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ABSTRACT  

Two-stage designs have been widely used in phase II clinical trials to evaluate the 

efficacy and safety of the study treatment. A common primary endpoint is a binary 

(yes/no) patient response to treatment. In some cases, the patient response distribution 

for a phase II clinical trial is heterogeneous, making it desirable to stratify patients into 

subgroups according to different prognostic factors. In this article, for a two-arm 

stratified randomized phase II clinical trial, we consider two-stage designs and propose 

three testing procedures to compare the response rates between two treatments. The first 

procedure is based on the weighted average of the stratum-specific differences between 

treatment response rates. The second and third procedures are based on the estimated 

relative risk and odds ratio, respectively, under the assumption of a common odds ratio 

over the strata. We consider conditional approach and present a simulation-based 

algorithm by modifying the algorithm in London and Chang (2005) to determine the 

parameters in designs to achieve the desired power at the nominal level. Simulation 

results show that the split-levels of type I and type II errors and randomization ratio 

have a crucial impact on the overall sample size required. Decreasing the split-level or 

increasing the randomization ratio at the first-stage can result in a smaller total sample 

size if early termination after the first-stage does not occur. In terms of the total sample 

size required, the INVAR-weighted test outperforms the other tests when the odds ratio 

or the true difference between two response rates is constant across strata. When neither 

odd ratio nor the difference between two response rates is constant across the strata, the 

INVAR-weighted test also performs well when the randomization ratio is large.  

KEYWORDS: Odds ratio; Response rate; Sample size; Stratification; Two-stage 

design   
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1. Introduction  

One of the objectives of a phase II clinical trial is to evaluate the effect of an 

experimental treatment and decide whether it is promising to be studied in a larger-scale 

phase III trial. Phase II clinical trials are often single-arm studies and the endpoint is 

typically a binary patient response such that the objective response rate can be used to 

assess the effect of an experimental treatment. The patient population or a phase II 

clinical trials can be heterogeneous across subgroups. Since the response rates differ 

across the strata, it is inappropriate to conduct the binomial test under the assumption 

that the number of responses follows a binomial distribution with the same response 

probability for all patients. On the other hand, sample size in a phase II clinical trial is 

usually small such that it is inefficient to conduct independent binomial tests within 

subgroups. In this situation, it will be desirable to stratify patients into subgroups 

according to different prognostic factors, such as age, gender, disease stage, and/or other 

risk factors, which are expected to have quite different response rates. For single-arm 

stratified phase II trials, London and Chang (2005) have proposed conditional and 

unconditional approaches for generating sample sizes and stopping boundaries that 

provide one-stage and two-stage designs with the desired power at nominal level. Their 

proposed test statistic was based on the difference of the observed total number of 

responses over strata and the corresponding expected number of responses under the 

null hypothesis. Since the unconditional approach requires the information on the 

proportions of patients for all strata, they suggested using the conditional approach, 

where initial estimates of the proportions of patients are needed to compute the sample 

size before the study. One advantage of the conditional approach is that decision 

boundaries can be changed according to the observed numbers of patients in the defined 

strata. They also proposed a simulation-based method to determine the parameters in 
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designs. Chang et al. (2012) pointed out that the test statistic proposed by London and 

Chang (2005) is equivalent to an equal-weight (common odds ratios) linear combination 

of the numbers of respondents in the strata, leading to some loss of power. To improve 

the power of test, they proposed an unequal-weight test statistic based on Neyman-

Pearson lemma. Their numerical results indicate that the proposed test is more powerful 

than London and Chang’s test (2005). Other studies of the single-arm phase II clinical 

trial with stratification can be seen in Thall et al. (2003), Chang et al. (2011) and Jung et 

al. (2012).    

The single-arm phase II trial designs for evaluating each experimental treatment 

individually are limited by outcome-trial effect confounding arising from the 

incapability of separating trial effects (such as patient selection, trial eligibility, and 

treatment locations) from treatment effect on clinical outcomes. Instead, randomized 

designs to experimental regimens, using a control arm when necessary, offer an 

attractive proposition by ensuring better patient comparability and reducing 

confounding between outcome and trial effects. For more than two decades, there has 

been interest in utilizing phase II trials with randomization against a standard-treatment 

control arm to provide greater assurance than afforded by comparison to historic 

controls that the new regimen is promising and warrants further evaluation (Rubinstein 

et al. 2005). Simon et al. (1985) described the randomized Phase II trials with a control 

arm. Jung (2008) and Thall et al. (1989) proposed different two-stage designs for 

randomized phase II trials with a control treatment. In this article, for a two-arm 

stratified randomized phase II clinical trial, we consider two-stage designs and propose 

three testing procedures to compare the response rates between two treatments. The first 

procedure is based on the weighted average of the stratum-specific differences between 

treatment response rates. The second and third procedures are based on the estimated 

relative risk and odds ratio, respectively, under the assumption of a common odds ratio 
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over the strata. Since in practice an accurate estimate of the proportions of patients for 

strata is usually not available, we consider conditional approach and present a 

simulation-based algorithm by modifying the algorithm in London and Chang (2005) to 

determine the parameters in designs to achieve the desired power at the nominal level. 

Thus, the conditional approach based on the first procedure is an extension of the 

conditional method for a single-arm trial in London and Chang (2005).  

The rest of the article is organized as follows. In Section 2, we review three test 

statistics for comparing two binomial proportions from stratified samples. In Section 3, 

we consider conditional approach in two-stage designs for a two-arm stratified 

randomized phase II clinical trial. We present a simulation-based algorithm to find the 

parameters in the design to achieve the desired power at the nominal level. Some 

numerical examples under various settings of expected response rates in the 

experimental and the control treatment groups for the proposed design are presented in 

Section 4. Finally, conclusions and discussions are given in Section 5.  

  

2. The testing procedures  

Suppose that patients can be stratified into q strata. Let 𝑁𝑖
𝑒  be the number of 

patients and 𝑋𝑖
𝑒  be the numbers of responses in the ith stratum of the experimental 

treatment group. Let 𝑁𝑖
𝑐 be the number of patients and 𝑋𝑖

𝑐 be the numbers of responses 

in the ith stratum of the control group. Conditional on the observed numbers of patients  

𝑁𝑖
𝑒 = 𝑛𝑖

𝑒 and  𝑁𝑖
𝑐 = 𝑛𝑖

𝑐 , 𝑖 = 1, … , 𝑞 , we assume that 𝑋1
𝑒 , … , 𝑋𝑞

𝑒  and 𝑋1
𝑐 , … , 𝑋𝑞

𝑐  are 

independent binomial random variables with  

𝑋𝑖
𝑒~𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑛𝑖

𝑒 , 𝜋𝑖
𝑒)    and   𝑋𝑖

𝑐~𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑛𝑖
𝑐, 𝜋𝑖

𝑐), 
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where 𝜋𝑖
𝑒  and 𝜋𝑖

𝑐  are the expected response rates of the experimental and the control 

treatments in the ith stratum, respectively.  

  

2.1. Test based on the difference between response rates  

Let 𝜂𝑖 = 𝜋𝑖
𝑒 − 𝜋𝑖

𝑐 be the true difference between the experimental and the control 

response rates in the ith stratum, 𝑖 = 1, … , 𝑞. The true overall treatment effect is given 

by = Σ𝑖=1
𝑞 𝑃𝑖𝜂𝑖 , where 𝑃𝑖 is the true proportion of patients from the ith stratum if the 

entire target population had been enrolled (Σ𝑖=1
𝑞

𝑃𝑖 = 1). The problem of testing the 

hypothesis that experimental treatment has larger response rate than the control 

treatment can be unified as the following hypothesis:  

𝐻0
1: 𝜋𝑖

𝑒 = 𝜋𝑖
𝑐 = 𝜋𝑖

0  vs  𝐻1
1: 𝜋𝑖

𝑐 = 𝜋𝑖
0, 𝜋𝑖

𝑒 > 𝜋𝑖
𝑐 ,  at least one 𝑖, i=1,…, q, 

stratum-specific with the desired significant level 𝛼, and power (1- 𝛽) evaluated at 

𝜋𝑖
𝑒 = 𝜋𝑖

𝑐 + Δ𝑖 , where Δ𝑖 is the specified improvement in response rate in strum i we 

want to detect.   

The nature estimate of 𝜂 is given by  

𝜂̂ = Σ𝑖=1
𝑞 𝑤𝑖𝜂̂𝑖 = Σ𝑖=1

𝑞 𝑤𝑖 (
𝑋𝑖

𝑒

𝑛𝑖
𝑒 −

𝑋𝑖
𝑐

𝑛𝑖
𝑐 ), 

where 𝑤𝑖 is the weight assigned to the ith stratum satisfying Σ𝑖=1
𝑞 𝑤𝑖 = 1. There are two 

common methods to determine. One method is the harmonic means of the samples size 

(SSIZE), that is  

𝑤𝑖 =
(𝑛𝑖

𝑒𝑛𝑖
𝑐)/(𝑛𝑖

𝑒 + 𝑛𝑖
𝑐)

Σ𝑖=1
𝑞 (𝑛𝑖

𝑒𝑛𝑖
𝑐)/(𝑛𝑖

𝑒 + 𝑛𝑖
𝑐)

, 

which are also referred to as the Cochran-Mantel-Haenszel (Cochran 1954; Mantel-

Haenszel 1959) weights for comparing two independent proportions with stratification. 

The other one is the reciprocals of the variances of the stratum-specific differences 

(INVAR), that is  
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𝑤𝑖 =
𝑉𝑖

−1

Σ𝑖=1
𝑞

𝑉𝑖
−1

  , 

where  

𝑉𝑖 =
(𝑋𝑖

𝑒/𝑛𝑖
𝑒)/(1 − 𝑋𝑖

𝑒/𝑛𝑖
𝑒)

𝑛𝑖
𝑒 +

(𝑋𝑖
𝑐/𝑛𝑖

𝑐)/(1 − 𝑋𝑖
𝑐/𝑛𝑖

𝑐)

𝑛𝑖
𝑐  

is the variance of 𝜂̂𝑖. For the SSIZE weighting method, a larger weight is assigned to 

strata with a large number of patients compared to that with a small number of patients. 

