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摘要 

 

許多研究人員使用機器學習技術來提高其空氣污染濃度預測模型的準確性，讓人類

可以事先得知準確的空氣汙染資訊，以避免直接曝露於汙染的環境中。據我們所知，目

前並沒有研究對大範圍區域的汙染來源進行預測。為準確定位汙染來源，本研究建立了

空氣污染來源識別系統，稱為 Air Pollution Source Identification System (APSIS)，其使

用 tensorflow 建立三種神經網路的分析模型來找出空氣汙染來源。APSIS 在相對較小

的區域內收集數據，例如空氣污染濃度，風速和風向。並預先處理收集的數據，目的是

確定污染物分佈是正確的，以防止 APSIS受到異常值和其他不穩定因素的嚴重影響，如

風向。使其能更準確地找出汙染來源。之後，使用高斯擴散模型進行污染物擴散模擬，

並與實際擴散情形進行比較，確認高斯模型的準確性是否可以應用在污染來源辨識中，

並比較三個神經網絡模型在空汙染來源辨識中的準確度，最後提出一種最適用於識別空

氣污染源的模型。 
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Abstract 

 

Many researchers use machine learning techniques to enhance accuracies of their air-

pollution concentration prediction models so that people can acquire accurate information in 

advance to avoid exposing themselves in this polluted environment. To the best of our 

knowledge, currently, there is no research which identifies air pollution source in a wide area. 

To accurately locate pollution sources, in this research, we create an air-pollution identification 

system, called Air Pollution Source Identification System (APSIS), which adopts tensorflow to 

establish three neural-network-based analytical models with which to find pollution sources. 

The APSIS collects environmental data, such as air pollution concentration, wind speed and 

wind direction, in a relatively smaller grid area. Next, collected data are tuned when necessary 

to prevent the APSIS from being seriously affected by outlier and other unstable factors, like 

wind direction. The purpose is to identify pollution distribution and then more accurately find 

out the sources. After that, the Gaussian diffusion model is used to simulate the diffusion of 

pollutants, and compared with the actual diffusion situation, to confirm whether the accuracy 

of the Gaussian model can be applied to the identification of pollution sources. Then compare 

the accuracy of three neural network models in the identification of air pollution sources, and 

finally propose a model that is most suitable for identifying air pollution sources. 
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I. Introduction  

Air pollution has already existed since the very beginning of the first industrial revolution. 

It is a huge social cost of human beings due to economic activities. Today, when enjoying the 

prosperous development results of industrial revolution, we need to consider how to balance 

the environmental protection and economic development. In fact, this problem has plagued the 

world for a long time. Surrounding us, there are many pollution sources, such as air, water, soil 

and food. They will directly or indirectly endanger the health of human bodies. Among them, 

the impacts due to air pollution is the most serious one [1]. People who expose themselves to 

polluted air for a long time may inhale many pollutants, consequently causing diseases 

concerning the respiratory tract, cardiovascular and lungs, such as pneumonia, lung cancer, etc 

[2]. The impact on children and elderly is more serious. According to medical research and 

statistics [3], the incidence of disease on the respiratory tract of city residents is positively 

correlated with the degree of air pollution in this city. Many patients with lung cancer do not 

smoke, and there is no exhaust gas or air pollution in their working environments. Their 

common situations are living in cities with serious air pollution, and they often take exercises 

or perform activities outdoors. [4-7] indicated that air pollution has a significant positive 

correlation with lung cancer, pneumonia and human health. Our conclusion is that particulate 

matter (PM) in the air has a considerable correlation with lung cancer and respiratory diseases. 

PM can even transfer to the various parts of human bodies through throats and noses, affecting 

the health of other organs.  

Recently, people have gradually applied information technology, like those of Internet of 

Things(IOT), cloud computing, big data and artificial intelligence, to study different topics of 

air pollution. Many research projects focus on this issue. Their common activities are preparing 

air quality sensors and relatively large monitoring stations to monitor air pollutants in our 

surrounding environment [8-9]. However, many monitoring stations, besides air pollutants, 

only gather temperature, humidity, wind speed etc., as assistant data from which it is often hard 
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for users to know which monitoring stations are closer to the pollution sources. Further, the 

positions and the number of pollution sources are identified by using collected wind speed, and 

air diffusion models, with which it is not easy to validate the identification accuracies and their 

reliabilities. 

Generally, the best method to improve air pollution is to find out the pollution sources. 

To achieve this, in this study, we first build a small-area sensor network, and analyze the sources 

and diffusion of PM, including PM2.5, PM10 and PM1.0. Next, we propose an air pollution 

monitor system, named Air Pollution Source Identification System (APSIS), which identifies 

positions of air pollution sources based on the data collected in this small area. During our data 

collection stage, the degree of produced pollution is equal to that of household barbecue to 

avoid seriously affecting air quality of our own environment. Because of the small-scale field, 

the pollution sources are known. So the credibility of collected data and the identification of 

the pollution sources are accurate. We also simulate the pollutant distribution in a windy 

environment by Gaussian diffusion model. To check whether the Gaussian diffusion model help 

the APSIS to identify the pollution source or not. 

The rest of this paper is organized as follows. Section 2 explores related studies of this 

research. Section 3 describes the APSIS’s system architecture, data collection and 

preprocessing. Our experimental results are presented and discussed in Section 4. Section 5 

concludes this paper and discuss our future studies. 

 

II. Related Work and Background 

Due to the low cost and small size, IoT devices have been gradually employed by many 

studies to observe air pollution. Rajesh et al. [10] used wireless sensors to monitor air pollution 

and proposed a sensor network establishment method, with which an established system can 

achieve energy efficiency and allow the IoT to instantly observe and evaluate health risks in 
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specific areas. Chen et al. [11] introduced an air pollution IoT system which uses a large number 

of low-cost sensors to collect a huge amount of data and ensure their monitoring accuracy. They 

predict air pollution through a background system and analyze the collected big data. In recent 

years, many studies have tried to predict the concentration, explore the causes and track the 

source of air pollution with IoT systems and machine learning techniques. 

 

2.1 Air Diffusion Models 

According to different mathematical and physical methods, air diffusion models can be 

divided into many types, including Gaussian diffusion model [12,13], Lagrangian Stochastic 

(LS) model [14,15], Computational Fluid Dynamics (CFD) model [16,17] and Community 

Multiscale Air Quality (CMAQ) [18,19], in which Gaussian diffusion model and CMAQ are 

the most widely used ones. 

CMAQ [18] is a model established in a grid environment for collecting atmospheric 

science and air quality information with which to analyze air quality. The CMAQ has its own 

extended models, like coordinate models and weather simulation systems, to simulate the 

topography, geographical coordinates and various meteorological parameters of the real 

environment. It calculates pollution diffusion and accumulation, and explores the interaction 

between pollution sources and meteorological conditions. In addition, CMAQ uses the sparse 

matrix to simulate the size and location of pollution sources through the Sparse Matrix Operator 

Kernel Emissions (SMOKE) model. Many studies adopted this model to predict their air quality 

and meteorology [19]. 

