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Abstract

Breast cancer is the most commonly diagnosed cancer in women. Breast-conserving therapy
(BCT) followed by irradiation is the treatment of choice for early-stage breast cancer. Breast
retention surgery preserves the appearance of the breast and reduces the chance of recurrence. A
positive margin may result in an increased risk of local recurrences after BCT for any malignant
tumor. In order to reduce the number of positive margins would offer surgeon real-time
intra-operative information on the presence of positive resection margins. This thesis aims to
design an intra-operative tumor margin evaluation scheme by using specimen mammography in
breast-conserving surgery. The proposed method first utilizes image thresholding to extract
regions of interest and then to segment cancer tissue using various segmentation methods, i.e.
multi-thresholding, K-means and regional growth methods and two deep learning networks.
Finally, the margin width of normal tissues surrounding it is evaluated as the result. With this
work, surgeons would acquire more information to get clean margins when performing breast
conserving surgeries. This study evaluated total of 30 cases, the results were compared with the
manually determined contours and pathology report. The experimental results reveal that deep
learning techniques can draw results that are more consistent with pathology reports than
traditional segmentation methods. With the aid of deep learning techniques, the proposed

scheme would be a potential procedure in the intra-operative measurement system.

Keywords—Breast cancer, breast-conserving therapy, tumor margin evaluation, specimen

mammography, deep learning, image segmentation
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CHAPTER 1
INTRODUCTION

Breast cancer is the most commonly diagnosed cancer in women. Fortunately, early
detection and treatment could prevent the disease from worsening and reduce patient's
mortality significantly. Surgery is one of the most important treatments for breast cancer. There
are two Kkinds of surgery, one is mastectomy, which occurs when the tumor is too large
(particularly in a small breast) or more than one area of cancer in the breast. The other one is
breast-conserving therapy (BCT), in which only cancerous tissue plus a rim of normal tissue
can be cleaned without removing the breast [1].

BCT is the best choice for the treatment of early stage invasive breast cancer. The surgery
can not only remove the tumor but also preserve the shape of the breast. However, a positive
margin may result in an increased risk of local recurrences after BCT for any malignant tumor.
Until now, the definition of a positive margin has been the subject of frequent debate [2]. In
reality, surgeon removes the tumor is done by rough estimation of the boundary. Surgeon could
not accurately determine the margin width until the pathologist makes a microscopic
assessment. Pathologist’s report might require a week or more to completed. If it shows the
margins are not wide enough, the patient must undergo a second operation to remove the
remaining malignant tissue. The operation would cause second physical and mental injury to
patient.

For removing the tumor while minimizing the risk of leaving residual disease, many
intra-operative methods have been proposed for tumor margin assessment, such as optical
coherence tomography (OCT) [3], MarginProbe system [4], spectroscopy [5], molecular
fluorescence imaging [6], and so on. OCT is a high-resolution imaging technique involving
2mm real-time microscopic images below the tissue surface. Within a short period of time after

the invention in the 1990s, it became an important clinical imaging modality in several fields of



biomedical science. OCT has found clinical applications in ophthalmology [7], cardiology [8],
gastroenterology [9], and oncology. OCT was reported to have a sensitivity of 82% and a
specificity of 100% in breast cancer. MarginProbe system which made by Israel-based Dune
Medical Devices, allows a surgeon to examine cancerous tissue removed from a breast to
ensure that there are no malignant cells on its outer boundaries. A pen-like probe reads
electromagnetic waves from the tissue and indicates on an attached console whether or not its
edges are healthy, but with 75.2% sensitivity and 46.4% specificity. Multi-modal spectral
histopathology (MSH), a multimodal imaging technique combining tissue auto-fluorescence
and Raman spectroscopy was used to detect microscopic residual tumor at the surface of the
excised breast tissue. The sensitivity and specificity of the MSH as 91% and 83%, respectively.
However, these methods have not widely been accepted as part of standard of care due to high
equipment cost. The molecular fluorescence imaging required contrast medium injection for
patient few days before the BCT, but some of the patients feel nausea, vomiting, discomfort, or
causing allergy after tracer injection, this it is not suitable for everyone.

Mammography is one of the most common screening tools to diagnose breast tumor,
which is using low-energy X-rays to examine the human breast. The advantage of using
mammography is that detection of micro-calcifications more precisely and becoming cheaper
to produce as the technology becomes more widespread. In order to reduce the number of
positive margins and offer surgeon real-time intra-operative information on the presence of
positive resection margins, this study proposed multiple method computer-aided system by
using the specimen mammography during BCT. Specimen mammography [10] is routinely
used to evaluate the surgical margin. The specimen is transported to a room near the operating
room where mammography device was placed after the surgeon has resected the specimen.
Mammogram is captured immediately and stored in a hospital diagnostic imaging system. The
surgeon could quickly review the digital mammogram to assess the integrity of the resection.

Specimen mammography with digital system have an edge on low equipment cost and less time
-2-



consuming.

