
東海大學

資訊工程研究所

碩士論文

指導教授: 楊朝棟博士

遷移式學習應用於正顎手術前後對稱性評估

Using Transfer Learning for Facial Symmetry Assessment

Before and After Orthognathic Surgery

研究生: 鄭鈞澤

中華民國一零八年六月

1

摘 要

遷移式學習是目前影像辨識相關研究中對於小數據集訓練中非常重要的方法，

我們將遷移式學習應用於醫療領域，透過卷積神經網路將針對正顎手術前後進

行面部對稱性的評分，評分標準的部分我們經由長庚醫院的 8 位醫師問卷調查，

將醫師的評分做為參考標準，但由於面部對稱性評分沒有一定的標準，因此我

們將評分做平均並去除 1 至 3 個標準差之外的值，讓評分更加一致性，透過處

理電腦斷層掃描 3D 影像將其轉換為等高線圖，此等高線圖保有 3D 的特徵，由

於我們資料量過小所以需要使用資料預處理，我們透過不同的資料預處理方法

與資料擴增，將原始資料擴增為 100 倍，並透過實驗找出最符合我們目標任務

的方法，並於本文中使用了四種預訓練模型，本文實驗中比較了四種模型的優

劣，而實驗中使用的神經網路為將預訓練模型導入後，增加全連結層以及分類

層，並生成隨機變形資料訓練時放入模型，使用此方法以及加入 Dropout 神經

網路層來防止模型過度擬合，由實驗的結果我們最終選擇了 Xception 模型以及

Constant 的資料擴增方法達到高達 90% 的準確率，透過模型預測時產生的信心

值，給出模型所預測的評分。本文完成了使用遷移式學習進行訓練，達到針對

正顎手術前後的立體顏面影像萃取之等高線圖片進行對稱度的評分，並比較了

不同的預訓練模型以及不同預處理方法的優劣，進而找出真實準確率最高的方

法。

關鍵字: 遷移式學習，卷積神經網路，深度學習，面部對稱性，資料預處理

i

Abstract

Assessing facial symmetry is crucial for orthodontists. An accurate appraisement

of face symmetry is notable for the development of dentofacial orthopedics diag-

nosis. To facilitate a successful treatment, an understanding of personal charac-

teristic in the perception of face symmetry become the critical factor. However,

there is no standard of facial symmetry score. It depends on the orthodontist’s

expertise in face symmetry judgments. Therefore, it is tough to ensure accuracy.

To support the physicians for improving the medical treatments, in this paper, we

propose a Convolutional Neural Networks(CNN) with transfer learning method

for facial symmetry assessment based on three-dimensional features. In this case,

we train the new model through Transfer learning to score facial symmetry. In

this work, we convert the computed tomography (CT) scan of a 3D image into

a contour map which retains the characteristics of 3D. To find the best result,

we use different data pre-processing method and data amplification method. The

original data is amplified by 100 times. In our experiment, we compare the quality

of the four models, and the neural network architecture used in the experiment is

to import the pre-training model. Also, we increase the fully-connected layer and

the classification layer. To prevent the model from overfitting, we put the random

deformation data during training and Dropout. From the experimental results, we

chose the Xception model and the Constant data amplification method to reach

up to the accuracy rate of 90%. The score predicted by the model is given by the

confidence value predicted by the model.

Keywords: Transfer Learning, CNN, Deep Learning, Facial symmetry, Data

Pre-process

ii

致謝詞

完成本篇論文需要感謝很多人，最重要的是要感謝我的指導教授楊朝棟博士，

在碩士這兩年的點點滴滴，從起初對人工智慧相關的研究感到興趣，到現在使

用人工智慧技術完成我的論文，中間遇上了各種難題，努力的研究與學習讓我

對人工智慧影像辨識相關的領域有了一定程度的專業，非常謝謝老師在各方面

的指導以及各方面的教誨，讓我不僅僅是在學業方面有所成長，也在待人處事

有了很大的進步。謝謝長庚醫院顱顏醫學研究中心林秀霞博士的合作，在研究

上提供的意見以及指導，對於問題皆詳盡地回答，讓我能夠完成本篇論文。

謝謝口試委員陳牧言教授、呂芳懌教授、黃國展教授、欉振坤教授百忙之

中抽空參加我的論文口試，每個教授的寶貴意見都能夠讓我的碩士論文更加完

善。也謝謝高效能的學長姐、學弟們的指教與幫忙。也謝謝實驗同屆的同學們，

非常幸運能夠有你們一起學習成長，一起奮鬥打拼學習新的技術，最重要的是

在遇到困難時互相幫忙及討論，讓看事情的角度有了新的面向，進而解決難題，

讓我們兩年的研究所時光能夠如此的精采。

最後要謝謝我的家人一直以來的支持，讓我在學習的過程中無後顧之憂地往

前，無條件的支持我念完碩士，在各方面的關心以及我遇到低潮時的意見，給

我繼續往前的動力，謝謝一路支持我的人，給我建議還有幫助讓我能夠順利的

完成論文。

東海大學資訊工程學系 高效能計算實驗室 鄭鈞澤 一零八年六月

iii

Table of Contents

摘要 i

Abstract ii

致謝詞 iii

Table of Contents iv

List of Figures vi

List of Tables viii

1 Introduction 1
1.1 Motivation . 2
1.2 Thesis Goal and Contributions . 3
1.3 Thesis Organization . 3

2 Background Review and Related Work 4
2.1 Background Review . 4

2.1.1 Deep Learning with Python 4
2.1.2 TensorFlow . 5
2.1.3 Keras . 5
2.1.4 Facial Symmetry Data Set 6
2.1.5 Convolutional Neural Network 7
2.1.6 Transfer Learning . 8