The Gaussian diffusion model has a simple mathematical expression, which is usually 

applied to point source diffusion. This application is quite practical in the case of flat terrain 

[12].  Ma et al. [20] tested the performance of Gaussian, LS, and CFD model. The results show 

that the LS model has higher prediction accuracies than those of the other two models. The 

mean square error of LS model is 506.17. But the calculation time is long, longer than 24 hours. 
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The Gaussian diffusion model has the lowest prediction accuracies. Its mean square error is 

1676.21 which is still within the acceptable level and the model’s computational efficiencies 

are the highest among the three, taking only a few seconds. Therefore, to establish a fast and 

accurate air diffusion analysis model, the Gaussian diffusion model is one of the best choices. 

 

2.2 Tensorflow 

TensorFlow as an open-source machine-learning tool [21] enables large-scale machine 

learning in a variety of environments. It uses data flow diagrams to represent the state and value 

of each operational flow, and utilizes the Tensor Processing Unit (TPU) mode, which is an ASIC 

designed for machine learning, to support high-throughput operations. The use of TensorFlow 

can significantly reduce the difficulty of machine learning and the corresponding development 

costs, allowing developers to focus on their system optimization and training processes. 

 

2.3 Back Propagation Neural Networks 

Artificial neural networks (ANN) is a machine learning technique. It simulates human 

brain neurons for information analysis and decision making [22]. An ANN consists of an input 

layer, an output layer and k hidden layers, k ≥ 1. Each layer has multiple artificial neurons, and 

each neuron has a specific weight, bias, and activation function as its parameters. A neuron uses 

these parameters to establish the relationship between input and output layers. If we do not 

adopt the activation function, the ANN is essentially a linear regression model. The Back 

Propagation neural networks (BPN) adopts an activation function, so the input can be 

nonlinearly transformed and back propagated. It is the reason why it can learn and execute more 

complex tasks, such as voice recognition and handwriting recognition. In a supervised learning 

system, we need to set the initial value of bias and weight to a neural network, and feed the 

system with the learning data and labels. The system will first calculate the error between the 

predicted value and the actual value by using its loss function, and then back propagate the error. 
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It utilizes the chain rule to calculate the partial derivative of the entire error value for a weight, 

and modify the weight and bias values by adopting the gradient descent mechanism. After 

several iterations, the best model can be obtained. 

 

2.4 Convolutional Neural Networks 

The architecture of convolutional neural networks (CNN) is composed of a convolutional 

layer, pooling layer and fully connected layer. Basically, this architecture accepts image data as 

its input, meaning that it can recognize images [23]. When we input an image, of course to the 

convolutional layer, the convolution kernel will extract image features by invoking convolution 

calculation, and generate multiple feature maps. Then it reduces the features through the 

pooling layer to effectively improve the performance of the following steps and lower the 

possibility of model overfitting. The most commonly used methods of pooling include 

maximum pooling and average pooling. At last, the image feature values are input to the fully 

connected layer for flattening, and the subsequent execution process is something like that of a 

BP neural network to train and test the underlying model. 

 

2.5 Recurrent Neural Networks 

Recurrent neural networks (RNN) are mainly used to analyze sequential data [24], such 

as air pollution, climate and traffic flow, etc., in each of which current data is related to its 

previous ones, meaning that RNN remembers the past. The characteristic and state are applied 

to analyze future data. However, when the RNN performs backpropagation to tune its model 

parameters, vanishing gradient or exploding gradient may occur. Especially if the number of 

layers is too many, the weights are multiplied by the derivative of the activation function, which 

may cause the gradient approaches 0, then the gradient vanish, or the gradient approaches 

infinity, causing the gradient explode. Thus, the performance of the trained model will not be 

as expected. So usually RNN is employed together with the functions of Long Short-Term 
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Memory (LSTM). 

LSTM is a model that adds three control units, including input gate, output gate, and 

forget gate, to the RNN infrastructure. In the LSTM memory cell, the input gate determines 

whether it needs to write the underlying neuron’s previous state to memory or not. The forget 

gate forgets or deletes some memory, and then delivers a certain amount of memory to the next 

step through its output gate. Integrating the LSTM and RNN models can simplify computational 

process and solve the problems of vanishing gradient and exploding gradient [25]. 

 

2.6 Hyperparameter Selection 

A neural network model’s performance is often related to the parameters selected. 

Different parameters may generate different outcomes on different learning models. Golovin et 

al. [26] utilized Google Vizier, an internal tuning system developed by Google, to optimize its 

parameters. It has many optimization methods, such as Bayesian optimization, Random search, 

and Genetic algorithm, by using each of which we can adjust parameters to find an optimal 

hyperparameter combination. With the combination, developers can save their time for 

arranging and combining different parameters. Experiments indicate that Bayesian optimization 

usually increases the model’s predictive accuracy compared to that of a manually adjusted 

model. However, Google Vizier is not an open-source system. We need to pay for hosting 

services and tuning through Google CloudML. On the other hand, the functions of Advisor are 

similar to those of Google Vizier [27]. Advisor provides open source on Github, allowing users 

to tune the hyperparameters by using Random search, Grid search and Bayesian optimization. 

It also supports the framework of TensorFlow. 

 

2.7 Bayesian Optimization 

Hyperparameters such as number of hidden layers, number of neurons in a layer, learning 

rate, and activation functions required by neural networks will affect performance of the 
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resultant model. Bayesian optimization optimizes these hyperparameters based on Bayes' 

theorem. [28] utilize Bayesian optimization to tune AlphaGo multiple times so as to improve 

its win-rate from 50% to 66.5% in self-play games. It adopts Gaussian process [29] to establish 

the posterior probability model of the analyzed data’s objective function, and then selects the 

best hyperparameter combination according to its posterior probability distribution for further 

test and iterative operations. However, Bayesian optimization has its disadvantage which is 

constantly sampling training data near local optimal points, hence often unable to evaluate all 

sample points, and then unable to achieve global optimization.  

Therefore, when selecting the sampling points, it is necessary to individually calculate 

the means and variances of the hyperparameters. The larger the mean and variance, the more 

likely the hyperparameters have better performance. However, the maximum value of mean and 

variance may appear in different places simultaneously. A large mean indicates that the global 

optimal solution may be in this region. "Exploitation" shows that the means of sampling points 

are large. A large variance represents that this area has not been explored. Therefore, it is worth 

to explore since a global optimal solution may be there. "Exploration" is to sample a point which 

has a large variance. In Bayesian optimization, acquisition function is used to select 

Exploitation or Exploration to efficiently sample and select the best values for all 

hyperparameters. 