For the INVAR weighting method, a larger weight is assigned to strata with a small 

value of the estimated variance of the difference between the response rates compared 

to that with a large value. The estimate 𝜂̂ based on the SSIZE weighting method is 

generally unbiased or approximately unbiased. Although the estimate 𝜂̂ based on the 

INVAR weighting method is usually a biased estimate of 𝜂 when 𝜂𝑖’s are not constant, 

it has minimum variance (Mehrotra and Railkar 2000). Radhakrishna (1965) showed 

that the SSIZE weighting method is optimal if the odds ratio 𝜋𝑖
𝑒(1 − 𝜋𝑖

𝑐)/

{𝜋𝑖
𝑐(1−𝜋𝑖

𝑒)}, 𝑖 = 1, … , 𝑞, are constant, and the INVAR weighting method is optimal if 

𝜂𝑖 , 𝑖 = 1, … , 𝑞, are constant.   

Because the wrong choice of weighting method may lead to the loss in efficiency, 

Mehrotra and Railkar (2000) proposed the minimum risk (MR) weighting method by  

minimizing the average squared error loss of 𝜂̂, 𝐸(𝜂̂ − 𝜂)2, that is  

𝑤𝑖 =
𝑏𝑖

Σ𝑖=1
𝑞 𝑉𝑖

−1
− (

𝑎𝑖𝑉𝑖
−1

Σ𝑖=1
𝑞 𝑉𝑖

−1 + Σ𝑖=1
𝑞 𝑎𝑖𝜂𝑖𝑉𝑖

−1
) (

Σ𝑖=1
𝑞 𝑏𝑖𝜂𝑖

Σ𝑖=1
𝑞 𝑉𝑖

−1
) , 

where 𝑎𝑖 = 𝜂𝑖Σ𝑖=1
𝑞 𝑉𝑖

−1 − Σ𝑖=1
𝑞 𝜂𝑖𝑉𝑖

−1, and 𝑏𝑖 = 𝑉𝑖
−1(1 + 𝑎𝑖Σ𝑖=1

𝑞 𝑃𝑖𝜂𝑖), which reduces to 

the INVAR weights when 𝜂𝑖 , 𝑖 = 1, … , 𝑞 , are constant across strata. The estimate 𝜂̂ 

based on the MR weights is more precise and less biased relative to the SSIZE and the 

INVAR weighting methods.  
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For testing 𝐻0
1: 𝜋𝑖

𝑒 = 𝜋𝑖
𝑐 = 𝜋𝑖

0, 𝑖 = 1, … , 𝑞 , the test statistic denoted by 𝑇𝐷𝑖𝑓𝑓  is 

given by  

T𝐷𝑖𝑓𝑓 =
𝜂̂

√Σ𝑖=1
𝑞

w𝑖
2𝑣𝑎𝑟(̂𝜂̂𝑖)

                                                          (1)  

where  

,  

and the test statistic converges to the standard normal distribution as the sample size for 

each treatment in each stratum tends to infinity.   

  

2.2. Test based on the odds ratio  

An alternative testing procedure is based on the odds ratio, which is used in the 

analysis of stratified two-by-two tables. The odd ratio in the 𝑖th stratum is given 

by   

𝜗𝑖 =
𝜋𝑖

𝑒(1 − 𝜋𝑖
𝑐)

𝜋𝑖
𝑐(1 − 𝜋𝑖

𝑒)
 

Let 𝜃𝑖 = log𝜗𝑖  be natural logarithm of 𝜗𝑖 . Testing hypothesis 𝐻0
1  versus 𝐻 1

1  is 

equivalent to the following hypothesis: 

𝐻0
2: 𝜃1 = ⋯ = 𝜃𝑞 = 0  vs  𝐻1

2: 𝜃𝑖 > 0 , 𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 𝑜𝑛𝑒 𝑖, i=1,…, q,  

with the desired significant level α, and power (1 − 𝛽) evaluated at 𝜃𝑖 = δ𝑖 > 0,where 

δ𝑖  is the specified improvement in logarithm of odds ratio in stratum i we want to 

detect. 

Assuming that the odds ratio is constant, i.e., 𝜃1 = ⋯ = 𝜃𝑞 = 𝜃, the estimate of θ̂ is 

given by  

𝜃 = log (
Σ𝑖=1

𝑞 𝑋𝑖
𝑒(𝑛𝑖

𝑐 − 𝑋𝑖
𝑐)/(𝑛𝑖

𝑒 + 𝑛𝑖
𝑐)

Σ𝑖=1
𝑞 𝑋𝑖

𝑐(𝑛𝑖
𝑒 − 𝑋𝑖

𝑒)/(𝑛𝑖
𝑒 + 𝑛𝑖

𝑐)
) , 
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and the variance estimate of 𝜃 is given by  

𝑣𝑎𝑟(̂𝜃) =
Σ𝑖=1

𝑞 𝑆𝑖𝑅𝑖

2(Σ𝑖=1
𝑞 𝑅𝑖)2

+
Σ𝑖=1

𝑞 (𝑆𝑖𝑈𝑖 + 𝑄𝑖𝑅𝑖)

2(Σ𝑖=1
𝑞 𝑅𝑖)(Σ𝑖=1

𝑞 𝑈𝑖)
+

Σ𝑖=1
𝑞 𝑄𝑖𝑅𝑖

2(Σ𝑖=1
𝑞 𝑈𝑖)2

 , 

where 𝑆𝑖 = (𝑋𝑖
𝑒 + 𝑛𝑖

𝑐 − 𝑋𝑖
𝑐)/(𝑛𝑖

𝑒 + 𝑛𝑖
𝑐) , 𝑄𝑖 = (𝑋𝑖

𝑐 + 𝑛𝑖
𝑒 − 𝑋𝑖

𝑒)/(𝑛𝑖
𝑒 + 𝑛𝑖

𝑐) ,  𝑅𝑖 =

𝑋𝑖
𝑒(𝑛𝑖

𝑐 − 𝑋𝑖
𝑐)/(𝑛𝑖

𝑒 + 𝑛𝑖
𝑐)  and 𝑈𝑖 = 𝑋𝑖

𝑐(𝑛𝑖
𝑒 − 𝑋𝑖

𝑒)/(𝑛𝑖
𝑒 + 𝑛𝑖

𝑐)  (Jennison and Turnbull 

1991).   

When 𝐻0
2 is true, the following test statistic   

𝑇𝑂𝑅 =
𝜃

√𝑣𝑎𝑟(̂𝜃)

                                                                   (2) 

converges to the standard normal distribution as the sample size for each treatment in 

each stratum tends to infinity (Jennison and Turnbull 1991). Given 𝜋𝑖
0 and δ𝑖 , the 

previous hypothesis 𝐻0
2: 𝜃1 = ⋯ = 𝜃𝑞 = 0  vs 𝐻1

2: 𝜃𝑖 = δ𝑖 > 0  is equivalent to the 

hypothesis 𝐻0
1: 𝜋𝑖

𝑒 = 𝜋𝑖
𝑐 = 𝜋𝑖

0 vs 𝐻1
1: 𝜋𝑖

𝑐 = 𝜋𝑖
0, 𝜋𝑖

𝑒 + Δ𝑖, 𝑖 = 1, … , 𝑞 , with  

Δ𝑖 = 𝜋𝑖
0(1 − 𝜋𝑖

0)(exp(δ𝑖) − 1)/(1 + 𝜋𝑖
0(exp(δ𝑖) − 1)). 

 

2.3. Test based on relative risk  

The other alternative testing procedure is based on the relative risk, which is also 

commonly used in the binary response as a measure of endpoints. The relative risk in 

the ith stratum is given by 𝜑𝑖 = 𝜋𝑖
𝑒/𝜋𝑖

𝑐. Hence, the true overall treatment effect is given 

by 𝜑 = ∑ 𝑃𝑖
𝑞
𝑖=1 𝜑𝑖 . Testing hypothesis 𝐻0

1  versus 𝐻 1
1  is equivalent to the following 

hypothesis: 

𝐻0
3: 𝜑1 = ⋯ = 𝜑𝑞 = 1  vs  𝐻1

3: 𝜑𝑖 > 1, at least one 𝑖, i=1,…, q, 

with the desired significant level 𝛼, and power (1- 𝛽) evaluated at 𝜑𝑖 = ∅𝑖 >  1, where 

∅𝑖 is the specified improvement in relative risk in stratum i we want to detect. We use 
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the Mantel-Haenszel type risk ratio (Rothman and Boice 1979; Tarone 1981) to estimate 

the overall relative risk across strata, which is given by 

𝜑̂ =
∑ 𝑋𝑖

𝑒𝑛𝑖
𝑐 (𝑛𝑖

𝑒 + 𝑛𝑖
𝑐)⁄𝑞

𝑖=1

∑ 𝑋𝑖
𝑐𝑛𝑖

𝑒 (𝑛𝑖
𝑒 + 𝑛𝑖

𝑐)⁄𝑞
𝑖=1

, 

and the asymptotic variance of 𝜑̂ can be estimated by 

𝑉𝑎𝑟̂(𝜑̂) =

∑ 𝑋𝑖
𝑒 (

𝑛𝑖
𝑐

𝑛𝑖
𝑒 + 𝑛𝑖

𝑐)2𝑞
𝑖=1 + 𝜑̂2 ∑ 𝑋𝑖

𝑐 (
𝑛𝑖

𝑒

𝑛𝑖
𝑒 + 𝑛𝑖

𝑐)2𝑞
𝑖=1

(∑ 𝑋𝑖
𝑐𝑛𝑖

𝑒 (𝑛𝑖
𝑒 + 𝑛𝑖

𝑐)⁄𝑞
𝑖=1 )

2 . 