The rest of this thesis is organized as follows. Material and methods of this study can be
found in Chapter 2. The flowchart (see Fig. 1) was given to explain the proposed procedure, a
detailed description of each step is recorded in followed sections. Chapter 3 presents the
experimental results. Computing time, similarity measures and average difference were used

to compare in different situation. Finally, Chapter 4 concludes the thesis.



CHAPTER 2

MATERIAL AND METHODS

2.1. Data acquisition

Two full field digital mammography (FFDM) systems were included in the study, i.e. GE
Senographe Essential and Hologic Selenia Dimentions system. After wide excision of the
tumor, location stiches were made on 12 (09, 3(909, 6 (1809 and 9 (2709 o'clock direction and
clipped on the stiches in order to be easily identified on specimen mammogram. There were 1, 2,
3 and 4 clips on each stich. This study included 30 patients who received BCT. Each specimen
mammogram is high resolution (over 1000 X 1000) and varies in size, has a corresponding
ground truth image which is manually annotated by experienced surgeons. All obtained images
were stored on the hard disk and transferred to a personal computer using a DICOM connection
for image analysis. The pathologic report of margin distance was considered as the ground truth

in this study. The format of pathology report descriptions are shown in Table 2.1.

Table 2.1. Pathology report descriptions
PATHOLOGY REPORT

The specimen submitted consists of a suture oriented breast measuring X cm in size totally, in
fresh state. On cut, there is an irregular firm tumor measuring X cm in size. The tumor is
grayish-white in color and contains minute chalky white streaks. It is located at X cm beneath
superficial margin and X cm above the pectoral fascia. The 3 o'clock, 6 o'clock, 9 o'clock, and
12 o'clock margins measure X cm, X c¢cm, X cm, and X cm, respectively. There is no
gross/gross evidence of invasion of the underlying pectoral fascia and muscles. The
parenchyma in the remainder of the breast is not remarkable.



2.2. Flow-chart of the proposed method

At first, the proposed method measured the pixel density and extracted the region of
interest (ROI) by detecting the specimen boundary in mammography. Then the tumor boundary
was detected by the proposed contouring methods from the ROI. A distance evaluation step was
applied in a final stage to obtain the result. Flow-chart of the proposed method is shown in Fig.

2.1. The flowing sections described the procedures within the proposed method in detail.

Measurement
Of pixel
density
Original Specimen Tumor Ma_rgin
Image boundary boundary width
= detection detection evaluation

Figure 2.1. Flow-chart of the proposed method



2.3. Measurement of pixel density

In the dataset, each tumor has a different proportion in the image. That is the operator will
zoom in or out the specimen mammography during the filming stage in order to observe the
specimen clearly. In order to accurately measure the distance between the tumor and the tissue,
a standard one-dollar coin (20mm diameter) was placed in the specimen mammogram as a

measuring scale. Pixel resolution was converted to millimeter by according the radius of the

coin.

(@) (b)
Figure 2.2. (a) The case with large pixel density (239 pixels per Imm), (b) the case with small

pixel density (104 pixels per 1mm)



2.4. Specimen boundary detection and ROI extraction

Image pre-processing which removes the noise and enhances the quality of the image is
very important step for image segmentation. The major problem with the precise segmentation
of the specimen boundary is that the existence of noises which might affect the segmentation
results. In order to suppress the noise in the background, an automatic thresholding method [11]
was performed to the specimen mammogram (Fig. 2.3(a)). However, the images also contain
artifacts in the form of labels, wedges, markers and some patient information in the background
region. In the proposed method, the connected component algorithm was utilized to extract the
largest component (specimen), which means artifacts were discarded (Fig. 2.3(b)). In order to
extract the tumor region completely, fill-hole operator was utilized to eliminate the black cavity.
The morphological operators [11], i.e. opening, closing and erosion, were used to smooth the
boundary (Fig. 2.3(c)). The obtained specimen boundary was utilized as extract ROI for the

following tumor boundary detection step (Fig. 2.3(d)).



(b)

(©) * (d)

Figure 2.3. Result of specimen boundary detection and ROI extraction: (a) binary image, (b)

specimen region, (c) extracted specimen boundary (red) and (d) extracted ROI



Morphological image processing is a collection of non-linear operations [12] related to
the shape or morphology of features in an image. Morphological operations rely only on the
relative ordering of pixel values, not on their numerical values, and therefore are especially
suitable for the processing of binary images. Morphology with two types of sets of pixels are
used in image processing: objects and structure elements (SE). Typically, objects are defined as
sets of foreground pixels. The SE is positioned at all possible locations in the image and it is
compared with the corresponding neighborhood of pixels. Some operations test whether the
element "fits" within the neighborhood, while others test whether it "hits" or intersects the
neighborhood. Morphological operation forms a new image with the same size as original
image which only contain zero (background value) initially, then slide SE over original image
at each increase, if the operation test is successful, mark the region of original image as one
(foreground value) on the new image.