2.2 Related Works . 8

3 System Design and Implementation 11
3.1 System Architecture . 11
3.2 Data Pre-processing . 12

3.2.1 Data 3D to 2D . 12
3.2.2 Data tailoring and feature enhancement 12
3.2.3 Data amplification . 13

3.3 CNN Training . 13
3.4 Transfer Learning with Pre-trained Model 16
3.5 Training Detail . 19

iv

TABLE OF CONTENTS v

3.6 Facial Symmetry Standard . 21

4 Experimental Results 22
4.1 Experimental Environment . 22
4.2 Image Processing of CT Image . 23
4.3 Differences in the Blank Value Complement 26
4.4 Verification of True Accuracy . 27
4.5 Transfer Learning for Face Symmetry 28
4.6 Deep Learning without Fine Tuning 29

4.6.1 Train with Nearest Mode without Fine Tuning 29
4.6.2 Train with Constant Mode without Fine Tuning 30

4.7 Deep Learning Fine Tuning . 33
4.7.1 Train with Nearest Mode with Fine Tuning 33
4.7.2 Train with Constant Mode with Fine Tuning 35

4.8 Experimental summary . 39
4.8.1 Prediction . 39
4.8.2 Total Experiment Comparison 40

5 Conclusions and Future Works 42
5.1 Conclusions . 42
5.2 Future Works . 43

References 44

Appendix 48

A Keras with TensorFlow 48

B Data Preprocess Code 50

C Model Without Fine Tuning Training Code 53

D Model Fine Tuning Training Code 65

E Verify True Accuracy Code 77

List of Figures

2.1 TensorFlow architecture . 5
2.2 How CNN works . 7

3.1 System analysis process . 12
3.2 Convert to contour map . 13
3.3 Feature processing . 14
3.4 Data amplification . 14
3.5 CNN training process . 16
3.6 VGGNet architecture . 18
3.7 ResNet architecture . 18
3.8 Xception architecture . 19

4.1 3D object after suitable1 . 23
4.2 3D object after suitable2 . 24
4.3 3D object after suitable3 . 24
4.4 Before and after clipping . 25
4.5 Convert the cropped 3D object into points 25
4.6 MATLAB code . 26
4.7 Contour map . 26
4.8 Differences in the blank value complement 27
4.9 (a)VGG16, (b)VGG19, (c)ResNet50, (d)Xception nearest mode loss

value without fine tuning . 30
4.10 (a)VGG16, (b)VGG19, (c)ResNet50, (d)Xception nearest mode ac-

curacy without fine tuning . 31
4.11 (a)VGG16, (b)VGG19, (c)ResNet50, (d)Xception constant mode

loss value without fine tuning . 32
4.12 (a)VGG16, (b)VGG19, (c)ResNet50, (d)Xception constant mode

accuracy without fine tuning . 32
4.13 (a)VGG16, (b)VGG19, (c)ResNet50, (d)Xception nearest mode loss

value . 34
4.14 (a)VGG16, (b)VGG19, (c)ResNet50, (d)Xception nearest mode ac-

curacy . 35
4.15 (a)VGG16, (b)VGG19, (c)ResNet50, (d)Xception constant mode

loss value . 36
4.16 (a)VGG16, (b)VGG19, (c)ResNet50, (d)Xception constant mode

accuracy . 37

vi

LIST OF FIGURES vii

4.17 Discussion on the picture of model identification error 38
4.18 Score distribution map . 39
4.19 Model prediction . 40
4.20 Summary comparison . 41

List of Tables

3.1 Pre-trained model detail . 17

4.1 Distributed computing environment 22
4.2 Software specification . 22
4.3 New layers detail . 28
4.4 Model parameter detail . 28
4.5 Nearest mode accuracy between Xception and ResNet50 35
4.6 Constant mode accuracy between Xception and ResNet50 37

viii

Chapter 1

Introduction

In the era of artificial intelligence, deep learning is applied in various fields. The

growth of deep learning has made it possible for many tasks that could not be

discerned by machines in the past. The breakthrough of deep learning in image

recognition and each algorithm derivatives enable all fields to develop related ap-

plications. For example in the field of image processing, deep learning used to help

the philosopher, artist to study about the face attractiveness [1].

The standard for facial symmetry has always been very subjective. There is

no standard equation for facial symmetry. Chung et.al said that a lot of previ-

ous studies have employed composite faces to study the effects of symmetry and

averageness of the face on attractiveness [2–6]. Based on Wen-Chung et.al this

research will use Transfer Learning to learn and predict about facial symmetry.

For the training of small datasets, it is necessary to use the technology of

Transfer Learning. Through the powerful feature extraction function of the pre-

trained model, add new classifier that meet requirement. Also, the enhancement

and preprocessing of the data set are an indispensable part .The goal of this

paper is to use 3D CT image files, pre-processing of images combined with CNN

deep learning to train facial symmetry features, and construct a facial symmetry

classifier to achieve automatic prediction of facial symmetry score.

1

Chapter 1 Introduction 2

1. The 3D CT scan images of 71 subjects were converted to 2D contour maps.

Contour map of 20 lines.

2. The contour map data is used as an image Pre-process, including rotation,

scaling, and clipping for data amplification.

3. The pre-trained model uses Transfer Learning to train a new facial symmetry

feature model.

4. Predicting facial symmetry scores for new data using new trained model

1.1 Motivation

The rise of deep learning image recognition in the field of artificial intelligence

allows machines to learn like humans. In order to achieve our goal, the use of

machine learning models can not learn deep features, so this thesis chose the

method of deep learning. In the field of image recognition, the facial symmetry

evaluation before and after the Orthognathic surgery is done by the doctor, which

is takes times. The evaluation results are subjective for doctor. Therefore, this

thesis hope that through the use of CT 3D images, which contain parts of soft and

hard tissues, in the objective judgment, the facial features can be trained through

deep learning. Let the machine have facial symmetry standard to predict the facial

score before and after the operation, it can save the time. In the research of facial

symmetry, most of them use the traditional method. This thesis use 3D images

for image pre-processing and convert them into facial contour maps to preserve

the features of 3D images. This thesis use MATLAB as a tool to do preliminary

image pre-processing.

