.toBytes(s._4.toString))

table.put (put)

table.close()

println(s._1.toString + ","+ s._2 + "® » HBase")

13l

13l

1l

ssc.start ()

ssc.awaitTermination ()

Appendix E

Spark Streaming Write IGEMS
to HBase

import org.apache.spark.streaming._
import org.apache.spark.streaming.kafka._
import org.apache.spark.sql.Row

import org.apache.spark.sql.

import org.apache.hadoop.hbase._
import org.apache.hadoop.hbase.client._

import org.apache.hadoop.hbase.HBaseConfiguration
import org.apache.hadoop.hbase.client.HTable
import org.apache.hadoop.hbase.TableName

import org.apache.hadoop.hbase.client.Put

import org.apache.hadoop.hbase.util. _

import scala.collection.JavaConversions._

import org.apache.hadoop.hbase.io.ImmutableBytesWritable

val ssc = new StreamingContext(sc, Seconds(10))

val topicMap = "PowerData_CC_HBase".split(":").map((_, 1)).toMap

val zkQuorum = "140.128.98.31:2181";

val group = "test-consumer-group"

val lines = KafkaUtils.createStream(ssc, zkQuorum, group, topicMap).map(_._2)

val lines_split = lines.map(x => x.split(","))

.map(x => {(x(0), x(1), x(2), x(3), x(4), x(B))})

lines_split.foreachRDD(rdd => {

rdd.foreachPartition(partitionRecords => {

val conf = HBaseConfiguration.create();
//val conf = new HBaseConfiguration
conf.set ("hbase.zookeeper.property.clientPort", "2181")

65

Appendix

conf.set ("hbase.zookeeper.quorum", "140.128.98.31")

val connection = ConnectionFactory.createConnection(conf);
partitionRecords.foreach(s => {

val table = connection.getTable(TableName.valueOf ("powerdata_cc_hbase"))
val put = new Put(Bytes.toBytes(s._2.toString + "_" + s._1.toString
.substring (0, 18)+"0"))

put.addColumn (Bytes.toBytes ("powerdata_cc"), Bytes.toBytes("time")
, Bytes.toBytes(s._1.toString))

put.addColumn (Bytes.toBytes ("powerdata_cc"), Bytes.toBytes("meter_id")
, Bytes.toBytes(s._2.toString))

put.addColumn (Bytes.toBytes ("powerdata_cc"), Bytes.toBytes("v")

, Bytes.toBytes(s._3.toString))

put.addColumn (Bytes.toBytes ("powerdata_cc"), Bytes.toBytes("i")

, Bytes.toBytes(s._4.toString))

put.addColumn (Bytes.toBytes ("powerdata_cc"), Bytes.toBytes("pf")

, Bytes.toBytes(s._5.toString))

put.addColumn (Bytes.toBytes ("powerdata_cc"), Bytes.toBytes("p")

, Bytes.toBytes(s._6.toString))

table.put (put)

table.close()

println(s._1.toString + ","+ s._2 + "% » HBase")

13

1

1

ssc.start ()

ssc.awaitTermination ()

Appendix F

Power Forecast Using

HoltWinters

package Data_Lake

import java.text.SimpleDateFormat

import java.util.{Calendar, Date, Properties}
import com.cloudera.sparkts.models.HoltWinters
import org.apache.spark.mllib.linalg.Vectors
import org.apache.spark.sql.{Row, SparkSession}
import org.apache.spark.sql.types._

import org.apache.spark.{SparkConf, SparkContext}

object HoltWintersDate {

def main(args: Array[String]): Unit = {

val conf = new SparkConf ().setAppName("Simple Application")

val sc = new SparkContext (conf)
val spark = SparkSession
.builder ()

.appName ("Spark Hive Example")

.get0rCreate ()

val jdbcDF = spark.read.format ("jdbc")

.option("url", "jdbc:mysql://120.109.150.175:3306/power")
.option("driver", "com.mysql.jdbc.Driver")
.option("dbtable", "PowerHour").option("user", "hpc")
.option("password", "hpcverygood").load()

jdbcDF . createOrReplaceTempView ("PowerHour_test")

def getNowDate(): String = {

var now: Date = new Date()