When 𝐻0
3 is true, the following test statistic 𝑇𝑅𝑅  

 

𝑇𝑅𝑅 =
𝜑̂ − 1

√𝑉𝑎𝑟̂(𝜑̂)
                                                             (3) 

converges to the standard normal distribution as the sample size for each treatment in 

each stratum tends to infinity. Given 𝜋𝑖
0 and 𝜑𝑖, the previous hypothesis 𝐻0

3: 𝜑1 = ⋯ =

𝜑𝑞 = 1   vs  𝐻1
3: 𝜑𝑖 > 1, 𝑖 = 1, … , 𝑞  is equivalent to the hypothesis 𝐻0

1: 𝜋𝑖
𝑒 = 𝜋𝑖

𝑐 =

𝜋𝑖
0   vs   𝐻1

1: 𝜋𝑖
𝑐 = 𝜋𝑖

0, 𝜋𝑖
𝑒 + Δ𝑖, 𝑖 = 1, … , 𝑞 , with  

 ∆𝑖= 𝜋𝑖
0(𝜑𝑖 − 1). 

 

3. The two-stage designs: conditional approach  

Since clinician usually do not have an accurate estimates of 𝑃1, … 𝑃𝑞 , one-stage 

design and the unconditional approach in two-stage design may be impractical. Thus, 

we consider two-stage designs and conditional approach. Suppose that patients are 

stratified into q strata for a two-arm stratified randomized phase II clinical trial. First, 

we briefly describe the conditional approach. Assume that the initial rough estimates of 

𝑃1, … 𝑃𝑞 are available. For testing 𝐻0 versus 𝐻1, based on the desired type I error and 

https://www.statsdirect.com/help/references/reference_list.htm
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power, 𝑀1
𝑒 and 𝑀1

𝑐 patients are randomly assigned to receive the experimental and the 

control treatments at the first stage. At the second stage, based on the observed accrual 

rate for each stratum, the additional sample sizes for the experimental and control 

treatments are 𝑀2
𝑒 and 𝑀2

𝑐, respectively.   

Let 𝑛𝑖𝑗
𝑐  and 𝑛𝑖𝑗

𝑒  be the number of patients in the ith stratum at the jth stage of the 

control group and the treatment group, respectively. Also let 𝑋𝑖𝑗
𝑐  and 𝑋𝑖𝑗

𝑒  be the number 

of responses among the 𝑛𝑖𝑗
𝑐  and 𝑛𝑖𝑗

𝑒  patients, respectively. After 𝑀1
𝑒  + 𝑀1

𝑐 patients have 

entered the study at the first stage, the test statistic, denoted by 𝑇1, which can be one of 

the test statistics proposed in Section 2.1-2.3, and will be calculated based on the 

response data of the 𝑀1
𝑒  + 𝑀1

𝑐  patients, where the observed numbers of patients 

𝑛11
𝑒 , … , 𝑛𝑞1

𝑒  and 𝑛11
𝑐 , … , 𝑛𝑞1

𝑐 , for treatment and control group, respectively. If 𝑇1 < 𝑎1, 

then we fail to reject the null hypothesis, declare the experimental treatment is not 

promising and the study is stopped; if  𝑇1 > 𝑏1, then we reject the null hypothesis and 

the study is also stopped; if 𝑎1 ≤ 𝑇1 ≤ 𝑏1, then the accrual will be continued for the 

second stage, where 𝑎1 is the largest real number satisfying  

   𝑃𝐻1
(𝑇1 < 𝑎1|𝑛𝑖1

𝑒 , 𝑛𝑖1
𝑐 , 𝑖 =  1, … , 𝑞) ≈ 𝜏2𝛽,                                    (4)  

and 𝑏1 is the smallest real number satisfying   

𝑃𝐻0
(𝑇1 > 𝑏1|𝑛𝑖1

𝑒 , 𝑛𝑖1
𝑐 , 𝑖 =  1, … , 𝑞) ≈ 𝜏1𝛼,                                    (5) 

where 𝜏1 and 𝜏2 can be chosen based on the guidance of Fleming et al. (1982) and 

Chang et al. (1998).   

If the accrual continues to the second stage for the next (𝑀2
𝑒  + 𝑀2

𝑐) patients, then 

the test statistic, denoted by 𝑇2, which is the same test statistics as stage 1, will be 

calculated. If  𝑇2 ≤ 𝑏2, then we fail to reject the null hypothesis and conclude that the 

experimental treatment is not promising; if 𝑇2 > 𝑏2, then we reject the null hypothesis 
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and claim that the experimental treatment is promising, where 𝑏2 is the smallest real 

number satisfying  

𝑃𝐻0
(𝑇1 > 𝑏1|𝑛𝑖1

𝑒 , 𝑛𝑖1
𝑐 , 𝑖 = 1, … , 𝑞) 

+𝑃𝐻0
(𝑎1 ≤ 𝑇1 ≤ 𝑏1, 𝑇2 > 𝑏2|𝑛𝑖𝑗

𝑒 , 𝑛𝑖𝑗
𝑐 , 𝑖 = 1, … , 𝑞, 𝑗 = 1,2) ≤ 𝛼.          (6)  

The power of the test is   

Power = 𝑃𝐻1
(𝑇1 > 𝑏1|𝑛𝑖1

𝑒 , 𝑛𝑖1
𝑐 , 𝑖 = 1, … , 𝑞) 

+𝑃𝐻1
(𝑎1 ≤ 𝑇1 ≤ 𝑏1, 𝑇2 > 𝑏2|𝑛𝑖𝑗

𝑒 , 𝑛𝑖𝑗
𝑐 , 𝑖 = 1, … , 𝑞, 𝑗 = 1,2).                  (7)  

The design with the decision boundaries 𝑎1, 𝑏1 and 𝑏2 guarantees that significant level 

does not exceed 𝛼.  

The design parameters need to be determined before the study begins. We propose 

a simulation-based method to determine sample sizes 𝑀1
𝑐 , 𝑀1

𝑒 , 𝑀2
𝑐 , 𝑀2

𝑒  and the 

boundaries 𝑎1 , 𝑏1 , and 𝑏2 for achieving the desired power at the nominal level, 

according to the context of the hypothesis and the rough estimates of 𝑃1, … 𝑃𝑞. Let 𝑟1 

and 𝑟2  denote the randomization ratios for the first stage and the second stage, 

respectively, i.e., 𝑀1
𝑒 𝑀1

𝑐 ≈ 𝑟1 ⁄ , 𝑀2
𝑒 𝑀2

𝑐⁄ ≈ 𝑟2 and 𝑀2
𝑐 ≈ 𝑘 × 𝑀1

𝑐. This design is referred 

to as an unbalanced design if 𝑟1 ≠ 1 or 𝑟2 ≠ 1 and more patients will be assigned to the 

experimental treatment group if 𝑟1 > 1 or 𝑟2 > 1. Using the approach in London and 

Chang (2005), we propose the following simulation-based algorithm to determine the 

design parameters:  

1. Set the initial values of 𝑀1
𝑐 to be smaller than the anticipated sample size, and set 𝑀2

𝑐 

to be the integral part of 𝑘 × 𝑀1
𝑐. Let 𝑀1

𝑒 and 𝑀2
𝑒 be the integral parts of 𝑟1 × 𝑀1

𝑐 and 

 𝑟2 × 𝑀2
𝑐, respectively. 

2. For 𝑗 = 1, 2, 𝑖 = 1, … , 𝑞-1, and x=e, c, let 𝑛𝑖𝑗
𝑥  be the nearest integral of 𝑀𝑗

𝑥 × 𝑃𝑖, and 

𝑛𝑞𝑗
𝑥 =𝑀𝑗

𝑥 − ∑ 𝑛𝑖𝑗
𝑥𝑞−1

𝑖=1 . 



 

12 

  

3. Generate the binomial random variable 𝑋𝑖𝑗
𝑒  with sample size 𝑛𝑖𝑗

𝑒  and response rate 𝜋𝑖
𝑒 , 

and generate the binomial random variable 𝑋𝑖𝑗
𝑐  with sample size 𝑛𝑖𝑗

𝑐  and response rate 

𝜋𝑖
𝑐, where 𝜋𝑖

𝑒  and 𝜋𝑖
𝑐 are defined in the null hypothesis. 

4. Compute the test statistics 𝑇1  and 𝑇2  based on the values 𝑛𝑖𝑗
𝑒 , 𝑛𝑖𝑗

𝑐 , 𝑥𝑖𝑗
𝑒 , and 𝑥𝑖𝑗

𝑐  

obtained in steps 2 and 3. 

5. Repeat Step 3 and Step 4, say 50,000 times, we can obtain the estimate of the joint 

distribution of (𝑇1, 𝑇2) and the estimate of the marginal distribution of 𝑇1 under the 

null hypothesis, the latter can be used to obtain 𝑏1 according to (5). 

6. Repeat Step 3 and Step 4, say 50,000 times, where 𝜋𝑖
𝑒  and 𝜋𝑖

𝑐  are defined in the 

alternative hypothesis. Then we can obtain the estimates of the joint distribution of 

(𝑇1, 𝑇2) and the marginal distribution of 𝑇1 under the alternative hypothesis, and the 

latter can be used to obtain 𝑎1 according to (4). 

7. After obtaining 𝑎1 and 𝑏1, the estimate of the joint distribution of (𝑇1, 𝑇2) under the 

null hypothesis can be used to obtain 𝑏2 according to (6). 