 

2.8 Related Studies 

Many studies [31-33] have tried to predict the concentrations of air pollution for their 

surroundings. Markiewicz [30] used complex mathematical models of Computer Fluid 

Dynamics (CFD) and air diffusion model to predict gas diffusion distribution. Ma and Jin [31] 

proposed Community Multiscale Air Quality (CMAQ), which combines wind speed, wind 

direction and gas diffusion formulas, to identify coal-fired pollution sources. A power plant in 

Northeastern North America is used as a target. It simulated emissions and diffusion of 
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concentrations to find some methods for identifying pollution sources and finding the effects of 

diffusion. Ma [32] evaluated seasonal and meteorological conditions that impact the generation 

of ozone in lake regions with CMAQ, and an ozone generation estimation model was 

established. Its prediction accuracy was assessed by comparing its prediction results with 

actually observed values. Ma et al. [33] proposed the Gaussian-RBF network which combines 

the radial-basis function neural network (RBF network) and Gaussian model. They first 

establish a Gaussian model to analyze the diffusion of air pollution, and then invoke the RBF 

network to reversely derive the source of air pollution according to the diffusion and pollutant 

distribution of the pollutants. The results show that this model can effectively find the source 

of air pollution with the given air pollution diffusion and distribution. 

Keresztes and Rapo [34] analyzed air pollution and meteorological data of the Ciuc basin 

from 2012 to 2013 by using IBM SPSS statistics. Authors tried to find out the correlation 

between temperature, illumination, atmospheric conditions, terrain, traffic, air pollution, and 

the possible causes and sources of pollution by using an air diffusion model which employs a 

gas diffusion mathematical formula to calculate its pollutant diffusion. The IBM SPSS 

statistical model utilizes historical statistics for concentration prediction. However, this model 

is one without learning functions. It is also hard for it to adapt to an unstable atmosphere, thus 

causing many unknown mutations and uncertainties.  

Shaban et al. [35] analyzed temperature, humidity, wind speed, etc., to compare the 

effectiveness of SVM, M5P model trees and ANN in the prediction of air pollutant 

concentrations, including O3, NO2 and SO2. The comparison results show that the prediction on 

M5P is the best. Contreras and Ferri [36] mentioned that wind is one of the most important 

factors affecting the spread of air pollutants. Basically, without wind speed and wind direction, 

a model may easily overfit the corresponding pollutant concentration analysis. Therefore, it 

cannot apply to real world prediction, particularly when wind direction and speed change 

irregularly. 
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Also, in the past, many studies predicted the sites with the highest concentration of 

pollutants as the pollution sources. When wind is weak, the area with the highest concentration 

of pollutants perhaps is one of the pollution sources. But when wind is strong, due to wind 

diffusion, it is possible that air pollutant concentrations of the downwind areas a little far from 

a pollution source may be higher than those of the downwind near the source. We call it strong 

wind effect. Most researchers mentioned that wind speed and wind direction will be key 

parameters of their future work since it is hard for these studies to collect these types of 

information simultaneously throughout the concerned area. Actually, wind speed and wind 

direction affect air diffusion greatly, and also increase the complexity of pollution-source 

prediction. If the eigenvalue is excluded, the model is often overfitted. 

Contreras and Ferri [37] predicted PM2.5 concentrations by adopting wind speed, wind 

direction, rainfall, temperature and humidity. They used wind speed, wind direction and spatial 

interpolation to calculate the diffusion of PM2.5, and then predict the concentrations of PM2.5 

by using random forest. The conclusion is that wind speed and wind direction are two of the 

most important factors affecting the diffusion and prediction accuracies of PM2.5. 

Kurt and Oktay [38] proposed a geographic forecasting model by using the combination 

of ANN and geographic models (GFM_NN). Authors collected data from 10 local monitoring 

stations to train their prediction model, with which to predict the concentration of PM10, SO2 

and CO for the next three days. In [39], a deep convolutional neural network was employed to 

analyze the pictures showing the PM2.5 concentrations. Photos of PM2.5 concentrations are 

classified into different categories to train the neural networks, so that the machine can analyze 

current air quality through those currently collected photos. In [40], the mean and variation of 

the meteorological data and pollutant concentrations used to characterize data are provided by 

the air monitoring stations in Taiwan, and LSTM is employed to predict the air pollution 

concentrations for the next 72 hours.  

Bahari et al. [41] utilized traffic, wind speed, wind direction, temperature, humidity and 
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other data collected during the time period from 2012 to 2013 to predict the PM2.5 

concentrations for the next 3 days. Lary et al. [42] predicted the global space-time variation of 

PM2.5, using the data gathered from 8329 monitoring stations in 55 countries during the time 

period from 1997 to 2014. Feng et al. [43] integrated wavelet transformation and an ANN model 

to predict PM2.5 concentrations for the next two days. Zheng et al. [44] utilized neural networks 

and linear regression models to simulate spatial and temporal air quality distribution and predict 

air quality for 43 cities in China. The predicted data are hourly updated for the next 48 hours.  

Ong et al. [45] used a deep recurrent neural network model and the data provided by the 

National Institute for Environmental Studies (NIES) in Japan to predict future concentrations 

of PM2.5. The features adopted include wind speed, wind direction, temperature, humidity and 

PM2.5 concentrations. After learning, the performance of the proposed model is more superior 

than that of the NIES’s system.  

Up to present, only a few studies employed neural networks to predict air pollution 

sources. The reason is that reliable air pollution data and sources are difficult to obtain. With 

supervised learning, we need to give the machine a label to show that this is a pollution source 

so that the developed system can know the features of these sources. Even with semi-supervised 

or unsupervised learning, and the proposed models are well-trained, in our real environment, 

there are no actual data labels with which we can know the accuracy and reliability of the 

prediction results. So we need to collect reliable data and develop some methods to overcome 

these problems. 

 

III. The Architecture of the APSIS 

Figure1 shows the processing flow of the APSIS, in which Air Boxes are deployed to 

build an Internet of Things (IoT) field for the measurement of air pollutant concentration and 

collection of wind data. After that, we preprocess the collected data and input the data into an 

air diffusion model. Also, CNN, BPN and RNN neural network models developed on 
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Tenserflow are employed to predict the sources of air pollution. Next, Bayesian Optimization 

is applied to adjust the hyperparameters of the three neural network models, including the 

number of hidden layers, number of neurons, activation functions, learning rates and optimizers, 

so as to comprehend which model performs the best. 

 

Figure 1. The processing flow of the APSIS. 

 

 

3.1 Establishing IoT-based Air Boxes 

In order to confirm the reliability of the trained model, when training a neural network 

model, it is necessary to know its pollutant concentration and each data is collected directly 

from a pollution source without employing any diffusion model. Basically, high-density IoT 

nodes are required to identify the labels of the pollution sources. Figure2 illustrates the IoT field 

which, as a square area of 25 m long and 25m width, is divided into 25 grids of equal size. A 

total of nine air boxes, also called IoT nodes, are installed. Each contains a dust sensor, a wind- 

speed sensor and a wind-direction sensor all connecting to an Arduino, as shown in Figure3. 
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Four air boxes are placed at the four corners of the grid, and the remaining five as shown in 

Figure2 are put in the middle of the IoT field. One or two pollution sources are randomly placed 

at one or two of the middle five grids. Owing to small fields, the diffusion of pollutant can be 

more accurately measured. 