Erosion and dilation are two fundamental operations of the morphological processing
[11]. Generally, erosion operator is used to shrink the components of a set. The expression is
written as following, with A and B as sets in Z2, the erosion of A by B, denoted A © B, is
defined as

A©B={z|(B), S A}, 1)
where A is a set of foreground pixels, B is a structure element, and the z’s are foreground values.
On the contrary, dilation expands the components of a set. The expression is written as

following, with A and B as sets in Z2, the dilation of A by B, denoted A® B, is defined as
A®B=1{z]| [(B), n Al CA}. (2)
This equation is based on reflecting B about its origin and shifting this reflection by z. The

dilation of A by B then is the set of all displacements, z, such that B overlap at least one

element of A.



Opening and closing are two other important morphological operations, which are
composed of the erosion and dilation. Opening generally smooth the contour of an object,
breaks narrow bridges, and eliminates thin protrusions. The opening of set A by structure
element B, denoted A o B, is defined as

AsB=(AOB)®B. 3)
Thus the opening A by B is the erosion of A by B, followed by a dilation of the result by B.
Similarly, closing also tends to smooth section of contours, but the difference is that closing
fuse narrow breaks, eliminates small holes, and fill the gaps in the contour. The closing of set A
by structure element B, denoted A - B, is defined as

A-B=(A®B)OB. 4)
The closing of A by B is the dilation of A by B, followed by erosion of the result by B. Figure

2.4 demonstrates the opening and closing procedure.

(a) (b) (©)

Figure 2.4. (a) Object A and structure element B, (b) opening of A by B and (c) closing of A by

B

-10-



2.5. Tumor boundary detection

The varying quality of specimen mammography makes tumor boundary detection
becoming a difficult task. In order to overcome the conditions where specimen mammography
has varied contrast, this study performed five contouring methods to sketch tumor boundary;, i.e.

multi-thresholding, K-means clustering [13], region-growing [14], U-net [15] and SegNet [16].

2.5.1. Multi-thresholding

The threshold technique is the simplest one in segmenting methods, which partitioning
images directly into regions based on intensity value of every pixel. Generally, the pixel
intensities in an 8-bits grey-scale image ranges between 0 and 255. A specimen mammogram
contains at least three regions, i.e. background, normal tissue, and cancerous tissue (see Fig.
2.6(b) as an example). This study utilized the multi-thresholding classifies a point (x,y) as
belonging to the background if f(x,y) < T;, to normal tissue class if T; < f(x,y) < T,, and

to cancerous tissue class if f(x,y) > T,. That is, the segmented image is given by

cl, if f(x,y) <T;
Q(X»J’)= CZ, 1fT1<f(x'y)ST2 ' (5)

c3, iff(x,y) > T,
where c1, c2, and c3 are three distinct intensity values. T; and T, are predefined thresholds,
which is given by

Ti: %Xi, (6)

where NC is the number of classes, and i = 1, 2..., NC-1. The pixels were combined into
homogenous regions according to the intensity levels of the regions.

However, the fixed thresholds were not suitable for this study. Tissue density change from
a mammogram to another one, either the mammograms of the same patients with different ages,
either mammograms of different patients, hence the number of classes changes. Therefore, this

study performed dynamic algorithm [17] to solve the problem. Below more details about the

-11-



steps of the proposed dynamic algorithm are given:

Step 1:  The number of classes is initialized by three (NC=3) and the multi-threshold is applied
for partitioning the ROI into three classes, the highest class is selected and calculate
the sum of pixels as Sum(NC).

Step 2:  Increment the number of classes (NC=NC+1) and the multi-threshold is reapplied for
partitioning ROI to K classes. Select the new highest class and calculate the sum of
pixels as SUM(NC+1).

Step 3:  The sum of pixels when the number of classes equals (NC) is compared with the sum
of pixels when the number of classes equals (NC+1).

If the difference between Sum (NC) and Sum (NC+1) was less than 5%, the number of classes

equal (NC) was taken and finished the algorithm, else Step 2 was repeated. The criterion for

stopping this algorithm is that the classes containing the tumor has become stable, i.e. the
classes almost obtained the same regions. The morphological operators opening and closing
were utilized to exclude undesired regions and extract the region of tumor. Figure 2.5 shows the
dynamic algorithm apply on multi-threshold. Figure 2.6 shows the example of tumor detection

using the multi-thresholding.

®
—
Q)
tgj
7
(g0

NC =3 Class 1 Class 2
0 85 171 255
(Ty) (T2)
NC =4 Class 1 Class 2 Class 3 Class 4
0 64 128 191 255
(Ty) (T2) (T3)

Figure 2.5. Dynamic algorithm applies on multi-thresholding: When NC=3, the pixel intensity
was divided into three parts with two thresholds (T; and T,); When NC=4, the pixel intensity

was divided into four parts with three thresholds (T;, T, and T3)



(b)

(d) (e) (®

Figure 2.6. Example of tumor detection using the multi-thresholding method: (a) ROI result
after specimen boundary detection, (b) ROI partitioned into three classes, (c) ROI partitioned
into four classes (stop criteria would be checked), (d) extraction of binary tumor image from (b),

