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ABSTRACT

Two-stage designs have been widely used in phase Il clinical trials to evaluate the
efficacy and safety of the study treatment. A common primary endpoint is a binary
(yes/no) patient response to treatment. In some cases, the patient response distribution
for a phase Il clinical trial is heterogeneous, making it desirable to stratify patients into
subgroups according to different prognostic factors. In this article, for a two-arm
stratified randomized phase Il clinical trial, we consider two-stage designs and propose
three testing procedures to compare the response rates between two treatments. The first
procedure is based on the weighted average of the stratum-specific differences between
treatment response rates. The second and third procedures are based on the estimated
relative risk and odds ratio, respectively, under the assumption of a common odds ratio
over the strata. We consider conditional approach and present a simulation-based
algorithm by modifying the algorithm in London and Chang (2005) to determine the
parameters in designs to achieve the desired power at the nominal level. Simulation
results show that the split-levels of type | and type Il errors and randomization ratio
have a crucial impact on the overall sample size required. Decreasing the split-level or
increasing the randomization ratio at the first-stage can result in a smaller total sample
size if early termination after the first-stage does not occur. In terms of the total sample
size required, the INVAR-weighted test outperforms the other tests when the odds ratio
or the true difference between two response rates is constant across strata. When neither
odd ratio nor the difference between two response rates is constant across the strata, the
INVAR-weighted test also performs well when the randomization ratio is large.
KEYWORDS: Odds ratio; Response rate; Sample size; Stratification; Two-stage

design



1. Introduction

One of the objectives of a phase Il clinical trial is to evaluate the effect of an
experimental treatment and decide whether it is promising to be studied in a larger-scale
phase 11l trial. Phase Il clinical trials are often single-arm studies and the endpoint is
typically a binary patient response such that the objective response rate can be used to
assess the effect of an experimental treatment. The patient population or a phase Il
clinical trials can be heterogeneous across subgroups. Since the response rates differ
across the strata, it is inappropriate to conduct the binomial test under the assumption
that the number of responses follows a binomial distribution with the same response
probability for all patients. On the other hand, sample size in a phase Il clinical trial is
usually small such that it is inefficient to conduct independent binomial tests within
subgroups. In this situation, it will be desirable to stratify patients into subgroups
according to different prognostic factors, such as age, gender, disease stage, and/or other
risk factors, which are expected to have quite different response rates. For single-arm
stratified phase Il trials, London and Chang (2005) have proposed conditional and
unconditional approaches for generating sample sizes and stopping boundaries that
provide one-stage and two-stage designs with the desired power at nominal level. Their
proposed test statistic was based on the difference of the observed total number of
responses over strata and the corresponding expected number of responses under the
null hypothesis. Since the unconditional approach requires the information on the
proportions of patients for all strata, they suggested using the conditional approach,
where initial estimates of the proportions of patients are needed to compute the sample
size before the study. One advantage of the conditional approach is that decision
boundaries can be changed according to the observed numbers of patients in the defined

strata. They also proposed a simulation-based method to determine the parameters in
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designs. Chang et al. (2012) pointed out that the test statistic proposed by London and
Chang (2005) is equivalent to an equal-weight (common odds ratios) linear combination
of the numbers of respondents in the strata, leading to some loss of power. To improve
the power of test, they proposed an unequal-weight test statistic based on Neyman-
Pearson lemma. Their numerical results indicate that the proposed test is more powerful
than London and Chang’s test (2005). Other studies of the single-arm phase Il clinical
trial with stratification can be seen in Thall et al. (2003), Chang et al. (2011) and Jung et
al. (2012).

The single-arm phase Il trial designs for evaluating each experimental treatment
individually are limited by outcome-trial effect confounding arising from the
incapability of separating trial effects (such as patient selection, trial eligibility, and
treatment locations) from treatment effect on clinical outcomes. Instead, randomized
designs to experimental regimens, using a control arm when necessary, offer an
attractive proposition by ensuring better patient comparability and reducing
confounding between outcome and trial effects. For more than two decades, there has
been interest in utilizing phase Il trials with randomization against a standard-treatment
control arm to provide greater assurance than afforded by comparison to historic
controls that the new regimen is promising and warrants further evaluation (Rubinstein
et al. 2005). Simon et al. (1985) described the randomized Phase Il trials with a control
arm. Jung (2008) and Thall et al. (1989) proposed different two-stage designs for
randomized phase Il trials with a control treatment. In this article, for a two-arm
stratified randomized phase Il clinical trial, we consider two-stage designs and propose
three testing procedures to compare the response rates between two treatments. The first
procedure is based on the weighted average of the stratum-specific differences between
treatment response rates. The second and third procedures are based on the estimated

relative risk and odds ratio, respectively, under the assumption of a common odds ratio
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over the strata. Since in practice an accurate estimate of the proportions of patients for
strata is usually not available, we consider conditional approach and present a
simulation-based algorithm by modifying the algorithm in London and Chang (2005) to
determine the parameters in designs to achieve the desired power at the nominal level.
Thus, the conditional approach based on the first procedure is an extension of the
conditional method for a single-arm trial in London and Chang (2005).

The rest of the article is organized as follows. In Section 2, we review three test
statistics for comparing two binomial proportions from stratified samples. In Section 3,
we consider conditional approach in two-stage designs for a two-arm stratified
randomized phase Il clinical trial. We present a simulation-based algorithm to find the
parameters in the design to achieve the desired power at the nominal level. Some
numerical examples under various settings of expected response rates in the
experimental and the control treatment groups for the proposed design are presented in

Section 4. Finally, conclusions and discussions are given in Section 5.

2. The testing procedures

Suppose that patients can be stratified into g strata. Let N be the number of
patients and X7 be the numbers of responses in the ith stratum of the experimental
treatment group. Let Ni be the number of patients and X; be the numbers of responses
in the ith stratum of the control group. Conditional on the observed numbers of patients
Nf =ni and Nf=n{,i=1,..,q, we assume that X7, .., X7 and X7,...,X¢ are
independent binomial random variables with

e ; . e e C : ; c Cc
X;{~Binomial(n{,n;) and X;~Binomial(nj,n;),



where 7rf and z{ are the expected response rates of the experimental and the control

treatments in the ith stratum, respectively.

2.1. Test based on the difference between response rates

Letn; = m{ — m{ be the true difference between the experimental and the control
response rates in the ith stratum, i = 1, ..., g. The true overall treatment effect is given
by = 1, P;n; , where P; is the true proportion of patients from the ith stratum if the
entire target population had been enrolled (Zf=1Pi = 1). The problem of testing the
hypothesis that experimental treatment has larger response rate than the control
treatment can be unified as the following hypothesis:

Hy:mf =nf =n) vs H::nf = n?,nf > nf, atleastone i, i=1,..., q,
stratum-specific with the desired significant level «, and power (1- ) evaluated at
y =mi + A; , where A; is the specified improvement in response rate in strum i we
want to detect.