The purpose of this study is to find the location of the pollution sources through machine 

learning technique, rather than relying entirely on deploying high-density sensors. We placed 

sensors in a downwind of pollution, trying to find the highest pollution concentration. However, 

in a real situation, wind direction often changes greatly. Sometimes, the angle of instantaneous 

wind direction may change 180 degrees. Further, due to the principle of heat rise [46], the 

response time of sensors and the instability of the smoke source, inconsistencies may occur. For 

example, as experiments are performed at different time points, and the location of the pollution 

source and the wind direction are individually the same, the air pollution concentration collected 

by the same IoT node placed at the same location is different. Generally, sensors placed at the 

downwind near air pollution source ought to be able to detect high pollution. But sometimes 

owing to unstable smoke source and/or the rising of hot air, a sensor, e.g., N, on the contrary 

detect pollution concentrations which are lower than those detected by the sensors in N’s 

downwind. It is also possible that when wind direction changes, and pollutant distribution is 

unstable, the relationship between wind direction and pollutant distribution is not completely 

consistent. However, such problems are inevitable, particularly when we detect pollution in an 

open field with a real-time manner. 
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Figure 2. The layout of IoT nodes. 

 

 

 

 

Figure 3. An air box, i.e., an IoT node, consists of a dust sensor, a wind-speed sensor and a 

wind-direction sensor all connecting to an Arduino. 
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3.2 Data Collection and Preprocessing 

This section will discuss how data are collected and preprocessed. 

 

3.2.1 Data Collection 

The IoT field is established in Taichung City, Taiwan, gathering air pollution 

concentrations produced by our pollution sources from October 2018 to March 2019. The 

number of pollution sources may be one or two. Each of the 9 IoT nodes collects data every ten 

seconds, a total of 11,934 data records has been acquired. Among them, 8833 are one-pollution-

source records. The remaining 3101 are dual-source records. Each data record contains data 

collected by the 9 air boxes, i.e., a total of 107406 (=11934*9) records of sensor data, called 

sensor records, are gathered. Each sensor record consists of 8 variables, including wind speed, 

wind direction, PM1.0, PM2.5, PM10, position of the node, time and the location of pollution 

source. In order to increase data diversity, the experiments were conducted across three seasons 

from autumn to spring.  

In Taiwan, wind directions vary in different seasons. We collect data one time or two 

times a week. Each time lasts about one hour. During data collection, the locations of pollution 

sources are different. Since wind direction and strength changes drastically, it is hard for us to 

find time-series correlation among the pollution concentrations. So we do not adopt time data 

as one of machine-learning features. In addition, due to fixed positions of nodes, positions are 

also not the APSIS’s feature. Of course, data collected by IoT nodes are orderly input to train 

the APSIS. Basically, we only use the remaining seven variables listed in Table1 as our 

pollution-source-identification features. In supervised learning, we give the machine a label 

defined as the exact location of pollution source, allowing the machine to define the relationship 

between the features and the label. The purpose is to identify whether or not there a pollution 

source is placed in the grid where a node locates, so as to learn and calculate the identification 

error for system adjustment. 
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Table 1. Features of the APSIS. 

Variables (lag 10 sec) Unit 

I. Pollutant concentrations 

(1) PM 1.0 

(2) PM 2.5 

(3) PM 10 

 

II. Meteorological features 

(1) Wind direction 

(2) Wind speed 

 

III. Others 

(1) Positions of the IoT nodes 

(2) Location of a pollution source 

 

μg/m3 

μg/m3 

μg/m3 

 

 

Radians 

m/sec 

 

 

1 to 9 

T or F 

 

3.2.2 Data Preprocessing 

As mentioned above, some factors, e.g., abnormal data values, may negatively affect the 

identification accuracy of the APSIS. To reduce the affection, smoothing and normalizing data 

are popularly utilized. So we need to gather statistical data and then process the statistical data 

with the following procedure. First, we classify the data collected by a node based on wind 

direction and location of pollution source. Because the concentration levels of PM1.0, PM2.5, 

and PM10 in each data record of each IoT node are different, we consider that they are three 

categories in each node. Therefore, 35,802 (= 11,934*3) category records are then generated. 

Each category has 11,934 category records, called a category group. In other words, we have a 

total of three category groups, named c-group 1.0, c-group 2.5 and c-group 10.  

For each category group, we first sort the 11,934 category records on their wind directions, 

second on location of pollution source and third on concentration scales for a node, meaning 

that different nodes are processed separately. After that, those category records of the same wind 

direction and same location of pollution source are clustered, e.g., for c-group 1.0, given a node, 

e.g., N, a wind direction WD and a location of pollution source PS. Due to sorting, those records, 
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some of N’s 11,934 PM1.0 category records, that meet WD and PS will be retrieved, e.g., a 

total of M category records, M ≤ 11,934. PM 1.0’s concentrations of which are between 0 

and100 ug/m3, belong to PM1.0-cluster 0 (WD, PS), those from 100 to 200 ug/m3 are classified 

into PM1.0-cluster 1 (WD, PS), and so on. The scale difference from the max scale to the min 

scale of a cluster is 100 ug/m3.  

For each (WD, PS) pair, the category records in the two clusters with the largest amount 

of category records are considered as the normal data of (WD, PS). But, if the two clusters are 

not direct neighbors, we consider that the cluster with the largest amount of category records 

are normal data of this (WD, PS). The rest records of (WD, PS) are abnormal data which is then 

substituted by invoking the interpolation method for data smoothing. The substitution process 

is that we first average all normal data, i.e., category records, on their concentration scales, e.g., 

A is the average. For each abnormal category record of (WD, PS), e.g., D, a random value R, 

ranging between 0 and one-fifth of A, is added to A, resulting in a new random value, i.e., A + 

R, which is then substituted for D. After that, the other (WD, PS)s are processed by using the 

same method until all category records in c-group 1.0 are processed. Then we repeat the same 

procedure to process category records in c-group 2.5 and c-group 10 individually.   

Take the PM10 measured at node 7 as an example. Figure 3 shows the statistics data of 

node7 when the wind blows from northeast to southwest and there is only one pollution source 

located at node 5 or 7. Figures 3a shows the numbers of category records of PM10 on different 

concentration scales for node7, whereas Figures 3b illustrates 50 category records of the air 

pollution concentrations before and after our data smoothing. We can see that after data 

smoothing, the fluctuation of PM values is mitigated. Table 2 lists the numbers of smoothed 

category records. The total smoothing rate of one pollution source (two pollution sources) is 

9.5% (12%). Among them, since nodes 1, 2, 8, and 9 are placed at the four corners, the impact 

on them by pollution sources is small, hence conducting less percentage of smoothed data.  

In addition, in Taiwan, winter winds are mainly from the northeast. The time period from 
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autumn to winter is monsoon transition time. Southerly winds may come during the transition 

time periods from winter to spring. In fact, wind direction is mainly affected by seasons, sea-

land breeze and terrain of the region. Therefore, as a whole, node 3 located at the northeast 

monsoon downwind is the one highly suspected as a pollution source. However, the data 

collected at node3 varies seriously, consequently conducting many inaccurate data. 