At the same time as the development of image recognition depth learning,

Transfer learning has gradually emerged. Due to the small amount of data, even if

the data is amplified to the maximum extent without affecting the characteristics,

the amount of data is still far from re-establishing large depth Model, so this

thesis choose to use the image recognition Transfer learning method to train. The

Chapter 1 Introduction 3

powerful feature extraction ability of different pre-training modules allows us to

achieve the goal this thesis need in the case of an extremely small amount of data.

This thesis will compare 4 different models to find the best method. Use the found

method to train a facial symmetry scoring model to help doctors complete facial

symmetry assessment tasks.

1.2 Thesis Goal and Contributions

In this work, this thesis propose a facial symmetry scoring system using Transfer

Learning, which is an open source architecture that uses MATLAB to perform

preliminary image preprocessing of CT 3D raw image input, and completes the

data amplification by Keras. The second step of image preprocessing, using CNN

pre-trained model architecture and parameters to adjust the training of the new

model, identification analysis to make the face symmetry score prediction.

Training Data Set this thesis have images of 20 contours of 71 subjects. Since

the data set is very small, this thesis try to integrate the design and adjustment of

the top-level architecture of the pre-training model through the open source archi-

tecture. Different ways of amplifying data without unduly affecting overall image

integrity, different parameters to adjust and test different optimizers, Learning

rate and experiment of layers to find solutions that have large differences and very

small data through the method of Transfer Learning.

1.3 Thesis Organization

The structure of this paper is as follows. Chapter 2 introduces the main back-

ground and related work. Chapter 3 outlines the system design and its imple-

mentation in our framework and shows the functionality of each component in the

system. Chapter 4 details the experiments and discussions. Finally, in Chapter 5,

this thesis provide conclusions and future work for this paper.

Chapter 2

Background Review and Related

Work

In this section, this thesis review some background knowledges for later use of

system design and implementation.

2.1 Background Review

2.1.1 Deep Learning with Python

Python [7] is a widely used, literally translated, general-purpose programming

language. Python is an extensible programming language that provides a lot of

APIs and tools. It is very easy for programmers to design and write extension

modules using C, C++ and other programming languages. Python itself can be

easily and quickly integrated into other language programs. In today’s era of

AI development, many frameworks support the Python language to design such

as TensorFlow, Caffe, MXNet, etc. Many programmers use Python as the AI

development language.

4

Chapter 2 Background Review and Related Work 5

2.1.2 TensorFlow

TensorFlow [8] is an open source software library that is currently used in various

machine learning and deep learning developments. It was developed by Google.

This article uses TensorFlow to support Keras’ backend and uses GPU version of

TensorFlow to accelerate the overall deep learning. Through the combination of

Tensorboard to observe the overall training situation and to modify and adjust

the model, in addition to the reasons for this work, it also supports its various

types of kits, and many software libraries can be integrated to make development

faster and more convenient. Figure 2.1 shows architecture of TensorFlow

Figure 2.1: TensorFlow architecture

2.1.3 Keras

Keras [9] is an open source code, with TensorFlow or Theano as the back end. It

is a high-level deep learning library developed in Python. This work uses Keras

as the overall transfer learning model for the development environment design.

Through the Keras programmer, you can pay more attention to the development

and adjustment of the model. The model is very fast and intuitive to build and

has considerable scalability. In addition, Keras has very high performance.

Chapter 2 Background Review and Related Work 6

2.1.4 Facial Symmetry Data Set

The data of this work is provided by Chang Gung Memorial Hospital with CT

scan samples of patients and normal persons. There are 71 samples in total. And

8 professional doctors were asked to give facial symmetry scores for these samples.

This thesis use raw data processing to convert raw 3D data into contour maps.

The scoring process is based on the exclusion of values that are too different in the

score. Average the scores of 8 doctors. Let each sample have only one major score.

This approach can make the original subjective facial symmetry score relatively

objective. The detailed process of processing will be explained in Chapter 4.

For machine learning and deep learning with insufficient data, data preprocess-

ing takes up a very important position. For different target tasks, there are many

factors that lead to the raw data that need to be preprocessed to highlight features

and filter noise. Too much noise can cause the model to learn the wrong features.

Due to the insufficient amount of data, this work requires special pre-processing

of the original data to make up for the serious shortage of data. In the case of a

very large amount of data, deep learning can automatically learn the features in

the image through the training of the neural layer. Traditional machine learning

requires the machine to learn through artificial feature engineering. The common

data preprocessing method is Binarization. HOG, zoom, rotate, etc.

This work uses the Image Data Generator in Keras and OpenCV to amplify

and adjust the original data, and the original data is amplified by 100 times by

rotating, scaling, and shifting. This work uses the method of rotation scaling to

amplify the data set, because these two methods do not affect the original image.

In deep learning, if the amount of data is too small, Problems such as over-fitting

and other problems lead to overall training failure, so in this work need to augment

the data set.

Chapter 2 Background Review and Related Work 7

2.1.5 Convolutional Neural Network

Convolutional Neural Network [10], abbreviated as CNN, has outstanding perfor-

mance for image processing and speech recognition. It usually consists of one or

more convolution layers combined with a pooled layer and a fully connected layer.

Compared with other kinds of neural networks, there are relatively few parame-

ters to be considered, and the convolutional layer usually adds a Rectified Linear

Units layer (ReLU layer), which can enhance the nonlinear characteristics of the

neural network. It does not change the convolutional layer. In addition, training

the neural network requires a loss function to calculate the difference between the

actual value and the predicted result, to adjust the model to move in the right

direction.

Figure 2.2 shows the operation flow of CNN. Through multiple convolutional

layers plus pooling layer superposition through the linear rectification unit as the

excitation function, the model will learn the low-order to high-order features of

the graph, and finally add the fully connected layer and the classifier to classify

the graph.

Figure 2.2: How CNN works

Chapter 2 Background Review and Related Work 8

2.1.6 Transfer Learning

Transfer Learning [11] uses a pre-trained model to retrain new target tasks, just

like standing on the shoulders of giants.Mainly used in new target datasets is too

small, so it is impossible to retrain large depth model, which can be divided into

two types:

• Train the main model (pre-trained model) yourself, use this model to do

Transfer Learning to create new target models for new goals, such as training

facial features as the main model (large data), and using Transfer Learning

to train face recognition classification. The model becomes a new target

model (small data), and the target model is built on the main model that

has learned what is the face feature to train and adjust.

