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Abstract

Clinical trials for determining equivalence of a new therapy with a standard ther-
apy of proven efficacy have become increasingly important recently due to growing
cost and ethical pressures to switch from an expensive and invasive standard ther-
apy to a cheaper and less-invasive therapy. Statistical methods used for equivalence
trial for survival response are often based on the method proposed by Wellek (1993)
under proportional hazards (PH) model. Martinez et al. (2017) extended the re-
sult of Wellek (1993) to the case of proportional odds (PO) survival model. The
Aalen’s additive risk model has the feature that the influence of each covariate can
vary separately and nonparametrically through time, which allows greater flexibil-
ity of temporal structure than PH and PO models. In this article, we propose
equivalence tests for the difference of two cumulative hazard functions under partly
Aalen’s model, where the influence of some covariates varies nonparametrically over
time, and that of the remaining covariates containing the indicator of treatment is
constant. Simulation studies demonstrate that the proposed test performs well in

practical situations.

Key Words: Semiparametric transformation model; maximum likelihood estimator;

Type I error; critical region.



1 Introduction

In clinical trials, determining the equivalence or non-inferiority of a new drug (test
drug) with an existing drug (reference drug) is an important topic since there are
growing financial and ethical pressures to switch from an expensive and invasive
standard therapy to a cheaper and less-invasive therapy. For the case of no covari-
ates beyond treatment arms, let Sy(t) and Si(¢t) denote the survival functions for
standard treatment and new treatment. The aim of a clinical equivalence trial is

usually to test the clinical scientific hypothesis
Hy : |S1(t) — So(t)| > 0 for some t versus H, : |Sy(t) — So(t)] < & for all t, (1.1)

where 0 is a specified cutoff value for equivalence between two survival functions
S1(t) and Sp(t). Under the assumption of proportional hazards (PH) model (Cox
(1972)), i.e., Si(t) = (So(t))e”, Wellek (1993) showed that the Hy and H, in (1.1)

are equivalent to the statement
H; - |B| > log(1 + €) versus HF : || < log(1 + ),

where (3 is the regression coefficient associated with the treatment group indicator,

and € is a simple strictly increasing function of ¢ and satisfies

§ = 6—%log(1+e) . €—¥log(1+e)

In many equivalence trials, the hazard functions of two treatment arms are not
proportional over time. Martinez et al. (2017) demonstrated that the actual type
I error rate for the procedure of Wellek (1993) is higher than the desired nominal
rate when survival responses from two treatment arms satisfy the proportional odds
(PO) model (Bennett (1983); Murphy et al. (1997)), i.e.,

1

So(t) =TT REE

:TR(t) and Si(t)

which implies

1—S(t) 1 So(t)
5:(0) ‘9[ So(t) }

where 6 = ¢ is the time-constant survival odds ratio between new treatment and

standard treatment. Under the PO model, Martinez et al. (2017) showed that the

hypothesis of equivalence of two survival functions can be formulated as a statistical



hypothesis involving only the survival odds ratio parameter 6. Specifically, the Hy

and H, in (1.1) are equivalent to the statement

]:IS:GS

or 0 >1+e, versus H* :
+e€ 1+e€

<0 <1+e,
where € = 46 /(1 — §2).

Under the model
1—51(t) _ g™ ll — So(t)]
Si(t) So(t)

they further demonstrated that their proposed tests are applicable even in the
presence of additional covariates z beyond treatment arms. Their simulation study
indicate that the proposed test procedures have correct type I error rates under
the PO model as well as the PH model. Thus, their proposed tests can be a more
robust practice for equivalence trials of survival responses than the commonly used

log-rank based tests.

However, in some situations, both PH and PO assumptions can be violated.
Furthermore, one disadvantage of PH or PO models is that it does not allow time-
varying coefficients. A useful and flexible alternative is the Aalen’s additive risk
model (Aalen (1980, 1989, 1993), McKeague (1988); and Huffer and McKeague
(1991)). This model has the feature that the influence of each covariate can vary
separately and nonparametrically through time, which allows for greater flexibil-
ity of temporal structure compared with PH and PO models. In this article, we
consider equivalence tests under partly Aalen’s additive hazards (McKeague and
Sasieni (1994)), where the influence of some covariates varies nonparametrically
over time, and that of the remaining covariates containing the indicator of treat-
ment is constant. The hazard function of partly Aalen’s model A(¢|X(¢), Z) at time

t, given covariates X (t) and Z has the form
MHX(t), 2) = X(t) a(t) + 276, (1.2)
X(1)" = [Xa(t), Xa(t), . .., Xq(t)]
7t =12y,...,7)
are ¢ X 1 and p x 1 vectors of covariates respectively,
a(t) = [on(t), ..., aq(t)]"

B=1[Br,--- Bol"



are the corresponding vectors of coefficients. The impact of the covariates in X ()
can vary with time, but that of Z is restricted to be constant. The first component

of X(t), i.e., Xi(t), can be set to 1 to allow for a general baseline hazard.