Summary  

1. A data record consists of the data collected by 9 IoT nodes, i.e., (sensor-record 1, 

sensor-record 2, … sensor-record 9). There are totally 11,934 data records. 

2. A sensor record comprises the data collected by an IoT node, i.e., wind speed (WS), 

wind direction (WD), PM1.0, PM2.5, PM10, position of node (PN), time and location 

of pollution source (PS). There are totally 107,406 (=11,934*9) sensor records. 

3. For a category, e.g., PM1.0, there are 107,406 category records, named c-group 1.0. A 

category record is consisted of (WS, WD, PM1.0, PN, PS), c-group 2.5 and c-group 

10 have the similar category record content, i.e., (WS, WD, PM2.5, PN, PS) and (WS, 

WD, PM10, PN, PS) and∣c-group 1.0∣=∣c-group 2.5∣=∣c-group 10∣=107,406. 

 

(a) Statistics of PM10 on node7          (b)Statistics before and after data smoothing  

Figure 4. Statistical data collected at node7 for PM10 when the wind direction is 45 radians 

and pollution source is individually placed at node5 or node7. 
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Table 2. Total numbers of smoothed category records on each IoT nodes. Each IoT node 

collects 11934 sensor records in which there are 35802 (26499 + 9303) PM x category 

records, x= 1.0, 2.5 or 10. 

 

IoT node 

 

Number of smoothed category records  

One source 

(8833*3 = 26499) 

Dual sources 

(3101*3 = 9303) 

1 1,697 ( 6.4%) 996 (10.7%) 

2 1,488 ( 5.6%) 582 (6.2%) 

3 4,884 (18.4%) 1,794 (19.2%) 

4 2,958 (11.1%) 1,613 (17.3%) 

5 4,278 (16.1%) 1,599 (17.1%) 

6 3,078 (11.6%) 1,455 (15.6%) 

7 2,578 (9.7%) 878 (9.4%) 

8 1,011 (3.8%) 706 (7.5%) 

9 851 (3.2%) 481 (5.1%) 

TOTAL 22,823 ( 9.5%) 10,104 (12%) 

 

After data smoothing, the Min-Max Normalization is applied to project different scales 

of feature values into the range between 0 and 1, making the data easier to learn and thereby 

improving the performance and training speed of the APSIS model. For each c-group, the ith 

normalized data denoted by Ni is defined as 

 

                                                                         (1) 

 

where xi is the collected data of a category record, xi ∈ {x1,...,xn}, n=11,934, for PM x, x=1.0 

2.5 or 10, and min{xj} (max{xk}) is the minimum (maximum) value of x, 1 ≤ j, k ≤ n. 
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3.3 The Architecture of Analysis Model 

This section will describe our air diffusion model and neural network model. 

 

3.3.1 Air Diffusion Model 

 Our air diffusion model is developed based on the Gaussian diffusion formula shown in 

Eq. 2 to simulate the diffusion of pollutants. Let Cgau be an integrated parameter calculated as  

   

[20]              (2) 

 

where Di represents the positional parameters (including downwind direction Dx, the horizontal 

distance perpendicular to the downwind direction Dy and Dz is the vertical distance), Ai is the 

atmospheric parameters (such as wind direction, wind speed (u in m/s) and atmospheric stability, 

etc.), h is the height of the pollution source (m), and σy and σz are, respectively, the statistical 

standard deviations of the horizontal and vertical dimensions in the calculation of plume where 

σy and σz are affected by atmospheric stability. 

In the simulation of pollutant diffusion, the wind speed, wind direction and pollutant 

concentrations are collected. Temperature and humidity are acquired from the Meteorological 

Bureaus near our IoT field. The other special parameters are obtained by referring to the data 

of Prairie Grass emission experiment [47], e.g., wind friction velocity and atmospheric stability 

parameter.  

At last, we simulated the diffusion of pollutants, and compared the simulation results with 

the data we actually observed to determine whether or not we can accurately simulate the 

diffusion of pollutants through Gaussian diffusion model given a small number of parameters 

so as to provide correct data for machine learning. 
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3.3.2 Neural Network Model 

In this study, Python is utilized to implement the three neural network models, i.e., BPN, 

CNN, and RNN, on tensorflow. The data represented by array shown in Figure 5 are the input 

data of BPN and RNN. Pictures input to CNN as shown in Figure 6 are organized as a picture 

matrix based on the location distribution of the IoT nodes in the IoT field, i.e., node N’s feature 

data in the matrix is the same as the position of the node in the IoT field. Namely, the data that 

CNN analyzes are a three-dimensional matrix of 5x5x5, of which the first 5x5 is the number of 

the flat grid in the IoT field. Each feature is expressed by a channel. Since there are a total of 5 

channels, i.e., 5 features, including PM1.0, PM2.5, PM10, wind direction and wind speed. The 

value of 0 is given to the position of the matrix when the position provides no IoT nodes. The 

purposes are finding the correlation between the locations of these IoT nodes and the pollution 

concentrations, and improving the capability of machine in extracting and recognizing picture 

features. 

 

 

 

Figure 5. The data structures utilized as the inputs of BPN and RNN. Each node, e.g., node i 

contain 5 features, including PM1.0, PM2.5, PM10, wind direction and wind speed. 
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Figure 6. The data structure is utilized as the inputs of CNN. 

 

 

The process of model training is as follows. (1) To reduce the possibility of overfitting, the 

k-fold cross-validation [48] method is applied to divide the single-source data into 10 sub-

samples, with which to train and test the three neural network models; (2) Manually adjust the 

parameters to find the best identification accuracy; (3) The Advisor for Bayesian optimization 

is employed to recommend the best hyperparameters; (4) Compare the accuracy between 

manual tuning and automatic tuning, and then select the best parameters; (5) Propose the best 

model of BPN, CNN and RNN; (6) At last, the data of two pollution sources are input to the 

trained models for testing. After this, the established model is applied to analyze the accuracy 

of identifying multiple pollution sources. Consequently, the proposed model is the most suitable 

for the detection of air pollution sources.  

During the air pollution-source identification stage, the data gathered by the four nodes at 

the corners, including nodes 1, 2, 8 and 9, are only used as the feature, without being the target 

pollution-source identification. Because our pollution sources have never been placed at the 

four points, their labels are always False. If they are added as a part of the training data, the 

machine will possibly identify all the IoT nodes as non-polluting sources directly to increase its 
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identification accuracy because most IoT nodes are denoted by false. But this is a false accuracy. 

In reality, it is difficult to identify the number of pollution sources from air-quality data collected 

by air quality monitoring stations since these data often are not accompanied with locations of 

pollution sources. Basically, we like that the machine can autonomously identify all pollution 

sources, rather than wishing a model to identify a specific number of pollution sources decided 

by users.  

 

IV. Results and Evaluation 

The specifications of our simulation environment are shown in Table 3. In this study, three 

experiments are performed. The first analyzes the diffusion of pollution concentrations. The 

second measures the APSIS’s identification accuracy in a real environment. The third 

experiment evaluates identification accuracy given one pollution source or two pollution 

sources.  

The accuracy of a model is defined as. 