The nature estimate of n is given by

where w; is the weight assigned to the ith stratum satisfying £, w; = 1. There are two
common methods to determine. One method is the harmonic means of the samples size
(SSIZE), that is

(nin))/(nf +ni)
w; = :
Il (ind)/(nf +nf)

which are also referred to as the Cochran-Mantel-Haenszel (Cochran 1954; Mantel-
Haenszel 1959) weights for comparing two independent proportions with stratification.
The other one is the reciprocals of the variances of the stratum-specific differences

(INVAR), that is



XN

i=1 i
where

_ XE/mi)/(A - X7 /i) 4 Xi/n))/(A = Xi/ni)

n; n;

Vi

is the variance of 1j;. For the SSIZE weighting method, a larger weight is assigned to
strata with a large number of patients compared to that with a small number of patients.
For the INVAR weighting method, a larger weight is assigned to strata with a small
value of the estimated variance of the difference between the response rates compared
to that with a large value. The estimate 7} based on the SSIZE weighting method is
generally unbiased or approximately unbiased. Although the estimate 7 based on the
INVAR weighting method is usually a biased estimate of n when n;’s are not constant,
it has minimum variance (Mehrotra and Railkar 2000). Radhakrishna (1965) showed
that the SSIZE weighting method is optimal if the odds ratio =7 (1 —mf)/
{rf (1-m})},i =1, ..., q, are constant, and the INVAR weighting method is optimal if
n;,1=1,...,q, are constant.

Because the wrong choice of weighting method may lead to the loss in efficiency,
Mehrotra and Railkar (2000) proposed the minimum risk (MR) weighting method by
minimizing the average squared error loss of 7, E(# — n)?, that is

W=D a;Vi? =L b
Corlovet S vt sl amVt ) \EL V)

i=1 i =1

where a; = ;2L Vit =21 nV;7t and b; = Vi (1 + a2, Piny), which reduces to
the INVAR weights when n;, i = 1,...,q, are constant across strata. The estimate 7

based on the MR weights is more precise and less biased relative to the SSIZE and the

INVAR weighting methods.



For testing Hy:f =nf =m{,i =1,...,q, the test statistic denoted by Tp;s is

given by
U

Tpirr =
JPLweari

(1)

where

Var(h) = 1+1 X7+ Xf 1 X{+ X[
artin) = né  nf )\ nf+nf nf + nf

and the test statistic converges to the standard normal distribution as the sample size for

each treatment in each stratum tends to infinity.

2.2. Test based on the odds ratio

An alternative testing procedure is based on the odds ratio, which is used in the
analysis of stratified two-by-two tables. The odd ratio in the ith stratum is given
by

9 =M
= )

Let 8; = logd; be natural logarithm of ;. Testing hypothesis H3 versus H} is

equivalent to the following hypothesis:
H§:0, = - =6,=0 vs H{:0; > 0,at least one i, i=1,..., q,

with the desired significant level a, and power (1 — ) evaluated at 6; = §; > 0,where
§; is the specified improvement in logarithm of odds ratio in stratum i we want to
detect.
Assuming that the odds ratio is constant, i.e.,8; =--- = 6, = 0, the estimate of fis
given by

L XE(nf — X5/ (nf +nf)

Ll XE(nf = X0)/(nf )"
7

0 = log(



and the variance estimate of 8 is given by

var(9) = TLiSiR | TL(SiU+QR) | L QiR
L T 2L REL ) | 20

where S, = (X¢ +n¢ = XO)/(nf +716) | Q= (X +nf = XO)/(nf +1) Ry =
X;(ni —X{)/(n{ +nf) and U; = Xf(n{ — X7)/(n{ +ni) (Jennison and Turnbull
1991).
When H; is true, the following test statistic
6

Jvar®

converges to the standard normal distribution as the sample size for each treatment in

(2)

Tor =

each stratum tends to infinity (Jennison and Turnbull 1991). Given 7{and §;, the
previous hypothesis H§:0; = -+ =6, =0 vs H{:6; = §; > 0 is equivalent to the
hypothesis H3:tf = nf =) vs Hi:nf = m),mf + A, i =1, ..., q, with

Ay =) (1 —m)(exp(8;) — 1)/(1 + 7 (exp(8,) — 1)).

2.3. Test based on relative risk

The other alternative testing procedure is based on the relative risk, which is also
commonly used in the binary response as a measure of endpoints. The relative risk in
the ith stratum is given by ¢; = 77 /m{. Hence, the true overall treatment effect is given
by ¢ = X7, P ¢;. Testing hypothesis Hg versus HY is equivalent to the following
hypothesis:

H3: 1= =@, =1 vs H}:¢; > 1,atleastone i, i=1,..., q,

with the desired significant level a, and power (1- 8) evaluated at ¢; = @; > 1, where

@; is the specified improvement in relative risk in stratum i we want to detect. We use



the Mantel-Haenszel type risk ratio (Rothman and Boice 1979; Tarone 1981) to estimate

the overall relative risk across strata, which is given by

?=1Xienic/(nie +nf)
L Xfng /(¢ +nf)

P =

and the asymptotic variance of ¢ can be estimated by

n¢ né
9 ye i 2 4 92 4 xc i 2
i=14i (nle T nlC) Q" Lij=—14i (nle T nlc)

VA 7 =
ar(p) (Z;lefnie/(nie + Tllc))z

When H; is true, the following test statistic Tgp

¢—1
VVar(9)

converges to the standard normal distribution as the sample size for each treatment in

(3)

Trr =

each stratum tends to infinity. Given r? and ¢;, the previous hypothesis H3: ¢, = -+ =
9,=1 vs Hi:p;>1,i=1,..,q is equivalent to the hypothesis Hj:n{ = nf =
n) vs Hi:nf =nd,nf +A;,i=1,..,q,with

A= (p; — 1),

3. The two-stage designs: conditional approach

Since clinician usually do not have an accurate estimates of Py, ... B;, one-stage
design and the unconditional approach in two-stage design may be impractical. Thus,
we consider two-stage designs and conditional approach. Suppose that patients are
stratified into g strata for a two-arm stratified randomized phase Il clinical trial. First,
we briefly describe the conditional approach. Assume that the initial rough estimates of

Py, ... P, are available. For testing H,, versus H,, based on the desired type | error and


https://www.statsdirect.com/help/references/reference_list.htm

power, M7 and My patients are randomly assigned to receive the experimental and the
control treatments at the first stage. At the second stage, based on the observed accrual
rate for each stratum, the additional sample sizes for the experimental and control
treatments are M5 and M5, respectively.

Let nj; and n7; be the number of patients in the ith stratum at the jth stage of the

Cc

control group and the treatment group, respectively. Also let X;; and X7; be the number

j
of responses among the n;; and nf; patients, respectively. After M + My patients have
entered the study at the first stage, the test statistic, denoted by T;, which can be one of
the test statistics proposed in Section 2.1-2.3, and will be calculated based on the
response data of the M7 + M; patients, where the observed numbers of patients
nfy, ..., ngy and niy, ..., ngq, for treatment and control group, respectively. If T; < ay,
then we fail to reject the null hypothesis, declare the experimental treatment is not
promising and the study is stopped; if T; > b,, then we reject the null hypothesis and
the study is also stopped; if a; < T; < b4, then the accrual will be continued for the
second stage, where ay is the largest real number satisfying

Py, (Ty < a1|niy,mip, i = 1,..,q) = 1P, 4)
and by is the smallest real number satisfying

Py (Ty > by|nf,nii = 1,..,9) = 1@, )
where 7, and 7, can be chosen based on the guidance of Fleming et al. (1982) and
Chang et al. (1998).