In Section 2, we develop an equivalence test for the difference of two hazard rates
under model (1,1). In Section 3, simulation studies are conducted to investigate the

finite sample performance of the proposed test.



2 The Proposed Test

Let T denote failure time and C' denote the censoring time, which is assumed to
be independent of 7' conditional on Z. Let X(t) = {X(s),s € (0,¢)}. The sur-
vival function P(T > t|X(t),Z) = S(t|X(t), Z) is identifiable on [0, 7], where 7
denotes the end point of the study. Suppose a clinical trial consists of two in-
dependent groups labeled “1” and “2”, where group 1 is the standard treatment
(control) group and group 2 is the new treatment group. When the treatment ef-
fect is time-invariant, we can without loss of generality denote Z; as an indicator
variable representing treatment group membership with Z; = 0 for the standard
treatment group and Z; = 1 for the new treatment group. Let Z* = (Zy, ..., Z,)".
We will now use the first element of 7, i.e., Z1, as an indicator variable representing
treatment group membership with Z; = 0 for the standard treatment group and
Z, = 1 for the new treatment group. Let So(t|X(¢), Z*) and S, (t| X (t), Z*) denote
the survival functions for standard treatment and new treatment and Ag(t| X (t), Z*)
and Ay (t|X(t), Z*) are the corresponding cumulative hazard functions. In stead of
considering the difference between Sy(t|X (t), Z*) and S (¢|X(t), Z*), we consider
two treatments are clinically equivalent if |Ay (¢ X (t), Z*) — Ao(t| X (t), Z*)| the dif-
ference between two cumulative hazard functions, is smaller than a predetermined

equivalence level A over time. Thus, two treatment arms are equivalent only when

A (HX (1), Z) — Ao(t| X (2), Z)| < A for all t,

Due to identifiability, we consider testing the null hypothesis
Hy : i ALt X (1), Z%) — Ao(t] X (1), Z7)| > A
tel|0,
versus

H, @ sup [A(tX(1), Z%) — Ao(t|X (1), Z%)] < A

tel0,7]

Under model (1.2),

At X (1), Z%) /X (s)ds + Z*' B* + put

and

Ao(t|X (1), Z27) /X s)ds + 2 B*,



where 8* = [Ba,...,8,]".

Hence, this is equivalent to testing

Hg : sup |Bit] = A

te(0,7]
Versus
H: sup |Git] < A
te(0,7]
ie.,
H |1 = n versus H) : 51| <n, (2.1)
where n = A /7.

Denote by (x;(t), z;, T, 6;) the observed covariates z;(t), and z;, possibly censored
failure time 7} and censoring indicator §; for the i* observation of n individuals.
McKeague and Sasieni (1994) derived estimator for 5 and A(t) = fg a(s)ds. We
briefly describe their approach as follows. The likelihood function is

n

LN =1] {Ai(n)ﬁi X exp{— /0 [[Tizt])\i(t)dtH,

=1

The log-likelihood is

n

1(B,)\) = Z{@ log \i(T}) — /0 [[Tizﬂ)\i(t)dt}, (2.2)

i=1
where

(1) = Mt|z(t), z) = 2 () ault) + 2] .

Differentiate I(/3,\) with respect to 3 to obtain the parametric score function ig.

Setting Zg = 0 yields

B = (/OT Z(t)TW(t)Z(t)dt) B (/OT Z(O)TW (t)dN(t) — /OT Z(t)TW(t)V(t)dA(t)),
(2.3)

where
Z(t) = (Zl[[TiZt]7 e azn[[Tnzt])T
V(t) = (x1(O)m>e, - 2a(O),50) "

where W (t) = diag{1/\;(t)} is a diagonal matrix with element 1/\;(¢) ,

N(t) = (N:(t),..., N, ()"



where N;(t) = Ijr<4,s,—1) is the counting process for the failure of individual 1.

Next, they considered a submodel

a(t) = a(t;¢) = ao(t) + Cb(t)

where ( is a one-dimensional parameter and b(t) is a given g-vector of functions.

Differentiate (2.2) with respect to ¢ to obtain score function

Icb= / TbTV(t)TW(t)dN(t)— / TbTV(t)TW(t)Z(t)ﬁdt— / TbTV(t)TW(t)V(t)dA(t).