8. Given 𝑎1 , 𝑏1 , 𝑏2  obtained in the previous steps, we use the estimate of the joint 

distribution of (𝑇1, 𝑇2) under the alternative hypothesis to evaluate the desired power 

(7). If the test power is lower than the desired power, then 𝑀1
𝑐 is set to be 𝑀1

𝑐 + 1. 

9. Repeat Steps 2-8 until the desired power requirement is satisfied. 

Jung (2008) pointed out that the unbalanced two-stage design usually requires 

larger total sample size compared with the balanced design. The discussion on the ratio 

of the experimental treatment sample size and the control treatment sample size can be 

seen in (Wittes 2002). In next section, some numerical examples are given to 

demonstrate how the total sample size is impacted by various settings of 𝑘 and 𝑟𝑖. 

Now, let the 𝑃̂𝑖 be the estimate of 𝑃𝑖 based on 𝑛𝑖𝑗
𝑒 , 𝑛𝑖𝑗

𝑐  as follows 
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𝑃̂𝑖 =
∑ (𝑛𝑖𝑗

𝑒 + 𝑛𝑖𝑗
𝑐 )2

𝑗=1

∑ ∑ (𝑛𝑖𝑗
𝑒 + 𝑛𝑖𝑗

𝑐 )𝑞
𝑖=1

2
𝑗=1

. 

Notice that the determination of sample sizes 𝑀1
𝑒 , 𝑀1

𝑐 , 𝑀2
𝑒 , and 𝑀2

𝑐  depends on the 

initial  estimates of the 𝑃𝑖 's. If 𝑃̂𝑖’s do not differ from 𝑃𝑖’s too much, the actual power 

will be close to the desired level. Instead, if 𝑃̂𝑖  differs from 𝑃𝑖  a lot for some 𝑖 , the 

desired power may not be achieved so that an adjustment of the sample size is required. 

Following the advice of London and Chang (2005), we could enroll more patients into 

the experimental/control group at the second stage for achieving the desired power.  

  

4. Numerical examples  

We compared the sample sizes based on the test statistic 𝑇𝐷𝑖𝑓𝑓  (1) with three 

different weighting methods. At the same time, we also presented the sample sizes 

based on the test statistic 𝑇𝑂𝑅 (2) and 𝑇𝑅𝑅 (3). We considered three strata with equal 

proportion 𝑃1 = 𝑃2 =  𝑃3 = 1/3. Under the balanced design with the same number of 

patients assigned into each treatment group, i.e. k =1 and 𝑟1 = 𝑟2 = 1, we considered 

three different scenarios in the numerical study, where the expected response rates of 

the control treatment (𝜋1
𝑐, 𝜋2

𝑐 , 𝜋3
𝑐) = (𝜋1

0, 𝜋2
0, 𝜋3

0) were set as (0.4, 0.2, 0.1), and (0.6, 

0.3, 0.1).  

 Scenario 1: Equal difference. In this scenario, the true difference between the      

experimental response rate and the control response rate is set as ∆1= ∆2= 

∆3 = ∆=0.20, 0.23 and 0.25.  

Scenario 2: Equal odds ratio. In this scenario, the logarithm of odds ratio is set as 

𝛿1 = 𝛿2= 𝛿3 = 𝛿 =1.1, 1.25 and 1.5.  
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Scenario 3: Unequal difference. In this scenario, the true difference between the 

experimental response rate and the control response rate is not constant 

across strata, implying different odds ratio between the strata.  

Furthermore, we consider the forth scenario with an unbalanced design under various 

settings for k=(0.5, 1.0, 2.0) and (𝑟1, 𝑟2)=(1, 1), (1, 2), (2, 1) and (2, 2), in which the 

expected response rates of the control treatment are set as (0.4, 0.2, 0.1) and the true 

difference between the experimental and the control response rates are set as (0.35, 

0.24, 0.12), which is not constant across strata. For each scenario, Type I error 

probability 𝛼 and Type II error probability 𝛽 were set to be 0.05 and 0.2, respectively. 

To decide the critical points 𝑎1, 𝑏1, the split-level for both errors is set to be 50% at the 

first stage, i.e., 𝜏1 = 𝜏2 =0.5. The total sample size N, 𝑀1
𝑐, 𝑀1

𝑒, 𝑀2
𝑐, 𝑀2

𝑒, 𝑎1, 𝑏1, 𝑏2, and 

the desired power are presented in Tables 1-4. Notice that the total sample size N refers 

to the minimum sample size (MS) required for achieving the desired 𝛼 and 𝛽 if early 

termination after the first stage does not occur. Since the impact of 𝑟1 and 𝑟2 on total 

sample size is shown in Figure 1, Table 4 only lists the results for 𝑟1 = 𝑟2 = 1.  

Table 1 indicates that to achieve the desired level the required sample size based 

on the INVAR-weighted 𝑇𝐷𝑖𝑓𝑓 and MR-weighted 𝑇𝐷𝑖𝑓𝑓 are the smallest when the true 

difference between the experimental and the control response rates is constant across 

strata. Due to violation of the assumption of the constant odd ratios, the SSIZE-

weighted 𝑇𝐷𝑖𝑓𝑓  and 𝑇𝑂𝑅  require larger sample size to achieve the desired level, in 

particular, the 𝑇𝑅𝑅  requires the largest sample size to achieve the desired level. 

Similarly, the required sample sizes get smeller, as the value of ∆𝑖 increases.  

From Table 2, we can observe that to achieve a desired level the required sample 

size of the INVAR-weighted 𝑇𝐷𝑖𝑓𝑓  and MR-weighted 𝑇𝐷𝑖𝑓𝑓  is the smallest when the 

odds ratio is constant across strata. When the values of 𝛿  increases, and the required 
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sample sizes of the INVAR-weighted 𝑇𝐷𝑖𝑓𝑓 , MR-weighted 𝑇𝐷𝑖𝑓𝑓 , SSIZE-weighted 

𝑇𝐷𝑖𝑓𝑓 and 𝑇𝑂𝑅 are getting closer and the required sample size based on the test statistic 

𝑇𝑅𝑅 is the largest.  

When neither constant odds ratio nor constant difference holds, Table 3 shows that 

to achieve the desired level when the difference between ∆1, ∆2 and ∆3 (or 𝛿1, 𝛿2 and 

𝛿3) is large, the required sample sizes of the INVAR-weighted 𝑇𝐷𝑖𝑓𝑓 and MR-weighted 

𝑇𝐷𝑖𝑓𝑓 are the smallest and the test statistic 𝑇𝑅𝑅 is the largest, respectively. However, if 

the difference between ∆1, ∆2 and ∆3 (or 𝛿1, 𝛿2 and 𝛿3) is small, the required sample 

size based on the INVAR-weighted 𝑇𝐷𝑖𝑓𝑓 and MR-weighted 𝑇𝐷𝑖𝑓𝑓 are smaller than or 

equal to that based on the SSIZE -weighted 𝑇𝐷𝑖𝑓𝑓 and the test statistic 𝑇𝑂𝑅. 

The results for the unbalanced design in Table 4 and Figure 1 indicate that to 

achieve the desired level, the required sample sizes of the INVAR-weighted 𝑇𝐷𝑖𝑓𝑓 and 

MR-weighted 𝑇𝐷𝑖𝑓𝑓  are the smallest and on the test statistic 𝑇𝑅𝑅  is the largest. The 

required sample size based on the SSIZE -weighted 𝑇𝐷𝑖𝑓𝑓 is close to the test statistic 

𝑇𝑂𝑅. The required sample sizes based on all the test statistic T is the smallest when 

k=0.5 and  (𝑟1, 𝑟2)=(2, 1). 

Moreover, we also consider the scenarios with 𝜏1 and 𝜏2 set to 25% and 25% at 

the first stage and various setting of (𝑟1, 𝑟2). We consider four scenarios: (Scenario 1a): 

Equal difference (Scenario 2a): Equal odds ratio (Scenario 3a): Unequal difference 

under with k =1, and (Scenario 4a): unbalanced designs under various settings with 

k=(0.5, 1.0, 2.0) and (𝑟1, 𝑟2)=(0.5, 0.5), (0.5, 1), (1, 1), (1, 2), (2, 1) and (2, 2) under 

(𝜋1
0, 𝜋2

0, 𝜋3
0)= (0.4, 0.2, 0.1) and (∆1, ∆2, ∆3) = (0.35, 0.24, 0.12). The results are shown 

in Tables 5-8. Since the impact of 𝑟1 and 𝑟2 on total sample size is shown in Figure 2, 

Table 8 only lists the results for (𝑟1, 𝑟2)= (2, 1). 

From Table 5, to achieve the desired level the required sample size based on the 
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INVAR-weighted 𝑇𝐷𝑖𝑓𝑓  and MR-weighted 𝑇𝐷𝑖𝑓𝑓  are the smallest and the 𝑇𝑅𝑅  require 

the largest sample size. The required sample size based on the SSIZE-weighted 𝑇𝐷𝑖𝑓𝑓 is 

close to the test statistic 𝑇𝑂𝑅 and require larger sample size to achieve the desired level. 

When (𝑟1, 𝑟2)=(2, 1) the required sample size is smaller than that under (𝑟1, 𝑟2)= (1, 1). 

When (𝜏1, 𝜏2)=(0.25, 0.25), the required total sample size is smaller than that under 

(𝜏1, 𝜏2)=(0.5, 0.5). Similarly, the required sample sizes get smaller, as the value of ∆𝑖 

increases.  