If the accrual continues to the second stage for the next (M5 + M$) patients, then

the test statistic, denoted by T,, which is the same test statistics as stage 1, will be
calculated. If T, < b,, then we fail to reject the null hypothesis and conclude that the

experimental treatment is not promising; if T, > b,, then we reject the null hypothesis

10



and claim that the experimental treatment is promising, where b, is the smallest real
number satisfying
Py, (Ty > by|nf,né i =1,..,q)

+PH (a1<T1<b1,T2>b2|n l=1,...,q,j=1,2)£0(. (6)

i u"
The power of the test is
Power = Py (Ty > byInfj,ni,i=1,..,q)
+Py, (a1 STy < by, Ty > by|nfunfji=1,..,q,j = 1,2). (7
The design with the decision boundaries a,, b, and b, guarantees that significant level
does not exceed a.
The design parameters need to be determined before the study begins. We propose
a simulation-based method to determine sample sizes My, M7, M5, M5 and the
boundaries a,, b;, and b, for achieving the desired power at the nominal level,
according to the context of the hypothesis and the rough estimates of Py, ... P;. Letr;
and r, denote the randomization ratios for the first stage and the second stage,
respectively, i.e., M{ /M{ = r; , M5 /M5 = r, and M5 = k X M. This design is referred
to as an unbalanced design if r; # 1 or r, # 1 and more patients will be assigned to the
experimental treatment group if ; > 1 orr, > 1. Using the approach in London and
Chang (2005), we propose the following simulation-based algorithm to determine the
design parameters:
1. Set the initial values of M to be smaller than the anticipated sample size, and set M5
to be the integral part of k x My. Let M7 and M5 be the integral parts of r; X M{ and
r, X M5, respectively.

2.Forj=1,2,i=1,..,q-1, and x=¢g, c, let n; be the nearest integral of M;* X P;, and

Z? 11 nx

11



3. Generate the binomial random variable X;; with sample size n;; and response rate 7,
and generate the binomial random variable X;; with sample size n;; and response rate
n{, where 7 and 7r{ are defined in the null hypothesis.

4. Compute the test statistics T; and T, based on the values nf;, n;, x{j, and x{;
obtained in steps 2 and 3.

5. Repeat Step 3 and Step 4, say 50,000 times, we can obtain the estimate of the joint
distribution of (T, T,) and the estimate of the marginal distribution of T; under the
null hypothesis, the latter can be used to obtain b, according to (5).

6. Repeat Step 3 and Step 4, say 50,000 times, where z{ and 7{ are defined in the
alternative hypothesis. Then we can obtain the estimates of the joint distribution of
(T;, T,) and the marginal distribution of T; under the alternative hypothesis, and the
latter can be used to obtain a, according to (4).

7. After obtaining a, and b,, the estimate of the joint distribution of (T;, T,) under the
null hypothesis can be used to obtain b, according to (6).

8. Given a,, by, b, obtained in the previous steps, we use the estimate of the joint
distribution of (T;, T,) under the alternative hypothesis to evaluate the desired power
(7). If the test power is lower than the desired power, then My is set to be My + 1.

9. Repeat Steps 2-8 until the desired power requirement is satisfied.

Jung (2008) pointed out that the unbalanced two-stage design usually requires
larger total sample size compared with the balanced design. The discussion on the ratio
of the experimental treatment sample size and the control treatment sample size can be
seen in (Wittes 2002). In next section, some numerical examples are given to
demonstrate how the total sample size is impacted by various settings of k and r;.

Now, let the P; be the estimate of P; based on n¢ nj; as follows

ij

12



s le(nfj + nicj)

L= 2 q :
j=1 Zi=1("iej + 1

Notice that the determination of sample sizes My, M, M5, and M5 depends on the
initial estimates of the P;'s. If P,’s do not differ from P;’s too much, the actual power
will be close to the desired level. Instead, if P; differs from P; a lot for some i, the
desired power may not be achieved so that an adjustment of the sample size is required.
Following the advice of London and Chang (2005), we could enroll more patients into

the experimental/control group at the second stage for achieving the desired power.

4. Numerical examples

We compared the sample sizes based on the test statistic Tp;rr (1) with three
different weighting methods. At the same time, we also presented the sample sizes
based on the test statistic Tpg (2) and Trg (3). We considered three strata with equal
proportion P, = P, = P; = 1/3. Under the balanced design with the same number of
patients assigned into each treatment group, i.e. k =1 and r;, = r, = 1, we considered
three different scenarios in the numerical study, where the expected response rates of
the control treatment (r§, 75, $) = (w2, 2, w2) were set as (0.4, 0.2, 0.1), and (0.6,
0.3,0.1).

Scenario 1: Equal difference. In this scenario, the true difference between the
experimental response rate and the control response rate is set as A;= A,=
A; = A=0.20, 0.23 and 0.25.

Scenario 2: Equal odds ratio. In this scenario, the logarithm of odds ratio is set as

8, = 8,= 85 =6=1.1,1.25 and 1.5.

13



Scenario 3: Unequal difference. In this scenario, the true difference between the
experimental response rate and the control response rate is not constant
across strata, implying different odds ratio between the strata.

Furthermore, we consider the forth scenario with an unbalanced design under various

settings for k=(0.5, 1.0, 2.0) and (ry, r3)=(1, 1), (1, 2), (2, 1) and (2, 2), in which the

expected response rates of the control treatment are set as (0.4, 0.2, 0.1) and the true

difference between the experimental and the control response rates are set as (0.35,

0.24, 0.12), which is not constant across strata. For each scenario, Type | error

probability a and Type Il error probability S were set to be 0.05 and 0.2, respectively.

To decide the critical points a,, by, the split-level for both errors is set to be 50% at the

first stage, i.e., t; = 7, =0.5. The total sample size N, M{, M7, M5, M5, a4, by, by, and

the desired power are presented in Tables 1-4. Notice that the total sample size N refers
to the minimum sample size (MS) required for achieving the desired « and g if early
termination after the first stage does not occur. Since the impact of r; and r, on total

sample size is shown in Figure 1, Table 4 only lists the results for r, = r, = 1.

Table 1 indicates that to achieve the desired level the required sample size based
on the INVAR-weighted Tp;rf and MR-weighted Tp,; ¢, are the smallest when the true
difference between the experimental and the control response rates is constant across
strata. Due to violation of the assumption of the constant odd ratios, the SSIZE-
weighted Tp;rr and Tyg require larger sample size to achieve the desired level, in
particular, the Tgg requires the largest sample size to achieve the desired level.
Similarly, the required sample sizes get smeller, as the value of A; increases.

From Table 2, we can observe that to achieve a desired level the required sample
size of the INVAR-weighted Ty, and MR-weighted Tp; ¢ is the smallest when the

odds ratio is constant across strata. When the values of § increases, and the required

14



sample sizes of the INVAR-weighted Tp;rr, MR-weighted Tp;rr, SSIZE-weighted
Tpifr and Top are getting closer and the required sample size based on the test statistic
Tgg 1S the largest.

