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Abstract

Many researchers use machine learning techniques to enhance accuracies of their air-
pollution concentration prediction models so that people can acquire accurate information in
advance to avoid exposing themselves in this polluted environment. To the best of our
knowledge, currently, there is no research which identifies air pollution source in a wide area.
To accurately locate pollution sources, in this research, we create an air-pollution identification
system, called Air Pollution Source Identification System (APSIS), which adopts tensorflow to
establish three neural-network-based analytical models. with which to find pollution sources.
The APSIS collects environmental data; such as air pollution concentration, wind speed and
wind direction, in a relatively smaller grid area. Next, collected data are tuned when necessary
to prevent the APSIS from being seriously affected by outlier and other unstable factors, like
wind direction. The purpose is to identify pollution distribution and then more accurately find
out the sources. After that, the Gaussian diffusion model is used to simulate the diffusion of
pollutants, and compared with the actual diffusion situation, to confirm whether the accuracy
of the Gaussian model can beapplied to the identification of pollution sources. Then compare
the accuracy of three neural network models in the identification of air pollution sources, and

finally propose a model that is most suitable foridentifying air pollution sources.

Keywords: Air pollution, Source identification, Tensorflow, Neural network, Gaussian

diffusion model
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. Introduction

Air pollution has already existed since the very beginning of the first industrial revolution.
It is a huge social cost of human beings due to economic activities. Today, when enjoying the
prosperous development results of industrial revolution, we need to consider how to balance
the environmental protection and economic development. In fact, this problem has plagued the
world for a long time. Surrounding us, there are many pollution sources, such as air, water, soil
and food. They will directly or indirectly endanger the health of human bodies. Among them,
the impacts due to air pollution is the most serious one [1]. People who expose themselves to
polluted air for a long time may inhale many pollutants, consequently causing diseases
concerning the respiratory tract, cardiovascular and lungs, such as pneumonia, lung cancer, etc
[2]. The impact on children and elderly is more serious. According to medical research and
statistics [3], the incidence of disease on the respiratory tract of city residents is positively
correlated with the degree of air pollution in this city. Many patients with lung cancer do not
smoke, and there is no exhaust gas or air pollution in their working environments. Their
common situations are living in cities with serious air pollution, and they often take exercises
or perform activities outdoors. [4-7] indicated that air pollution has a significant positive
correlation with lung cancer, pneumonia and human health. Qur conclusion is that particulate
matter (PM) in the air has a considerable correlation with lung cancer and respiratory diseases.
PM can even transfer to the various parts of human bodies through throats and noses, affecting
the health of other organs.

Recently, people have gradually applied information technology, like those of Internet of
Things(I0T), cloud computing, big data and artificial intelligence, to study different topics of
air pollution. Many research projects focus on this issue. Their common activities are preparing
air quality sensors and relatively large monitoring stations to monitor air pollutants in our
surrounding environment [8-9]. However, many monitoring stations, besides air pollutants,

only gather temperature, humidity, wind speed etc., as assistant data from which it is often hard
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for users to know which monitoring stations are closer to the pollution sources. Further, the
positions and the number of pollution sources are identified by using collected wind speed, and
air diffusion models, with which it is not easy to validate the identification accuracies and their
reliabilities.

Generally, the best method to improve air pollution is to find out the pollution sources.
To achieve this, in this study, we first build a small-area sensor network, and analyze the sources
and diffusion of PM, including PM2.5, PM10 and PM1.0. Next, we propose an air pollution
monitor system, named Air Pollution Source Identification System (APSIS), which identifies
positions of air pollution sources based on the data collected in this small area. During our data
collection stage, the degree of produced pollution is equal to that of household barbecue to
avoid seriously affecting air quality of our own environment. Because of the small-scale field,
the pollution sources are known. So the credibility of collected data and the identification of
the pollution sources are accurate. We also simulate the pollutant distribution in a windy
environment by Gaussian diffusion model. To check whether the Gaussian diffusion model help
the APSIS to identify the pollution source or not.

The rest of this paper is organized as follows. Section 2 explores related studies of this
research. Section 3 describes the APSIS’s system architecture, data collection and
preprocessing. Our experimental results are presented and discussed in Section 4. Section 5

concludes this paper and discuss our future studies.

Il. Related Work and Background

Due to the low cost and small size, [oT devices have been gradually employed by many
studies to observe air pollution. Rajesh et al. [10] used wireless sensors to monitor air pollution
and proposed a sensor network establishment method, with which an established system can

achieve energy efficiency and allow the IoT to instantly observe and evaluate health risks in
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specific areas. Chen et al. [11] introduced an air pollution IoT system which uses a large number
of low-cost sensors to collect a huge amount of data and ensure their monitoring accuracy. They
predict air pollution through a background system and analyze the collected big data. In recent
years, many studies have tried to predict the concentration, explore the causes and track the

source of air pollution with IoT systems and machine learning techniques.

2.1 Air Diffusion Models

According to different mathematical and physical methods, air diffusion models can be
divided into many types, including Gaussian diffusion.medel [12,13], Lagrangian Stochastic
(LS) model [14,15], Computational Fluid Dynamics (CFD) model [16,17] and Community
Multiscale Air Quality (CMAQ) [18,19], in which Gaussian diffusion model and CMAQ are
the most widely used ones.

CMAQ [18] is a model established in a grid environment for collecting atmospheric
science and air quality information with which to analyze air quality. The CMAQ has its own
extended models, like coordinate models and weather simulation systems, to simulate the
topography, geographical coordinates and various meteorological parameters of the real
environment. It calculates pollution diffusion and accumulation, and explores the interaction
between pollution sources and meteorological conditions. In addition, CMAQ uses the sparse
matrix to simulate the size and location of pollution sources through the Sparse Matrix Operator
Kernel Emissions (SMOKE) model. Many studies adopted this model to predict their air quality
and meteorology [19].

The Gaussian diffusion model has a simple mathematical expression, which is usually
applied to point source diffusion. This application is quite practical in the case of flat terrain
[12]. Maetal.[20] tested the performance of Gaussian, LS, and CFD model. The results show
that the LS model has higher prediction accuracies than those of the other two models. The

mean square error of LS model is 506.17. But the calculation time is long, longer than 24 hours.
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The Gaussian diffusion model has the lowest prediction accuracies. Its mean square error is
1676.21 which is still within the acceptable level and the model’s computational efficiencies
are the highest among the three, taking only a few seconds. Therefore, to establish a fast and

accurate air diffusion analysis model, the Gaussian diffusion model is one of the best choices.