From Table 6, we can observe that to achieve a desired level the required sample 

size of the INVAR-weighted 𝑇𝐷𝑖𝑓𝑓 and MR-weighted 𝑇𝐷𝑖𝑓𝑓 is the smallest and the test 

statistic 𝑇𝑅𝑅 is the largest. For (𝜋1
0 ,  𝜋2

0 ,  𝜋3
0 )=(0.4, 0.2, 0.1), when the values of 𝛿  

increases, the required sample sizes of the SSIZE-weighted 𝑇𝐷𝑖𝑓𝑓 , the test statistic 𝑇𝑂𝑅  

and 𝑇𝑅𝑅 are the same. When the (𝜋1
0, 𝜋2

0, 𝜋3
0)=(0.4, 0.2, 0.1) and the 𝛿=1.1, the required 

sample size based on the SSIZE-weighted 𝑇𝐷𝑖𝑓𝑓 under 𝑟1 = 𝑟2 =  1 are the same as that 

under 𝑟1 = 2, 𝑟2 = 1 . When the (𝜋1
0 ,  𝜋2

0 ,  𝜋3
0 )=(0.6, 0.3, 0.1) and the 𝛿 =1.1, the 

required sample size based on the INVAR-weighted 𝑇𝐷𝑖𝑓𝑓 is the smallest and the test 

statistic 𝑇𝑅𝑅  is getting larger as (𝑟1, 𝑟2)=(2, 1). In addition, when the (𝑟1, 𝑟2)=(2, 1), the 

required sample size based on all the test statistics  is smaller than that under (𝑟1, 𝑟2)=(1, 

1). 

From Table 7, to achieve the desired level the required sample sizes of the 

INVAR-weighted 𝑇𝐷𝑖𝑓𝑓 and MR-weighted 𝑇𝐷𝑖𝑓𝑓 are the smallest and the test statistic 

𝑇𝑅𝑅  is the largest. When the difference between ∆1 , ∆2  and ∆3  (or 𝛿1 , 𝛿2  and 𝛿3) is 

small, the required sample size based on the INVAR-weighted 𝑇𝐷𝑖𝑓𝑓 and MR-weighted 

𝑇𝐷𝑖𝑓𝑓 are smaller than or equal to that based on the SSIZE -weighted 𝑇𝐷𝑖𝑓𝑓 and the test 

statistic 𝑇𝑂𝑅. And to achieve the desired level when the (𝑟1, 𝑟2)=(2, 1), the required 

sample size is the smaller than when (𝑟1, 𝑟2)=(1, 1) .When the difference between ∆1, 
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∆2 and ∆3 (or 𝛿1, 𝛿2 and 𝛿3) increases, the required sample size based on the SSIZE-

weighted 𝑇𝐷𝑖𝑓𝑓 and 𝑇𝑂𝑅  under the (𝜋1
0, 𝜋2

0, 𝜋3
0)=(0.6, 0.3, 0.1) but do not vary a lot as 

randomization ratio 𝑟1 varies. 

The results for the unbalanced design in Table 8 and Figure 2 indicate that to 

achieve the desired level, the required sample sizes of the INVAR-weighted 𝑇𝐷𝑖𝑓𝑓 and 

MR-weighted 𝑇𝐷𝑖𝑓𝑓 are the same and the smallest. The required sample sizes based on 

the test statistic 𝑇𝑅𝑅  is the largest. The required sample size based on the SSIZE -

weighted 𝑇𝐷𝑖𝑓𝑓  is close to the test statistic 𝑇𝑂𝑅 . When k=1 and  (𝑟1, 𝑟2)=(2, 2) the 

required sample sizes based on all the test statistics are the smallest.  

  

5. Conclusions and Discussions   

Under a two-stage design for stratified randomized two-arm phase II clinical trials, 

we have proposed three testing procedures to compare the response rates between two 

treatments. We have also developed a simulation-based algorithm to find the 

parameters in designs to achieve the desired power at the nominal level. Based on 

simulation results, we observe that to achieve the desired level, the required sample size 

of the INVAR-weighted 𝑇𝐷𝑖𝑓𝑓 and MR-weighted 𝑇𝐷𝑖𝑓𝑓 is the smallest if the odds ratio 

is constant across strata, and the required sample size based on all the test statistics 

decrease as 𝛿 increases. The required sample size based on the INVAR- and MR- 

weighted 𝑇𝐷𝑖𝑓𝑓  is the smallest if the true difference between two response rates is 

constant across strata, and the required sample size based on all the test statistics 

decrease as ∆ increases. When the odd ratio and the difference between two response 

rates are not constant across the strata, the required sample sizes based on the INVAR-

weighted 𝑇𝐷𝑖𝑓𝑓 and MR-weighted 𝑇𝐷𝑖𝑓𝑓 are the smallest and the test statistic 𝑇𝑅𝑅 is the 
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largest, respectively in the case of large difference between ∆1, ∆2 and ∆3 (or 𝛿1, 𝛿2 

and 𝛿3). However, when the difference between ∆1 , ∆2  and ∆3  (or 𝛿1 , 𝛿2  and 𝛿3) is 

small, the required sample size of the INVAR-weighted 𝑇𝐷𝑖𝑓𝑓 , MR-weighted 𝑇𝐷𝑖𝑓𝑓 , 

SSIZE-weighted 𝑇𝐷𝑖𝑓𝑓 and 𝑇𝑂𝑅 are close. We also observe that the differences 𝑟1 and 𝑟2 

based on the test statistics, the required sample sizes become smaller as the (𝑟1,𝑟2) 

increases. When the 𝜏1 = 𝜏2 = 0.5 and k=0.5, the required sample size based on all the 

test statistics is the smallest. When the 𝜏1 = 𝜏2 = 0.25 and k=1, the required sample 

size based on all the test statistics is the smallest. 

The proposed conditional approach under a two-stage design can be extended to a 

multi-stage design for the stratified randomized two-arm trial. In a randomized phase II 

cancer clinical trial, sometimes the primary endpoint is the survival time, such as the 

progression-free survival time or the overall survival time (Sperduto et al. 2012). In this 

case, it may be worthwhile to develop a conditional approach for a two-arm stratified 

randomized phase II clinical trial. 
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Table 1. Sample sizes under ∆1= ∆2= ∆3= ∆ under k=1, (𝜏1, 𝜏2)=(0.5, 0.5) and 

(𝑟1, 𝑟2)=(1, 1). 

 

 
  

Method N Power

(0.4,0.2,0.1) 0.2 Tss 138 36 36 33 33 0.568 1.884 1.670 0.801

Tinv 114 30 30 27 27 0.470 1.674 1.471 0.800

Tmr 114 30 30 27 27 0.470 1.674 1.471 0.800

TOR 138 36 36 33 33 0.554 1.811 1.646 0.802

TRR 144 36 36 36 36 0.405 1.041 1.095 0.806

0.23 Tss 102 27 27 24 24 0.586 1.822 1.596 0.800

Tinv 90 24 24 21 21 0.481 1.615 1.392 0.815

Tmr 90 24 24 21 21 0.479 1.626 1.404 0.811

TOR 102 27 27 24 24 0.573 1.727 1.578 0.801

TRR 108 27 27 27 27 0.401 0.964 1.026 0.807

0.25 Tss 90 24 24 21 21 0.621 1.786 1.562 0.811

Tinv 72 18 18 18 18 0.337 1.537 1.325 0.801

Tmr 72 18 18 18 18 0.335 1.532 1.324 0.800

TOR 90 24 24 21 21 0.608 1.700 1.530 0.813

TRR 90 24 24 21 21 0.405 0.923 0.983 0.804

(0.6,0.3,0.1) 0.2 Tss 138 36 36 33 33 0.568 1.920 1.692 0.801

Tinv 120 30 30 30 30 0.496 1.746 1.530 0.802

Tmr 120 30 30 30 30 0.496 1.746 1.530 0.802

TOR 144 36 36 36 36 0.574 1.846 1.675 0.807

TRR 150 39 39 36 36 0.455 1.058 1.040 0.805

0.23 Tss 108 27 27 27 27 0.603 1.840 1.665 0.807

Tinv 90 24 24 21 21 0.514 1.688 1.461 0.802

Tmr 90 24 24 21 21 0.519 1.696 1.451 0.804

TOR 108 27 27 27 27 0.590 1.770 1.640 0.806

TRR 114 30 30 27 27 0.429 1.006 0.991 0.804

0.25 Tss 90 24 24 21 21 0.636 1.841 1.622 0.804

Tinv 78 21 21 18 18 0.555 1.669 1.432 0.805

Tmr 78 21 21 18 18 0.532 1.671 1.436 0.804

TOR 90 24 24 21 21 0.625 1.760 1.589 0.804

TRR 96 24 24 24 24 0.376 0.941 0.949 0.801

𝑀1
𝑐 𝑀1

𝑒 𝑀2
𝑐 𝑀2

𝑒 𝑎1 𝑏1 𝑏2(𝜋1
0,𝜋2

0,𝜋3
0) ∆
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Table 2. Sample sizes under 𝛿1 = 𝛿2 = 𝛿3 = 𝛿 under k=1, (𝜏1, 𝜏2)=(0.5, 0.5) and 

(𝑟1, 𝑟2)=(1, 1). 