When neither constant odds ratio nor constant difference holds, Table 3 shows that
to achieve the desired level when the difference between A;, A, and A5 (or §;, 8, and
d3) is large, the required sample sizes of the INVAR-weighted Ty, and MR-weighted
Tpifr are the smallest and the test statistic Tgg is the largest, respectively. However, if
the difference between A;, A, and A5 (or &,, 8, and &) is small, the required sample
size based on the INVAR-weighted Tp; s and MR-weighted Tp,; ¢, are smaller than or
equal to that based on the SSIZE -weighted Tp,; ¢ and the test statistic Tpp.

The results for the unbalanced design in Table 4 and Figure 1 indicate that to
achieve the desired level, the required sample sizes of the INVAR-weighted Tp,; ¢, and
MR-weighted Tp;¢r are the smallest and on the test statistic Trg is the largest. The
required sample size based on the SSIZE -weighted Tp;¢f is close to the test statistic
Tor- The required sample sizes based on all the test statistic T is the smallest when
k=0.5and (ry,7,)=(2, 1).

Moreover, we also consider the scenarios with 7, and 7, set to 25% and 25% at
the first stage and various setting of (ry,7,). We consider four scenarios: (Scenario 1a):
Equal difference (Scenario 2a): Equal odds ratio (Scenario 3a): Unequal difference
under with k =1, and (Scenario 4a): unbalanced designs under various settings with
k=(0.5, 1.0, 2.0) and (ry,73)=(0.5, 0.5), (0.5, 1), (1, 1), (1, 2), (2, 1) and (2, 2) under
(n?, w9, m9)=(0.4,0.2,0.1) and (A,, A,, A3) = (0.35, 0.24, 0.12). The results are shown
in Tables 5-8. Since the impact of r; and r, on total sample size is shown in Figure 2,
Table 8 only lists the results for (11, 7,)= (2, 1).

From Table 5, to achieve the desired level the required sample size based on the

15



INVAR-weighted Tp; - and MR-weighted Tp;¢, are the smallest and the Trg require
the largest sample size. The required sample size based on the SSIZE-weighted Tp;f is
close to the test statistic Tz and require larger sample size to achieve the desired level.
When (1, 1,)=(2, 1) the required sample size is smaller than that under (11, ,)= (1, 1).
When (t4,7,)=(0.25, 0.25), the required total sample size is smaller than that under
(t4,7)=(0.5, 0.5). Similarly, the required sample sizes get smaller, as the value of A;
Increases.

From Table 6, we can observe that to achieve a desired level the required sample
size of the INVAR-weighted Tp;rr and MR-weighted Tp,; ¢, is the smallest and the test
statistic Trr is the largest. For (¥, m2, m9)=(0.4, 0.2, 0.1), when the values of §
increases, the required sample sizes of the SSIZE-weighted Tp;ff , the test statistic Ty
and Tgg are the same. When the (r?, =2, ©3)=(0.4, 0.2, 0.1) and the §=1.1, the required
sample size based on the SSIZE-weighted Ty, s under r; = r, = 1 are the same as that
under r; = 2, , = 1. When the (), n9, m9)=(0.6, 0.3, 0.1) and the & =1.1, the
required sample size based on the INVAR-weighted Tp; is the smallest and the test
statistic Tgg is getting larger as (ry,1,)=(2, 1). In addition, when the (r;,1,)=(2, 1), the
required sample size based on all the test statistics is smaller than that under (ry, ,)=(1,
1).

From Table 7, to achieve the desired level the required sample sizes of the
INVAR-weighted Tp;r and MR-weighted Ty, are the smallest and the test statistic
Trg is the largest. When the difference between A;, A, and A; (or 6;, &, and &3) is
small, the required sample size based on the INVAR-weighted Tp; s and MR-weighted
Tpifr are smaller than or equal to that based on the SSIZE -weighted Tp; ¢ and the test
statistic Tpr. And to achieve the desired level when the (ry,7,)=(2, 1), the required

sample size is the smaller than when (r;,7,)=(1, 1) .When the difference between A;,
16



A, and A5 (or 84, 8, and &3) increases, the required sample size based on the SSIZE-
weighted Tp;¢ and Tyg under the (w7, w3, 73)=(0.6, 0.3, 0.1) but do not vary a lot as
randomization ratio r; varies.

The results for the unbalanced design in Table 8 and Figure 2 indicate that to
achieve the desired level, the required sample sizes of the INVAR-weighted Tp; ¢, and
MR-weighted Tp,; ¢ are the same and the smallest. The required sample sizes based on
the test statistic Ty is the largest. The required sample size based on the SSIZE -
weighted Tp;¢r is close to the test statistic Tog. When k=1 and (r;,72)=(2, 2) the

required sample sizes based on all the test statistics are the smallest.

5. Conclusions and Discussions

Under a two-stage design for stratified randomized two-arm phase Il clinical trials,
we have proposed three testing procedures to compare the response rates between two
treatments. We have also developed a simulation-based algorithm to find the
parameters in designs to achieve the desired power at the nominal level. Based on
simulation results, we observe that to achieve the desired level, the required sample size
of the INVAR-weighted Ty, and MR-weighted Tp;¢f is the smallest if the odds ratio
is constant across strata, and the required sample size based on all the test statistics
decrease as & increases. The required sample size based on the INVAR- and MR-
weighted Tp;f is the smallest if the true difference between two response rates is
constant across strata, and the required sample size based on all the test statistics
decrease as A increases. When the odd ratio and the difference between two response
rates are not constant across the strata, the required sample sizes based on the INVAR-
weighted Tp; s and MR-weighted Ty, are the smallest and the test statistic Tgg is the
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largest, respectively in the case of large difference between A;, A, and A5 (or §;, &5
and 65). However, when the difference between A, A, and A; (or 6;, 6, and &3) is
small, the required sample size of the INVAR-weighted Tp,;rr, MR-weighted Tp;s,
SSIZE-weighted Tp; s and Tyg are close. We also observe that the differences r; and r,
based on the test statistics, the required sample sizes become smaller as the (ry,73)
increases. When the t; = 7, = 0.5 and k=0.5, the required sample size based on all the
test statistics is the smallest. When the t; = 7, = 0.25 and k=1, the required sample
size based on all the test statistics is the smallest.

The proposed conditional approach under a two-stage design can be extended to a
multi-stage design for the stratified randomized two-arm trial. In a randomized phase II
cancer clinical trial, sometimes the primary endpoint is the survival time, such as the
progression-free survival time or the overall survival time (Sperduto et al. 2012). In this
case, it may be worthwhile to develop a conditional approach for a two-arm stratified

randomized phase 1l clinical trial.
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Table 1. Sample sizes under A;= A,= A;= A under k=1, (74, 7,)=(0.5, 0.5) and
(r1, 12)=(1, 1).