(e) extracted tumor area and (f) extracted tumor boundary

-13-



2.5.2. K-means clustering

Clustering is a method to divide a set of data into a specific number of groups. K-means
clustering is one of the popular clustering techniques [13]. The objective of k-means clustering
is to partition the set of observations into k disjoint cluster sets C = {C;, C,, ..., Cx} ,the

objective function is defined as
argcmin(Z’c‘:l Yimallx — ucll®), (7)

where . is the mean of points in x, also is the centroid of x’s cluster. Typically, the Euclidean
norm is used, so the term ||x; — u.|| is familiar Euclidean distance from a sample in C; to
mean u.. In words, it is an iterative algorithm that minimizes the sum of the distance of each
object to its cluster center. The procedure of K-means clustering starts with specifying number
of clusters K, then randomly selected K centers, which are used as the beginning points for
every cluster. The next step is to assign each object to the group that has the closest center.
When all objects have been assigned, recalculate the positions of the K centroids. Generally, the
procedure stops creating clusters until the centroids have stabilized.

The drawback of K-means clustering is that the initial center usually selected randomly
with global cluster. On the other words, different initial center can result in different final
clusters. To overcome this obstacle, these centers should be placed in a cunning way, which
means placing these centers as much as possible far away from each other. This study utilized
the local boundary to generate initial centers. For example, the number of classes NC was set as
three which divided the pixel intensities into three parts, then randomly select initial centers in
three parts, respectively. The pixels were combined into homogenous regions according to the
centers. The proposed method performed the multi-thresholding method to divide the pixel
intensity into three parts. As mention before, the dynamic algorithm and morphological

operators were performed to extract the tumor region more completely.

-14-



(d) (®) ®

(2) (h)

Figure 2.7. Example of tumor detection using k-means clustering method: (a) ROI result after
specimen boundary detection, (b) ROI partitioned into three classes, (c) ROI partitioned into
four classes, (d) ROI partitioned into five classes, (e) ROI partitioned into six classes (stop
criteria are checked), (f) extraction of binary tumor image from (d), (g) extracted tumor area

and (h) extracted tumor boundary

-15-



2.5.3. Region growing

Region growing [14] is one of the most simple and popular algorithms for region based
segmentation. The process established from a seed point and then the region would grow by
appending to each seed those neighboring pixels that similar to the seed. Let 1(x,y) denotes an
input image; S(x,y) denotes a seed array containing 1’s at the locations of seed points and 0’s
elsewhere; and Q denotes a predicate to be apply at each location (X, y). Arrays | and S are
assumed to be of the same size. A basic region-growing based on 8-connectivly may be stated
as follows.

1. Selecting the initial seed point in S(x,y) and label as 1. All other pixels in S are labeled 0.

2. Formanimage I, such that, at each point(x,y), Io(x,y) = 1 if the input image satisfies a
given predicate Q, at those coordinates, and I,(x,y) = 0 otherwise.

3. Let g be an image shaped by adding to each seed point in s all the 1-vales points in I, that
are 8-connected to that seed point.

4. Label each connected component in g with a different region label (e.g., 1, 2, 3, ...). This is
the segmented image acquired by region growing.

However, most of the region growing methods require manually selecting the initial seed
point. Considering the stability of the segmentation, the proposed method selected the initial
seed point automatically. Tumor or dense tissue usually appear brighten than surrounding area
on specimen mammaography, this is because tumor and dense tissue are denser than fat which
will stop more x-ray photons. Expecting the regions containing tumor, the K-means clustering
algorithm is used to find the cluster with the highest intensity level, the center of mass in the

cluster is calculated as a seed point.

-16-



The center of mass is a position defined relative to an object or system of objects. It is the

average position of all the parts of the system, weighted according to their masses, that is
COM, = — %M m;x; and (8)
1
COM,, = — 3L myy;, ©)

where COM is the center of mass, M is the sum of the masses, m; is the weight according to the

masses, x; and y; are the position of the masses.

(d) (e) 6y

Figure 2.8. Example of tumor detection using region growing method: (a) ROI result after
specimen boundary detection, (b) K-means algorithm was applied to find the cluster with the
highest intensity level (light gray region), (c) center of mass were calculate as a seed point (red)
and the region growing result (yellow) (d) extraction of binary tumor image from (d), (e)

extracted tumor area and (f) extracted tumor boundary
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2.5.4. U-net

Deep networks have seen huge success lately in the field of natural image segmentation,
such as PSPNet [18], RefineNet [19] and Deeplab [20], while only minority deep models like
U-net [15] achieved success in medical image segmentation. It is still a very challenging task
due to two reasons. First, there are few available labelled data. Second, it is costly and
time-consuming to collect images for medical segmentation task since the marking work must
be done by professional radiologists or doctors. U-net has won two challenge at the ISBI 2015
and also has outstanding performance in biomedical image segmentation. There are many
applications of U-Net in biomedical image segmentation, such as brain image segmentation [21,
22] and liver image segmentation [23]. The model is an improved version of the full
convolutional neural network (FCN) [24], which means using convolution instead of the fully
connected layer. This strategy allows input any size of images, and the output is also a picture.