 

 

  

Method N Power

(0.4,0.2,0.1) 1.1 (0.27,0.23,0.15) Tss 114 30 30 27 27 0.587 1.861 1.630 0.803

Tinv 108 27 27 27 27 0.471 1.616 1.444 0.812

Tmr 108 27 27 27 27 0.487 1.672 1.503 0.810

TOR 114 30 30 27 27 0.579 1.786 1.606 0.803

TRR 120 30 30 30 30 0.405 0.995 1.056 0.805

1.25 (0.3,0.27,0.18) Tss 84 21 21 21 21 0.524 1.703 1.543 0.802

Tinv 78 21 21 18 18 0.482 1.587 1.354 0.813

Tmr 78 21 21 18 18 0.521 1.595 1.401 0.809

TOR 84 21 21 21 21 0.510 1.634 1.507 0.802

TRR 90 24 24 21 21 0.422 0.925 0.983 0.805

1.5 (0.35,0.33,0.23) Tss 54 15 15 12 12 0.560 1.561 1.325 0.807

Tinv 54 15 15 12 12 0.484 1.463 1.203 0.831

Tmr 54 15 15 12 12 0.476 1.480 1.262 0.823

TOR 54 15 15 12 12 0.520 1.476 1.308 0.804

TRR 60 15 15 15 15 0.327 0.775 0.857 0.808

(0.6,0.3,0.1) 1.1 (0.22,0.26,0.15) Tss 120 30 30 30 30 0.580 1.877 1.656 0.800

Tinv 114 30 30 27 27 0.532 1.726 1.514 0.806

Tmr 114 30 30 27 27 0.551 1.783 1.580 0.801

TOR 126 33 33 30 30 0.605 1.835 1.634 0.812

TRR 138 36 36 33 33 0.465 1.042 1.018 0.812

1.25 (0.24,0.3,0.18) Tss 96 24 24 24 24 0.610 1.835 1.640 0.806

Tinv 90 24 24 21 21 0.547 1.696 1.466 0.814

Tmr 90 24 24 21 21 0.566 1.726 1.516 0.809

TOR 96 24 24 24 24 0.597 1.762 1.612 0.807

TRR 108 27 27 27 27 0.389 0.969 0.989 0.808

1.5 (0.27,0.36,0.23) Tss 66 18 18 15 15 0.618 1.746 1.534 0.805

Tinv 66 18 18 15 15 0.623 1.639 1.389 0.828

Tmr 66 18 18 15 15 0.632 1.646 1.407 0.828

TOR 66 18 18 15 15 0.596 1.645 1.471 0.807

TRR 78 21 21 18 18 0.441 0.913 0.915 0.819

𝑀1
𝑐 𝑀1

𝑒 𝑀2
𝑐 𝑀2

𝑒 𝑎1 𝑏2𝑏1(𝜋1
0,𝜋2

0,𝜋3
0) 𝛿 (∆1,∆2,∆3)
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Table 3. Sample sizes under unequal differences and unequal odds ratios under k=1, (𝜏1, 

𝜏2)=(0.5, 0.5) and (𝑟1, 𝑟2)=(1, 1). 

 

 

  

Method N Power

(0.4,0.2,0.1) (1.25,1,0.81) (0.3,0.2,0.1) Tss 126 33 33 30 30 0.580 1.860 1.665 0.800

Tinv 126 33 33 30 30 0.499 1.682 1.501 0.801

Tmr 126 33 33 30 30 0.567 1.767 1.619 0.803

TOR 126 33 33 30 30 0.573 1.797 1.636 0.803

TRR 132 33 33 33 33 0.405 1.011 1.072 0.801

(1.25,1.2,1.1) (0.3,0.25,0.15) Tss 96 24 24 24 24 0.527 1.782 1.591 0.806

Tinv 90 24 24 21 21 0.510 1.611 1.399 0.813

Tmr 90 24 24 21 21 0.544 1.645 1.490 0.808

TOR 96 24 24 24 24 0.519 1.697 1.555 0.807

TRR 102 27 27 24 24 0.422 0.969 1.024 0.802

(1.5,1.15,0.93) (0.35,0.24,0.12) Tss 90 24 24 21 21 0.621 1.775 1.574 0.806

Tinv 84 21 21 21 21 0.435 1.569 1.384 0.801

Tmr 84 21 21 21 21 0.416 1.626 1.478 0.800

TOR 90 24 24 21 21 0.605 1.696 1.540 0.807

TRR 96 24 24 24 24 0.405 0.923 0.992 0.803

(1.5,1.2,1.1) (0.35,0.25,0.15) Tss 84 21 21 21 21 0.551 1.767 1.574 0.807

Tinv 78 21 21 18 18 0.524 1.591 1.338 0.818

Tmr 78 21 21 18 18 0.574 1.653 1.439 0.810

TOR 84 21 21 21 21 0.544 1.631 1.520 0.812

TRR 84 21 21 21 21 0.365 0.878 0.964 0.800

(0.6,0.3,0.1) (1.5,0.85,0.81) (0.27,0.2,0.1) Tss 144 36 36 36 36 0.579 1.932 1.692 0.806

Tinv 138 36 36 33 33 0.559 1.758 1.532 0.809

Tmr 138 36 36 33 33 0.617 1.875 1.654 0.805

TOR 144 36 36 36 36 0.573 1.841 1.662 0.804

TRR 162 42 42 39 39 0.455 1.064 1.048 0.803

(1.5,0.9,1.1) (0.27,0.21,0.15) Tss 120 30 30 30 30 0.598 1.881 1.686 0.804

Tinv 108 27 27 27 27 0.491 1.724 1.507 0.805

Tmr 108 27 27 27 27 0.511 1.761 1.549 0.800

TOR 120 30 30 30 30 0.583 1.831 1.650 0.803

TRR 132 33 33 33 33 0.406 1.026 1.009 0.802

(2.53,1.1,0.81) (0.35,0.26,0.1) Tss 96 24 24 24 24 0.641 1.837 1.640 0.809

Tinv 90 24 24 21 21 0.587 1.713 1.463 0.807

Tmr 90 24 24 21 21 0.674 1.821 1.585 0.803

TOR 96 24 24 24 24 0.617 1.761 1.596 0.809

TRR 108 27 27 27 27 0.429 0.983 0.983 0.802

(2.53,1,1.1) (0.35,0.24,0.15) Tss 90 24 24 21 21 0.681 1.841 1.622 0.805

Tinv 84 21 21 21 21 0.555 1.675 1.461 0.810

Tmr 84 21 21 21 21 0.567 1.724 1.539 0.801

TOR 90 24 24 21 21 0.650 1.759 1.590 0.801

TRR 102 27 27 24 24 0.442 0.969 0.963 0.804

𝑀1
𝑐 𝑀1

𝑒 𝑀2
𝑐 𝑀2

𝑒 𝑎1 𝑏2𝑏1(𝜋1
0,𝜋2

0,𝜋3
0) (∆1,∆2,∆3)(𝛿1,𝛿2,𝛿3)
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Table 4. Sample sizes under (𝜋1
0, 𝜋2

0, 𝜋3
0)=(0.4, 0.2, 0.1) , (∆1, ∆2, ∆3)=(0.35, 0.24, 

0.12), (𝜏1, 𝜏2)=(0.5, 0.5) and (𝑟1, 𝑟2)=(1, 1) for various k. 

 
 

  

k Method N Power

0.5 Tss 102 33 33 18 18 0.825 1.918 1.612 0.804

Tinv 96 33 33 15 15 0.735 1.758 1.454 0.802

Tmr 96 33 33 15 15 0.808 1.863 1.548 0.800

TOR 102 33 33 18 18 0.810 1.851 1.583 0.804

TRR 114 39 39 18 18 0.584 1.057 0.969 0.807

1 Tss 108 27 27 27 27 0.622 1.877 1.681 0.802

Tinv 102 27 27 24 24 0.540 1.705 1.481 0.805

Tmr 102 27 27 24 24 0.578 1.776 1.590 0.801

TOR 108 27 27 27 27 0.605 1.794 1.639 0.803

TRR 120 30 30 30 30 0.413 0.993 0.999 0.804

2 Tss 120 21 21 39 39 0.370 1.817 1.717 0.812

Tinv 114 18 18 39 39 0.276 1.652 1.549 0.805

Tmr 114 18 18 39 39 0.281 1.688 1.659 0.803

TOR 120 21 21 39 39 0.351 1.730 1.675 0.812

TRR 132 21 21 45 45 0.218 0.913 1.032 0.804

𝑎1 𝑏2𝑏1𝑀1
𝑐 𝑀1

𝑒 𝑀2
𝑐 𝑀2

𝑒
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Table 5. Sample sizes under  ∆1= ∆2= ∆3= ∆ under k=1, (𝜏1, 𝜏2)=(0.25, 0.25) and 

(𝑟1, 𝑟2)=(2, 1). 

 

  

Method N Power

(0.4,0.2,0.1) 0.2 (1,1) Tss 126 33 33 30 30 0.157 2.115 1.592 0.800

Tinv 108 27 27 27 27 0.000 1.888 1.427 0.803

Tmr 108 27 27 27 27 0.000 1.888 1.427 0.803

TOR 126 33 33 30 30 0.154 2.006 1.569 0.801

TRR 126 33 33 30 30 0.179 1.090 1.026 0.806

(2,1) Tss 120 24 48 24 24 0.174 1.853 1.441 0.805

Tinv 96 21 39 18 18 0.052 1.673 1.218 0.801

Tmr 96 21 39 18 18 0.052 1.673 1.218 0.801

TOR 120 24 48 24 24 0.173 1.768 1.416 0.803

TRR 120 24 48 24 24 0.124 0.949 0.935 0.803

0.23 (1,1) Tss 96 24 24 24 24 0.000 2.038 1.532 0.804

Tinv 78 21 21 18 18 0.000 1.811 1.300 0.801

Tmr 78 21 21 18 18 0.000 1.811 1.300 0.801

TOR 96 24 24 24 24 0.150 1.894 1.498 0.807

TRR 96 24 24 24 24 0.110 0.971 0.965 0.806

(2,1) Tss 87 18 33 18 18 0.038 1.741 1.334 0.800

Tinv 72 15 27 15 15 -0.052 1.514 1.115 0.802

Tmr 72 15 27 15 15 -0.052 1.514 1.115 0.802

TOR 87 18 33 18 18 0.038 1.628 1.302 0.805

TRR 90 18 36 18 18 0.000 0.851 0.849 0.802

0.25 (1,1) Tss 78 21 21 18 18 0.166 1.945 1.452 0.803

Tinv 66 18 18 15 15 0.000 1.772 1.250 0.800

Tmr 66 18 18 15 15 0.000 1.747 1.263 0.800

TOR 78 21 21 18 18 0.157 1.824 1.420 0.804

TRR 78 21 21 18 18 0.116 0.926 0.905 0.800

(2,1) Tss 72 15 27 15 15 0.025 1.630 1.234 0.805

Tinv 60 12 24 12 12 -0.134 1.320 0.969 0.808

Tmr 60 12 24 12 12 -0.134 1.320 0.969 0.808

TOR 72 15 27 15 15 0.025 1.519 1.218 0.804

TRR 75 15 30 15 15 0.000 0.778 0.778 0.801

𝑀1
𝑐 𝑀1

𝑒 𝑀2
𝑐 𝑀2

𝑒 𝑎1 𝑏2𝑏1(𝜋1
0,𝜋2

0,𝜋3
0) ∆ (𝑟1 ,𝑟2)
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Table 5. Continue. 