(md,md,ml) A Method N MY ME M5 M a by b, Power
(0.4,0.2,0.1) 0.2 Tss 138 36 36 33 33 0.568 1.884 1.670 0.801
Tinv 114 30 30 27 27 0.470 1.674 1.471 0.800

Trr 114 30 30 27 27 0.470 1.674 1.471 0.800

TOR 138 36 36 33 33 0.554 1.811 1.646 0.802

TRR 144 36 36 36 36 0.405 1.041 1.095 0.806

023 Tss 102 27 27 24 24 0.586 1.822 1.596 0.800
Tinv 90 24 24 21 21 0481 1.615 1.392 0.815

Tmr 90 24 24 21 21 0.479 1.626 1.404 0.811

TOR 102 27 27 24 24 0573 1.727 1578 0.801

TRR 108 27 27 27 27 0.401 0.964 1.026 0.807

025 Tss 90 24 24 21 21 0.621 1.786 1562 0.811
Tinv 72 18 18 18 18 0.337 1.537 1.325 0.801

Tmr 72 18 18 18 18 0.335 1.532 1.324 0.800

TOR 90 24 24 21 21 0.608 1.700 1.530 0.813

TRR 90 24 24 21 21 0.405 0.923 0.983 0.804
(0.6,0.3,0.1) 0.2 Tss 138 36 36 33 33 0.568 1.920 1.692 0.801
Tinv 120 30 30 30 30 0.496 1.746 1.530 0.802

Tmr 120 30 30 30 30 0.496 1.746 1.530 0.802

TOR 144 36 36 36 36 0.574 1.846 1.675 0.807

TRR 150 39 39 36 36 0.455 1.058 1.040 0.805

023 Tss 108 27 27 27 27 0.603 1.840 1.665 0.807
Tinv 90 24 24 21 21 0514 1.688 1.461 0.802

Tmr 90 24 24 21 21 0.519 1.696 1.451 0.804

TOR 108 27 27 27 27 0.590 1.770 1.640 0.806

TRR 114 30 30 27 27 0.429 1.006 0.991 0.804

025 Tss 90 24 24 21 21 0.636 1.841 1.622 0.804
Tinv 78 21 21 18 18 0.555 1.669 1.432 0.805

Tmr 78 21 21 18 18 0.532 1.671 1.436 0.804

TOR 90 24 24 21 21 0.625 1.760 1.589 0.804

TRR 96 24 24 24 24 0.376 0.941 0.949 0.801
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Table 2. Sample sizes under §; = §, = 63 = 6 under k=1, (t4, 7,)=(0.5, 0.5) and

(r,2)=(1, 1).

(d,m2,ml) ) (0y,0,,8;) Method N M{ M MS M a by b,  Power
(0.4,0201) 1.1 (0.27,023,015 Tss 114 30 30 27 27 0.587 1.861 1.630 0.803
Tinv 108 27 27 27 27 0.471 1616 1.444 0812

Tmr 108 27 27 27 27 0.487 1.672 1503 0.810

TOR 114 30 30 27 27 0579 1.786 1.606 0.803

TRR 120 30 30 30 30 0.405 0.995 1.056 0.805

1.25 (0.3,0.27,0.18)  Tss 84 21 21 21 21 0524 1.703 1543 0.802
Tiv 78 21 21 18 18 0.482 1587 1.354 0.813

Trr 78 21 21 18 18 0.521 1.595 1.401 0.809

TOR 84 21 21 21 21 0510 1.634 1.507 0.802

TRR 90 24 24 21 21 0.422 0.925 0.983 0.805

15 (0.35,0.33,0.23)  Tss 54 15 15 12 12 0.560 1.561 1.325 0.807
Tiv 54 15 15 12 12 0.484 1.463 1.203 0.831

Trmr 54 15 15 12 12 0.476 1.480 1.262 0.823

TOR 54 15 15 12 12 0520 1.476 1.308 0.804

TRR 60 15 15 15 15 0.327 0.775 0.857 0.808

(0.6,0.3,0.1) 1.1 (0.22,0.26,0.15 Tss 120 30 30 30 30 0.580 1.877 1.656 0.800
Tinv 114 30 30 27 27 0532 1.726 1.514 0.806

Tmr 114 30 30 27 27 0551 1.783 1.580 0.801

TOR 126 33 33 30 30 0605 1.835 1.634 0.812

TRR 138 36 36 33 33 0465 1.042 1018 0.812

1.25 (0.24,0.3,0.18)  Tss 96 24 24 24 24 0.610 1.835 1.640 0.806
Tinv 90 24 24 21 21 0547 1696 1.466 0.814

Trr 90 24 24 21 21 0566 1.726 1516 0.809

TOR 96 24 24 24 24 0597 1762 1.612 0.807

TRR 108 27 27 27 27 0.389 0.969 0.989 0.808

15 (0.27,0.36,0.23)  Tss 66 18 18 15 15 0.618 1.746 1534 0.805
Tinv 66 18 18 15 15 0.623 1.639 1.389 0.828

Trr 66 18 18 15 15 0.632 1.646 1.407 0.828

TOR 66 18 18 15 15 0596 1.645 1.471 0.807

TRR 78 21 21 18 18 0.441 0.913 0915 0.819

22



Table 3. Sample sizes under unequal differences and unequal odds ratios under k=1, (4,
7,)=(0.5, 0.5) and (11, 1,)=(1, 1).

(7T10,7T3,7T3(,)) (61,62,03) (A1,42,43) Method N My M{ M; M; a by b, Power

(04,0201) (1251081) (0.30.201) Tss 126 33 33 30 30 0580 1.860 1.665 0.800
Tiv 126 33 33 30 30 0499 1.682 1501 0.801

Tmr 126 33 33 30 30 0567 1.767 1.619 0.803

TOR 126 33 33 30 30 0573 1.797 1.636 0.803

TRR 132 33 33 33 33 0405 1.011 1.072 0.801

(1.251.2,1.1) (03025015 Tss 96 24 24 24 24 0527 1.782 1591 0.806
Tiv 90 24 24 21 21 0510 1.611 1.399 0.813

Tmr 90 24 24 21 21 0544 1.645 1.490 0.808

TOR 96 24 24 24 24 0519 1697 1.555 0.807

TRR 102 27 27 24 24 0.422 0.969 1.024 0.802

(15,1.150.93) (0.350.240.12) Tss 90 24 24 21 21 0.621 1.775 1574 0.806
Tiv 84 21 21 21 21 0435 1.569 1.384 0.801

Tmr 84 21 21 21 21 0.416 1.626 1.478 0.800

TOR 90 24 24 21 21 0.605 1.696 1.540 0.807

TRR 96 24 24 24 24 0.405 0.923 0.992 0.803

(1.51211) (035025015 Tss 84 21 21 21 21 0551 1.767 1574 0.807
Tiv 78 21 21 18 18 0524 1.591 1.338 0.818

Tmr 78 21 21 18 18 0.574 1653 1.439 0.810

TOR 84 21 21 21 21 0544 1631 1.520 0.812

TRR 84 21 21 21 21 0.365 0.878 0.964 0.800

(0.6,0.3,0.1) (150.850.81) (0.27,02,0.1) Tss 144 36 36 36 36 0579 1.932 1.692 0.806
Tiv 138 36 36 33 33 0559 1.758 1532 0.809

Tmr 138 36 36 33 33 0617 1.875 1.654 0.805

TOR 144 36 36 36 36 0573 1.841 1.662 0.804

TRR 162 42 42 39 39 0455 1.064 1.048 0.803

(1509,1.1) (027,021,015 Tss 120 30 30 30 30 0598 1.881 1.686 0.804
Tiv 108 27 27 27 27 0491 1.724 1507 0.805