2.2 Tensorflow

TensorFlow as an open-source machine-learning tool [21] enables large-scale machine
learning in a variety of environments. It uses data flow diagrams to represent the state and value
of each operational flow, and utilizes the Tensor Processing Unit (TPU) mode, which is an ASIC
designed for machine learning, to support high-throughput operations. The use of TensorFlow
can significantly reduce the difficulty of machine learning and the corresponding development

costs, allowing developers to focus on their system optimization and training processes.

2.3 Back Propagation Neural Networks

Artificial neural networks (ANN) is-a machine learning technique. It simulates human
brain neurons for information analysis and decision making [22]:An ANN consists of an input
layer, an output layer and & hidden layers, k> 1. Each layer-has multiple artificial neurons, and
each neuron has a specific weight, bias, and activation function as its parameters. A neuron uses
these parameters to establish the relationship between input and output layers. If we do not
adopt the activation function, the ANN is essentially a linear regression model. The Back
Propagation neural networks (BPN) adopts an activation function, so the input can be
nonlinearly transformed and back propagated. It is the reason why it can learn and execute more
complex tasks, such as voice recognition and handwriting recognition. In a supervised learning
system, we need to set the initial value of bias and weight to a neural network, and feed the
system with the learning data and labels. The system will first calculate the error between the

predicted value and the actual value by using its loss function, and then back propagate the error.
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It utilizes the chain rule to calculate the partial derivative of the entire error value for a weight,
and modify the weight and bias values by adopting the gradient descent mechanism. After

several iterations, the best model can be obtained.

2.4 Convolutional Neural Networks

The architecture of convolutional neural networks (CNN) is composed of a convolutional
layer, pooling layer and fully connected layer. Basically, this architecture accepts image data as
its input, meaning that it can recognize images [23]. When we input an image, of course to the
convolutional layer, the convolution Kernel will extractimage features by invoking convolution
calculation, and generate multiple feature maps. Then it reduces the features through the
pooling layer to effectively improve the performance of the following steps and lower the
possibility of model overfitting. The most commonly used methods of pooling include
maximum pooling and average pooling. At last, the image feature values are input to the fully
connected layer for flattening, and the subsequent execution process is something like that of a

BP neural network to train and test the underlying model.

2.5 Recurrent Neural Networks

Recurrent neural networks (RNN) are mainly used to analyze sequential data [24], such
as air pollution, climate and traffic flow, etc., in each of which current data is related to its
previous ones, meaning that RNN remembers the past. The characteristic and state are applied
to analyze future data. However, when the RNN performs backpropagation to tune its model
parameters, vanishing gradient or exploding gradient may occur. Especially if the number of
layers is too many, the weights are multiplied by the derivative of the activation function, which
may cause the gradient approaches 0, then the gradient vanish, or the gradient approaches
infinity, causing the gradient explode. Thus, the performance of the trained model will not be

as expected. So usually RNN is employed together with the functions of Long Short-Term
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Memory (LSTM).

LSTM is a model that adds three control units, including input gate, output gate, and
forget gate, to the RNN infrastructure. In the LSTM memory cell, the input gate determines
whether it needs to write the underlying neuron’s previous state to memory or not. The forget
gate forgets or deletes some memory, and then delivers a certain amount of memory to the next
step through its output gate. Integrating the LSTM and RNN models can simplify computational

process and solve the problems of vanishing gradient and exploding gradient [25].

2.6 Hyperparameter Selection

A neural network model’s performance is often related to the parameters selected.
Different parameters may generate different outcomes on different learning models. Golovin et
al. [26] utilized Google Vizier, an internal tuning system developed by Google, to optimize its
parameters. [t has many optimization methods, such as Bayesian optimization, Random search,
and Genetic algorithm, by using each of which we can adjust parameters to find an optimal
hyperparameter combination. With the combination, developers can save their time for
arranging and combining different parameters. Experiments indicate that Bayesian optimization
usually increases the model’s predictive accuracy compared to that of a manually adjusted
model. However, Google Vizier is not an open-source system. We need to pay for hosting
services and tuning through Google CloudML. On the other hand, the functions of Advisor are
similar to those of Google Vizier [27]. Advisor provides open source on Github, allowing users
to tune the hyperparameters by using Random search, Grid search and Bayesian optimization.

It also supports the framework of TensorFlow.

2.7 Bayesian Optimization
Hyperparameters such as number of hidden layers, number of neurons in a layer, learning

rate, and activation functions required by neural networks will affect performance of the
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resultant model. Bayesian optimization optimizes these hyperparameters based on Bayes'
theorem. [28] utilize Bayesian optimization to tune AlphaGo multiple times so as to improve
its win-rate from 50% to 66.5% in self-play games. It adopts Gaussian process [29] to establish
the posterior probability model of the analyzed data’s objective function, and then selects the
best hyperparameter combination according to its posterior probability distribution for further
test and iterative operations. However, Bayesian optimization has its disadvantage which is
constantly sampling training data near local optimal points, hence often unable to evaluate all
sample points, and then unable to achieve global optimization.

Therefore, when selecting the sampling points, it is necessary to individually calculate
the means and variances of the hyperparameters. The larger the mean and variance, the more
likely the hyperparameters have better performance. However, the maximum value of mean and
variance may appear in different places simultaneously. A large mean indicates that the global
optimal solution may be in this region. "Exploitation" shows that the means of sampling points
are large. A large variance represents that this area has not been explored. Therefore, it is worth
to explore since a global optimal solution may be there. "Exploration" is to sample a point which
has a large variance. In Bayesian optimization, acquisition-function is used to select
Exploitation or Exploration to efficiently sample and select the best values for all

hyperparameters.

2.8 Related Studies

Many studies [31-33] have tried to predict the concentrations of air pollution for their
surroundings. Markiewicz [30] used complex mathematical models of Computer Fluid
Dynamics (CFD) and air diffusion model to predict gas diffusion distribution. Ma and Jin [31]
proposed Community Multiscale Air Quality (CMAQ), which combines wind speed, wind
direction and gas diffusion formulas, to identify coal-fired pollution sources. A power plant in

Northeastern North America is used as a target. It simulated emissions and diffusion of
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concentrations to find some methods for identifying pollution sources and finding the effects of
diffusion. Ma [32] evaluated seasonal and meteorological conditions that impact the generation
of ozone in lake regions with CMAQ, and an ozone generation estimation model was
established. Its prediction accuracy was assessed by comparing its prediction results with
actually observed values. Ma et al. [33] proposed the Gaussian-RBF network which combines
the radial-basis function neural network (RBF network) and Gaussian model. They first
establish a Gaussian model to analyze the diffusion of air pollution, and then invoke the RBF
network to reversely derive the source of air pollution according to the diffusion and pollutant
distribution of the pollutants. The results.show that this. medel can effectively find the source
of air pollution with the given air pollution diffusion and distribution.