The U-Net owes its name to its symmetric shape, and the architecture composes three
parts: contracting path, bottleneck, and expanding path. The contracting path is composed of
four blocks, each block is composed of convolution layer (with batch normalization) and max
pooling. The number of feature maps doubles at each pooling, starting with 64 feature maps for
the first block, 128 for the second, and so on. The contracting path aims to capture the context of
the input image, and the contextual information will be transferred to the up-sampling path by
means of skip connections. The bottleneck is between the contracting and expanding paths, it is
built from simply two convolutional layers (with batch normalization), with dropout. The
expanding path is also composed of four blocks, each of these blocks is composed of
deconvolution layer (up-sampling) and concatenation followed by convolution layer.
Concatenation with the corresponding cropped feature map from the contracting path is to
enable precise localization combined with contextual information from the contracting path.

The architecture of U-Net is shown in Fig. 2.9.
-18-
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Figure 2.9. U-net architecture
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2.5.5. SegNet

SegNet [16] is also a deep convolutional network proposed by Cambridge University to
address image semantic segmentation for autonomous driving or intelligent robots. Due to the
advantages of retaining high frequency details in the segmented images and also reducing the
total number of trainable parameters in the decoders, SegNet has been used in medical image
segmentation recently , such as gland segmentation in colon Cancer [25] and blood Cell Images
Segmentation [26]. The model is designed based on FCN. SegNet is composed of a symmetry
network: the encoder and the decoder. The architecture of SegNet is shown in Fig. 2.10.

The structure of Encoder is similar to VGG-16 [27], it composed of three kinds of network:
convolution, batch normalization and pooling. Convolution layers are used to extract local
features; Batch normalization layers are used to expedite learning; and Pooling layers are
utilized to down sampling feature map. Decoder aims to map the low-resolution feature maps
from the encoder to obtain the same resolution as the input image feature map for pixel-level
classification. The highlight of SegNet is that the decoder utilized max-pooling indices from the
corresponding encoder stage to up-sample, this gives reasonably good performance and is

space efficient, and this is also why SegNet was selected as one of the methods in this study.

Convolutional Encoder-Decoder

] Output
+ Y
| Pooling Indices ¥
Specimen Segment
Image Conv +Batch Normalisation + RELU Result

Il Pooling Il Upsampling Softmax

Figure 2.10. SegNet architecture
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This study performed U-net and SegNet to contour the tumor in specimen mammography.
Due to the small dataset, data augment technique was used to create new images [28]. In this
work, 20 new images were generated from each case and resulting in 600 images. Combination
of flipping, rotation, distortion and zoom transformations were performed randomly. Both
U-net and SegNet utilized a pre-trained VGG16 model as the encoder part, thus could benefit
from the features already created in the model and only focus on learning the specific decoding
features. The proposed method used a mini-batch of 10 images, learning rate of 0.001 and the
Adam optimizer. In order to maintain a fair measure of the performance of the convolutional
networks, the leave-one-out cross validation was applied on U-net and SegNet segmentation.

Finally, the morphological operator erosion was used to figure the obtained tumor boundaries.
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2.6. Margin width evaluation

The distance between specimen boundary and tumor boundary was estimated as margin
width. This study evaluated the margin width by the Euclidean distance [29]. In an image
coordinate plane, the distance between two points is usually given by the Euclidean distance
(2-norm distance). The distance from a point to a line is the shortest distance from a fixed point
to any point on a fixed line in Euclidean geometry. In this study, the safety margin width
recommended as 10mm. When the margin width is less than 10mm, the system would display

the area in yellow. Figure 2.11 illustrates the segmentation and estimation results.

/M 1 A,
\ \

1} 0 180 270 360
direction of margin width

(b)

margin width (mm)

o
T

Figure 2.11. (a) Segmentation result (extracted specimen boundary (blue), tumor boundary(red)

and the region less than margin width (yellow)) and (b) the evaluated margin width



CHAPTER 3
RESULTS
This study totally experimented 30 cases with manual sketched boundaries to evaluate the
accuracy of the proposed method. In this work, measurement of pixel density was first
performed to converted pixel resolution to millimeter and the specimen detection was applied
to obtain the ROI. This study proposed the five contouring approaches to obtain the tumor
boundaries. Figures 3.1-3.3 (b) demonstrate the final result applied the proposed contouring
methods on various cases. The comparison of computational time consists of training time and
testing time. Since traditional segmentation methods don’t need training, only the execution
time needs to be compared. As shown in Table 3.1, average execution time of each approaches
are less than 7 seconds, which means the proposed system is suitable for intra-operative tumor
margin evaluation. The traditional segmentation methods were implemented by Matlab
(R2016a, MathWorks Inc., MA). The deep learning networks were trained on an Nvidia 1080Ti
GPU. All methods were performed on a single CPU Intel i7 3.6 GHz personal computer with

Microsoft Windows 7 operating system.