Tmr 108 27 27 27 27 0511 1761 1.549 0.800

TOR 120 30 30 30 30 0583 1.831 1.650 0.803

TRR 132 33 33 33 33 0406 1.026 1.009 0.802

(2.53,1.1,081) (0.350.26,0.1) Tss 96 24 24 24 24 0.641 1.837 1.640 0.809
Tiv 90 24 24 21 21 0587 1.713 1.463 0.807

Tmr 90 24 24 21 21 0674 1.821 1.585 0.803

TOR 96 24 24 24 24 0617 1.761 1.596 0.809

TRR 108 27 27 27 27 0.429 0.983 0.983 0.802

(2.531,1.1) (0.350.24,015 Tss 90 24 24 21 21 0681 1.841 1.622 0.805
Tiv 84 21 21 21 21 0555 1.675 1.461 0.810

Tmr 84 21 21 21 21 0567 1.724 1.539 0.801

TOR 90 24 24 21 21 0650 1.759 1590 0.801

TRR 102 27 27 24 24 0.442 0.969 0.963 0.804
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Table 4. Sample sizes under (2, 79, £3)=(0.4, 0.2, 0.1) , (A4, A,, A3)=(0.35, 0.24,
0.12), (74, 7)=(0.5, 0.5) and (11, 75)=(1, 1) for various k.

k Method N My M7 M5 M; a by b, Power
0.5 Tss 102 33 33 18 18 0.825 1.918 1.612 0.804
Tinv 96 33 33 15 15 0.735 1.758 1.454 0.802
Tmr 96 33 33 15 15 0.808 1.863 1.548 0.800
TOR 102 33 33 18 18 0.810 1.851 1.583 0.804
TRR 114 39 39 18 18 0.584 1.057 0.969 0.807
1 Tss 108 27 27 27 27 0.622 1.877 1.681 0.802
Tinv 102 27 27 24 24 0540 1.705 1.481 0.805
Tmr 102 27 27 24 24 0578 1.776 1590 0.801
TOR 108 27 27 27 27 0.605 1.794 1.639 0.803
TRR 120 30 30 30 30 0.413 0.993 0.999 0.804
2 Tss 120 21 21 39 39 0370 1.817 1.717 0.812
Tinv 114 18 18 39 39 0.276 1.652 1.549 0.805
Tmr 114 18 18 39 39 0.281 1.688 1.659 0.803
TOR 120 21 21 39 39 0.351 1.730 1.675 0.812
TRR 132 21 21 45 45 0.218 0.913 1.032 0.804
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Table 5. Sample sizes under A;= A,= A;= A under k=1, (7, 7,)=(0.25, 0.25) and
(r,12)=(2, 1).

(m,md,md) A (n,m) Method N ME Mf M5 O M{ by b,  Power
(0.4,02,01) 0.2 (1,1) Tss 126 33 33 30 30 0.157 2115 1592 0.800
Tinv 108 27 27 27 27 0000 1.888 1.427 0.803

Tmr 108 27 27 27 27 0.000 1.888 1427 0.803

TOR 126 33 33 30 30 0.154 2006 1569 0.801

TRR 126 33 33 30 30 0179 1090 1.026 0.806

(2,1) Tss 120 24 48 24 24 0174 1853 1441 0.805

Tinv % 21 39 18 18 0.052 1673 1.218 0.801

Tmr 9% 21 39 18 18 0.052 1673 1218 0.801

TOR 120 24 48 24 24 0173 1768 1416 0.803

TRR 120 24 48 24 24 0124 0949 0935 0.803

0.23 (1,2 Tss 9% 24 24 24 24 0.000 2.038 1532 0.804
Tinv 78 21 21 18 18 0.000 1811 1.300 0.801

Tmr 78 21 21 18 18 0.000 1.811 1.300 0.801

TOR 9% 24 24 24 24 0.150 1.894 1.498 0.807

TRR 9% 24 24 24 24 0110 0971 0965 0.806

(2,2) Tss 87 18 33 18 18 0.038 1741 1.334 0.800

Tinv 72 15 27 15 15 -0.052 1514 1.115 0.802

Tmr 72 15 27 15 15 -0.052 1514 1.115 0.802

TOR 87 18 33 18 18 0.038 1.628 1302 0.805

TRR 90 18 36 18 18 0.000 0.851 0.849 0.802

0.25 (1,1) Tss 78 21 21 18 18 0.166 1945 1452 0.803
Tinv 66 18 18 15 15 0.000 1.772 1.250 0.800

Trmr 66 18 18 15 15 0.000 1.747 1263 0.800

TOR 78 21 21 18 18 0.157 1824 1420 0.804

TRR 78 21 21 18 18 0.116 0926 0.905 0.800

(2,1) Tss 72 15 27 15 15 0.025 1.630 1.234 0.805

Tinv 60 12 24 12 12 -0.134 1320 0.969 0.808

Tmr 60 12 24 12 12 -0.134 1320 0.969 0.808

TOR 72 15 27 15 15 0.025 1519 1218 0.804

TRR 7 15 30 15 15 0.000 0.778 0.778 0.801
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Table 5. Continue.

(3, md) A (r,12) Method N M{ ME M M a by b,  Power
(0.6,0.3,0.1) 0.2 (1,1) Tss 126 33 33 30 30 0.163 2158 159 0.804
Tinv 108 27 27 27 27 0.010 2028 1435 0.803

Tmr 108 27 27 27 27 0.000 2016 1448 0.800

TOR 126 33 33 30 30 0.254 2.048 1575 0.805

TRR 132 33 33 33 33 0169 1104 0.985 0.800

(2,2) Tss 126 27 51 24 24 0240 2.063 1531 0.804

Tinv 105 21 42 21 21 0.066 1795 1316 0.807

Tmr 105 21 42 21 21 0.047 1774 1323 0.806

TOR 126 27 51 24 24 0237 1961 1502 0.806

TRR 138 27 57 27 27 0178 1.050 0.949 0.801

023 (1,1) Tss 96 24 24 24 24 0166 2077 1586 0.801
Tinv 8 21 21 21 21 0.000 1.932 1.398 0.802

Tmr 8 21 21 21 21 0.000 1911 1403 0.803

TOR 9% 24 24 24 24 0156 1989 1547 0.801

TRR 108 27 27 27 27 0.185 1052 0.963 0.807

2,1) Tss 93 18 39 18 18 0.137 1927 1413 0.806

Tinv 78 15 33 15 15 0045 1673 1195 0.807

Tmr 78 15 33 15 15 0.037 1664 1.188 0.808

TOR 93 18 39 18 18 0.135 1782 1381 0.809

TRR 105 21 42 21 21 0.137 0953 0.893 0.810

025 (1,1) Tss 8 21 21 21 21 0.175 2020 1549 0.809
Tinv 72 18 18 18 18 0.000 1870 1.360 0.804