• Using pre-trained models trained by others, this thesis usually use this

method, using the structure of the pre-trained model (big data) to train

and adjust for our new goals (small data), currently there are many open

source Efficient depth-pre-trained models are available, usually based on the

ImageNet dataset (million images, one thousand classification), which have

a minimum accuracy of over 95%.

2.2 Related Works

In the training of CNN-related models, the main reference to the application of

Transfer Learning and the improvement of accuracy, as well as other CNN training

related papers, The main references are as follows:

Lumini et al. [12] presented the Deep Learning and transfer learning features

for plankton classification papers. They compared the advantages and disadvan-

tages of many different pre-trained models applied to plankton classification, and

the effects of different kinds of data processing methods on training. They also

show how to combine different CNNs to improve performance.

Chapter 2 Background Review and Related Work 9

Wang et al. [13] used dual-channel CNN combined with LSTM architecture for

recognition for cognitive passive radar. In addition, they proposed a parameter

transfer method to solve the problem of transferring parameters across various

sampling frequencies, and verified the effectiveness of the method.

SandipKute et al. [14] used Transfer Learning in forensic applications, face

recognition of some facial organs, they use the ears, nose, lips to find relevance

and recognition, these three parts will not change due to posture or expression,

They proposed a CBFR method that uses KNN as a classifier through the capture

and normalization of CNN features.

Vogado et al. [15] used Transfer Learning combined with Support Vector Ma-

chine(SVM) classifier for the diagnosis of leukemia, they lack large database, so use

Transfer Learning to extract features, and test the advantages and disadvantages

of SVM, K Nearest Neighbor(KNN), Multilayer perceptron(MLP), random forest

classifier, and finally choose SVM. The experiment also compares the quality of

different CNN architectures and achieves 99% accuracy.

Ciocca et al. [16] published a paper on the retrieval and classification of food

images, which used the Transfer Learning method and compared different CNN

architectures ,ResNet-50 was found to be the best for food classification.

This thesis also studied different CNN methods. Liu et al. [17] proposed the ar-

chitecture of Multi-view multi-scale CNNs for the classification of CT images.They

propose a new convolutional neural network-based nodular classification method

that can handle four classical methods of solid nodule types (ie, well- Cirmscribed,

vascularized, juxta-pleuraland pleural-tail). Their method also enables competi-

tive classification rates on ground-glass optical (GGO) nodules and non-nodules.

YuzhuJi et al. [18] proposed a multi-scale attention CNN method for the de-

tection of Salient objects by introducing spatial and channel direction attention

layers into the multi-scale encoder-decoder framework. Note that the CNN layer

can align the context information between the different scales of the feature map

and the final prediction of the saliency map.

Chapter 2 Background Review and Related Work 10

Since medical-related treatments often have data imbalance problems, this

thesis also refer to Li et al. [19] to propose a Deep variance network, an improved

CNN framework for unbalanced data sets, and enhanced CNN generalization ca-

pabilities by subspaces. Integrating with the Bayesian network into the CNN

framework, a new Deep Variance Network (DVN) is proposed, which can transfer

the joint feature distribution from one object’s complete training data set to other

objects in an iterative manner. Complete training data set.

For solving the problem of overfitting, it has always been a major problem

in the training of CNN models. Xu et al. [20] proposed a simplification of the

full-link layer to solve the method of over-simulation. The author mentioned in

the article that in CNN A large number of parameters allow it to learn complex

features, but they may tend to hinder generalization by overfitting training data.

Although many of the previously proposed regularization method overfitting is still

a problem for training powerful CNN, they propose that SparseConnect mitigates

overfitting by sparsely connecting to FCL, and experiments in three benchmark

datasets MNIST, CIFAR10 and ImageNet.

The following are papers related to data processing. For small data volume im-

age data collection, effective data amplification is very important. Han et al. [21]

use CNN combined with Transfer Learning to propose a new image classification

method. Discuss the adjustment of parameters in Transfer Learning and the am-

plification methods and comparison of effective image data sets. Franc et al. [22]

proposed a paper on Learning CNNs from weakly annotated facial images, which

automatically annotates age, gender, and identity, and links annotations to the

correct face. They also built a new facial image database.

Chapter 3

System Design and

Implementation

3.1 System Architecture

This thesis use Python language development, use Windows as the development

environment, use Anaconda on windows to build Python 3.6 environment, first

convert the original 3D CT scan image into 2D contour map through MATLAB,

then rotate through Keras, Displacement, scaling to amplify data, use OpenCV to

do pre-processing of data, then develop framework. This thesis build CUDA10 [23]

and Cudnn7.3 [24] set up TensorFlow GPU framework as the bottom layer, top

layer uses Keras combined with Matplotlib and Numpy suite as development tool

training model and do Predicting. As shown in Figure 3.1

11

Chapter 3 System Design and Implementation 12

Figure 3.1: System analysis process

3.2 Data Pre-processing

3.2.1 Data 3D to 2D

First, obtained the medical computed tomography image of 3D without any pro-

cessing. this thesis used MATLAB to do the data preprocessing of the first step,

and converted the 3D file into a 2D contour map. Retained the 3D features through

the color. As shown in Figure 3.2.

3.2.2 Data tailoring and feature enhancement

By using OpenCV to cut our picture as a midline, the right half of the image

is horizontally flipped and superimposed to the left image as shown in Figure

3.3. Because of the lack of data, if the amount of data is too small, It must

Image pre-processing allows Transfer learning to learn better features. Through

the pre-processing of data, it can let the machine learn the characteristics of facial

symmetry effectively.