Setting iCb = 0 for all vector valued function b, we obtain

A(t) = /0 (V(S)TW(S)V(S))_1V(S)TW(S)dN(8)—/0 (V(s)'W(s)V(s)) "'V (s) W (s)Z(s)Bds.
(2.4)
Substituting the right-hand side of (2.4) into (2.3) and solving for S gives
Bu :(/OT Z(t)TH(t)Z(t)dt) /OT Z(OTH(t)dN(t),
where

H(t) = W(t) = WH)V &) (V) WHV () V() W),

Notice that 3, is not an estimator since W (¢) depends on the unknown hazard
density function \;(t). An ordinary least squares (OLS) estimator /3 can be obtained
by replacing W (t) by I, i.e,

T -1 ,r
i=( [ zora-poyzoa) [ 207 ey,
0 0

where
P(t) =V (VH)'V(t) V()"

Based on B, we can obtain an OLS estimator of A(t), given by

At) = / (V(8)7V ()" V(s)TdN(s) — / (V(s)TV(s)) "V (s)7 2Z(s) s

The estimator 3 is consistent and \/ﬁ(ﬁ — [3) converges in distribution to a p-variate

normal with mean zero and covariance matrix ¥~!, where

Y=n"! /T Z(OT(I — P(t)Z(t)dt



Similarly, n*/2(A(t) — A(t)) converges in distribution to a ¢-variate Gaussian
process with mean zero and covariance function which, as a function of s and ¢, can
be consistently estimated by n_ ., JoJT(s)Sp(t)T,

where J,. is the jump in A at time r and

d(s) = / (V@) V () ()T Z(w)ds.

Notice that the estimators B and A are not efficient estimators. McKeague and
Sasieni (1994) proposed efficient estimators for § and A based on the following
method:

(i) Obtain an estimator W (t) from a predictable kernel smoother, following Huffer
& McKeague (1991).
(ii) Find an estimator (3, for 8 using W (t):

B :( /0 ' Z(t)Tﬁ(t)Z(t)dt) B /0 " ZWTHAN(D),

where

H(t) = W(t) = W)V OV OTW@HV0) V) TW(E).
(i) Find an estimate A, (t) of A(t) using W(t) and B,

Aw(t)zfo(V(S)TW(S)V(S))‘IV(S)TW(S)dN(S)—/0 (V(s)TW(s)V (5) "'V () W (s)Z(s) Buds.

The estimator (3, is consistent and \/n(5, — ) converges in distribution to a
p-variate normal with mean zero and covariance matrix, which can be consistently

estimated by

A

5, = n-! / 20T Z ()t



Based on B and ﬁw, we propose two Wald type tests to test the null hypothesis
Hy |81 > 1.

Let se(ﬁ) denote the asymptotic standard error of B , which can be obtained from 3.
Similarly, let se(Bw) denote the estimated asymptotic standard error of Bw, which

can be calculated from 2. We consider the following two testing statistics:

7~ |Blw’
~ ’

se(Br) se(Srw)

where Bl and Blw are the first element of B and Bw, respectively, and se(Bl) and
se(Blw) are their corresponding standard errors. The rejection regions of the two

tests are

T < Caln/se(p)

and
Ty < Co(n/se(fru)

respectively, where the C2(v) is the o quantile of a x? distribution with degree of

freedom equal to 1 and non centrality parameter .

Since se(Bl) is based on the asymptotic results, it can severely underestimate
the standard deviation. One alternative is to consider the Jackknife method. The
jackknife technique is well described in Mosteller and Tukey (1977) and has been
shown to be widely useful for obtaining robust confidence intervals. For randomly
censored data, Gaver and Miller (1983) demonstrated that the Kaplan-Meier sur-
vival estimator can be jackknifed to give conservative confidence limits for survival
probability. Here, we consider delete-one jackknife estimate of standard error, de-

noted by se J(Bl) and construct testing statistics based on




3 Simulation Study

A simulation study is conducted to investigate the performance of the proposed

tests. We consider the simulation model
At (t), z) = 14 @9:(t) a(t) + Pr21,

where intercept is a;(t) = 1, as(t) = t, and x9(t)’s are generated from discrete
distribution with P(z9;(t) = j) = 0.25 for j = 1,2,3,4 and z(¢) is a Bernoulli
random variable with success probability equal to 0.5. The value of 7 is set as 0.8
and the values of [3; are set as 0.2, 0.4, 0.6 and 0.8. The right censoring variable
is generated as C' = min(Cy, Cy), where C) is a constant and equal to one and
C5 was generated from exponential distribution with means 1.25 and 2.5 such that
censoring rates are about 0.30 and 0.20, respectively. Sample size is set at 100, 200
and 400 and the replication times is 1000. Table 1 and Table 2 show the biases
of the estimates B, and Bw, their asymptotic estimated standard error (denoted
by se), and delete-one jackknife estimate of standard error (denoted by se) for j3.
Tables 1 and 2 also show the testing powers based on testing statistics T, T, and T}
with Type I error at a = 0.05. Table 3 and Table 4 show the biases and standard
deviations of Ay(t), Ay(t), Ay,(t), and Ag,(t) at t = 0.7,0.8 and 0.9.

