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Abstract

Clinical trials for determining equivalence of a new therapy with a standard ther-

apy of proven efficacy have become increasingly important recently due to growing

cost and ethical pressures to switch from an expensive and invasive standard ther-

apy to a cheaper and less-invasive therapy. Statistical methods used for equivalence

trial for survival response are often based on the method proposed by Wellek (1993)

under proportional hazards (PH) model. Martinez et al. (2017) extended the re-

sult of Wellek (1993) to the case of proportional odds (PO) survival model. The

Aalen’s additive risk model has the feature that the influence of each covariate can

vary separately and nonparametrically through time, which allows greater flexibil-

ity of temporal structure than PH and PO models. In this article, we propose

equivalence tests for the difference of two cumulative hazard functions under partly

Aalen’s model, where the influence of some covariates varies nonparametrically over

time, and that of the remaining covariates containing the indicator of treatment is

constant. Simulation studies demonstrate that the proposed test performs well in

practical situations.

Key Words: Semiparametric transformation model; maximum likelihood estimator;

Type I error; critical region.
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1 Introduction

In clinical trials, determining the equivalence or non-inferiority of a new drug (test

drug) with an existing drug (reference drug) is an important topic since there are

growing financial and ethical pressures to switch from an expensive and invasive

standard therapy to a cheaper and less-invasive therapy. For the case of no covari-

ates beyond treatment arms, let S0(t) and S1(t) denote the survival functions for

standard treatment and new treatment. The aim of a clinical equivalence trial is

usually to test the clinical scientific hypothesis

H̃0 : |S1(t)− S0(t)| ≥ δ for some t versus H̃a : |S1(t)− S0(t)| < δ for all t, (1.1)

where δ is a specified cutoff value for equivalence between two survival functions

S1(t) and S0(t). Under the assumption of proportional hazards (PH) model (Cox

(1972)), i.e., S1(t) = (S0(t))
eβ , Wellek (1993) showed that the H0 and Ha in (1.1)

are equivalent to the statement

H̃∗0 : |β| ≥ log(1 + ε) versus H̃∗a : |β| < log(1 + ε),

where β is the regression coefficient associated with the treatment group indicator,

and ε is a simple strictly increasing function of δ and satisfies

δ = e−
1
ε
log(1+ε) − e−

1+ε
ε

log(1+ε).

In many equivalence trials, the hazard functions of two treatment arms are not

proportional over time. Martinez et al. (2017) demonstrated that the actual type

I error rate for the procedure of Wellek (1993) is higher than the desired nominal

rate when survival responses from two treatment arms satisfy the proportional odds

(PO) model (Bennett (1983); Murphy et al. (1997)), i.e.,

S0(t) =
1

1 +R(t)
and S1(t) =

1

1 +R(t)eβ
,

which implies
1− S1(t)

S1(t)
= θ

[
1− S0(t)

S0(t)

]
,

where θ = eβ is the time-constant survival odds ratio between new treatment and

standard treatment. Under the PO model, Martinez et al. (2017) showed that the

hypothesis of equivalence of two survival functions can be formulated as a statistical
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hypothesis involving only the survival odds ratio parameter θ. Specifically, the H0

and Ha in (1.1) are equivalent to the statement

H̃?
0 : θ ≤ 1

1 + ε
or θ ≥ 1 + ε, versus H̃?

a :
1

1 + ε
< θ < 1 + ε,

where ε = 4δ/(1− δ2).

Under the model
1− S1(t)

S1(t)
= θez

T γ

[
1− S0(t)

S0(t)

]
they further demonstrated that their proposed tests are applicable even in the

presence of additional covariates z beyond treatment arms. Their simulation study

indicate that the proposed test procedures have correct type I error rates under

the PO model as well as the PH model. Thus, their proposed tests can be a more

robust practice for equivalence trials of survival responses than the commonly used

log-rank based tests.

However, in some situations, both PH and PO assumptions can be violated.