 

                         Accuracy =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
                      (3) 

 

where TP standing for true positives is defined as that it is true and the APSIS identification is 

also true, TN representing true negatives is defined as that it is false, and the APSIS 

identification is also false, FN meaning false negatives is defined as that it is true, but the APSIS 

identification is false, and FP standing for false positives is defined as that it is false, but the 

APSIS identification is true.Due to some level of erroneous learning of the APSIS, we need to 

improve its TP. The model is also verified by recall which is defined by Eq.4. 

 

                        Recall =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
                               (4) 



 

23 
 

 

Through recall, we can clearly know the proportion of TP. The higher the value of recall, 

the higher the performance of the model. 

 

 

Table 3 Specifications of our simulation environment. 

CPU Intel Core i9-9900 HK (eight cores) 

Graphic card NVIDIA GeForce RTX 2070, 8GB GDDR6 

RAM 32 GB 

Operating system Linux (Ubuntu 16.04) 

The version of python 2.7 

The version of tensorflow Gpu 1.8.0 

 

 

4.1 Simulated and Observed Values of Pollution Concentrations 

In the first experiment, we analyzed pollutant diffusion through the Gaussian diffusion 

model and compared the simulation results with the actually measured concentration of 

pollutants. On a visualized image, the concentration of a node represents the concentration of 

this grid where the node is placed. We also try to adjust the size of a grid, i.e., 1 meter(m) and 

5meter(m), to show the results of the Gaussian model. The simulation results are shown in 

Figure 7, in which the wind speed is slow and the concentration detected by the node at the 

pollution source is the highest. In this situation, the Gaussian diffusion model can roughly 

simulate a similar pollutant diffusion. But there is still a significant difference between them.  

Because in a portion of the simulation results, the node, e.g., N, with the highest 

concentration is not always a pollution source, and we apply the Gaussian diffusion model to 

point out pollutant emitters given the location of N and its current wind direction. With the 

Gaussian diffusion model, the node with the highest concentration is considered as the pollution 

source. When we input N as a pollution source into the Gaussian diffusion model, even though 

it is not a pollution source, the results are shown in Figures 8 and 9. Since the Gaussian diffusion 
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model does not provide the reverse function of its calculation and learning, the simulation 

results and the actual results demonstrate some amount of difference.  

When the wind speed is higher and the unit grid is 5m x 5m, as shown in Figures 8b and 

9b, the Gaussian model is hard to simulate the pollution diffusion. But if we adjust the grid unit 

to 1m x 1m, as shown in Figures 8c and 9c, we can simulate the diffusion which is better than 

those illustrated in Figures 8b and 9b. But the results are still not very accurate. Of course, the 

results shown in Figure 7c are more accurately simulated compared to those of Figures 8c and 

9c. We can find that when the wind speed is fast or the grid unit is large, the simulation results 

are very poor. However, when the wind speed is slow and the grid unit is small, the simulation 

results can more accurately approximate to the actual pollution diffusion. It means that in an 

unstable and small environment, e.g., with a fast wind speeds, the Gaussian diffusion model 

cannot effectively simulate the real environmental conditions due to the rapid movement of 

pollutants. If we can expand the range of our IoT field and gather more accurate parameters as 

the inputs of this model, it may effectively improve the performance of the diffusion model. 

 

 

 (a) Detection results of IoT nodes        (b) Simulation results of           (c) Simulation results of 

Gaussian diffusion model          Gaussian diffusion model 

(size of a grid:5m x 5m)            (size of a grid:1m x 1m) 

 

Figure 7. Pollution source is placed at node5 (central grid of this IoT field, Dark red in color 

in Figure 7a), the concentration of PM10 is 710 μg/m3, wind speed is 0.1m/sec and wind 

direction is 135 radians. 
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(a) Detection results of IoT nodes        (b) Simulation results of           (c) Simulation results of 

Gaussian diffusion model          Gaussian diffusion model 

(size of a grid:5m x 5m)           (size of a grid:1m x 1m) 

 

Figure 8. Pollution source is placed at node5 (central grid of this IoT field, Orange in color in 

Figure 8a), the concentration of PM10 is 652 μg/m3, wind speed is 2.8 m/sec and wind 

direction is 135 radians. 

 

 

 

 

 

 

(a) Detection results of IoT nodes        (b) Simulation results of           (c) Simulation results of 

Gaussian diffusion model          Gaussian diffusion model 

(size of a grid:5m x 5m)            (size of a grid:1m x 1m) 

 

Figure 9. Pollution source is placed at node 7(central grid of this IoT field, Green in color in 

Figure 9a), the concentration of PM10 is 611 μg/m3, wind speed is 1.2 m/sec and wind 

direction is 45 radians. 
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4.2 Comparison of Data Preprocessing and Tuning 

The second experiment is conducted in a real environment. Basically the identification 

accuracy is affected by environmental parameters, measurement accuracy of IoT equipment, 

and data inaccuracy. Therefore, we preprocess the data and compare the identification results 

before and after the data preprocessing. After that, parameters of the three neural network 

models are optimized by using the Bayesian optimization approach. Our experimental results 

are shown in Figures 10 and 11. It is clear that the accuracies of BPN and CNN after data 

preprocessing (i.e., smoothing) as shown in Figure 10 are not significantly higher than those 

before data preprocessing. Of course, RNN’s accuracies have been enhanced obviously. But as 

shown in Figure 11, after Bayesian optimization, the accuracies of BPN, CNN and RNN are 

significantly improved, indicating that Bayesian optimization can positively tune a model’s 

hyperparameters. Table 4 summarizes several important indicators of the two figures, where 

steps represent before data preprocessing, after data preprocessing and after Bayesian 

optimization, respectively. 

Before preprocessing, the accuracies of BPN, CNN and RNN are 79.8%, 83.7% and 

68.3%, respectively and the recalls of the three are 0.57, 0.64 and 0.36, respectively. Among 

them, RNN underperforms the other two. After data preprocessing, the accuracy of BPN 

reaches 87.6%, increasing 7.8%, and the recall is 0.61 after 140th epoch. The accuracy of CNN 

after 90th epoch is 86.5%, increasing only 2.8%, and the recall is 0.65. RNN demonstrates the 

most significant improvement after data preprocessing. The resulting accuracy after 106th epoch 

is increased by 13.4% to 81.7%, and the recall is 0.55. But its accuracy is still the worst.  

Before data preprocessing, due to some inaccurate data, the accuracies of these three 

models are low. However, after data pre-processing, the identification accuracies of the three 

models have increased, and the epoch (time) of training is shortened, except that of BPN which 

is from 111 to 140. Basically, the effectiveness of neural network training after data pre-

processing is significant. However, the recall improvements on BPN and CNN are not as 
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expected. From the recall, we can realize that a model attempts to learn how to find false so as 

to enhance its identification accuracy since most of the IoT nodes are not pollution sources, i.e., 

false. It is also the reason why the improvement on finding the label, i.e., identifying the 

pollution source, is not significant.  