Tmr 72 18 18 18 18 0.000 1908 1.373 0.801

TOR 8 21 21 21 21 0173 1905 1518 0.810

TRR 90 24 24 21 21 0.192 1014 0.920 0.805

(2,2) Tss 75 15 30 15 15 0128 1835 1.354 0.800

Tinv 63 12 27 12 12 -0.018 1595 1.089 0.802

Tmr 63 12 27 12 12 -0.018 1595 1.089 0.802

TOR 75 15 30 15 15 0425 1650 1316 0.802

TRR 87 18 33 18 18 0.186 0908 0.863 0.803
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Table 6. Sample sizes under §; = 6, = &3 = §, k=1, (74, 7,)=(0.25, 0.25) and

(7"1,7'2):(2, 1)

0

(md,md,md) 5 (Ag,0,,43) (rp,m,) Method N My M7 M5 M5 a; by b,  Power
(040201) 11 (027,023015) (L,1) Tss 102 27 27 24 24 0158 2058 1550 0.802
Tinv 96 24 24 24 24 0.028 1852 1371 0.808

Tmr 96 24 24 24 24 0.014 1903 1437 0.802

TOR 102 27 27 24 24 0156 1946 1520 0.804

TRR 108 27 27 27 27 0110 1.014 0993 0.804

2,1) Tss 102 21 39 21 21 0172 1847 1422 0.807

Tinv 87 18 33 18 18 0.014 1576 1.178 0.805

Tmr 87 18 33 18 18 0.004 1632 1234 0.801

TOR 96 21 39 18 18 0178 1.713 1.349 0.802

TRR 102 21 39 21 21 0137 0.904 0902 0.804

125 (03027018 (L,1) Tss 78 21 21 18 18 0175 1955 1466 0.807
Tinv 72 18 18 18 18 0.000 1.760 1.289 0.808

Tmr 72 18 18 18 18 0.000 1.806 1.331 0.809

TOR 78 21 21 18 18 0173 1842 1438 0.807

TRR 84 21 21 21 21 0123 0949 0.948 0.810

2,1) Tss 72 15 27 15 15 0.028 1647 1.258 0.807

Tinv 60 12 24 12 12 -0125 1322 0971 0.804

Tmr 60 12 24 12 12 -0.157 1326 0.984 0.803

TOR 72 15 27 15 15 0.027 1543 1.227 0.809

TRR 75 15 30 15 15 0.000 0.778 0.784 0.807

15 (035033023) (L1) Tss 54 15 15 12 12 0203 1780 1304 0.825
Tinv 48 12 12 12 12 0.000 1577 1.160 0.805

Tmr 48 12 12 12 12 0.000 1582 1.176 0.807

TOR 54 15 15 12 12 019 1650 1.272 0.827

TRR 54 15 15 12 12 0141 0.828 0.806 0.805

2,1) Tss 45 9 18 9 9 0.000 1.197 0.885 0.823

Tinv 33 6 15 6 6 -0.314 0.803 0.427 0.809

Tmr 33 6 15 6 6 -0.309 0.800 0.437 0.803

TOR 45 9 18 9 9 0.000 1.140 0.870 0.820

TRR 45 9 18 9 9 0.000 0.632 0.564 0.805
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Table 6. Continue.

(md,md,md) 5 (A1,02,83)  (r,m,) Method N M{ M MS  MS a; b, b,  Power
(0.6,03,0.1) 1.1 (0.22,0.26,0.15) (1,1) Tss 114 30 30 27 27 028 2155 1.612 0.810
Tinv 102 27 27 24 24 0095 1989 1436 0.801

Tmr 108 27 27 27 27 0107 2.004 1517 0.810

TOR 114 30 30 27 27 0269 2042 1575 0811

TRR 120 30 30 30 30 0174 108 0.970 0.800

(2,1) Tss 111 24 45 21 21 0256 2.048 1500 0.811

Tinv 96 21 39 18 18 0.084 1785 1.279 0.803

Tmr 102 21 39 21 21 0.089 1827 1374 0.804

TOR 108 21 45 21 21 0125 1.839 1.449 0.800

TRR 123 24 51 24 24 0.18 1.005 0.920 0.805

125 (0.24,0.3,0.18) (1,1) Tss 84 21 21 21 21 0.17 2020 1522 0.801
Tinv 78 21 21 18 18 0.113 1935 1376 0.801

Tmr 84 21 21 21 21 0111 1952 1450 0.812

TOR 84 21 21 21 21 0165 1905 1492 0.801

TRR 96 24 24 24 24 0185 1.014 00942 0.802

(2,1) Tss 81 18 33 15 15 0.167 1.930 1.390 0.802

Tinv 75 15 30 15 15 0.059 1.678 1210 0.810

Tmr 75 15 30 15 15 0.059 1.699 1.234 0.807

TOR 81 18 33 15 15 0202 1790 1.372 0.805

TRR 93 18 39 18 18 0.153 0929 0.849 0.802

15 (027,036,023 (11) Tss 60 15 15 15 15 0192 1857 1.426 0.802
Tinv 60 15 15 15 15 0.075 1823 1330 0.821

Tmr 60 15 15 15 15 0.07 1828 1.327 0.822

TOR 60 15 15 15 15 0.185 1.749 1392 0.803

TRR 66 18 18 15 15 0.208 0.925 0.848 0.801

(2,1) Tss 57 12 21 12 12 0142 1.684 1277 0.813

Tinv 48 9 21 9 9 0.062 1.400 0.950 0.819

Tmr 48 9 21 9 9 0.049 1374 0948 0.816

TOR 57 12 21 12 12 0.138 1544 1229 0.819

TRR 63 12 27 12 12 0.117 0.783 0.731 0.814
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Table 7. Sample sizes under unequal differences and unequal odds ratios under k=1,
(t1,72)=(0.25, 0.25) and (ry, 1,)=(2, 1).

(m)mdmd)  (81,05,63) (81,85,83) () Method N My My Mj M§ a by b, Power

(04,0201) (1.251081) (030201 (L1) Tss 114 30 30 27 27 0.157 2.098 1.567 0.806
Tiv 114 30 30 27 27 0100 1.926 1.414 0.802

Tmr 114 30 30 27 27 0130 1.987 1514 0.807

TOR 114 30 30 27 27 0.161 1.979 1.541 0.804

TRR 120 30 30 30 30 0113 1.052 1.016 0.805

(1) Tss 108 21 45 21 21 0027 1.773 1.387 0.801

Tiv 105 21 42 21 21 0.058 1639 1.252 0.801

Tmr 105 21 42 21 21 0060 1.715 1.347 0.802

TOR 108 21 45 21 21 0113 1.681 1.359 0.802

TRR 120 24 48 24 24 0130 0953 0.940 0.807

(1.251.2,1.1) (0.3,0.250.15) (1,1) Tss 84 21 21 21 21 0000 1.955 1.478 0.802
Tiv 78 21 21 18 18 0.031 1.812 1.309 0.803

Tmr 78 21 21 18 18 0.035 1.847 1.361 0.800

TOR 8 21 21 18 18 0.030 1.860 1.375 0.800

TRR 90 24 24 21 21 0131 0970 0.948 0.808

1) Tss 78 15 33 15 15 -0.023 1.564 1213 0.804

Tiv 72 15 27 15 15 -0.042 1.471 1.109 0.806

Tmr 72 15 27 15 15 -0.034 1543 1.139 0.806

TOR 78 15 33 15 15 -0.021 1.455 1.180 0.807

TRR 87 18 33 18 18 0061 0.867 0.863 0.805

(15,1.150.93) (0.350.24,0.12) (L1) Tss 84 21 21 21 21 0173 1945 1.497 0.808
Tiv 78 21 21 18 18 0.068 1.812 1.306 0.807