Based on Tables 1 through 4, we have the following conclusions:

(i) Table 1 and 2 indicate that the estimated asymptotic standard errors of 3 severly
underestimate the true standard errors while the delete-one jackkinfe estimates are
close to the true values. Thus, the type I error rates of the testing statistics T are

larger than the nominal level a = 0.05 while that of Tj are close to nominal level.

(ii) Since the estimated asymptotic standard errors of Bw are close to the true

standard errors, the testing statistics T, performs well.

(iii) Given sample size n, the power of all the three tests increase as the values of ;

decrease. Give 31, the power of all the three tests increases as sample size increases.

(iv) Tables 3 and 4 indicate that both A;(t) and A,,(t) perform well with small
biases. When n = 400, A, (t) is more efficient than A;(¢) but the efficiency gain is

limited.
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Table 1. Simulation results for Bl, T, TJ, Blw, Tw, n=0.8

Cs: exponential distribution with means 1.25

11

51 T TJ Blw Tw
1G] n bias ese se; se  power power  bias ese se  power
0.2 100 0.012 0.339 0.506 0.438 0.380 0.197  0.009 0.430 0.448 0.232
0.4 100 0.017 0.344 0.530 0.476 0.266 0.129  0.039 0.451 0.469 0.151
0.6 100 0.036 0.350 0.551 0.499 0.175 0.067 0.016 0.472 0.487 0.099
0.8 100 0.001 0.357 0.571 0.510 0.123 0.044  0.029 0.494 0.495 0.059
1.0 100 0.037 0.363 0.595 0.548 0.057 0.031  0.015 0.516 0.521 0.022
0.2 200 0.006 0.236 0.343 0.314 0.715 0.458 -0.004 0.299 0.294 0.613
0.4 200 0.017 0.240 0.356 0.333 0.476 0.258 -0.004 0.314 0.319 0.356
0.6 200 0.013 0.244 0.373 0.346 0.261 0.103  0.018 0.329 0.346 0.155
0.8 200 0.016 0.248 0.389 0.358 0.127 0.047  0.025 0.344 0.352 0.041
1.0 200 0.007 0.252 0.403 0.378 0.045 0.008  0.008 0.359 0.360 0.017
0.2 400 0.005 0.165 0.238 0.234 0.933 0.825 0.015 0.210 0.211 0.869
0.4 400 0.002 0.168 0.247 0.229 0.704 0.480 0.010 0.220 0.226 0.541
0.6 400 0.007 0.171 0.256 0.238 0.376 0.205  0.004 0.230 0.231 0.217
0.8 400 0.005 0.173 0.268 0.249 0.120 0.054  0.006 0.241 0.244 0.042
1.0 400 0.001 0.176 0.279 0.264 0.030 0.010 -0.001 0.252 0.253 0.007

© When 8 = 0.8 , power is the estimated Type I error



Table 2. Simulation results for Bl, T, TJ, Blw, Tw, n=0.8

Cs: exponential distribution with means 2.5

12

51 T TJ Blw Tw
1G] n bias ese se; se  power power  bias ese se  power
0.2 100 -0.022 0.318 0.465 0.450 0.447 0.197 0.004 0.408 0.411 0.295
0.4 100 0.001 0.324 0.486 0.467 0.332 0.163  0.019 0.428 0.450 0.173
0.6 100 0.014 0.329 0.505 0.482 0.189 0.079  0.012 0.448 0.458 0.094
0.8 100 0.026 0.336 0.530 0.506 0.117 0.049  0.022 0.469 0.483 0.047
1.0 100 0.032 0.342 0.552 0.539 0.051 0.019 0.035 0.492 0.521 0.025
0.2 200 -0.013 0.221 0.316 0.298 0.788 0.549  0.006 0.285 0.278 0.664
0.4 200 -0.007 0.226 0.330 0.306 0.537 0.318 -0.011 0.299 0.309 0.406
0.6 200 -0.001 0.229 0.344 0.329 0.314 0.135 0.013 0.313 0.313 0.159
0.8 200 0.023 0.233 0.356 0.348 0.134 0.043  0.010 0.327 0.328 0.043
1.0 200 0.016 0.238 0.374 0.355 0.039 0.009 0.019 0.343 0.353 0.012
0.2 400 0.002 0.156 0.219 0.203 0.938 0.860  0.001 0.200 0.199 0.909
0.4 400 0.002 0.158 0.227 0.216 0.692 0.585  0.006 0.210 0.208 0.588
0.6 400 -0.001 0.161 0.238 0.226 0.405 0.210 0.007 0.220 0.222 0.219
0.8 400 -0.003 0.164 0.248 0.236 0.111 0.064  0.006 0.230 0.236 0.049
1.0 400 -0.005 0.167 0.259 0.261 0.034 0.006  0.001 0.241 0.251 0.006