 

 

Figure 10. Accuracies of identifying pollution source when the pollution source is 

individually placed at node5 and node7. Data of PM10 are collected at node7. 

 

 

Figure 11. Accuracies of air-pollution-source identification before and after Bayesian 

Optimization. 
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Table 4. Comparison of model performance (before data processing; after data processing; 

Bayesian optimization). 

Model BPN CNN RNN 

Step before after optimi before after optimi before after optimi 

Accuracy (%) 79.8 87.6 94.2 83.7 86.5 91.3 68.3 81.7 84.1 

Recall 0.57 0.61 0.88 0.64 0.65 0.85 0.36 0.55 0.78 

Epoch 111 140 58 135 90 21 110 106 40 

 

In fact, the concerned parameters can be adjusted to further improve the performance of 

the three neural network models. At the beginning of this stage, we manually adjusted 

parameters for these three models. It is time consuming since a neural network has a lot of 

parameters and each parameter’s adjustable range is large, meaning that it is hard for us to 

manually tune these parameters one by one. In this study, some parameters, like strides and 

padding of CNN's convolutional-layer parameters and pooling-layer parameters which affects 

the number of extraction features, dropout of some neurons and initial values of parameters, 

e.g., forget bias and cell’s state in LSTM Cell, are manually adjusted by us. Other 

hyperparameters are regulated by Bayesian optimization to optimize its objective function 

which in this study is employed as the loss function of the trained model, aiming to maximize 

identification accuracy. In other word, when training the model, those selected hyperparameters 

(see the first column of Table 5) are not necessary to be adjusted to the best on the convergence 

epoch (time). To identify whether a node is a pollution source, output layers adopt sigmoid to 

limit each of the five output values (corresponding to 5 IoT nodes placed at the center of the 

IoT field) to the range between 0 and 1. The purpose is to identify each of the five outputs of 

the five nodes as True or False. In fact, only the activation function of the hidden layer is tuned 

by Bayesian optimization.  
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The hyperparameters before and after Bayesian optimization are shown in Table 5. In order 

to achieve the best learning results, we manually adjusted the learning rate to a low value, i.e., 

0.0001. After Bayesian optimization, the learning rate of the three models has increased a lot. 

Some of the other hyperparameters are significantly changed, e.g., number of BPN’s nodes is 

increased from 100 to 296, and some remain unchanged. 

 

Table 5. Hyperparameter selection before and after Bayesian Optimization. 

Model BPN CNN RNN 

Method manual Bayesian manual Bayesian manual Bayesian 

Number of layers 10 6 2 3 1 2 

Number of nodes 100 296 100 322 500 197 

Learning rate 0.0001 0.0023 0.0001 0.0044 0.0001 0.0051 

Activation function sigmoid tanh sigmoid Relu sigmoid / tanh sigmoid / tanh 

Batch size 1 1 1 1 1 8 

Optimizer RMSProp Adam Adam Adam Adam RMSProp 

 

 

BPN 

After Bayesian optimization, we found that the learning rate and the number of neurons 

of BPN (see the rows of “Learning rate” and “Number of nodes” in Table 5) are both increased, 

and the number of layers is reduced from 10 to 6. The activation function, optimizer and Batch 

size remain unchanged. The convergence of model training has been much earlier. The accuracy 

as shown in Table 4 is increased by 6.6% to 94.2% (from 87.6%), and the recall is increased 

from 0.61 to 0.88, both of which are individually the highest among the three nodes. But its 

training epoch (time) i.e., 58, is ranked the third.  
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CNN 

The number of layers of CNN listed in Table 5, as the number of convolution layers, is 3 

in this study. Number of nodes, as the number of neurons in the fully connected layer, is 

increased from 100 to 322 after Bayesian optimization. The learning rate is increased from 

0.0001 to 0.0044, and the activation function is changed from sigmoid to Relu. Batch size (i.e., 

1) and optimizer (i.e., Adam) are not changed. As illustrated in Table 4, the accuracy of CNN 

apparently is increased by 4.8% to 91.3% (from 86.5%), and the recall is increased from 0.65 

to 0.85. Both are slightly lower than those of BPN. However, its convergence, i.e., 21, is the 

fastest among the three, probably because of the use of Relu (see Table 5). Generally, the 

convergence epoch (time) of Relu is faster than that of sigmoid. But because the number of 

layers that we use is only 2, the biggest possibility is the learning rate or applicability of CNN 

itself to the given data.  

 

RNN 

The number of layers of RNN refers to the number of layers of LSTM. We increase it to 

2. The number of neurons, learning rate and Batch size are increased to 197, 0.0051 and 8, 

respectively. The activation functions of LSTM on the internal gates are still sigmoid and tanh. 

But the optimizer is changed to RMSProp. The data we collected may not be completely 

suitable for RNN, snice after optimization, the accuracy only increases 2.4% to 84.1% (from 

81.7%). But its recall is increased to 0.78 from 0.58. On the other hand, probably because of 

increasing its learning rates and reducing number of neurons, its convergence (Epoch) has been 

significantly improved, i.e., from 106 to 40. However, its accuracy and recall are still the worst 

among the three models. Literature indicates that RNN has good analytical ability for sequential 

data [25] and good performance in air-pollution-concentration prediction [39]. This may be the 

reason why RNN is suitable for the condition when data has been collected for a long time, the 

collection region is wide, and wind speed and wind direction are stable. However, in this 
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experiment, it probably is that the data is collected in a small area, the data collection time is 

not long enough, and the wind direction and the smoke (pollution) flow are unstable. 

Consequently, RNN did not perform well, even after data preprocessing and hyperparameters 

optimization. When the region and data volume of this study are expanded, perhaps the 

performance of RNN will be better than what it has in this study. 

In Table 4, we can see that the accuracies of these three neural network models have been 

improved after Bayesian optimization, their training’s convergence epochs (times) are 

shortened, and recalls are significantly increased. It means that we can more effectively find the 

location of the pollution source, thus not only improving model’s identification performance, 

but also saving a lot of time and energies for pollution-source identification. If originally one 

of the models does not perform well, the improvement is often obvious. 

    

4.3 Analysis of Two Pollution Sources 

In reality, air pollution often comes from several pollution sources simultaneously. This 

also shows that when identifying pollution sources, it is necessary to test whether an employed 

model can effectively detect multiple sources. But how to differentiate which pollution 

concentration is produced by which source is an engineering challenge. In fact, it is hard for us 

to obtain the data that clearly identifies multiple pollution sources and then train the model with 

these data. Therefore, in the third experiment, we wish to find the second pollution source given 

different experimental conditions. Three dual-source models (D-model for short) will be trained. 

The first was trained by using the data collected when there is only one pollution source. The 

second is that D-model was trained and tested by using the mixed data of single pollution source 

and two pollution sources. The third reuses the first model, but checks the probability that a 

node can be a pollution source. 
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4.3.1. Training a Model with Data of Single-Pollution Source  

In fact, the first D-model is the one trained by using single-pollution source. But this time, 

we use it to identify two pollution sources. Table 6 shows that the accuracies of BPN, CNN and 

RNN are 58%, 65%, and 39%, respectively. The recalls of the three are all lower than 0.3. CNN 

occasionally finds two pollution sources. But in most cases, the accuracies are low. The reason 

is that the pollutant diffusion of two sources is different from that of single source. For example, 

in a single pollution source, the nodes that did not detect pollution may now discover polluted 

air in a D-model environment. Because the model is trained on a single-pollution source, the 

weights of the neurons used by the machine are only suitable for finding one pollution source. 