 

  

Method N Power

(0.6,0.3,0.1) 0.2 (1,1) Tss 126 33 33 30 30 0.163 2.158 1.596 0.804

Tinv 108 27 27 27 27 0.010 2.028 1.435 0.803

Tmr 108 27 27 27 27 0.000 2.016 1.448 0.800

TOR 126 33 33 30 30 0.254 2.048 1.575 0.805

TRR 132 33 33 33 33 0.169 1.104 0.985 0.800

(2,1) Tss 126 27 51 24 24 0.240 2.063 1.531 0.804

Tinv 105 21 42 21 21 0.066 1.795 1.316 0.807

Tmr 105 21 42 21 21 0.047 1.774 1.323 0.806

TOR 126 27 51 24 24 0.237 1.961 1.502 0.806

TRR 138 27 57 27 27 0.178 1.050 0.949 0.801

0.23 (1,1) Tss 96 24 24 24 24 0.166 2.077 1.586 0.801

Tinv 84 21 21 21 21 0.000 1.932 1.398 0.802

Tmr 84 21 21 21 21 0.000 1.911 1.403 0.803

TOR 96 24 24 24 24 0.156 1.989 1.547 0.801

TRR 108 27 27 27 27 0.185 1.052 0.963 0.807

(2,1) Tss 93 18 39 18 18 0.137 1.927 1.413 0.806

Tinv 78 15 33 15 15 0.045 1.673 1.195 0.807

Tmr 78 15 33 15 15 0.037 1.664 1.188 0.808

TOR 93 18 39 18 18 0.135 1.782 1.381 0.809

TRR 105 21 42 21 21 0.137 0.953 0.893 0.810

0.25 (1,1) Tss 84 21 21 21 21 0.175 2.020 1.549 0.809

Tinv 72 18 18 18 18 0.000 1.870 1.360 0.804

Tmr 72 18 18 18 18 0.000 1.908 1.373 0.801

TOR 84 21 21 21 21 0.173 1.905 1.518 0.810

TRR 90 24 24 21 21 0.192 1.014 0.920 0.805

(2,1) Tss 75 15 30 15 15 0.128 1.835 1.354 0.800

Tinv 63 12 27 12 12 -0.018 1.595 1.089 0.802

Tmr 63 12 27 12 12 -0.018 1.595 1.089 0.802

TOR 75 15 30 15 15 0.125 1.650 1.316 0.802

TRR 87 18 33 18 18 0.186 0.908 0.863 0.803

𝑀1
𝑐 𝑀1

𝑒 𝑀2
𝑐

𝑀2
𝑒 𝑎1 𝑏2𝑏1(𝜋1

0,𝜋2
0,𝜋3

0) ∆ (𝑟1 ,𝑟2)
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Table 6. Sample sizes under 𝛿1 = 𝛿2 = 𝛿3 = 𝛿, k=1, (𝜏1, 𝜏2)=(0.25, 0.25) and 

(𝑟1, 𝑟2)=(2, 1) 

 

 
  

Method N Power

(0.4,0.2,0.1) 1.1 (0.27,0.23,0.15) (1,1) Tss 102 27 27 24 24 0.158 2.058 1.551 0.802

Tinv 96 24 24 24 24 0.028 1.852 1.371 0.808

Tmr 96 24 24 24 24 0.014 1.903 1.437 0.802

TOR 102 27 27 24 24 0.156 1.946 1.520 0.804

TRR 108 27 27 27 27 0.110 1.014 0.993 0.804

(2,1) Tss 102 21 39 21 21 0.172 1.847 1.422 0.807

Tinv 87 18 33 18 18 0.014 1.576 1.178 0.805

Tmr 87 18 33 18 18 0.004 1.632 1.234 0.801

TOR 96 21 39 18 18 0.178 1.713 1.349 0.802

TRR 102 21 39 21 21 0.137 0.904 0.902 0.804

1.25 (0.3,0.27,0.18) (1,1) Tss 78 21 21 18 18 0.175 1.955 1.466 0.807

Tinv 72 18 18 18 18 0.000 1.760 1.289 0.808

Tmr 72 18 18 18 18 0.000 1.806 1.331 0.809

TOR 78 21 21 18 18 0.173 1.842 1.438 0.807

TRR 84 21 21 21 21 0.123 0.949 0.948 0.810

(2,1) Tss 72 15 27 15 15 0.028 1.647 1.258 0.807

Tinv 60 12 24 12 12 -0.125 1.322 0.971 0.804

Tmr 60 12 24 12 12 -0.157 1.326 0.984 0.803

TOR 72 15 27 15 15 0.027 1.543 1.227 0.809

TRR 75 15 30 15 15 0.000 0.778 0.784 0.807

1.5 (0.35,0.33,0.23) (1,1) Tss 54 15 15 12 12 0.203 1.780 1.304 0.825

Tinv 48 12 12 12 12 0.000 1.577 1.160 0.805

Tmr 48 12 12 12 12 0.000 1.582 1.176 0.807

TOR 54 15 15 12 12 0.196 1.650 1.272 0.827

TRR 54 15 15 12 12 0.141 0.828 0.806 0.805

(2,1) Tss 45 9 18 9 9 0.000 1.197 0.885 0.823

Tinv 33 6 15 6 6 -0.314 0.803 0.427 0.809

Tmr 33 6 15 6 6 -0.309 0.800 0.437 0.803

TOR 45 9 18 9 9 0.000 1.140 0.870 0.820

TRR 45 9 18 9 9 0.000 0.632 0.564 0.805

𝑎1 𝑏2𝑏1(𝜋1
0,𝜋2

0,𝜋3
0) 𝛿 (∆1,∆2,∆3) (𝑟1 ,𝑟2) 𝑀1

𝑐 𝑀1
𝑒 𝑀2

𝑐 𝑀2
𝑒
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Table 6.  Continue. 

 

 
  

Method N Power

(0.6,0.3,0.1) 1.1 (0.22,0.26,0.15) (1,1) Tss 114 30 30 27 27 0.28 2.155 1.612 0.810

Tinv 102 27 27 24 24 0.095 1.989 1.436 0.801

Tmr 108 27 27 27 27 0.107 2.004 1.517 0.810

TOR 114 30 30 27 27 0.269 2.042 1.575 0.811

TRR 120 30 30 30 30 0.174 1.086 0.970 0.800

(2,1) Tss 111 24 45 21 21 0.256 2.048 1.500 0.811

Tinv 96 21 39 18 18 0.084 1.785 1.279 0.803

Tmr 102 21 39 21 21 0.089 1.827 1.374 0.804

TOR 108 21 45 21 21 0.125 1.839 1.449 0.800

TRR 123 24 51 24 24 0.18 1.005 0.920 0.805

1.25 (0.24,0.3,0.18) (1,1) Tss 84 21 21 21 21 0.17 2.020 1.522 0.801

Tinv 78 21 21 18 18 0.113 1.935 1.376 0.801

Tmr 84 21 21 21 21 0.111 1.952 1.450 0.812

TOR 84 21 21 21 21 0.165 1.905 1.492 0.801

TRR 96 24 24 24 24 0.185 1.014 0.942 0.802

(2,1) Tss 81 18 33 15 15 0.167 1.930 1.390 0.802

Tinv 75 15 30 15 15 0.059 1.678 1.210 0.810

Tmr 75 15 30 15 15 0.059 1.699 1.234 0.807

TOR 81 18 33 15 15 0.202 1.790 1.372 0.805

TRR 93 18 39 18 18 0.153 0.929 0.849 0.802

1.5 (0.27,0.36,0.23) (1,1) Tss 60 15 15 15 15 0.192 1.857 1.426 0.802

Tinv 60 15 15 15 15 0.075 1.823 1.330 0.821

Tmr 60 15 15 15 15 0.07 1.828 1.327 0.822

TOR 60 15 15 15 15 0.185 1.749 1.392 0.803

TRR 66 18 18 15 15 0.208 0.925 0.848 0.801

(2,1) Tss 57 12 21 12 12 0.142 1.684 1.277 0.813

Tinv 48 9 21 9 9 0.062 1.400 0.950 0.819

Tmr 48 9 21 9 9 0.049 1.374 0.948 0.816

TOR 57 12 21 12 12 0.138 1.544 1.229 0.819

TRR 63 12 27 12 12 0.117 0.783 0.731 0.814

𝑀1
𝑐 𝑀1

𝑒 𝑀2
𝑐 𝑀2

𝑒 𝑎1 𝑏2𝑏1(𝜋1
0,𝜋2

0,𝜋3
0) 𝛿 (∆1,∆2,∆3) (𝑟1 ,𝑟2)
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Table 7. Sample sizes under unequal differences and unequal odds ratios under k=1, 

(𝜏1,𝜏2)=(0.25, 0.25) and (𝑟1, 𝑟2)=(2, 1). 