Furthermore, one disadvantage of PH or PO models is that it does not allow time-

varying coefficients. A useful and flexible alternative is the Aalen’s additive risk

model (Aalen (1980, 1989, 1993), McKeague (1988); and Huffer and McKeague

(1991)). This model has the feature that the influence of each covariate can vary

separately and nonparametrically through time, which allows for greater flexibil-

ity of temporal structure compared with PH and PO models. In this article, we

consider equivalence tests under partly Aalen’s additive hazards (McKeague and

Sasieni (1994)), where the influence of some covariates varies nonparametrically

over time, and that of the remaining covariates containing the indicator of treat-

ment is constant. The hazard function of partly Aalen’s model λ(t|X(t), Z) at time

t, given covariates X(t) and Z has the form

λ(t|X(t), Z) = X(t)Tα(t) + ZTβ, (1.2)

X(t)T = [X1(t), X2(t), . . . , Xq(t)]

ZT = [Z1, . . . , Zp]

are q × 1 and p× 1 vectors of covariates respectively,

α(t) = [α1(t), . . . , αq(t)]
T

β = [β1, . . . , βp]
T
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are the corresponding vectors of coefficients. The impact of the covariates in X(t)

can vary with time, but that of Z is restricted to be constant. The first component

of X(t), i.e., X1(t), can be set to 1 to allow for a general baseline hazard.

In Section 2, we develop an equivalence test for the difference of two hazard rates

under model (1,1). In Section 3, simulation studies are conducted to investigate the

finite sample performance of the proposed test.
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2 The Proposed Test

Let T denote failure time and C denote the censoring time, which is assumed to

be independent of T conditional on Z. Let X̃(t) = {X(s), s ∈ (0, t)}. The sur-

vival function P (T > t|X̃(t), Z) = S(t|X̃(t), Z) is identifiable on [0, τ ], where τ

denotes the end point of the study. Suppose a clinical trial consists of two in-

dependent groups labeled “1” and “2”, where group 1 is the standard treatment

(control) group and group 2 is the new treatment group. When the treatment ef-

fect is time-invariant, we can without loss of generality denote Z1 as an indicator

variable representing treatment group membership with Z1 = 0 for the standard

treatment group and Z1 = 1 for the new treatment group. Let Z∗ = (Z2, . . . , Zp)
T .

We will now use the first element of Z, i.e., Z1, as an indicator variable representing

treatment group membership with Z1 = 0 for the standard treatment group and

Z1 = 1 for the new treatment group. Let S0(t|X̃(t), Z∗) and S1(t|X̃(t), Z∗) denote

the survival functions for standard treatment and new treatment and Λ0(t|X̃(t), Z∗)

and Λ1(t|X̃(t), Z∗) are the corresponding cumulative hazard functions. In stead of

considering the difference between S0(t|X̃(t), Z∗) and S1(t|X̃(t), Z∗), we consider

two treatments are clinically equivalent if |Λ1(t|X̃(t), Z∗)− Λ0(t|X̃(t), Z∗)| the dif-

ference between two cumulative hazard functions, is smaller than a predetermined

equivalence level ∆ over time. Thus, two treatment arms are equivalent only when

|Λ1(t|X̃(t), Z∗)− Λ0(t|X̃(t), Z∗)| < ∆ for all t,

Due to identifiability, we consider testing the null hypothesis

H0 : sup
t∈[0,τ ]

|Λ1(t|X̃(t), Z∗)− Λ0(t|X̃(t), Z∗)| ≥ ∆

versus

Ha : sup
t∈[0,τ ]

|Λ1(t|X̃(t), Z∗)− Λ0(t|X̃(t), Z∗)| < ∆

Under model (1.2),

Λ1(t|X̃(t), Z∗) =

∫ t

0

X(s)Tα(s)ds+ Z∗
T

β∗ + β1t

and

Λ0(t|X̃(t), Z∗) =

∫ t

0

X(s)Tα(s)ds+ Z∗
T

β∗,
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where β∗ = [β2, . . . , βp]
T .

Hence, this is equivalent to testing

H∗0 : sup
t∈[0,τ ]

|β1t| ≥ ∆

versus

H∗a : sup
t∈[0,τ ]

|β1t| < ∆

i.e.,

H∗0 : |β1| ≥ η versus H∗a : |β1| < η, (2.1)

where η = ∆/τ .

Denote by (xi(t), zi, Ti, δi) the observed covariates xi(t), and zi, possibly censored

failure time Ti and censoring indicator δi for the ith observation of n individuals.