Keresztes and Rapo [34] analyzed air pollution and meteorological data of the Ciuc basin
from 2012 to 2013 by using IBM SPSS statistics. Authors tried to find out the correlation
between temperature, illumination, atmospheric conditions, terrain, traffic, air pollution, and
the possible causes and sources of pollution by using an air diffusion model which employs a
gas diffusion mathematical formula to calculate its- pollutant diffusion.. The IBM SPSS
statistical model utilizes historical statistics for concentration prediction. However, this model
is one without learning functions. It is also hard for it to adapt to an unstable atmosphere, thus
causing many unknown mutations and uncertainties.

Shaban et al. [35] analyzed temperature, humidity, wind speed, etc., to compare the
effectiveness of SVM, MS5P model trees and ANN in the prediction of air pollutant
concentrations, including Oz, NO> and SO;. The comparison results show that the prediction on
MS5P is the best. Contreras and Ferri [36] mentioned that wind is one of the most important
factors affecting the spread of air pollutants. Basically, without wind speed and wind direction,
a model may easily overfit the corresponding pollutant concentration analysis. Therefore, it
cannot apply to real world prediction, particularly when wind direction and speed change

irregularly.



Also, in the past, many studies predicted the sites with the highest concentration of
pollutants as the pollution sources. When wind is weak, the area with the highest concentration
of pollutants perhaps is one of the pollution sources. But when wind is strong, due to wind
diffusion, it is possible that air pollutant concentrations of the downwind areas a little far from
a pollution source may be higher than those of the downwind near the source. We call it strong
wind effect. Most researchers mentioned that wind speed and wind direction will be key
parameters of their future work since it is hard for these studies to collect these types of
information simultaneously throughout the concerned area. Actually, wind speed and wind
direction affect air diffusion greatly, and also increase the complexity of pollution-source
prediction. If the eigenvalueis excluded; the model is often overfitted.

Contreras and Ferri [37] predicted PM2.5 concentrations by adopting wind speed, wind
direction, rainfall, temperature and humidity. They used wind speed, wind direetion and spatial
interpolation to calculate the diffusion of PM2.5, and then predict the concentrations of PM2.5
by using random forest. The conclusion is that wind speed and wind direction are two of the
most important factors affecting the diffusion and prediction accuracies of PM2.5.

Kurt and Oktay [38] proposed a geographic forecasting model by using the combination
of ANN and geographic models (GFM_NN). Authors collected data from 10 local monitoring
stations to train their prediction model, with -which to predict the concentration of PM10, SO»
and CO for the next three days. In [39], a deep convolutional neural network was employed to
analyze the pictures showing the PM2.5 concentrations. Photos of PM2.5 concentrations are
classified into different categories to train the neural networks, so that the machine can analyze
current air quality through those currently collected photos. In [40], the mean and variation of
the meteorological data and pollutant concentrations used to characterize data are provided by
the air monitoring stations in Taiwan, and LSTM is employed to predict the air pollution
concentrations for the next 72 hours.

Bahari et al. [41] utilized traffic, wind speed, wind direction, temperature, humidity and
9



other data collected during the time period from 2012 to 2013 to predict the PM2.5
concentrations for the next 3 days. Lary et al. [42] predicted the global space-time variation of
PM2.5, using the data gathered from 8329 monitoring stations in 55 countries during the time
period from 1997 to 2014. Feng et al. [43] integrated wavelet transformation and an ANN model
to predict PM2.5 concentrations for the next two days. Zheng et al. [44] utilized neural networks
and linear regression models to simulate spatial and temporal air quality distribution and predict
air quality for 43 cities in China. The predicted data are hourly updated for the next 48 hours.

Ong et al. [45] used a deep recurrent neural network model and the data provided by the
National Institute for Environmental Studies(NIES) in. Japan to predict future concentrations
of PM2.5. The features adopted include wind speed, wind direction, temperature, humidity and
PM2.5 concentrations. After learning, the performance of the proposed model is more superior
than that of the NIES’s system.

Up to present, only a few studies employed neural networks to predict air pollution
sources. The reason is that reliable air pollution data and sources are difficult to obtain. With
supervised learning, we need to give the machine a label to show that this is a pollution source
so that the developed system can know the features of these sources. Even with semi-supervised
or unsupervised learning, and the proposed models are well-trained, in our real environment,
there are no actual data labels with which we can know the accuracy and reliability of the
prediction results. So we need to collect reliable data and develop some methods to overcome

these problems.

I11. The Architecture of the APSIS

Figurel shows the processing flow of the APSIS, in which Air Boxes are deployed to
build an Internet of Things (IoT) field for the measurement of air pollutant concentration and
collection of wind data. After that, we preprocess the collected data and input the data into an

air diffusion model. Also, CNN, BPN and RNN neural network models developed on
10



Tenserflow are employed to predict the sources of air pollution. Next, Bayesian Optimization
is applied to adjust the hyperparameters of the three neural network models, including the
number of hidden layers, number of neurons, activation functions, learning rates and optimizers,

so as to comprehend which model performs the best.

Air box IOT

Collect data
v

Data preprocessing

Normalization Smoothing
— ’I‘ .el;s.o.rf.](.)\;’ ............... ik
i ¢ . Air pollutant
Y : distribution
CNN BPN RNN : model

Bayesian Optimizer, i.e.,
Advisor

h 4

A

Accuracy evaluation

v choose the best

Identification
model

Figure 1. The processing flow of the APSIS.

3.1 Establishing IoT-based Air Boxes

In order to confirm the reliability of the trained model, when training a neural network
model, it is necessary to know its pollutant concentration and each data is collected directly
from a pollution source without employing any diffusion model. Basically, high-density IoT
nodes are required to identify the labels of the pollution sources. Figure?2 illustrates the [oT field
which, as a square area of 25 m long and 25m width, is divided into 25 grids of equal size. A
total of nine air boxes, also called IoT nodes, are installed. Each contains a dust sensor, a wind-

speed sensor and a wind-direction sensor all connecting to an Arduino, as shown in Figure3.
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Four air boxes are placed at the four corners of the grid, and the remaining five as shown in
Figure2 are put in the middle of the IoT field. One or two pollution sources are randomly placed
at one or two of the middle five grids. Owing to small fields, the diffusion of pollutant can be
more accurately measured.