 

 
 

  

Method N Power

(0.4,0.2,0.1) (1.25,1,0.81) (0.3,0.2,0.1) (1,1) Tss 114 30 30 27 27 0.157 2.098 1.567 0.806

Tinv 114 30 30 27 27 0.100 1.926 1.414 0.802

Tmr 114 30 30 27 27 0.130 1.987 1.514 0.807

TOR 114 30 30 27 27 0.161 1.979 1.541 0.804

TRR 120 30 30 30 30 0.113 1.052 1.016 0.805

(2,1) Tss 108 21 45 21 21 0.027 1.773 1.387 0.801

Tinv 105 21 42 21 21 0.058 1.639 1.252 0.801

Tmr 105 21 42 21 21 0.060 1.715 1.347 0.802

TOR 108 21 45 21 21 0.113 1.681 1.359 0.802

TRR 120 24 48 24 24 0.130 0.953 0.940 0.807

(1.25,1.2,1.1) (0.3,0.25,0.15) (1,1) Tss 84 21 21 21 21 0.000 1.955 1.478 0.802

Tinv 78 21 21 18 18 0.031 1.812 1.309 0.803

Tmr 78 21 21 18 18 0.035 1.847 1.361 0.800

TOR 84 21 21 18 18 0.030 1.860 1.375 0.800

TRR 90 24 24 21 21 0.131 0.970 0.948 0.808

(2,1) Tss 78 15 33 15 15 -0.023 1.564 1.213 0.804

Tinv 72 15 27 15 15 -0.042 1.471 1.109 0.806

Tmr 72 15 27 15 15 -0.034 1.543 1.139 0.806

TOR 78 15 33 15 15 -0.021 1.455 1.180 0.807

TRR 87 18 33 18 18 0.061 0.867 0.863 0.805

(1.5,1.15,0.93) (0.35,0.24,0.12) (1,1) Tss 84 21 21 21 21 0.173 1.945 1.497 0.808

Tinv 78 21 21 18 18 0.068 1.812 1.306 0.807

Tmr 78 21 21 18 18 0.088 1.894 1.391 0.806

TOR 84 21 21 21 21 0.169 1.842 1.464 0.813

TRR 90 24 24 21 21 0.200 0.971 0.957 0.812

(2,1) Tss 75 15 30 15 15 0.000 1.585 1.235 0.806

Tinv 72 15 27 15 15 -0.025 1.471 1.109 0.809

Tmr 72 15 27 15 15 -0.001 1.563 1.167 0.812

TOR 75 15 30 15 15 0.000 1.454 1.199 0.804

TRR 78 15 33 15 15 0.014 0.781 0.778 0.801

(1.5,1.2,1.1) (0.35,0.25,0.15) (1,1) Tss 78 21 21 18 18 0.181 1.839 1.440 0.822

Tinv 72 18 18 18 18 0.026 1.754 1.300 0.819

Tmr 72 18 18 18 18 0.031 1.818 1.375 0.812

TOR 78 21 21 18 18 0.179 1.841 1.439 0.822

TRR 78 21 21 18 18 0.131 0.949 0.913 0.806

(2,1) Tss 63 12 27 12 12 -0.063 1.396 1.064 0.801

Tinv 60 12 24 12 12 -0.100 1.328 0.979 0.803

Tmr 60 12 24 12 12 -0.108 1.331 1.009 0.805

TOR 63 12 27 12 12 -0.085 1.286 1.035 0.803

TRR 72 15 27 15 15 0.046 0.798 0.789 0.807

𝑀1
𝑐 𝑀1

𝑒 𝑀2
𝑐 𝑀2

𝑒 𝑎1 𝑏2𝑏1(𝜋1
0,𝜋2

0,𝜋3
0) (∆1,∆2,∆3)(𝛿1,𝛿2,𝛿3) (𝑟1 ,𝑟2)
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Table 7.  Continue. 

 

 
 

  

Method N Power

(0.6,0.3,0.1) (1.5,0.85,0.81) (0.27,0.2,0.1) (1,1) Tss 132 33 33 33 33 0.255 2.195 1.627 0.811

Tinv 126 33 33 30 30 0.136 1.995 1.477 0.802

Tmr 126 33 33 30 30 0.159 2.112 1.586 0.800

TOR 132 33 33 33 33 0.157 2.079 1.617 0.806

TRR 144 36 36 36 36 0.169 1.131 0.996 0.803

(2,1) Tss 126 27 51 24 24 0.246 2.063 1.542 0.802

Tinv 123 24 51 24 24 0.098 1.810 1.354 0.804

Tmr 123 24 51 24 24 0.120 1.904 1.463 0.802

TOR 126 27 51 24 24 0.246 2.063 1.542 0.802

TRR 147 30 57 30 30 0.158 1.090 0.962 0.803

(1.5,0.9,1.1) (0.27,0.21,0.15) (1,1) Tss 96 24 24 24 24 0.166 2.097 1.574 0.804

Tinv 90 24 24 21 21 0.134 1.927 1.424 0.803

Tmr 90 24 24 21 21 0.146 1.978 1.478 0.801

TOR 96 24 24 24 24 0.164 1.989 1.536 0.803

TRR 108 27 27 27 27 0.185 1.052 0.963 0.806

(2,1) Tss 93 18 39 18 18 0.127 1.900 1.421 0.804

Tinv 87 18 33 18 18 0.083 1.756 1.273 0.810

Tmr 87 18 33 18 18 0.084 1.800 1.337 0.807

TOR 93 18 39 18 18 0.130 1.756 1.389 0.809

TRR 105 21 42 21 21 0.133 0.972 0.888 0.805

(2.53,1.1,0.81) (0.35,0.26,0.1) (1,1) Tss 96 24 24 24 24 0.169 2.083 1.565 0.800

Tinv 96 24 24 24 24 0.138 1.933 1.440 0.808

Tmr 96 24 24 24 24 0.142 2.037 1.524 0.808

TOR 96 24 24 24 24 0.163 1.983 1.525 0.801

TRR 108 27 26 27 26 0.185 1.052 0.949 0.802

(2,1) Tss 93 18 39 18 18 0.125 1.900 1.421 0.801

Tinv 90 18 36 18 18 0.085 1.755 1.263 0.813

Tmr 90 18 36 18 18 0.094 1.800 1.360 0.804

TOR 93 18 39 18 18 0.126 1.756 1.389 0.803

TRR 111 24 45 21 21 0.224 1.008 0.910 0.807

(2.53,1,1.1) (0.35,0.24,0.15) (1,1) Tss 90 24 24 21 21 0.306 2.104 1.569 0.810

Tinv 84 21 21 21 21 0.112 1.935 1.411 0.808

Tmr 84 21 21 21 21 0.112 1.944 1.476 0.805

TOR 90 24 24 21 21 0.289 2.005 1.540 0.809

TRR 96 24 24 24 24 0.179 1.014 0.930 0.801

(2,1) Tss 87 18 33 18 18 0.165 1.943 1.447 0.811

Tinv 75 15 30 15 15 0.043 1.680 1.197 0.805

Tmr 78 15 33 15 15 0.070 1.716 1.257 0.805

TOR 81 18 33 15 15 0.154 1.789 1.355 0.802

TRR 96 21 39 18 18 0.184 0.958 0.865 0.806

𝑀1
𝑐 𝑀1

𝑒 𝑀2
𝑐 𝑀2

𝑒 𝑎1 𝑏2𝑏1(𝜋1
0,𝜋2

0,𝜋3
0) (∆1,∆2,∆3)(𝛿1,𝛿2,𝛿3) (𝑟1 ,𝑟2)
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Table 8. Sample sizes under (𝜋1
0, 𝜋2

0, 𝜋3
0)=(0.4, 0.2, 0.1), (∆1, ∆2, ∆3)=(0.35, 0.24, 0.12), 

(𝜏1,𝜏2)=(0.25, 0.25) and (𝑟1, 𝑟2)=(2, 1) for various k. 

 

 
  

k Method N Power

0.5 Tss 72 18 36 9 9 0.212 1.691 1.118 0.802

Tinv 69 18 33 9 9 0.155 1.577 1.021 0.806

Tmr 69 18 33 9 9 0.197 1.686 1.088 0.800

TOR 72 18 36 9 9 0.209 1.571 1.099 0.800

TRR 81 21 42 9 9 0.255 0.898 0.759 0.812

1 Tss 75 15 30 15 15 0.000 1.599 1.230 0.805

Tinv 72 15 27 15 15 -0.019 1.471 1.094 0.815

Tmr 72 15 27 15 15 0.003 1.560 1.190 0.804

TOR 75 15 30 15 15 0.000 1.480 1.190 0.804

TRR 81 18 33 15 15 0.106 0.862 0.820 0.801

2 Tss 78 12 24 21 21 -0.252 1.412 1.301 0.811

Tinv 72 9 21 21 21 -0.379 1.117 1.090 0.808

Tmr 72 9 21 21 21 -0.358 1.139 1.152 0.807

TOR 78 12 24 21 21 -0.236 1.301 1.278 0.810

TRR 84 12 24 24 24 -0.179 0.711 0.852 0.809

𝑀1
𝑐 𝑀1

𝑒 𝑀2
𝑐 𝑀2

𝑒 𝑎1 𝑏2𝑏1
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Figure 1. Total sample sizes under (𝜋1
0, 𝜋2

0, 𝜋3
0)=(0.4, 0.2, 0.1), (∆1, ∆2, ∆3)=(0.35, 0.24, 

0.12) and 𝜏1 = 𝜏2 =0.5 for k= (0.5, 1, 2) and  various (𝑟1, 𝑟2). 
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Figure 2. Total sample sizes under (𝜋1
0, 𝜋2

0, 𝜋3
0)=(0.4, 0.2, 0.1),  (∆1, ∆2, ∆3)=(0.35, 0.24, 

0.12) and 𝜏1 = 𝜏2 =0.25 for k= (0.5, 1, 2) and various (𝑟1, 𝑟2). 