Chapter 3 System Design and Implementation 13

Figure 3.2: Convert to contour map

3.2.3 Data amplification

In order to cope with the small amount of data, this thesis use Keras data gener-

ators. To augment our dataset, it will scale, rotate, shift, etc. the image without

affecting the image features, and fill the blanks generated after processing into

black. The original data was a facial CT scan of 71 subjects, resulting in 20 con-

tour maps. This thesis use this process to amplify the data by 100 times.As shown

in Figure 3.4

3.3 CNN Training

At present, the research results of artificial intelligence have confirmed that CNN

has better feature extraction efficiency than traditional methods. It is a very

common method for image recognition to use CNN through deep learning. There

Chapter 3 System Design and Implementation 14

Figure 3.3: Feature processing

Figure 3.4: Data amplification

are two common methods for image analysis using CNN. In the first way, the deep

CNN architecture training is designed through large datasets, and the model with

powerful feature extraction performance is trained. At the end of the model, the

task classifier is added to complete the effective classification task. The second is to

conduct Transfer Learning through a pre-trained neural network, also known as a

pre-trained model. In the smaller target tasks of the dataset, the powerful features

extracted from the large datasets are extracted, and the new dataset is fine-tuned

Chapter 3 System Design and Implementation 15

to achieve the same goal. In this work, our goal is to use the contour maps that

retain 3D features for facial symmetry scores, as shown in Figure 3.5,but since our

dataset size does not allow us to pre-train large deep learning CNN architectures,

this thesis Use the open source pre-trained training model to do the Transfer

Learning approach to accomplish our mission.Below have listed some basic neural

layer introductions of CNN neural network .

1. Convolution Layer : There are many convolutional units in the convolutional

layer. The most important function is to extract various features from the

input data. The deeper convolutional layer can capture more complex fea-

tures.

2. Activation Layer : This layer is to add various different educational fun-

tions that meet the training objectives. The main purpose is to introduce

nonlinearity. The most common Activation funtion is ReLU.

3. Pooling Layer : This layer is a very important part of the convolutional

neural network. The common ones are the Max pooling layer and the Aver-

age pooling layer. The function is to reduce the input data space according

to the size set by the pooling layer, reduce the parameters and reduce the

calculation amount. The Max pooling layer finds the maximum value in

the selection range and retains it, while the Average pooling layer averages

the selected area. Different pooling layers are selected according to different

training objectives.

4. Fully Connected : For the last few layers in the convolutional neural network

structure, the previously learned features are mapped to subsequent layers.

Map to the final classification layer. This layer is also the layer with the

most parameters in the neural network.

5. Classification Layer : For the final classification, the common function of the

multi-classification task is the Softmax function, which is also the classifi-

cation function used in this work, and the two classifications are commonly

Sigmoid functions.

Chapter 3 System Design and Implementation 16

Figure 3.5: CNN training process

3.4 Transfer Learning with Pre-trained Model

The reason this work choose to use Transfer Learning is that the dataset is in-

sufficient, must use Transfer Learning. In this work will compare a variety of

different pre-trained models, such as VGG16 [25], VGG19 [25], ResNet50 [26],

Xception [27].This work uses these four models, because these four models are

very classic pre-training models. The power of the model is often used by vari-

ous studies.This work will choose the model that the best result for us. The goal

is Accurately give the closest rating to the doctor, and Transfer Learning has a

variety of ways to adjust the model. This work will also compare the Fine-tune

part of the model, the Fine-tune overall model, and the complete Fine-tune only

on the top layer plus the fully connected layer and classifier. The strengths and

weaknesses, through a small amount of information this work through Transfer

Learning to achieve our goals.The table3.1 below shows the detailed data of each

model this work will test and the accuracy of its performance on ImageNet.Below

will introduce the four models this work use.Size: The highest occupancy of

the memory.Top-1 acc indicates that the probability is only predicted once and

correctly.Top-5 acc indicates that it is a good chance to predict the correctness of

five times as long as one guess is right.

1. VGGNet: by Karen Simonyan and Andrew Zisserman. The name is derived

from the Visual Geometry Group at the University of Oxford. Therefore,

the model is named VGG, and the model inherits the ideas of AlexNet [28]

Chapter 3 System Design and Implementation 17

and builds more layers. The original version was presented in 2014 and

the current version was introduced in 2015 for the sixth edition. This model

won the second place in the 2014 ILSVRC Image Classification Competition.

There are two versions, VGG16 and VGG19. The two models are hidden

layers of 16 and 19 layers.Model architecture is shown in Figure 3.6,D and

E are VGG16 and VGG19.

2. ResNet : proposed by Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun,

this model won the championship in the 2015 ILSVRC image classification

competition, they proposed a new neural network layer called Residual. In

the neural network training, in order to increase the depth to learn more

complex features, but when the number of layers is increasing, the deep

neural network often has a gradient disappearing problem leading to train-

ing failure. The new layer they propose skips a specific number of layers

to prevent the gradient from disappearing. After this method is proposed,

there are many continuation of ResNet and improved models appear.Model

architecture is shown in Figure 3.7.The red box in the figure is the architec-

ture of ResNet50, which has more layers than ResNet18 and ResNet34. The

deeper architecture can learn more complex features.

3. Xception: Presented by François Chollet and the lead author of the Keras

development framework. The Xception model is a variation of the Inception

[29] model, and the origin of the name is the extreme version of the Inception

model. This model has a special separable convolutional layer that replaces

the original model structure of the Inception model. The computational

efficiency of this model is very good, and the parameter size is almost as

good as the Inception model.Model architecture is shown in Figure 3.8

Table 3.1: Pre-trained model detail

Model Size Top1 acc Top5 acc Parameters Depth
VGG16 528MB 0.715 0.901 138,357,544 23
VGG19 549MB 0.727 0.910 143,667,240 26
ResNet50 99MB 0.759 0.929 25,636,712 168
Xception 88MB 0.790 0.945 22,910,480 126

Chapter 3 System Design and Implementation 18

Figure 3.6: VGGNet architecture

Figure 3.7: ResNet architecture

Chapter 3 System Design and Implementation 19

Figure 3.8: Xception architecture

3.5 Training Detail

The important equations and algorithms use in the model training, the Activation

Function is the ReLU, ReLU linear rectification unit, which pushes the values into

the first quadrant, which can effectively solve the problem of gradient disappear-

ance, such as the equation 3.1 [30]:

f(x) = max(0, x) (3.1)

The activation function of our last layer is Softmax, which is mainly used in

the multi-classification target task to map the multi-neuron output between 0 and

1. This equation will help the neural network to judge and find the most likely

classification. As the equation 3.2 [31]:

Chapter 3 System Design and Implementation 20

σ(z)j =
ezj∑K
k=1 e

zk
for j = 1...K (3.2)

Our Loss Function uses Categorical crossentropy, a loss function, and the loss

function is the residual of the actual value and the predicted value. The main

purpose is to make the model more accurate. As the equation 3.3 [32]:

loss = −
n∑

i=1

ŷi1log yi1 + ŷi2log yi2 + …+ ŷimlog yim (3.3)

The following equation is the algorithm used to predict scores in this paper.