The purpose of this study is to find the location of the pollution sources through machine
learning technique, rather than relying entirely on deploying high-density sensors. We placed
sensors in a downwind of pollution, trying to find the highest pollution concentration. However,
in a real situation, wind direction often changes greatly. Sometimes, the angle of instantaneous
wind direction may change 180 degrees. Further, due.to the principle of heat rise [46], the
response time of sensors and the instability of the smoke source, inconsistencies may occur. For
example, as experiments are performed at different time points, and the location of the pollution
source and the wind direction are individually the same, the air pollution concentration collected
by the same I0T node placed at the same location is different. Generally, sensors placed at the
downwind near air pollution source ought to be able to detect high pollution. But sometimes
owing to unstable smoke source and/or the rising of hot air, a sensor, e.g., N, on the contrary
detect pollution concentrations. which are lower than those detected by the sensors in N’s
downwind. It is also possible that when wind direction changes, and pollutant distribution is
unstable, the relationship between wind direction and pollutant distribution is not completely
consistent. However, such problems are inevitable, particularly when we detect pollution in an

open field with a real-time manner.
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Figure 3. An air box, i.e., an IoT node, consists of a dust sensor, a wind-speed sensor and a

wind-direction sensor all connecting to an Arduino.
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3.2 Data Collection and Preprocessing

This section will discuss how data are collected and preprocessed.

3.2.1 Data Collection

The IoT field is established in Taichung City, Taiwan, gathering air pollution
concentrations produced by our pollution sources from October 2018 to March 2019. The
number of pollution sources may be one or two. Each of the 9 IoT nodes collects data every ten
seconds, a total of 11,934 data records has been acquired. Among them, 8833 are one-pollution-
source records. The remaining 3101 are dual-source records. Each data record contains data
collected by the 9 air boxes, i.e., a total of 107406 (=11934*9) records of sensor data, called
sensor records, are gathered. Each sensor record consists of 8 variables, including wind speed,
wind direction, PM1.0, PM2.5, PM10, position of the node, time and the location of pollution
source. In order to increase data diversity, the experiments were conducted across three seasons
from autumn to spring.

In Taiwan, wind directions vary in different seasons. We collect data one time or two
times a week. Each time lasts about one hour. During data collection, the locations of pollution
sources are different. Since wind direction and strength changes drastically, it is hard for us to
find time-series correlation among.the pollution concentrations. So we do not adopt time data
as one of machine-learning features. In addition, due to fixed positions of nodes, positions are
also not the APSIS’s feature. Of course, data collected by IoT nodes are orderly input to train
the APSIS. Basically, we only use the remaining seven variables listed in Tablel as our
pollution-source-identification features. In supervised learning, we give the machine a label
defined as the exact location of pollution source, allowing the machine to define the relationship
between the features and the label. The purpose is to identify whether or not there a pollution
source is placed in the grid where a node locates, so as to learn and calculate the identification

error for system adjustment.
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Table 1. Features of the APSIS.

Variables (lag 10 sec) Unit
I. Pollutant concentrations

(1) PM 1.0 ng/m?
(2)PM 2.5 ng/m?
3)PM 10 ng/m?

I1. Meteorological features

(1) Wind direction Radians
(2) Wind speed m/sec
I11. Others

(1) Positiens of'the IoT nodes 1to9
(2) Location of a pollution source Tor F

3.2.2 Data Preprocessing

As mentioned above, some factors, e.g., abnormal data values, may negatively affect the
identification accuracy of the APSIS. To reduce the affection, smoothing and normalizing data
are popularly utilized. So we need to gather statistical data and then process the statistical data
with the following procedure. First, we classify the data collected by a node based on wind
direction and location of pollution source. Because the concentration levels of PM1.0, PM2.5,
and PM10 in each data record of each loT node are different, we consider that they are three
categories in each node. Therefore, 35,802 (= 11,934*3) category records are then generated.
Each category has 11,934 category records, called a category group. In other words, we have a
total of three category groups, named c-group 1.0, c-group 2.5 and c-group 10.

For each category group, we first sort the 11,934 category records on their wind directions,
second on location of pollution source and third on concentration scales for a node, meaning
that different nodes are processed separately. After that, those category records of the same wind
direction and same location of pollution source are clustered, e.g., for c-group 1.0, given a node,

e.g., N, a wind direction WD and a location of pollution source PS. Due to sorting, those records,
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some of N’s 11,934 PM1.0 category records, that meet WD and PS will be retrieved, e.g., a
total of M category records, M < 11,934. PM 1.0’s concentrations of which are between 0
and100 ug/m?, belong to PM1.0-cluster 0 (WD, PS), those from 100 to 200 ug/m? are classified
into PM1.0-cluster 1 (WD, PS), and so on. The scale difference from the max scale to the min
scale of a cluster is 100 ug/m>.

For each (WD, PS) pair, the category records in the two clusters with the largest amount
of category records are considered as the normal data of (WD, PS). But, if the two clusters are
not direct neighbors, we consider that the cluster with the largest amount of category records
are normal data of this (WD, PS). The rest records of (WD, PS) are abnormal data which is then
substituted by invoking the interpolation'method for data smoothing. The substitution process
is that we first average all normal data, 1.¢., category records, on their concentration scales, e.g.,
A is the average. For each abnormal category record of (WD, PS), e.g., D, a random value R,
ranging between 0 and one-fifth of A, 1s added to A, resulting in a new random value, i.e., A +
R, which is then substituted for D. After that, the other (WD, PS)s are processed by using the
same method until all category records-in c-group 1.0 are processed. Then we repeat the same
procedure to process category records in c-group 2.5 and c-group 10 individually.

Take the PM10 measured.at node 7 as an example. Figure 3 shows the statistics data of
node7 when the wind blows from northeast to-southwest and there is only one pollution source
located at node 5 or 7. Figures 3a shows the numbers of category records of PM10 on different
concentration scales for node7, whereas Figures 3b illustrates 50 category records of the air
pollution concentrations before and after our data smoothing. We can see that after data
smoothing, the fluctuation of PM values is mitigated. Table 2 lists the numbers of smoothed
category records. The total smoothing rate of one pollution source (two pollution sources) is
9.5% (12%). Among them, since nodes 1, 2, 8, and 9 are placed at the four corners, the impact
on them by pollution sources is small, hence conducting less percentage of smoothed data.

In addition, in Taiwan, winter winds are mainly from the northeast. The time period from
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autumn to winter is monsoon transition time. Southerly winds may come during the transition
time periods from winter to spring. In fact, wind direction is mainly affected by seasons, sea-
land breeze and terrain of the region. Therefore, as a whole, node 3 located at the northeast
monsoon downwind is the one highly suspected as a pollution source. However, the data
collected at node3 varies seriously, consequently conducting many inaccurate data.