Table 3.1. A comparison of computational time

Method Average training Average execution/testing
time(sec) time (sec)

Multi-thresholding - 5.20

K-means - 6.03

Region-growing - 6.52

U-net 1148.47 4.82

SegNet 1059.60 4.77
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Learning curves show the performance of our models on training and validation sets. The
basics of two types of learning curves are loss curve and accuracy curve. Loss curves, which
compare the error of the loss function in the training and validation sets. Accuracy curves,
which compare the performance of the model according to a specific metric (accuracy) on
training and validation sets. The learning curves of U-net and SegNet are shown in Fig. 3.1.
Although the plot of testing accuracy always close to training accuracy, the plot of training loss
continues to decrease with experience and the validation loss decreases to a point and begins
unstable. This situation could be identified as an overfitting model. There were many reasons
give rise to overfitting, we inferred that is due to the size of dataset is small. Thus, this study
expected the specimen mammography dataset would be expanded much more, then the

algorithm has the potential to come up with a better model in the future.

U-net SegNet
104 — train acc — - —— 01 — train acc
test acc B test acc =2
— train loss —— train loss
0.8 — testloss .8 { — testloss
>
E 0.6 1 1.6
=
¥
o
L
[ 4
5 0.4
0.2 1.2 4
0.0 1.0
0 20 40 60 80 100 0 20 40 60 80 100
epoch epoch

Figure 3.1. Learning curve of (a) U-net and (b) SegNet

-24-



After obtaining the specimen boundary and tumor boundary, the margin width was
estimated by Euclidean distance. Figures 3.2-3.4(b) show the evaluation results (in pixel) using
the proposed five methods. The results were compared with manual delineations from

experienced physician. The measurements of distance are the Euclidean distance. The length
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direction of margin width
(c)

unit is millimeter.
Figure 3.2. Case 01: (a) original image, (b) final segmentation result and (c) evaluated margin
width between the five contouring methods and the manual sketching by physician (black:

manual sketching, red: multi-thresholding, magenta: K-means, cyan: region-growing, green:
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Figure 3.3. Case 02: (a) original image, (b) final segmentation result and (c) evaluated margin
width between the five contouring methods and the manual sketching by physician (black:
manual sketching, red: multi-thresholding, magenta: K-means, cyan: region-growing, green:

U-net, blue: Segnet)
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Figure 3.4. Case 05: (a) original image, (b) final segmentation result and (c) evaluated margin
width between the five contouring methods and the manual sketching by physician (black:
manual sketching, red: multi-thresholding, magenta: K-means, cyan: region-growing, green:

U-net, blue: Segnet)
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Four practical similarity measures [30], i.e. the similarity index (SI), overlap value (OV),
overlap fraction (OF) and extra fraction (EF) between the manually determined boundaries and
the automatically detected boundaries, were calculated for quantitative analysis of the
contouring results. An abstract specimen mammogram is shown in Fig. 3.5 to illustrate the
similarity measures. The REF indicates the results sketched by the experienced physician
manually, and the SEG denotes the results describe by proposed method. Then the similarity

index Sl, OV, OF and EF are respectively defined as

OF = % x 100%, (11)
F= REF 0 SEG X 100%, (13)

REF
where Sl, OF, OV approach to 1, and EF approach to 0, it indicates that the tumor area

segmented by our method is similar to the physician manual sketch. Overlap area represents the
area covered by SEG and REF, extra area represents the false positive area and missing area

represents false negatives area. Tables 3.2-3.6 show the four similarity measures of all cases.

Figure 3.5. Abstract ROI. REF represent the results sketched by the experienced physician

manually, and SEG represents the results describe by proposed method
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Table 3.2. The similarity results of multi-threshold which compared with the physician manual

sketching
Multi-threshold
Case # Sl OF ov EF

1 0.86 0.76 0.76 0.01
2 0.81 0.69 0.68 0.01
3 0.57 0.51 0.40 0.29
4 0 0 0 0.16
5 0.56 0.39 0.39 0
6 0.31 0.18 0.18 0
7 0.11 0.06 0.06 0
8 0.45 0.30 0.29 0.02
9 0.06 0.03 0.03 0
10 0.90 0.85 0.82 0.04
11 0.82 0.88 0.70 0.26
12 0.62 0.45 0.45 0
13 0.17 0.09 0.09 0
14 0.62 0.73 0.45 0.61
15 0.92 0.98 0.86 0.14
16 0.70 0.76 0.54 0.41
17 0.81 0.76 0.69 0.11
18 0.57 0.40 0.40 0
19 0.75 0.77 0.60 0.28
20 0.85 0.78 0.74 0.06
21 0 0 0 0.05
22 0.20 0.11 0.11 0
23 0.35 0.21 0.21 0
24 0.39 0.24 0.24 0
25 0.70 0.56 0.54 0.03
26 0.80 0.67 0.67 0
27 0.53 0.98 0.36 1.72
28 0.42 0.26 0.26 0
29 0.85 0.80 0.74 0.08
30 NaN NaN NaN NaN