The new image is imported into the trained model, and this algorithm is used to

predict the facial symmetry score.As the Algorithm 1

Algorithm 1 Facial Symmetry Score Algorithm
1: Input : Facial symmetry Dataset
2: Outout : Facial symmetry score
3: Result←Model predictive group
4: confid←Model predictive confidence
5: for i = 1; i < Input.length; i++ do
6: if (Result = high level group & confid > 80) then
7: Output← high score group score > 8.0;
8: else if (Result = high level group & confid < 80) then
9: Output← 7.0 > high score group score < 7.9;

10: else if (Result = low level group & confid > 80) then
11: Output← low score group score < 5.5;
12: else if (Result = low level group & confid < 80) then
13: Output← 5.7 > low score group score > 7.0;
14: end if
15: end for

In addition, our learning rate is between 0.001 and 0.0001. This thesis design

the automatic adjustment method to define the learning rate. The purpose is to let

the model test in different learning rates to find the best learning rate for training,

and this work also Define Early stopping [33], let the model automatically stop

training when over-fitting, mainly monitor the validation loss during training. If

there is no progress over 10 eopch, it will stop the training of the model and further

adjust the model parameters.

Chapter 3 System Design and Implementation 21

3.6 Facial Symmetry Standard

For the standard of facial symmetry, this work cooperated with the doctors of

Chang Gung Memorial Hospital in Taiwan, and asked experts to give a score on

the images of computed tomography. A total of 8 doctors gave symmetry scores

to 71 subjects. Because symmetry does not have standard weights and measures,

the scores will vary from person to person. This work averaged it and calculated

the standard deviation, and excluded it from the value that is too different from

the standard deviation. The facial symmetry of 71 subjects was divided into high-

scoring group and low-segment group according to the median as the standard.

Chapter 4

Experimental Results

4.1 Experimental Environment

This experiment uses a physical machine, which is mainly established by a master.

Its specifications are displayed in Tale 4.1, and each version number is displayed in

4.2. TensorFlow’s GPU version is built in the new version of CUDA.Because the

graphics card used must be higher than the CUDA version of the graphics card

driver, it must be higher than the officially configured CUDA 9.0.

Table 4.1: Distributed computing environment

CPU & GPU RAM Disk

Master Intel(R) Core(TM) i7-3970x CPU @ 3.5GHz
Nvidia GeForce RTX2080 Ti 64G 1T

Table 4.2: Software specification

Version
Window 10
Anaconda-4.5.12
Python-3.6
CUDA 10.0
Cudnn 7.3
TensorFlow 1.12
Keras-2.2.4
OpenCV-3.4.5

22

Chapter 4 Experimental Results 23

4.2 Image Processing of CT Image

The original data was the CT image file. The original file was a 3D file. This work

converted the file into a contour map with 3D features. First, the patient’s image

is first transferred to Simplant O&O and the CT threshold is adjusted to the soft

tissue range. If there is a gap in the skull, it will affect the subsequent cutting

results. Therefore, it is necessary to fill the gaps, so fill the gaps in the Mask and

create a 3D Object. Next put the head position suitable, and the way to position

the head position is as follows

• Put the inner and outer corners of the eyes on the same line (using the

average)

• Put the upper edge of the ear hole (feature point PO) of the right ear on

the same line as the lower edge of the right eye frame (feature point Or)

• Adjust the position of the eyelid to the same line

After the suitable, the 3D Object is output into an STL file,The process is shown

in Figure 4.1, 4.2, 4.3.

Figure 4.1: 3D object after suitable1

Chapter 4 Experimental Results 24

Figure 4.2: 3D object after suitable2

Figure 4.3: 3D object after suitable3

Next, this work use Geomagic to tailor our 3D object. The principle of tailoring

is the following three points, and before and after clipping, as shown in Figure 4.4

• Excluding noise

• Keep about 3cm above the brow bone (but it will increase or decrease ac-

cording to the actual situation)

• Remove part of the neck

Chapter 4 Experimental Results 25

Figure 4.4: Before and after clipping

Then convert the cropped 3D Object into points, save the point coordinates

into vtx files, and finally use MATLAB to draw the contour lines to complete the

contour map used in our training.as shown in Figure 4.5,Figure 4.6 and Figure4.7

Figure 4.5: Convert the cropped 3D object into points

Chapter 4 Experimental Results 26

Figure 4.6: MATLAB code

Figure 4.7: Contour map

4.3 Differences in the Blank Value Complement

For different pre-processed data, this work use experiments to find the pre-processing

data with the best results. In addition to cutting and superimposing the original

image, must amplify the original small amount of data. this work use rotation,

scaling, and blanks to fill the difference. The main difference in the way of pro-

cessing is to fill in the blanks. Divided into two categories, the first type of mode is

called nearest in Keras, and the data complement is filled with neighboring values.

Chapter 4 Experimental Results 27

When our image is scaled or rotated, the blank value generated by the displace-

ment is filled by complementing the neighboring values. The second type of mode

is called constant in Keras, and the blank value generated by the displacement is

filled with black, as shown in Figure 4.8.Left is constant, Right is nearest.