Summary

1. A data record consists of the data collected by 9 IoT nodes, i.e., (sensor-record 1,
sensor-record 2, ... sensor-record 9). There are totally 11,934 data records.

2. A sensor record comprises-the data collected by an IoT node, i.e., wind speed (WS),
wind direction (WD), PM1.0, PM2.5, PM10, pesition.of node (PN), time and location
of pollution source (PS). There are totally 107,406 (=11,934*9) sensor records.

3. For a category, e.g., PM1.0, there are 107,406 category records, named c-group 1.0. A
category record is consisted of (WS, WD, PM1.0, PN, PS), c-group 2.5 and c-group
10 have the similar category record content, 1.e., (WS, WD, PM2.5, PN, PS) and (WS,

WD, PM10, PN, PS) and | c-group 1.0 | = | ¢c-group 2.5"|. = | c-group 10 | =107,406.
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400 5000
poliution source placed at node 7 == pollution source placed at node 5 (preprocessed data)
"E EEm pollution source placed at node 5 —o— pollution source placed at node 5 (unprocessed data)
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Figure 4. Statistical data collected at node7 for PM10 when the wind direction is 45 radians

and pollution source is individually placed at node5 or node7.
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Table 2. Total numbers of smoothed category records on each IoT nodes. Each IoT node
collects 11934 sensor records in which there are 35802 (26499 + 9303) PM x category

records, x= 1.0, 2.5 or 10.

Number of smoothed category records
IoT node One source Dual sources
(8833*3 = 26499) (3101%3 = 9303)
1 1,697 ( 6.4%) 996 (10.7%)
2 1,488 ('5.6%) 582 (6.2%)
3 4,884 (18.4%) 1,794 (19.2%)
4 2,958 (11.1%) 1,613(17.3%)
5 4,278 (16.1%) 1,599 (17.1%)
6 3,078 (11.6%) 1,455 (15.6%)
7 2,578 (9.7%) 878 (9.4%)
8 1,011 (3.8%) 706 (7.5%)
9 851 (3.2%) 481 (5:1%)
TOTAL 22,823 (9.5%) 10,104 (12%)

After data smoothing, the Min-Max Normalization is applied to project different scales
of feature values into the range between 0 and 1, making the data easier to learn and thereby
improving the performance and training speed of the APSIS model. For each c-group, the i"
normalized data denoted by N;is defined as

x;— min {x;}

Ni _ 1<j<n (1)

max {xy} — min {x;}

1<ksn 1sjsn

where x; is the collected data of a category record, x; € {xi,...,x»}, n=11,934, for PM x, x=1.0

2.5 or 10, and min{x;} (max {xt}) is the minimum (maximum) value of x, 1 <j, k< n.
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3.3  The Architecture of Analysis Model

This section will describe our air diffusion model and neural network model.

3.3.1 Air Diffusion Model
Our air diffusion model is developed based on the Gaussian diffusion formula shown in

Eq. 2 to simulate the diffusion of pollutants. Let Cqq, be an integrated parameter calculated as

1 —(Dz — h)?
Ceau(D;, A;) = 2muoy,o; {exp (ZZT
z

) G ) S

where D; represents the positional parameters (including downwind direction Dy, the horizontal

distance perpendicular to the downwind direction Dy and D: is the vertical distance), 4; is the
atmospheric parameters (such as wind direction, wind speed (z in m/s) and atmospheric stability,
etc.), 4 is the height of the pollution source (m), and oy and o, are, respectively, the statistical
standard deviations of the horizontal and vertical dimensions in the ecalculation of plume where
oy and o, are affected by atmospheric stability.

In the simulation of pollutant diffusion, the wind speed, wind direction and pollutant
concentrations are collected. Temperature and humidity are acquired from the Meteorological
Bureaus near our IoT field. The other special parameters are obtained by referring to the data
of Prairie Grass emission experiment [47], e.g., wind friction velocity and atmospheric stability
parameter.

At last, we simulated the diffusion of pollutants, and compared the simulation results with
the data we actually observed to determine whether or not we can accurately simulate the
diffusion of pollutants through Gaussian diffusion model given a small number of parameters

so as to provide correct data for machine learning.
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3.3.2 Neural Network Model

In this study, Python is utilized to implement the three neural network models, i.e., BPN,
CNN, and RNN, on tensorflow. The data represented by array shown in Figure 5 are the input
data of BPN and RNN. Pictures input to CNN as shown in Figure 6 are organized as a picture
matrix based on the location distribution of the IoT nodes in the IoT field, i.e., node N’s feature
data in the matrix is the same as the position of the node in the IoT field. Namely, the data that
CNN analyzes are a three-dimensional matrix of 5x5x5, of which the first 5x5 is the number of
the flat grid in the IoT field. Each feature is expressed by a channel. Since there are a total of 5
channels, i.e., 5 features, including PM 1.0, PM2.5, PM10, wind direction and wind speed. The
value of 0 is given to the position of the'matrix when the position provides no IoT nodes. The
purposes are finding the correlation between the locations of these IoT nodes and the pollution
concentrations, and improving the capability of machine in extracting and recognizing picture

features.

Features of node 1 ~ Features of node 2 ~

et 111

AN
PM25 PM 10 / Wind speed

Wind direction

Features of node 9 -

[T 1]

-

Figure 5. The data structures utilized as the inputs of BPN and RNN. Each node, e.g., node i
contain 5 features, including PM1.0, PM2.5, PM10, wind direction and wind speed.
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Figure 6. The data structure is utilized as the inputs of CNN.

The process of model training is as follows. (1) To reduce the possibility of overfitting, the
k-fold cross-validation [48] method is applied to divide the single-source data into 10 sub-
samples, with which to train and test the three neural network models; (2) Manually adjust the
parameters to find the best identification accuracy; (3) The Advisor for Bayesian optimization
is employed to recommend the best hyperparameters; (4).Compare the accuracy between
manual tuning and automatic tuning, and then select the best parameters; (5) Propose the best
model of BPN, CNN and RNN; (6) At last, the data of two pollution sources are input to the
trained models for testing. After this, the established model is applied to analyze the accuracy
of identifying multiple pollution sources. Consequently, the proposed model is the most suitable
for the detection of air pollution sources.