So it is a little hard to be directly applied to identify more pollution sources.  

To conquer this problem, on each experiment, we check to see whether a node is a pollution 

source or not, rather than identifying two pollution sources. The activation function of the 

output layer is sigmoid. Consequently, the model can effectively analyze collected data only 

when the pollution diffusion of two pollution sources is similar to that of a single source. In 

fact, the machine can sometimes identify one of the two pollution sources, but in most cases, 

the model does not work well. 

 

 

Table 6. The performance of BPN, CNN and RNN for identifying two pollution sources when 

they are trained with the data collected for single pollution source and tested with the data 

collected for two pollution sources. 

Model BPN CNN RNN 

Accuracy (%) 58% 65% 39% 

Recall 0.15 0.28 0.11 
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4.3.2. Training a Model with Data of Single Pollution Sources and Two Pollution Sources 

As mentioned above, we individually train and test the three neural network models with 

single pollution source and two pollution sources. But in the test phase, we did not specify the 

number of pollution source that the model should identify. What we have done is only checking 

to see whether a node is a pollution source or not, through sigmoid, and then comparing the 

identification results with the actual locations of pollution sources. 

Table 7 shows the accuracies (recalls) of BPN, CNN and RNN which are 88.2%, 87.6%, 

and 79.1% (0.81, 0.84 and 0.66), respectively. In particular, BPN and CNN have achieved 

certain performance in identifying pollution source. Although the accuracies of CNN are 

slightly lower than those of BPN, its recall, i.e., 0.84, is slightly higher than BPN’s, i.e., 0.81, 

meaning that compared with BPN, the probability that CNN may identify a node which is not 

a pollution source as a pollution source, i.e., False positive, is higher than that of BPN. But 

CNN can also identify pollution sources more effectively than BPN and RNN since CNN’s 

epoch (see Table 4) and recall (see Table 7) are better than BPN’s.  

 

 

 

Table 7. The performance of BPN, CNN and RNN for the identification of two pollution 

sources when they are trained and tested with the mixed data collected for single pollution 

source and two pollution sources. 

Model BPN CNN RNN 

Accuracy (%) 88.2% 87.6% 79.1% 

Recall 0.81 0.84 0.66 
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4.3.3. Identification the Most Likely Position of a Pollution Source 

In the third D-model, we maintain the same data preprocessing and Bayesian optimization 

steps, and the activation function of its output layer is changed to softmax from their originated 

ones. We also change the algorithm for accuracy calculation. Instead of judging whether a node 

is pollution source or not, we check to see whether a node is the most likely to be a pollution 

source or not. If the model accurately identifies at least one pollution source when there are two 

pollution sources, we consider that this identification is success.  

We first use the data collected when there is only one pollution source to train and testing 

a model, and then input two pollution sources for testing. The experiment process is the same 

as first D-model, but the activation function of output layer, i.e., sigmoid originally, is now 

substituted by softmax. The identification accuracy is defined as 

 

       Identification accuracy with two pollution sources =
𝐶

𝐷
           (5) 

 

where C is the number of correct identification and D is the total number of identification. Note 

that Eq.3 is used to identify whether a node is a pollution source, and each tested data has 5 

identification results, each of which is yes or no. Eq.5 is to determine whether a node is probably 

a pollution source or not based on tested data, no matter whether the data is a single source or 

two sources. Therefore, each tested record has only one identification result, i.e., yes or no. In 

other words, if the location of a node is the same as the location of a single pollution source or 

the location of one of the two pollution sources, we consider that the identification result is 

correct, and C is then increased by 1.  

The test results are shown in Table 8. The identification accuracies with two pollution 

sources of BPN, CNN, and RNN are 79.1%, 82.6%, and 71.3%, respectively. Among them, 
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CNN has the highest accuracy. BPN’s performance ranks the second. With this learning method, 

a model can effectively find the most likely pollution source given different numbers of 

pollution sources. Recall in the third D-model is meaningless since sometimes correct 

identification is only identifying a part of the two pollution sources. It is hard for us to define 

whether it is a successful recall or a fair recall. 

 

Table 8. The performance of BPN, CNN and RNN when they are trained with the data 

collected for single pollution source and tested with the data collected for two pollution 

sources to identify the most likely position of a pollution source. 

Model BPN CNN RNN 

Accuracy (%) 79.1% 82.6% 71.3% 

Recall - - - 

 

V. Conclusion and Future Work 

We originally envisioned the use of air diffusion models to help machines identify 

pollution sources. Therefore, in order to perform calculations quickly, we use the Gaussian 

diffusion model to simulate the diffusion of pollutants. But the results of the analysis are not as 

expected. Although the Gaussian diffusion model is fast, its accuracy is poor. We think that it 

is not suitable for air pollution source identification. When wanting to identify the location of 

the pollution source through the diffusion of pollutants, we need more accurate analysis results. 

Therefore, it is necessary to use a more effective model and more parameters to do this 

experiment. 

Machine learning can really help us to find out air pollution source. Here, we confirm that 

preprocessing the collected data and employing Bayesian optimization can effectively increase 

the efficiency of machine learning and accuracies of pollution source identification. At the same 
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time, we also found that it is quite difficult to predict multiple pollution sources through limited 

data. The result is that they cannot effectively find two pollution sources when trained by only 

using the data of single pollution source. 

So we use two other methods. One is to directly utilize the mixed data of single pollution 

source and two pollution sources for training and testing. The other is to use Softmax to find 

the most likely source of pollution in various types of data. They have performed well and we 

found that sometimes BPN has better accuracies than CNN and RNN individually have, but 

CNN has better accuracies and epochs (times) of convergence than BPN and RNN individually 

have in most cases. Among the two pollution sources, the efficiency of BPN is worse than that 

of CNN. In other words, CNN is relatively suitable for analyzing the source of air pollution in 

a grid field. We think that CNN can identify the relationship between position of nodes and 

wind direction from a small amount of data. This is why CNN performs the best. 

We confirm the feasibility of applying the Gaussian diffusion model to identify air 

pollution sources and propose a model prototype for identifying pollution sources by utilizing 

CNN. In the future, we wish to gradually expand the region of the IoT field and increase the 

number of features, such as temperature, atmospheric pressure and other pollutant 

concentrations. We would also like to integrate our models with air diffusion models to analyze 

the diffusion of air pollution and calculate the concentration of pollutant for the place in which 

no IoT nodes are placed. Finally, the pollution data will be collected from a large-scale area, 

such as small air monitoring stations, wishing that this model can identify air pollution sources 

of our living environment in a real-time manner so as to effectively monitor and improve air 

pollution for people. These constitute our future studies. 
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