67

Appendix

68

var dateFormat: SimpleDateFormat = new SimpleDateFormat ("yyyy-MM-dd")
var hehe = dateFormat.format (now)

hehe

}

def determineDayOfTheWeek(a: Int): Int = {
var dayForWeek = 0

if (a == 1) {

dayForWeek = 7

return dayForWeek

} else {

dayForWeek = a - 1

return dayForWeek

}

}

def trainAndPredict(a: String) = {
var test = spark.sql(a)
println("query:" + a)

println(" "R & ")

test.show(48)

val dataTrain = test.select("x").rdd.map(r => r(0)).map(_.toString) .map(_.toDouble)

.collect ()
val ts = Vectors.dense(dataTrain)
val hModel = HoltWinters.fitModel(ts, 24, "Additive", "BOBYQA")

//Multiplicative, Additive

val forecast = hModel.forecast(ts, ts)
val forecastArray = forecast.toArray
println (" B 4= 3F B ")
forecastArray.foreach(println)

println(" % 3] 7 " + forecastArray.length + "Z FHl ")

val writeToMySQLArray = Array.ofDim[String] (24, 4)

for (i <- 0 to 23) {
writeToMySQLArray (i) (0)

getNowDate ()

writeToMySQLArray (i) (1) i.toString

writeToMySQLArray (i) (2) "LIB-4"
writeToMySQLArray (i) (3) = forecastArray(i).toString

}

println(" & » B 4>...")

val predictRDD = spark.sparkContext.parallelize(writeToMySQLArray)

val schema = StructType(List(StructField("date", StringType, true)

, StructField("hr", IntegerType, true), StructField("Meter_id", StringType, true)
, StructField("P", DoubleType, true)))

val rowRDD = predictRDD

.map(p => Row(p(0).toString, p(1).toInt, p(2).toString, p(3).toDouble))

Appendix

69

val predictDF = spark.createDataFrame (rowRDD, schema)

val prop = new Properties()

prop.put ("user", "hpc")

prop.put ("password", "hpcverygood")

prop.put("driver", "com.mysql.jdbc.Driver")

predictDF.write.mode ("append")

.jdbc (" jdbc:mysql://120.109.150.175:3306/power", "power.PowerHourPredict", prop)
println(" e % » 24 % F 4L 3 MysQL")

}

val sdf = new SimpleDateFormat ("yyyy-MM-dd")

val cal = java.util.Calendar.getInstance();

val cal_1 = java.util.Calendar.getInstance();
val cal_2 = java.util.Calendar.getInstance();
val cal_6 = java.util.Calendar.getInstance();
val cal_8 = java.util.Calendar.getInstance();

cal.setTime (sdf.parse(getNowDate ()))
cal.add(java.util.Calendar .DATE, -7)

cal_1.setTime (sdf.parse(getNowDate ()))
cal_1.add(java.util.Calendar.DATE, -1)

cal_2.setTime (sdf.parse(getNowDate ()))
cal_2.add(java.util.Calendar .DATE, -2)

cal_6.setTime (sdf.parse(getNowDate ()))
cal_6.add(java.util.Calendar.DATE, -6)

cal_8.setTime (sdf .parse(getNowDate ()))

cal_8.add(java.util.Calendar .DATE, -8)

val day = determineDayOfTheWeek(cal.get(Calendar.DAY_OF_WEEK))
println(" R & p # :" + getNowDate() + " % #H " + day)

println(" & p & :" + sdf.format(cal.getTime))

day match {

case 1 =>

var sqlDate = "'" + sdf.format(cal.getTime) + "'"

var sqlDate_1 = "'" + sdf.format(cal_6.getTime) + "'"

var sqlQuery = "select round(p /1000, 1) as x from PowerHour_test
where “Meter_id~ = 'LIB-4' and “p~/1000 > 10

and “date” in " + "(" + sqlDate + ", " + sqlDate_1 + ")"

trainAndPredict (sqlQuery)

case 2 =>
var sqlDate = "'" + sdf.format(cal.getTime) + "'"

var sqlDate_1 = "'" + sdf.format(cal_8.getTime) + "'"