During the air pollution-source identification stage, the data gathered by the four nodes at
the corners, including nodes 1, 2, 8 and 9, are only used as the feature, without being the target
pollution-source identification. Because our pollution sources have never been placed at the
four points, their labels are always False. If they are added as a part of the training data, the

machine will possibly identify all the IoT nodes as non-polluting sources directly to increase its
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identification accuracy because most loT nodes are denoted by false. But this is a false accuracy.
In reality, it is difficult to identify the number of pollution sources from air-quality data collected
by air quality monitoring stations since these data often are not accompanied with locations of
pollution sources. Basically, we like that the machine can autonomously identify all pollution
sources, rather than wishing a model to identify a specific number of pollution sources decided

by users.

IV. Results and Evaluation

The specifications of our.simulation environment are shown.in Table 3. In this study, three
experiments are performed. The first analyzes the diffusion of pollution concentrations. The
second measures the APSIS’s identification accuracy in a real environment. The third
experiment evaluates identification accuracy given one pollution source or two pollution
sources.

The accuracy of a model is defined as.

TP+TN

Accuracy = ——————— 3)
TP+FP+TN+FN

where TP standing for true positives is defined as that it is true and the APSIS identification is
also true, TN representing true negatives is defined as that it is false, and the APSIS
identification is also false, FN meaning false negatives is defined as that it is true, but the APSIS
identification is false, and FP standing for false positives is defined as that it is false, but the
APSIS identification is true.Due to some level of erroneous learning of the APSIS, we need to

improve its TP. The model is also verified by recall which is defined by Eq.4.

TP
TP+FN (4)
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Through recall, we can clearly know the proportion of TP. The higher the value of recall,

the higher the performance of the model.

Table 3 Specifications of our simulation environment.

CPU Intel Core 19-9900 HK (eight cores)
Graphic card NVIDIA GeForce RTX 2070, 8GB GDDR6
RAM 32.GB

Operating system Linux (Ubuntu 16.04)

The version of python 217

The version of tensorflow Gpu 1:8.0

4.1 Simulated and Observed Values of Pollution Concentrations

In the first experiment, we analyzed pollutant diffusion through the Gaussian diffusion
model and compared the simulation results with the actually measured concentration of
pollutants. On a visualized-image, the concentration of a node represents the concentration of
this grid where the node is placed. We also try to adjust the size of'a grid, i.e., 1 meter(m) and
Smeter(m), to show the results of the Gaussian model. The simulation results are shown in
Figure 7, in which the wind speed is slow and the concentration detected by the node at the
pollution source is the highest. In this situation, the Gaussian diffusion model can roughly
simulate a similar pollutant diffusion. But there is still a significant difference between them.

Because in a portion of the simulation results, the node, e.g., N, with the highest
concentration is not always a pollution source, and we apply the Gaussian diffusion model to
point out pollutant emitters given the location of N and its current wind direction. With the
Gaussian diffusion model, the node with the highest concentration is considered as the pollution
source. When we input N as a pollution source into the Gaussian diffusion model, even though

it is not a pollution source, the results are shown in Figures 8 and 9. Since the Gaussian diffusion
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model does not provide the reverse function of its calculation and learning, the simulation
results and the actual results demonstrate some amount of difference.

When the wind speed is higher and the unit grid is 5m x 5m, as shown in Figures 8b and
9b, the Gaussian model is hard to simulate the pollution diffusion. But if we adjust the grid unit
to Im x 1m, as shown in Figures 8c and 9c, we can simulate the diffusion which is better than
those illustrated in Figures 8b and 9b. But the results are still not very accurate. Of course, the
results shown in Figure 7c are more accurately simulated compared to those of Figures 8c and
9¢c. We can find that when the wind speed is fast or the grid unit is large, the simulation results
are very poor. However, when the wind speed is slow-and the grid unit is small, the simulation
results can more accurately approximate to the actual pollution diffusion. It means that in an
unstable and small environment, €.g., with a fast wind speeds, the Gaussian diffusion model
cannot effectively simulate the real environmental conditions due to the rapid movement of
pollutants. If we can expand the range of our IoT field and gather more accurate parameters as
the inputs of this model, it may effectively improve the performance of the diffusion model.
®
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Figure 7. Pollution source is placed at node5 (central grid of this IoT field, Dark red in color
in Figure 7a), the concentration of PM10 is 710 pg/m?, wind speed is 0.1m/sec and wind

direction is 135 radians.
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Figure 9. Pollution source is placed at node 7(central grid of this IoT field, Green in color in
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4.2 Comparison of Data Preprocessing and Tuning

The second experiment is conducted in a real environment. Basically the identification
accuracy is affected by environmental parameters, measurement accuracy of IoT equipment,
and data inaccuracy. Therefore, we preprocess the data and compare the identification results
before and after the data preprocessing. After that, parameters of the three neural network
models are optimized by using the Bayesian optimization approach. Our experimental results
are shown in Figures 10 and 11. It is clear that the accuracies of BPN and CNN after data
preprocessing (i.e., smoothing) as shown in Figure 10 are not significantly higher than those
before data preprocessing. Of course, RNN’s-accuracies have been enhanced obviously. But as
shown in Figure 11, after Bayesian optimization, the accuracies of BPN, CNN and RNN are
significantly improved, indicating that Bayesian optimization can positively tune a model’s
hyperparameters. Table 4 summarizes several important indicators of the two. figures, where
steps represent before data preprocessing, after data preprocessing and after Bayesian
optimization, respectively.

Before preprocessing, the accuracies of BPN, CNN and RNN are 79.8%, 83.7% and
68.3%, respectively and the recalls of the three are 0.57, 0.64 and 0.36, respectively. Among
them, RNN underperforms the other two. After data preprocessing, the accuracy of BPN
reaches 87.6%, increasing 7.8%, and the recall is 0.61 after 140 epoch. The accuracy of CNN
after 90" epoch is 86.5%, increasing only 2.8%, and the recall is 0.65. RNN demonstrates the
most significant improvement after data preprocessing. The resulting accuracy after 106" epoch
is increased by 13.4% to 81.7%, and the recall is 0.55. But its accuracy is still the worst.

Before data preprocessing, due to some inaccurate data, the accuracies of these three
models are low. However, after data pre-processing, the identification accuracies of the three
models have increased, and the epoch (time) of training is shortened, except that of BPN which
is from 111 to 140. Basically, the effectiveness of neural network training after data pre-

processing is significant. However, the recall improvements on BPN and CNN are not as
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expected. From the recall, we can realize that a model attempts to learn how to find false so as
to enhance its identification accuracy since most of the IoT nodes are not pollution sources, i.¢.,
false. It is also the reason why the improvement on finding the label, i.e., identifying the

pollution source, is not significant.
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Table 4. Comparison of model performance (before data processing; after data processing;

Bayesian optimization).