Tmr 78 21 21 18 18 0.088 1.894 1.391 0.806

TOR 84 21 21 21 21 0169 1.842 1.464 0.813

TRR 90 24 24 21 21 0200 0971 0.957 0.812

1) Tss 75 15 30 15 15 0.000 1.585 1.235 0.806

Tiv 72 15 27 15 15 -0.025 1471 1.109 0.809

Tmr 72 15 27 15 15 -0.001 1.563 1.167 0.812

TOR 75 15 30 15 15 0.000 1.454 1.199 0.804

TRR 78 15 33 15 15 0.014 0.781 0.778 0.801

(151.2,1.1) (0.350.250.15) (L,1) Tss 78 21 21 18 18 0.181 1.839 1.440 0.822
Tiv 72 18 18 18 18 0.026 1.754 1.300 0.819

Tmr 72 18 18 18 18 0.031 1.818 1.375 0.812

TOR 78 21 21 18 18 0.179 1841 1.439 0.822

TRR 78 21 21 18 18 0131 0.949 0913 0.806

(1) Ts 63 12 27 12 12 -0.063 1.396 1.064 0.801

Tiv 60 12 24 12 12 -0.100 1.328 0.979 0.803

Tmr 60 12 24 12 12 -0.108 1.331 1.009 0.805

TOR 63 12 27 12 12 -0.085 1.286 1.035 0.803

TRR 72 15 27 15 15 0.046 0.798 0.789 0.807
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Table 7. Continue.

(nd,md,m) (81,8,65) (A,A5,A5) (nr) Method N Mf ME MS ME a by b, Power

(0.6,0.30.1) (1.5,0.85,0.81) (0.27,0.2,0.1) (1,1)  Tss 132 33 33 33 33 0.255 2.195 1627 0.811
Tiv 126 33 33 30 30 0.136 1.995 1477 0.802

Tmr 126 33 33 30 30 0.159 2.112 1586 0.800

TOR 132 33 33 33 33 0157 2.079 1.617 0.806

TRR 144 36 36 36 36 0.169 1.131 0.996 0.803

(1) Tss 126 27 51 24 24 0.246 2.063 1542 0.802

Tiv 123 24 51 24 24 0098 1.810 1.354 0.804

Tmr 123 24 51 24 24 0120 1.904 1463 0.802

TOR 126 27 51 24 24 0246 2.063 1.542 0.802

TRR 147 30 57 30 30 0.158 1.090 0.962 0.803

(15,09,1.1) (0.27,021,015) (1,1) Tss 96 24 24 24 24 0.166 2.097 1574 0.804
Tiv 90 24 24 21 21 0134 1.927 1424 0.803

Tmr 90 24 24 21 21 0.146 1.978 1478 0.801

TOR 96 24 24 24 24 0164 1.989 1.536 0.803

TRR 108 27 27 27 27 0.85 1.052 0.963 0.806

(1) Ts 93 18 39 18 18 0.127 1.900 1421 0.804

Tiv 87 18 33 18 18 0.083 1756 1.273 0.810

Tmr 87 18 33 18 18 0.084 1.800 1.337 0.807

TOR 93 18 39 18 18 0.130 1.756 1.389 0.809

TRR 105 21 42 21 21 0.133 0972 0.888 0.805

(2.53,1.1,081) (0.350.260.1) (1,1) Tss 96 24 24 24 24 0.169 2.083 1565 0.800
Tiv 96 24 24 24 24 0.138 1.933 1.440 0.808

Tmr 96 24 24 24 24 0142 2.037 1524 0.808

TOR 96 24 24 24 24 0163 1.983 1.525 0.801

TRR 108 27 26 27 26 0.185 1.052 0.949 0.802

(1) Ts 93 18 39 18 18 0.25 1.900 1421 0.801

Tiv 90 18 36 18 18 0.085 1.755 1.263 0.813

Tmr 90 18 36 18 18 0.094 1.800 1.360 0.804

TOR 93 18 39 18 18 0126 1.756 1.389 0.803

TRR 111 24 45 21 21 0.224 1.008 0.910 0.807

(253111) (035024015 (1,1) Tss 90 24 24 21 21 0306 2.104 1569 0.810
Tiv 84 21 21 21 21 0112 1.935 1411 0.808

Tmr 84 21 21 21 21 0112 1.944 1476 0.805

TOR 90 24 24 21 21 0289 2005 1.540 0.809

TRR 96 24 24 24 24 0179 1.014 0930 0.801

(1) Tss 87 18 33 18 18 0.65 1943 1447 0811

Tiv 75 15 30 15 15 0.043 1.680 1.197 0.805

Tmr 78 15 33 15 15 0.070 1716 1.257 0.805

TOR 81 18 33 15 15 0154 1.789 1.355 0.802

TRR 96 21 39 18 18 0.184 0.958 0.865 0.806
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Table 8. Sample sizes under (¥, 72, ©3)=(0.4, 0.2, 0.1), (A, A,, A3)=(0.35, 0.24, 0.12),
(t1,72)=(0.25, 0.25) and (ry,12)=(2, 1) for various k.

k Method N My M7 M; MS a; by b, Power
0.5 Tss 72 18 36 9 9 0.212 1.691 1.118 0.802
Tinv 69 18 33 9 9 0.155 1,577 1.021 0.806
Tmr 69 18 33 9 9 0.197 1.686 1.088 0.800

9 9

9 9

TOR 72 18 36 0.209 1.571 1.099 0.800
TRR 81 21 42 0.255 0.898 0.759 0.812
1 Tss 75 15 30 15 15 0.000 1.599 1.230 0.805
Tnv 72 15 27 15 15 -0.019 1.471 1.094 0.815
Tmr 72 15 27 15 15 0.003 1.560 1.190 0.804
TOR 75 15 30 15 15 0.000 1.480 1.190 0.804
TRR 81 18 33 15 15 0.106 0.862 0.820 0.801
2 Tss 78 12 24 21 21 -0.252 1412 1301 0.811
Tinv 72 9 21 21 21 -0.379 1.117 1.090 0.808
Tmr 72 9 21 21 21 -0.358 1.139 1.152 0.807
TOR 78 12 24 21 21 -0.236 1301 1.278 0.810
TRR 84 12 24 24 24 -0.179 0.711 0.852 0.809
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Figure 1. Total sample sizes under (7?0, 72, ©9)=(0.4, 0.2, 0.1), (A4, A,, A3)=(0.35, 0.24,
0.12) and t, = 1, =0.5 for k= (0.5, 1, 2) and various (ry,13).
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Figure 2. Total sample sizes under (2, 9, ©9)=(0.4, 0.2, 0.1), (A;,A,, A3)=(0.35, 0.24,
0.12) and 7, = 7, =0.25 for k= (0.5, 1, 2) and various (ry, 15).

33