© When 8 = 0.8 , power is the estimated of Type I error
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Table 3. Simulation results for A;(t) , Ay(t), Ayy(t) , Agw(t)

Cs: exponential distribution with means 1.25

LM AW ) T ()
t n  Ai(t) As(t) Dbias  se bias  se bias se bias  se
0.7 100 0.7 0.245 0.015 0.552 -0.002 0.226 0.008 0.527 0.001 0.217
0.7 200 0.7 0.245 0.006 0.381 -0.001 0.154 -0.014 0.366 0.008 0.154
0.7 400 0.7 0.245 0.002 0.264 0.001 0.113 0.003 0.243 -0.006 0.102
0.8 100 0.8 0.320 -0.001 0.717 0.008 0.310 -0.020 0.682 -0.001 0.293
0.8 200 0.8 0.320 0.032 0.477 -0.008 0.205 0.019 0.443 -0.004 0.189
0.8 400 0.8 0.320 -0.012 0.316 0.002 0.139 -0.016 0.290 -0.009 0.131
0.9 100 0.9 0405 -0.047 0.858 0.030 0.415  -0.077 0.854 0.046 0.414
0.9 200 0.9 0.405 0.027 0.562 -0.009 0.245 0.014 0.567 0.004 0.256
0.9 400 0.9 0.405 0.003 0.379 0.004 0.175 0.010 0.373 0.001 0.171
Table 4. Simulation results for Ay (t) , Ay(t), Ay (t) , Agw(t)
Cs5: exponential distribution with means 2.5

A(t) Ay(t) Ay (t) Ay (t)
t n  Ai(t) As(t) Dbias  se bias  se bias se bias  se
0.7 100 0.7 0.245 0.030 0.503 -0.010 0.205 0.022 0.502 -0.003 0.204
0.7 200 0.7 0.245 0.010 0.332 -0.001 0.136 0.009 0.325 -0.003 0.133
0.7 400 0.7 0.245 0.006 0.227 -0.004 0.095 0.012 0.239 -0.003 0.092
0.8 100 0.8 0.320 -0.010 0.629 0.015 0.273 -0.006 0.573 0.009 0.259
0.8 200 0.8 0.320 0.002 0.402 0.007 0.176 0.005 0.390 -0.005 0.165
0.8 400 0.8 0.320 0.016 0.288 -0.003 0.121 0.014 0.273 -0.007 0.115
0.9 100 0.9 0.405 -0.010 0.815 0.015 0.362 0.007 0.744 0.005 0.353
0.9 200 0.9 0405 0.017 0.475 -0.003 0.217 0.018 0.483 -0.009 0.220
0.9 400 0.9 0.405 0.009 0.331 -0.002 0.152 0.001 0.308 0.003 0.139
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4 Discussion

When the treatment effect is time-dependent, we can without loss of generality de-
note X5(t) = X5 as an indicator variable representing treatment group membership
with X5 = 0 for the standard treatment group and X, = 1 for the new treatment
group. Let X*(t) = (X5(t),...,X,(t))T and X*(t) = {s : X*(s),s € (0,t)}. Let
Ao(t|X*(t), Z) and Ay (t|X*(t), Z) denote the cumulative hazard functions for stan-
dard treatment and new treatment. Thus, two treatment arms are equivalent only

when

AL (t| X*(t), Z) — Ao(t| X*(2), Z)| < A for all t.

Due to identifiability, we consider testing the null hypothesis
Ho: s A(1°(0),2) ~ Aoltl X°(0) 2)| 2 &
tel0,

versus

H, : sup |A(t|X*(t), Z) — Ao(t|X*(t), Z)| < A.

te[0,7]
Under model (1.1), this is equivalent to testing
Hi: sup |As(t)] > A
te(0,7]

versus

Hy . sup |Ax(t)| < A.

a
te(0,7]

Further resarch is required to deveolp testing statistics to deal with this case.
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