McKeague and Sasieni (1994) derived estimator for β and A(t) =
∫ t
0
α(s)ds. We

briefly describe their approach as follows. The likelihood function is

L(β, λ) =
n∏
i=1

[
λi(Ti)

δi × exp

{
−
∫ τ

0

I[Ti≥t]λi(t)dt

}]
,

The log-likelihood is

l(β, λ) =
n∑
i=1

{
δi log λi(Ti)−

∫ τ

0

I[Ti≥t]λi(t)dt

}
, (2.2)

where

λi(t) = λ(t|xi(t), zi) = xi(t)
Tα(t) + zTi β.

Differentiate l(β, λ) with respect to β to obtain the parametric score function l̇β.

Setting l̇β = 0 yields

β =

(∫ τ

0

Z(t)TW (t)Z(t)dt

)−1(∫ τ

0

Z(t)TW (t)dN(t)−
∫ τ

0

Z(t)TW (t)V (t)dA(t)

)
,

(2.3)

where

Z(t) = (z1I[Ti≥t], . . . , znI[Tn≥t])
T

V (t) = (x1(t)I[Ti≥t], . . . , xn(t)I[Tn≥t])
T ,

where W (t) = diag{1/λi(t)} is a diagonal matrix with element 1/λi(t) ,

N(t) = (N1(t), . . . , Nn(t))T
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where Ni(t) = I[Ti≤t,δi=1] is the counting process for the failure of individual i.

Next, they considered a submodel

α(t) = α(t; ζ) = α0(t) + ζb(t)

where ζ is a one-dimensional parameter and b(t) is a given q-vector of functions.

Differentiate (2.2) with respect to ζ to obtain score function

l̇ζb =

∫ τ

0

bTV (t)TW (t)dN(t)−
∫ τ

0

bTV (t)TW (t)Z(t)βdt−
∫ τ

0

bTV (t)TW (t)V (t)dA(t).

Setting l̇ζb = 0 for all vector valued function b, we obtain

A(t) =

∫ t

0

(V (s)TW (s)V (s))−1V (s)TW (s)dN(s)−
∫ t

0

(V (s)TW (s)V (s))−1V (s)TW (s)Z(s)βds.

(2.4)

Substituting the right-hand side of (2.4) into (2.3) and solving for β gives

βw =

(∫ τ

0

Z(t)TH(t)Z(t)dt

)−1 ∫ τ

0

Z(t)TH(t)dN(t),

where

H(t) = W (t)−W (t)V (t)(V (t)TW (t)V (t))−1V (t)TW (t).

Notice that βw is not an estimator since W (t) depends on the unknown hazard

density function λi(t). An ordinary least squares (OLS) estimator β̂ can be obtained

by replacing W (t) by I, i.e,

β̂ =

(∫ τ

0

Z(t)T (I − P (t))Z(t)dt

)−1 ∫ τ

0

Z(t)T (I − P (t))dN(t),

where

P (t) = V (t)(V (t)TV (t))−1V (t)T

Based on β̂, we can obtain an OLS estimator of A(t), given by

Â(t) =

∫ t

0

(V (s)TV (s))−1V (s)TdN(s)−
∫ t

0

(V (s)TV (s))−1V (s)TZ(s)β̂ds.

The estimator β̂ is consistent and
√
n(β̂−β) converges in distribution to a p-variate

normal with mean zero and covariance matrix Σ−1, where

Σ = n−1
∫ τ

0

Z(t)T (I − P (t))Z(t)dt
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Similarly, n1/2(Â(t) − A(t)) converges in distribution to a q-variate Gaussian

process with mean zero and covariance function which, as a function of s and t, can

be consistently estimated by n
∑

r≤s∧t JrJ
T
r ψ̂(s)Σ−1ψ̂(t)T ,

where Jr is the jump in Â at time r and

ψ̂(s) =

∫ s

0

(V (u)TV (u))−1V (u)TZ(u)ds.

Notice that the estimators β̂ and Â are not efficient estimators. McKeague and

Sasieni (1994) proposed efficient estimators for β and A based on the following

method:

(i) Obtain an estimator Ŵ (t) from a predictable kernel smoother, following Huffer

& McKeague (1991).