Average 0.54 0.49 0.42 0.15
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Table 3.3. The similarity results of K-means which compared with the physician manual

sketching
K-means
Case # Sl OF ov EF

1 0.86 0.76 0.76 0.01
2 0.81 0.69 0.68 0.01
3 0.57 0.51 0.40 0.29
4 0 0 0 0.16
5 0.56 0.39 0.39 0
6 0.31 0.18 0.18 0
7 0.11 0.06 0.06 0
8 0.45 0.30 0.29 0.02
9 0.06 0.03 0.03 0
10 0.90 0.85 0.82 0.04
11 0.82 0.88 0.70 0.26
12 0.62 0.45 0.45 0
13 0.17 0.09 0.09 0
14 0.62 0.73 0.45 0.61
15 0.92 0.98 0.86 0.14
16 0.70 0.76 0.54 0.41
17 0.81 0.76 0.69 0.11
18 0.57 0.40 0.40 0
19 0.75 0.77 0.60 0.28
20 0.85 0.78 0.74 0.06
21 0 0 0 0.05
22 0.20 0.11 0.11 0
23 0.35 0.21 0.21 0
24 0.39 0.24 0.24 0
25 0.70 0.56 0.54 0.03
26 0.80 0.67 0.67 0
27 0.53 0.98 0.36 1.72
28 0.42 0.26 0.26 0
29 0.85 0.80 0.74 0.08
30 NaN NaN NaN NaN

Average 0.66 0.66 0.53 0.36
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Table 3.4. The similarity results of Region-growing which compared with the physician manual

sketching
Region-growing
Case # Sl OF ov EF

1 0.82 0.70 0.70 0
2 0.71 0.56 0.55 0
3 0.66 0.74 0.50 0.50
4 0.75 0.94 0.60 0.57
5 0.73 0.59 0.58 0.02
6 0.79 0.87 0.66 0.32
7 0.65 0.48 0.48 0
8 0.61 0.44 0.44 0
9 0.84 0.76 0.73 0.05
10 0.85 0.76 0.74 0.03
11 0.80 0.67 0.66 0.01
12 0.58 0.41 0.41 0
13 0.76 0.69 0.61 0.12
14 0.42 0.98 0.26 2.74
15 0.59 1 0.42 1.36
16 0.52 0.91 0.35 1.59
17 0.81 0.75 0.68 0.10
18 0.86 0.85 0.75 0.13
19 0.76 0.73 0.61 0.21
20 0.07 0.04 0.04 0.08
21 0.55 0.99 0.38 1.62
22 0.20 0.11 0.11 0
23 0.74 0.78 0.59 0.32
24 0.23 0.15 0.13 0.14
25 0.63 0.46 0.46 0.01
26 0.70 0.54 0.54 0
27 0.60 0.95 0.42 1.25
28 0.45 0.29 0.29 0
29 0.04 0.04 0.02 0.99
30 0.04 1 0.02 46.50

Average 0.59 0.64 0.46 1.96
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Table 3.5. The similarity results of U-net which compared with the physician manual sketching

U-net

Case # Sl OF ov EF
1 0.96 0.95 0.93 0.02
2 0.83 0.95 0.71 0.35
3 0.73 0.99 0.57 0.74
4 0.83 0.96 0.71 0.34
5 0.68 0.53 0.51 0.03
6 0.81 0.97 0.68 0.42
7 0.68 0.52 0.52 0
8 0.37 0.23 0.23 0
9 0.89 0.92 0.79 0.16
10 0.81 0.7 0.68 0.04
11 0.49 0.87 0.32 1.68
12 0.88 0.79 0.79 0
13 0.81 0.74 0.68 0.08
14 0.51 0.96 0.34 1.82
15 0.44 1 0.28 2.53
16 0.31 0.89 0.18 3.83
17 0.86 0.93 0.76 0.22
18 0.83 0.99 0.71 0.39
19 0.65 0.96 0.48 0.99
20 0.46 0.30 0.30 0
21 0.68 0.91 0.52 0.75
22 0.28 0.16 0.16 0
23 0.87 0.98 0.77 0.28
24 0.27 0.15 0.15 0
25 0.84 0.74 0.72 0.04
26 0.84 0.73 0.72 0.01
27 0.52 0.98 0.35 1.77
28 0.11 0.06 0.06 0
29 0.33 0.98 0.20 3.85
30 0.01 0.02 0.01 1.68

Average 0.62 0.73 0.49 0.73
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Table 3.6. The similarity results of SegNet which compared with the physician manual

sketching
SegNet
Case # Sl OF ov EF

1 0.91 0.94 0.84 0.12
2 0.72 0.96 0.56 0.70
3 0.65 1 0.48 1.07
4 0.80 0.96 0.67 0.44
5 0.90 0.93 0.82 0.13
6 0.74 0.83 0.59 0.41
7 0.55 0.38 0.38 0
8 0.73 0.57 0.57 0
9 0.86 0.95 0.76 0.25
10 0.75 0.61 0.60 0.01
11 0.54 1 0.37 1.72
12 0.93 0.97 0.87 0.12
13 0.85 0.91 0.73 0.24
14 0.42 0.97 0.26 2.66
15 0.39 1 0.24 3.14
16 0.25 1 0.14 5.92
17 0.75 1 0.60 0.66
18 0.78 0.98 0.63 0.55
19 0.72 0.70 0.57 0.24
20 0.43 0.27 0.27 0
21 0.69 0.98 0.52 0.87
22 0.36 0.22 0.22 0
23 0.80 0.98 0.66 0.48
24 0.84 0.74 0.73 0.02
25 0.84 0.75 0.73 0.04
26 0.87 0.79 0.77 0.03
27 0.38 1 0.23 3.27
28 NaN NaN NaN NaN
29 0.28 0.93 0.16 4.65
30 0.61 0.92 0.44 1.09