Model BPN CNN RNN

Step before | after | optimi | before | after | optimi | before | after | optimi

Accuracy (%) 79.8 87.6 94.2 83.7 86.5 91.3 68.3 81.7 84.1

Recall 0.57 0.61 0.88 0.64 0.65 0.85 0.36 0.55 0.78

Epoch 111 140 58 135 90 21 110 106 40

In fact, the concerned parameters can be adjusted to further improve the performance of
the three neural network models. At the beginning of this stage, we manually adjusted
parameters for these three models. It is time consuming since a neural network has a lot of
parameters and each parameter’s adjustable range i1s large, meaning that it is hard for us to
manually tune these parameters one by one. In this study, some parameters, like strides and
padding of CNN's convolutional-layer parameters and pooling-layer parameters which affects
the number of extraction features, dropout of some neurons and.initial values of parameters,
e.g., forget bias and cell’s state in LSTM Cell, are manually adjusted by us. Other
hyperparameters are regulated by Bayesian optimization to optimize its objective function
which in this study is employed as the loss function of the trained model, aiming to maximize
identification accuracy. In other word, when training the model, those selected hyperparameters
(see the first column of Table 5) are not necessary to be adjusted to the best on the convergence
epoch (time). To identify whether a node is a pollution source, output layers adopt sigmoid to
limit each of the five output values (corresponding to 5 IoT nodes placed at the center of the
IoT field) to the range between 0 and 1. The purpose is to identify each of the five outputs of
the five nodes as True or False. In fact, only the activation function of the hidden layer is tuned
by Bayesian optimization.
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The hyperparameters before and after Bayesian optimization are shown in Table 5. In order
to achieve the best learning results, we manually adjusted the learning rate to a low value, i.e.,
0.0001. After Bayesian optimization, the learning rate of the three models has increased a lot.
Some of the other hyperparameters are significantly changed, e.g., number of BPN’s nodes is

increased from 100 to 296, and some remain unchanged.

Table 5. Hyperparameter selection before and after Bayesian Optimization.

Model

Method

Number of layers

Number of node

{id WEP

jos}

=1

s

&

&
|||l.

Adam

BPN

After Bayesian optimization, we e learning rate and the number of neurons
of BPN (see the rows of “Learning rate” and “Number of nodes” in Table 5) are both increased,
and the number of layers is reduced from 10 to 6. The activation function, optimizer and Batch
size remain unchanged. The convergence of model training has been much earlier. The accuracy
as shown in Table 4 is increased by 6.6% to 94.2% (from 87.6%), and the recall is increased

from 0.61 to 0.88, both of which are individually the highest among the three nodes. But its

training epoch (time) i.e., 58, is ranked the third.
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CNN

The number of layers of CNN listed in Table 5, as the number of convolution layers, is 3
in this study. Number of nodes, as the number of neurons in the fully connected layer, is
increased from 100 to 322 after Bayesian optimization. The learning rate is increased from
0.0001 to 0.0044, and the activation function is changed from sigmoid to Relu. Batch size (i.e.,
1) and optimizer (i.e., Adam) are not changed. As illustrated in Table 4, the accuracy of CNN
apparently is increased by 4.8% to 91.3% (from 86.5%), and the recall is increased from 0.65
to 0.85. Both are slightly lower than those of BPN. However, its convergence, i.e., 21, is the
fastest among the three, probably. because-of the use.of Relu (see Table 5). Generally, the
convergence epoch (time) of Relu is faster than that of sigmoid. But because the number of
layers that we use is only 2, the biggest possibility is the learning rate or applicability of CNN

itself to the given data.

RNN

The number of layers of RNN refers to the number of layers.of LSTM. We increase it to
2. The number of neurons, learning rate and Batch size are increased to 197, 0.0051 and 8,
respectively. The activation functions of LSTM on the internal gates are still sigmoid and tanh.
But the optimizer is changed to RMSProp. The data we collected may not be completely
suitable for RNN, snice after optimization, the accuracy only increases 2.4% to 84.1% (from
81.7%). But its recall is increased to 0.78 from 0.58. On the other hand, probably because of
increasing its learning rates and reducing number of neurons, its convergence (Epoch) has been
significantly improved, i.e., from 106 to 40. However, its accuracy and recall are still the worst
among the three models. Literature indicates that RNN has good analytical ability for sequential
data [25] and good performance in air-pollution-concentration prediction [39]. This may be the
reason why RNN is suitable for the condition when data has been collected for a long time, the

collection region is wide, and wind speed and wind direction are stable. However, in this
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experiment, it probably is that the data is collected in a small area, the data collection time is
not long enough, and the wind direction and the smoke (pollution) flow are unstable.
Consequently, RNN did not perform well, even after data preprocessing and hyperparameters
optimization. When the region and data volume of this study are expanded, perhaps the
performance of RNN will be better than what it has in this study.

In Table 4, we can see that the accuracies of these three neural network models have been
improved after Bayesian optimization, their training’s convergence epochs (times) are
shortened, and recalls are significantly increased. It means that we can more effectively find the
location of the pollution source, thus not.only improving model’s identification performance,
but also saving a lot of time and energies for pollution-source identification. If originally one

of the models does not perform well, the improvement 1s often obvious.

4.3 Analysis of Two Pollution Sources

In reality, air pollution. often comes from several pollution sources simultaneously. This
also shows that when identifying pollution sources, it is necessary to test whether an employed
model can effectively detect multiple sources.. But how to differentiate which pollution
concentration is produced by which source is an engineering challenge. In fact, it is hard for us
to obtain the data that clearly identifies multiple pollution sources and then train the model with
these data. Therefore, in the third experiment, we wish to find the second pollution source given
different experimental conditions. Three dual-source models (D-model for short) will be trained.
The first was trained by using the data collected when there is only one pollution source. The
second is that D-model was trained and tested by using the mixed data of single pollution source
and two pollution sources. The third reuses the first model, but checks the probability that a

node can be a pollution source.
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4.3.1. Training a Model with Data of Single-Pollution Source

In fact, the first D-model is the one trained by using single-pollution source. But this time,
we use it to identify two pollution sources. Table 6 shows that the accuracies of BPN, CNN and
RNN are 58%, 65%, and 39%, respectively. The recalls of the three are all lower than 0.3. CNN
occasionally finds two pollution sources. But in most cases, the accuracies are low. The reason
is that the pollutant diffusion of two sources is different from that of single source. For example,
in a single pollution source, the nodes that did not detect pollution may now discover polluted
air in a D-model environment. Because the - model is trained on a single-pollution source, the
weights of the neurons used by the machine are only suitable for finding one pollution source.
So it is a little hard to be directly applied to.identify more pollution sources.