Figure 4.8: Differences in the blank value complement

4.4 Verification of True Accuracy

Regarding the verification of true accuracy, our target task is to score facial sym-

metry using the Transfer Learning training model. There is no objective standard

for facial symmetry. it can get very subjective answers when look at the naked eye.

Therefore, this work use the scoring criteria of 8 doctors to find out the 6 images

of the highest score and the lowest score. This rating data has ruled out exces-

sively large values by excluding values from 1 to 3 standard deviations through

the average, which allows the machine to learn the best and worst criteria. The 59

images that the machine has not seen are regarded as the standard of verification,

and these images are also scored by doctor. The median score of 71 subjects in our

scoring data was 7. So the criterion for our evaluation model is to enter these 59

images to see if the machine can accurately classify it as a high-score or low-score

group.

Chapter 4 Experimental Results 28

4.5 Transfer Learning for Face Symmetry

Our goal is to use Transfer Learning to train a facial symmetry scoring model

that preserves 3D features, so this work use 4 different pre-trained models for

training. First, import the pre-processed data through the program. Next need

to import the pre-trained model into our new model. Keras can quickly import

the pre-trained model and its parameters. The pre-trained models this work used

were originally trained on ImageNet. The training set has 1000 classifications,

and our target task classification is relatively small. It need to increase the fully

connected layer to help convergence. For our small datasets and target tasks with

fewer classifications, it can make our models learn our features more quickly. The

four models this work used in our experiments are VGG16, VGG19, ResNet50,

and Xception. This work compare the pros and cons of using different pre-trained

models with the same new model architecture and find the pre-trained model that

works best for us.

Table 4.3: New layers detail

GlobalAveragePooling2D()
Dense(1024) activation=relu
Dense(1024) activation=relu
Dense(512) activation=relu
Dense(512) activation=relu
Dense(256) activation=relu
Dropout(0.25)
Dense(128) activation=relu
Dropout(0.25)
Dense(2) activation=softmax

Table 4.4: Model parameter detail

Input Size = 250,750,3
Total Data = 1194 images in 2 class
Batch Size = 4
Epoch = 1000
Steps per epoch = 247
Loss Function = categorical crossentropy

In this experiment, after importing the pre-trained model, the GlobalAver-

agePooling layer, the 6-layer fully connected layer and 2 Dropout layer, and a

Chapter 4 Experimental Results 29

classification layer are added to the model. The detailed layer setting is shown in

the table 4.3.The training parameters are respectively set in the table 4.4, and the

training has the setting to automatically adjust the Learning Rate, and the adjust-

ment range is set at 0.001 ∼ 0.0001, such as Training accuracy has not improved,

more than 3 eopch will automatically adjust. In order to prevent overfitting, this

experiment also has the Early stopping, monitoring Validation Loss if more than

10 epoch is not reduced, will stop training the model, and the DataGenerator in

Keras will be added to the program to randomly change the data into the model.

4.6 Deep Learning without Fine Tuning

In this experiment, instead of doing fine tuning, the original Pre-trained model ar-

chitecture and original parameters are directly applied, and a new fully-connected

layer and classifier are added. This way is to apply the original feature extraction

performance of the model, without using the new data set for fine tuning, but to

classify directly. The new data set is adjusted and sorted directly. This method is

suitable for use on small data sets. For example, the data set cannot be amplified

and the quantity is too small to fine tuning the model. This experiment will apply

this method to different models corresponding to different pre-process methods.

4.6.1 Train with Nearest Mode without Fine Tuning

Using the nearest pre-process method to train the model. The dotted line in the

figure 4.9 is the training set loss value, and the solid line is the loss value of the

verification set. It can be seen from figure that the pre-process method is not

efficient in perf*orming fine tuning training. Because our dataset differs greatly

from the dataset originally trained by the Pre-trained model, it is not appropriate

for our dataset to be applied to this method of training. In addition, due to the

pre-process method of nearest, the edge of the image is slightly modified, resulting

in the inability of the whole model to converge smoothly. And through this exper-

iment, it can be found that the loss of all model training sets is quickly separated

Chapter 4 Experimental Results 30

from the loss of the verification set. The model’s early stopping mechanism was

activated and the training was stopped at approximately 10 epochs.The dotted

line in the figure4.10 is the training set accuracy value, and the solid line is the

verification set’s accuracy value.It can be observed from figure that the accuracy of

the training is neither good for the training set nor the validation set, so this work

will not verify the true accuracy of the model.In the following picture, the dotted

line is the training set value, and the solid line is the value of the verification set.

Figure 4.9: (a)VGG16, (b)VGG19, (c)ResNet50, (d)Xception nearest mode
loss value without fine tuning

4.6.2 Train with Constant Mode without Fine Tuning

Next, this work experimented with the constant pre-process method to train the

model. It can be observed from Figure X that the VGG16 model and the VGG19

model were tested in the way this thesis designed, similar to the use of the nearest

method, the rapid separation of the loss of the two data sets, This means that

this method is not suitable for our dataset, and the Xception model converges

Chapter 4 Experimental Results 31

Figure 4.10: (a)VGG16, (b)VGG19, (c)ResNet50, (d)Xception nearest mode
accuracy without fine tuning

better than the Resnet50 model and the Xception model. But overall, the four

models are not able to train smoothly. The accuracy is quite low so no further

verification accuracy is done. It seems from both experiments that no matter what

pre-process method. If you do not fine tuning the parameters of the whole model

during training, the training performance is not good, and it is not suitable for

the architecture and data set this thesis designed.Figure 4.12 shows the accuracy

of the training set and validation set of the model during training.

Chapter 4 Experimental Results 32

Figure 4.11: (a)VGG16, (b)VGG19, (c)ResNet50, (d)Xception constant mode
loss value without fine tuning

Figure 4.12: (a)VGG16, (b)VGG19, (c)ResNet50, (d)Xception constant mode
accuracy without fine tuning

Chapter 4 Experimental Results 33

4.7 Deep Learning Fine Tuning

This experiment is to make a fine tuning of the Pre-trained model. Use our dataset

to fine tune the model parameters. The goal is to have this model train in a data

set that has not been seen, and to be able to more accurately distinguish the target

through fine-tunable parameters. However, this method is suitable for use when

the data set has a certain amount. It is usually applied to a small number of data

sets and cannot be trained in the new deep learning model architecture. By using

Transfer Learning, this data set is not the same as the original Pre-trained model.