Average 0.62 0.73 0.49 0.73
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However, it is difficult to obtain a perfect set of labels to serve as a ground truth, due to
the complexity of the medical data and the large inter-rater variability [31]. Two expert
physicians might disagree on a complex patient case due to differences in clinical training, prior
experience and understanding of the disease. Annotation differences can also arise due to the
limited amount of time available in annotating large number of cases. Therefore, pathology data
was used as a ground truth to compare with proposed methods. Since three cases of the
pathological data were incomplete, the other 27 pathological data are used to compare with the
proposed method. The average difference between the proposed automatic segmentation and

pathologist are listed in Table 3.7.

Table 3.7. The results of proposed five methods compared with pathology margin width

Average Difference

Pathology = Manual Multi- Region-
. K-means ) U-net SegNet

direction sketch threshold growing

3o'clock 7.31+6.25 11.76+9.78 8.40+5.34 7.91+527 7.58+6.32 7.29+6.32
6o'clock 5.44+4.11 9.19+945 6.22+6.30 6.96+7.15 6.02+6.06 5.09+4.76
90o'clock 6.96+585 7.72+5.40 7.75+5.88 8.24+589 6.35+5.16 6.18+5.48
12 o'clock 6.78+6.68 9.7+7.49 9.18+8.34 8.11+7.18 7.89+7.13 7.56+6.81
Average 6.62+5.72 9.59+8.03 7.89+6.47 7.81+6.37 6.96+6.17 6.53+5.84

The experimental results revealed that SegNet has the smallest average difference. U-net
and SegNet have similar resultant values to the manual sketch by doctor, which means U-net
and SegNet have the ability to be comparable to doctor. The case with the desirable results
using proposed all contouring methods is demonstrated in Fig.3.1 and Fig 3.6.
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The case with the best segmentation results using SegNet and U-net is demonstrated in
Fig. 3.7. Deep convolutional networks might identify many contrasting features that are
highly complex and difficult to describe in words from medical images. However, in some
cases, traditional approaches could obtain the better tumor region due to low contrast of the

image. The case with the best segmentation results using traditional image segmentation is

demonstrated in Figs. 3.8-3.9.
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Figure 3.6. The case with the desirable results using the proposed all contouring methods
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(b)
Figure 3.7. The case with the best segmentation results using SegNet and U-net: (a) original
image and (b) the segmentation results
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Figure 3.8. The case with the best segmentation results using the multi-thresholding and
K-means methods: (a) original image and (b) the segmentation results
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(a) (b)
Figure 3.9. The case with the best segmentation results using the multi-thresholding and region
growing methods: (a) original image and (b) the segmentation results

-36-



The case with the undesirable results using proposed all contouring methods is
demonstrated in Fig. 3.10-3.11. The reason for the failure was mainly due to the poor quality of
the specimen mammography. In a few special cases, due to the location of the tumor near the

nipple, skin, or other high-brightness tissue, the system misidentified other tissues as tumors.
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Figure 3.10. The case with the undesirable results using the proposed all contouring methods:
(@) original image and (b) the segmentation results
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Figure 3.11. The case with the undesirable results using the proposed all contouring methods:
(@) original image and (b) the segmentation results
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CHAPTER 4
CONCLUSIONS

Nowadays, BCT has been one of the common methods of treating breast cancer. During
the surgery, the doctor usually measures the margin width to ensure that the tumor is removed
clearly. A number of assisted diagnostic systems for measuring tumor margins have been
proposed, however these methods require high cost equipment or contrast medium injection for
patient. Therefore, this study proposes a fast, low-cost computer-aided methods for detecting
tumor boundaries and estimating margin width.

Measurement of pixel density was first applied by estimating coin size. Adaptive
thresholding was utilized to eliminate artifacts and obtain rough specimen region. Five
contouring approaches were proposed to generate the tumor regions individually.
Morphological operators were used to obtain desired specimen and tumor boundary. Evaluated
the margin width by the Euclidean distance.

The experimental results revealed that the average difference of deep-learning techniques
is more similar to doctor’s manual sketching than the traditional approaches, which means the
deep-learning techniques could sketch boundary more reasonably. That is the deep-learning
techniques have the opportunity to automatically find new features without human intervention.
However, in some case, traditional approaches could obtain the better tumor region due to low
contrast of the image, which means the methods were complementary. With the aid of deep
learning techniques, the proposed scheme would be a potential procedure in intra-operative

measurement system.
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