To conquer this problem, on each experiment, we check to see whether a node is a pollution
source or not, rather than identifying two pollution sources. The activation function of the
output layer is sigmoid. Consequently, the model can effectively analyze collected data only
when the pollution diffusion of two pollution sources-is similar to that of a single source. In
fact, the machine can sometimes identify one of the two pollution sources, but in most cases,

the model does not work well.

Table 6. The performance of BPN, CNN and RNN for identifying two pollution sources when
they are trained with the data collected for single pollution source and tested with the data

collected for two pollution sources.

Model BPN CNN RNN

Accuracy (%) | 58% 65% 39%

Recall 0.15 0.28 0.11
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4.3.2. Training a Model with Data of Single Pollution Sources and Two Pollution Sources

As mentioned above, we individually train and test the three neural network models with
single pollution source and two pollution sources. But in the test phase, we did not specify the
number of pollution source that the model should identify. What we have done is only checking
to see whether a node is a pollution source or not, through sigmoid, and then comparing the
identification results with the actual locations of pollution sources.

Table 7 shows the accuracies (recalls) of BPN, CNNand RNN which are 88.2%, 87.6%,
and 79.1% (0.81, 0.84 and 0.66), respectively. In particular, BPN .and CNN have achieved
certain performance in identifying pollution source. Although the accuracies of CNN are
slightly lower than those of BPN, its recall, i.e., 0.84, 1s slightly higher than BPN’s, i.e., 0.81,
meaning that compared with BPN, the probability that CNN may identify a node which is not
a pollution source as a pollution source, i.e., False positive, is higher than that of BPN. But
CNN can also identify pollution sources more effectively than BPN and RNN since CNN’s

epoch (see Table 4) and recall (see Table 7) are better than BPN’s:

Table 7. The performance of BPN, CNN and RNN for the identification of two pollution
sources when they are trained and tested with the mixed data collected for single pollution

source and two pollution sources.

Model BPN CNN RNN

Accuracy (%) | 88.2% | 87.6% | 79.1%

Recall 0.81 0.84 0.66
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4.3.3. Identification the Most Likely Position of a Pollution Source

In the third D-model, we maintain the same data preprocessing and Bayesian optimization
steps, and the activation function of its output layer is changed to softmax from their originated
ones. We also change the algorithm for accuracy calculation. Instead of judging whether a node
is pollution source or not, we check to see whether a node is the most likely to be a pollution
source or not. If the model accurately identifies at least one pollution source when there are two
pollution sources, we consider that this identification is success.

We first use the data collected when thereis only-one pollution source to train and testing
a model, and then input two pollution sources for testing. The experiment process is the same
as first D-model, but the activation function of output layer, i.e., sigmoid originally, is now

substituted by softmax. The identification accuracy is defined as

1 £~ . . c
Identification accuracy with two pollution sources = A %)

where C is the number of correct identification and D is the total number of 1dentification. Note
that Eq.3 is used to identify whether a node is a pollution source, and each tested data has 5
identification results, each of which is yes orno. Eq.5 is to determine whether a node is probably
a pollution source or not based on tested data, no matter whether the data is a single source or
two sources. Therefore, each tested record has only one identification result, i.e., yes or no. In
other words, if the location of a node is the same as the location of a single pollution source or
the location of one of the two pollution sources, we consider that the identification result is
correct, and C is then increased by 1.

The test results are shown in Table 8. The identification accuracies with two pollution

sources of BPN, CNN, and RNN are 79.1%, 82.6%, and 71.3%, respectively. Among them,
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CNN has the highest accuracy. BPN’s performance ranks the second. With this learning method,
a model can effectively find the most likely pollution source given different numbers of
pollution sources. Recall in the third D-model is meaningless since sometimes correct
identification is only identifying a part of the two pollution sources. It is hard for us to define

whether it is a successful recall or a fair recall.

Table 8. The performance of BPN, CNN and RNN when they are trained with the data
collected for single pollution source and tested with the data collected for two pollution

sources to identify the most likely position of a pollution source.

Model BPN CNN RNN

Accuracy (%) | 79.1% | 82.6% | 71.3%

Recall - b -

V. Conclusion and Future Work

We originally envisioned the use of air diffusion models. to help machines identify
pollution sources. Therefore, in order to perform calculations quickly, we use the Gaussian
diffusion model to simulate the diffusion of pollutants. But the results of the analysis are not as
expected. Although the Gaussian diffusion model is fast, its accuracy is poor. We think that it
is not suitable for air pollution source identification. When wanting to identify the location of
the pollution source through the diffusion of pollutants, we need more accurate analysis results.
Therefore, it is necessary to use a more effective model and more parameters to do this
experiment.

Machine learning can really help us to find out air pollution source. Here, we confirm that
preprocessing the collected data and employing Bayesian optimization can effectively increase

the efficiency of machine learning and accuracies of pollution source identification. At the same
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time, we also found that it is quite difficult to predict multiple pollution sources through limited
data. The result is that they cannot effectively find two pollution sources when trained by only
using the data of single pollution source.

So we use two other methods. One is to directly utilize the mixed data of single pollution
source and two pollution sources for training and testing. The other is to use Softmax to find
the most likely source of pollution in various types of data. They have performed well and we
found that sometimes BPN has better accuracies than CNN and RNN individually have, but
CNN has better accuracies and epochs (times) of convergence than BPN and RNN individually
have in most cases. Among the two pollution-sources, the efficiency of BPN is worse than that
of CNN. In other words, CNN is relatively suitable for analyzing the source of air pollution in
a grid field. We think that CNN can identify the relationship between position of nodes and
wind direction from a small amount of data. This is why CNN performs the best.

We confirm the feasibility of applying the Gaussian diffusion model to identify air
pollution sources and propose a model prototype for identifying pollution sources by utilizing
CNN. In the future, we wish to gradually expand the region of the IoT field and increase the
number of features, such -as ‘temperature, atmospheric pressure and other pollutant
concentrations. We would also like to integrate our models with-air diffusion models to analyze
the diffusion of air pollution and calculate the concentration of pollutant for the place in which
no IoT nodes are placed. Finally, the pollution data will be collected from a large-scale area,
such as small air monitoring stations, wishing that this model can identify air pollution sources
of our living environment in a real-time manner so as to effectively monitor and improve air

pollution for people. These constitute our future studies.
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