(ii) Find an estimator β̂w for β using Ŵ (t):

β̂w =

(∫ τ

0

Z(t)T Ĥ(t)Z(t)dt

)−1 ∫ τ

0

Z(t)T Ĥ(t)dN(t),

where

Ĥ(t) = Ŵ (t)− Ŵ (t)V (t)(V (t)T Ŵ (t)V (t))−1V (t)T Ŵ (t).

(iii) Find an estimate Âw(t) of A(t) using Ŵ (t) and β̂w:

Âw(t) =

∫ t

0

(V (s)T Ŵ (s)V (s))−1V (s)T Ŵ (s)dN(s)−
∫ t

0

(V (s)T Ŵ (s)V (s))−1V (s)T Ŵ (s)Z(s)β̂wds.

The estimator β̂w is consistent and
√
n(β̂w − β) converges in distribution to a

p-variate normal with mean zero and covariance matrix, which can be consistently

estimated by

Σ̂w = n−1
∫ τ

0

Z(t)T Ĥ(t)Z(t)dt.
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Based on β̂ and β̂w, we propose two Wald type tests to test the null hypothesis

H∗0 : |β1| ≥ η.

Let se(β̂) denote the asymptotic standard error of β̂, which can be obtained from Σ.

Similarly, let se(β̂w) denote the estimated asymptotic standard error of β̂w, which

can be calculated from Σ̂w. We consider the following two testing statistics:

T̂ =
|β̂1|
se(β̂1)

and T̂w =
|β̂1w|
se(β̂1w)

,

where β̂1 and β̂1w are the first element of β̂ and β̂w, respectively, and se(β̂1) and

se(β̂1w) are their corresponding standard errors. The rejection regions of the two

tests are

T̂ < Cα(η/se(β̂1)

and

T̂w < Cα(η/se(β̂1w)

respectively, where the C2
α(ψ) is the αth quantile of a χ2 distribution with degree of

freedom equal to 1 and non centrality parameter ψ.

Since se(β̂1) is based on the asymptotic results, it can severely underestimate

the standard deviation. One alternative is to consider the Jackknife method. The

jackknife technique is well described in Mosteller and Tukey (1977) and has been

shown to be widely useful for obtaining robust confidence intervals. For randomly

censored data, Gaver and Miller (1983) demonstrated that the Kaplan-Meier sur-

vival estimator can be jackknifed to give conservative confidence limits for survival

probability. Here, we consider delete-one jackknife estimate of standard error, de-

noted by seJ(β̂1) and construct testing statistics based on

T̂J =
|β̂1|

seJ(β̂1)
.
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3 Simulation Study

A simulation study is conducted to investigate the performance of the proposed

tests. We consider the simulation model

λ(t|x(t), z) = 1 + x2i(t)
Tα2(t) + β1z1,

where intercept is α1(t) = 1 , α2(t) = t, and x2i(t)’s are generated from discrete

distribution with P (x2i(t) = j) = 0.25 for j = 1, 2, 3, 4 and z1(t) is a Bernoulli

random variable with success probability equal to 0.5. The value of η is set as 0.8

and the values of β1 are set as 0.2, 0.4, 0.6 and 0.8. The right censoring variable

is generated as C = min(C1, C2), where C1 is a constant and equal to one and

C2 was generated from exponential distribution with means 1.25 and 2.5 such that

censoring rates are about 0.30 and 0.20, respectively. Sample size is set at 100, 200

and 400 and the replication times is 1000. Table 1 and Table 2 show the biases

of the estimates β̂, and β̂w, their asymptotic estimated standard error (denoted

by se), and delete-one jackknife estimate of standard error (denoted by seJ) for β̂.

Tables 1 and 2 also show the testing powers based on testing statistics T̂ , T̂w and T̂J

with Type I error at α = 0.05. Table 3 and Table 4 show the biases and standard

deviations of Â1(t), Â2(t), Â1w(t), and Â2w(t) at t = 0.7, 0.8 and 0.9.

Based on Tables 1 through 4, we have the following conclusions:

(i) Table 1 and 2 indicate that the estimated asymptotic standard errors of β̂ severly

underestimate the true standard errors while the delete-one jackkinfe estimates are

close to the true values. Thus, the type I error rates of the testing statistics T̂ are

larger than the nominal level α = 0.05 while that of T̂j are close to nominal level.

(ii) Since the estimated asymptotic standard errors of β̂w are close to the true

standard errors, the testing statistics T̂w performs well.