Appendix

70

var sqlQuery = "select round(p /1000, 1) as x from PowerHour_test
where “Meter_id~ = 'LIB-4' and “p~/1000 > 10
and “date” in " + "(" + sqlDate_1 + ", " + sqglDate + ")"

trainAndPredict (sqlQuery)

case 3 =>

var sqlDate = "'" + sdf.format(cal_1.getTime) + "'"

var sqlDate_1 = "'" + sdf.format(cal_2.getTime) + "'"

var sqlQuery = "select round(p /1000, 1) as x from PowerHour_test
where “Meter_id~ = 'LIB-4' and “p~/1000 > 10

and “date” in " + "(" + sqlDate_1 + ", " + sqglDate + ")"

trainAndPredict (sqlQuery)

case 4 =>

var sqlDate = "'" + sdf.format(cal_1.getTime) + "'"

var sqlDate_1 = "'" + sdf.format(cal_2.getTime) + "'"

var sqlQuery = "select round(p /1000, 1) as x from PowerHour_test
where “Meter_id~ = 'LIB-4' and “p /1000 > 10

and “date” in " + "(" + sqlDate_1 + ", " + sqlDate + ")"

trainAndPredict (sqlQuery)

case 5 =>

var sqlDate = "'" + sdf.format(cal_1.getTime) + "'"

var sqlDate_1 = "'" + sdf.format(cal_2.getTime) + "'"

var sqlQuery = "select round(p /1000, 1) as x from PowerHour_test
where “Meter_id~ = 'LIB-4' and “p /1000 > 10

and “date” in " + "(" + sqlDate_1 + ", " + sqlDate + ")"

trainAndPredict (sqlQuery)

case 6 =>

var sqlDate = "'" + sdf.format(cal.getTime) + "'"

var sqlDate_1 = "'" + sdf.format(cal_6.getTime) + "'"

var sqlQuery = "select round(p /1000, 1) as x from PowerHour_test
where “Meter_id~ = 'LIB-4' and “p~/1000 > 10

and “date” in " + "(" + sqlDate + ", " + sqlDate_1 + ")"

trainAndPredict (sqlQuery)

case 7 =>

var sqlDate = "'" + sdf.format(cal.getTime) + "'"

var sqlDate_1 = "'" + sdf.format(cal_8.getTime) + "'"

var sqlQuery = "select round(p /1000, 1) as x from PowerHour_test
where “Meter_id~ = 'LIB-4' and “p~ /1000 > 10

and “date” in " + "(" + sqlDate_1 + ", " + sqglDate + ")"

trainAndPredict (sqlQuery)
}
}
}

Appendix G

Power Failure Analysis

import org.apache.hadoop.hbase._
import org.apache.hadoop.hbase.client._

import org.apache.hadoop.hbase.HBaseConfiguration
import org.apache.hadoop.hbase.client.HTable
import org.apache.hadoop.hbase.TableName

import org.apache.hadoop.hbase.client.Put

import org.apache.hadoop.hbase.util._

import scala.collection.JavaConversions._

import org.apache.hadoop.hbase.io.ImmutableBytesWritable

val df

sql ("SQLQUERY")

val df_1 = sql("SQLQUERY")

val data_RDD = df.rdd

val data_RDD_1 = df_1.rdd

val data = data_RDD.map(_.mkString(",")).take(data_RDD.count().toInt)
.map(x => x.split(","))

val data_1 = data_RDD_1.map(_.mkString(",")).take(data_RDD_1.count().toInt

.map(x => x.split(","))

import java.text.SimpleDateFormat

import scala.collection.mutable.ArrayBuffer

val data_ArrayBuffer = new ArrayBuffer[Longl()

val data_O_ArrayBuffer = new ArrayBuffer[Long]()
val data_1_ArrayBuffer = new ArrayBuffer[Long]()

// val data_2_ArrayBuffer = new ArrayBuffer[Long]l()

for(i <- 0 to data.length-2) {

if (data(i) (0).toLong - data(i+1) (0).toLong > 300
&& data(i) (0).toLong - data(i+1)(0).toLong < 10800){

71

Appendix

72

val df = new SimpleDateFormat ("yyyy-MM-dd HH:mm:ss")
val date = df.format(data(i+1) (0).toLong * 1000L)

data_ArrayBuffer += data(i+1) (0).toLong

data_O_ArrayBuffer += data(i+1)(0).toLong
data_O_ArrayBuffer += data(i)(0).toLong

println(date + "," + data(i+1)(0) +"%7% ")