(iii) Given sample size n, the power of all the three tests increase as the values of β1

decrease. Give β1, the power of all the three tests increases as sample size increases.

(iv) Tables 3 and 4 indicate that both Âi(t) and Âwi(t) perform well with small

biases. When n = 400, Âwi(t) is more efficient than Âi(t) but the efficiency gain is

limited.
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Table 1. Simulation results for β̂1, T̂ , T̂J , β̂1w, T̂w, η = 0.8

C2: exponential distribution with means 1.25

β̂1 T̂ T̂J β̂1w T̂w
β n bias ese seJ se power power bias ese se power
0.2 100 0.012 0.339 0.506 0.438 0.380 0.197 0.009 0.430 0.448 0.232
0.4 100 0.017 0.344 0.530 0.476 0.266 0.129 0.039 0.451 0.469 0.151
0.6 100 0.036 0.350 0.551 0.499 0.175 0.067 0.016 0.472 0.487 0.099
0.8 100 0.001 0.357 0.571 0.510 0.123 0.044 0.029 0.494 0.495 0.059
1.0 100 0.037 0.363 0.595 0.548 0.057 0.031 0.015 0.516 0.521 0.022
0.2 200 0.006 0.236 0.343 0.314 0.715 0.458 -0.004 0.299 0.294 0.613
0.4 200 0.017 0.240 0.356 0.333 0.476 0.258 -0.004 0.314 0.319 0.356
0.6 200 0.013 0.244 0.373 0.346 0.261 0.103 0.018 0.329 0.346 0.155
0.8 200 0.016 0.248 0.389 0.358 0.127 0.047 0.025 0.344 0.352 0.041
1.0 200 0.007 0.252 0.403 0.378 0.045 0.008 0.008 0.359 0.360 0.017
0.2 400 0.005 0.165 0.238 0.234 0.933 0.825 0.015 0.210 0.211 0.869
0.4 400 0.002 0.168 0.247 0.229 0.704 0.480 0.010 0.220 0.226 0.541
0.6 400 0.007 0.171 0.256 0.238 0.376 0.205 0.004 0.230 0.231 0.217
0.8 400 0.005 0.173 0.268 0.249 0.120 0.054 0.006 0.241 0.244 0.042
1.0 400 0.001 0.176 0.279 0.264 0.030 0.010 -0.001 0.252 0.253 0.007

} When β = 0.8 , power is the estimated Type I error
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Table 2. Simulation results for β̂1, T̂ , T̂J , β̂1w, T̂w, η = 0.8

C2: exponential distribution with means 2.5

β̂1 T̂ T̂J β̂1w T̂w
β n bias ese seJ se power power bias ese se power
0.2 100 -0.022 0.318 0.465 0.450 0.447 0.197 0.004 0.408 0.411 0.295
0.4 100 0.001 0.324 0.486 0.467 0.332 0.163 0.019 0.428 0.450 0.173
0.6 100 0.014 0.329 0.505 0.482 0.189 0.079 0.012 0.448 0.458 0.094
0.8 100 0.026 0.336 0.530 0.506 0.117 0.049 0.022 0.469 0.483 0.047
1.0 100 0.032 0.342 0.552 0.539 0.051 0.019 0.035 0.492 0.521 0.025
0.2 200 -0.013 0.221 0.316 0.298 0.788 0.549 0.006 0.285 0.278 0.664
0.4 200 -0.007 0.226 0.330 0.306 0.537 0.318 -0.011 0.299 0.309 0.406
0.6 200 -0.001 0.229 0.344 0.329 0.314 0.135 0.013 0.313 0.313 0.159
0.8 200 0.023 0.233 0.356 0.348 0.134 0.043 0.010 0.327 0.328 0.043
1.0 200 0.016 0.238 0.374 0.355 0.039 0.009 0.019 0.343 0.353 0.012
0.2 400 0.002 0.156 0.219 0.203 0.938 0.860 0.001 0.200 0.199 0.909
0.4 400 0.002 0.158 0.227 0.216 0.692 0.585 0.006 0.210 0.208 0.588
0.6 400 -0.001 0.161 0.238 0.226 0.405 0.210 0.007 0.220 0.222 0.219
0.8 400 -0.003 0.164 0.248 0.236 0.111 0.054 0.006 0.230 0.236 0.049
1.0 400 -0.005 0.167 0.259 0.261 0.034 0.006 0.001 0.241 0.251 0.006

} When β = 0.8 , power is the estimated of Type I error
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Table 3. Simulation results for Â1(t) , Â2(t), Â1w(t) , Â2w(t)

C2: exponential distribution with means 1.25

Â1(t) Â2(t) Â1w(t) Â2w(t)
t n A1(t) A2(t) bias se bias se bias se bias se

0.7 100 0.7 0.245 0.015 0.552 -0.002 0.226 0.008 0.527 0.001 0.217
0.7 200 0.7 0.245 0.006 0.381 -0.001 0.154 -0.014 0.366 0.008 0.154
0.7 400 0.7 0.245 0.002 0.264 0.001 0.113 0.003 0.243 -0.006 0.102
0.8 100 0.8 0.320 -0.001 0.717 0.008 0.310 -0.020 0.682 -0.001 0.293
0.8 200 0.8 0.320 0.032 0.477 -0.008 0.205 0.019 0.443 -0.004 0.189
0.8 400 0.8 0.320 -0.012 0.316 0.002 0.139 -0.016 0.290 -0.009 0.131
0.9 100 0.9 0.405 -0.047 0.858 0.030 0.415 -0.077 0.854 0.046 0.414
0.9 200 0.9 0.405 0.027 0.562 -0.009 0.245 0.014 0.567 0.004 0.256
0.9 400 0.9 0.405 0.003 0.379 0.004 0.175 0.010 0.373 0.001 0.171

Table 4. Simulation results for Â1(t) , Â2(t), Â1w(t) , Â2w(t)

C2: exponential distribution with means 2.5

Â1(t) Â2(t) Â1w(t) Â2w(t)
t n A1(t) A2(t) bias se bias se bias se bias se

0.7 100 0.7 0.245 0.030 0.503 -0.010 0.205 0.022 0.502 -0.003 0.204
0.7 200 0.7 0.245 0.010 0.332 -0.001 0.136 0.009 0.325 -0.003 0.133
0.7 400 0.7 0.245 0.006 0.227 -0.004 0.095 0.012 0.239 -0.003 0.092
0.8 100 0.8 0.320 -0.010 0.629 0.015 0.273 -0.006 0.573 0.009 0.259
0.8 200 0.8 0.320 0.002 0.402 0.007 0.176 0.005 0.390 -0.005 0.165
0.8 400 0.8 0.320 0.016 0.288 -0.003 0.121 0.014 0.273 -0.007 0.115
0.9 100 0.9 0.405 -0.010 0.815 0.015 0.362 0.007 0.744 0.005 0.353
0.9 200 0.9 0.405 0.017 0.475 -0.003 0.217 0.018 0.483 -0.009 0.220
0.9 400 0.9 0.405 0.009 0.331 -0.002 0.152 0.001 0.308 0.003 0.139
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4 Discussion

When the treatment effect is time-dependent, we can without loss of generality de-

note X2(t) ≡ X2 as an indicator variable representing treatment group membership

with X2 = 0 for the standard treatment group and X2 = 1 for the new treatment

group. Let X∗(t) = (X3(t), . . . , Xq(t))
T and X̃∗(t) = {s : X∗(s), s ∈ (0, t)}. Let

Λ0(t|X̃∗(t), Z) and Λ1(t|X̃∗(t), Z) denote the cumulative hazard functions for stan-

dard treatment and new treatment. Thus, two treatment arms are equivalent only

when

|Λ1(t|X̃∗(t), Z)− Λ0(t|X̃∗(t), Z)| < ∆ for all t.

Due to identifiability, we consider testing the null hypothesis

H0 : sup
t∈[0,τ ]

|Λ1(t|X̃∗(t), Z)− Λ0(t|X̃∗(t), Z)| ≥ ∆

versus

Ha : sup
t∈[0,τ ]

|Λ1(t|X̃∗(t), Z)− Λ0(t|X̃∗(t), Z)| < ∆.

Under model (1.1), this is equivalent to testing

H∗0 : sup
t∈[0,τ ]

|A2(t)| ≥ ∆

versus

H∗a : sup
t∈[0,τ ]

|A2(t)| < ∆.

Further resarch is required to deveolp testing statistics to deal with this case.
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