}

}

println(" " § X 4 & £ % ¢ 7 " + data_O_ArrayBuffer.length/2+ "= ")

for(i <- 0 to data_1.length-2) {

if (data_1(i) (0).toLong - data_1(i+1)(0).toLong > 300

&& data_1(i) (0).toLong - data_1(i+1)(0).toLong < 10800){
val df = new SimpleDateFormat ("yyyy-MM-dd HH:mm:ss")

val date = df.format(data_1(i+1) (0).toLong * 1000L)
data_1_ArrayBuffer += data_1(i+1)(0).toLong

println(date + "," + data_1(i+1)(0) +"#%r&% ")
}
}

println(" B % H3F T £ %72 7 " + data_1_ArrayBuffer.length + "= ")

val final_data = data_ArrayBuffer.intersect(data_1_ArrayBuffer)

for(i <-0 to final_data.length-1){

val df = new SimpleDateFormat ("yyyy-MM-dd HH:mm:ss")

val date = df.format(final_data(i) * 1000L)

val recovery_date =

df . format (data_O_ArrayBuffer (data_O_ArrayBuffer.indexOf (final_data(i))+1) * 1000L)
val total_time = {(data_O_ArrayBuffer (data_O_ArrayBuffer.index0f (final_data(i))+1))
-data_O_ArrayBuffer (data_O_ArrayBuffer.index0f (final_data(i)))} / 60

val conf = HBaseConfiguration.create();

conf.set ("hbase.zookeeper.property.clientPort", "2181")

conf.set ("hbase.zookeeper.quorum", "140.128.98.31")

val connection = ConnectionFactory.createConnection(conf);

val table = connection.getTable(TableName.valueOf ("powerdata_loss_hbase"))
val put = new Put(Bytes.toBytes(date.toString + "_" + recovery_date.toString
.substring (0, 16)))

put.addColumn (Bytes.toBytes ("powerdata_loss"), Bytes.toBytes("date"),
Bytes.toBytes(date.toString))

put.addColumn (Bytes.toBytes ("powerdata_loss"), Bytes.toBytes("recovery_date")
, Bytes.toBytes(recovery_date.toString))

put.addColumn(Bytes.toBytes ("powerdata_loss"), Bytes.toBytes("total_time"),

Bytes.toBytes(total_time.toString))

Appendix

73

table.put (put)
table.close ()
println(date + "," +
" ")

}

println(" & KR & & %

"F A ET , " + recovery_date + "4

@ 7" + final_data.length + "= ")

¥r® 7" + total_time +

	摘要
	Abstract
	致謝詞
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivation
	1.2 Thesis Contributions
	1.3 Thesis Organization

	2 Background Review and Related Works
	2.1 Data Lake
	2.2 Hadoop Ecosystem
	2.2.1 Apache Kafka
	2.2.2 Apache Spark
	2.2.3 Spark Streaming
	2.2.4 Spark MLlib
	2.2.5 Apache Superset

	2.3 Big Data Storage
	2.3.1 Apache Sqoop
	2.3.2 HDFS
	2.3.3 Apache Hive
	2.3.4 Apache HBase

	2.4 Query Engine
	2.4.1 Apache Impala
	2.4.2 Apache Phoenix

	2.5 Related Works

	3 System Design and Implementation
	3.1 System Architecture
	3.2 System Services
	3.2.1 Data Transfer
	3.2.2 Data Collection
	3.2.3 Data Storage
	3.2.4 Data Analysis
	3.2.5 Data Visualization

	3.3 System Implementation

	4 Experimental Results
	4.1 Experimental Environment
	4.2 The Speed of Transferring Historical Data
	4.3 Data Lake's Comparison of Different Search Engines
	4.4 Streaming Data Storage
	4.5 Power Failure Analysis Results
	4.6 Verify Power Forecasting Accuracy with MAPE
	4.7 Superset Visualization

	5 Conclusions and Future Work
	5.1 Concluding Remarks
	5.2 Future Work

	References
	Appendix
	A Cloudera Manager Installation
	B Kafka Producer for ICEMS
	C Kafka Producer for IGEMS
	D Spark Streaming Write ICEMS to HBase
	E Spark Streaming Write IGEMS to HBase
	F Power Forecast Using HoltWinters
	G Power Failure Analysis