This method will be used to fine tune the model and train the Pre-trained model

to accurately classify new data sets.

4.7.1 Train with Nearest Mode with Fine Tuning

In this experiment, the pre-process method is used in four kinds of Pre-trained

models, which can be seen from the above figure 4.8. Therefore, it can be observed

that the picture is slightly deformed. The larger the rotation of the figure is,

the more severe the deformation is. However, the model this work learning is

the symmetry of the face, and the features of the superimposed picture are not

eliminated. Therefore, this work did this experiment to verify the pros and cons

of this pre-process method for model learning.

It can be observed from the experiment that, as shown in Fig4.13, the Loss

values of VGG16 and VGG19 cannot be smoothly reduced. And can’t successfully

learn good features, it can’t effectively distinguish the difference between high-

score group and low-score group. it can be found that VGG16 could not effectively

reduce the loss value of the verification set, and it was Early stopping on very few

epochs. The VGG19, ResNet50, and Xception models are both undulating and

cannot effectively converge the loss value to near zero. And you can see that all the

models used the Nearest pre-precess method to train the results are not excellent,

all around 30 epochs due to performance stagnation and Early stopping to stop

training.

Chapter 4 Experimental Results 34

Figure 4.13: (a)VGG16, (b)VGG19, (c)ResNet50, (d)Xception nearest mode
loss value

Figure 4.14 shows the accuracy of the training set and validation set of the

model during training. It can be observed that the accuracy of the four model

training sets is 100%, but the accuracy of the validation set is very fluctuating,

indicating that the verification is not as accurate as the training. Below will verify

the true accuracy.

Next step have to verify the true accuracy,In the following table, calculate the

true accuracy of the model through the program. Table 4.5 shows that the VGG16,

ResNet50, and Xception models all achieve more than 70% accuracy, while VGG19

only achieves 66% accuracy in our design method. It can be observed from the

experiment that although VGG16 triggers Early stopping at an earlier time due to

performance stagnation, the performance is relatively better than VGG19. Since

our experiments are all based on adding the same model architecture to Pre-

trained models and exploring the best method in this architecture, it is possible

that VGG16 is better than VGG19 for this reason.

Chapter 4 Experimental Results 35

Figure 4.14: (a)VGG16, (b)VGG19, (c)ResNet50, (d)Xception nearest mode
accuracy

Table 4.5: Nearest mode accuracy between Xception and ResNet50

Model True False Total Accuracy

VGG16 43 16 59 73%

VGG19 39 20 59 66%

ResNet50 42 17 59 71%

Xception 45 14 59 76%

4.7.2 Train with Constant Mode with Fine Tuning

In this experiment, the pre-process method used in the Pre-trained model is con-

stant. It can be observed from the above figure4.8 that the method does not

change the pattern, but maintains the pattern as it is but fills the black space in

the blank. Therefore, the graphics will not be pulled to cause changes. It can

be observed from the experimental results that VGG16 and VGG19 cannot suc-

cessfully decline the Loss value in this task. Unable to successfully train learning

Chapter 4 Experimental Results 36

features. On the other hand, ResNet50 and Xception, they successfully converge

quickly, and the Loss value drops to near zero. It can be found from experiments

that Xception continues to converge in a stable state, and more than doubles that

of other model epochs. The model stops because the performance has no progress,

but the relative fluctuations are large, Xception and ResNet-50 are successful.

Convergence, this work will further verify the true accuracy rate and will explore

the issue of verification accuracy.As shown in Figure 4.15

Figure 4.15: (a)VGG16, (b)VGG19, (c)ResNet50, (d)Xception constant mode
loss value

The results of this experiment show that the overall accuracy is better than the

method using Nearest pre-process. The VGG16 model improved by 7%, VGG19

achieved a very large improvement of 20%, ResNet50 improved by 12%, and Xcep-

tion improved by 14%. In addition, it can be found that the training process of

VGG19 was not very good, and overfitting occurred at the end of training. Al-

though the training loss has approached zero, the validation loss has increased. In

this case, the accuracy of the model verification is still 86% higher than the VGG16

model and the ResNet50 model. Although the training process of ResNet50 is very

Chapter 4 Experimental Results 37

Figure 4.16: (a)VGG16, (b)VGG19, (c)ResNet50, (d)Xception constant mode
accuracy

smooth, the true accuracy rate of the model is only 83%, which may result in poor

characteristics during the training. The Xception model is the best in the four

models, and the training process is the smoothest, but it can be found that even

with such a smooth training, this experiment can not achieve 100% accuracy, so

next paragraph will explore the reasons. As shown in Table 4.6

Table 4.6: Constant mode accuracy between Xception and ResNet50

Model True False Total Accuracy

VGG16 47 12 59 80%

VGG19 51 8 59 86%

ResNet50 49 10 59 83%

Xception 53 6 59 90%

In the process of verifying the best Xception model, udged the wrong 6 data to

explore the reasons why 100% accuracy could not be achieved. It can be found

from Figure 4.17 that the data of the three judgment errors are all low-group

Chapter 4 Experimental Results 38

erroneously judged as high-group. In the figure, a is scored 6.8, b is 6.7, and c is 6.5.

The reason why these pieces of data are low-segmented is that the asymmetrical

positions are at the edge of the chin. It can be found that the images misjudged

by the Xception model are of this type. The score ranged from 1 to 10 points, but

the data balance for our data set was based on the median grouping criteria. The

median score of the doctor’s score in our data set was 7. The score distribution is

shown in Figure 4.18 (the X-axis is the total number of data sets and the Y-axis

is the rating of 8 doctors). Therefore the median is biased toward high scores,

causing the model to misjudge it as a high score when judging the value near the

midline. This is also the case that our model is misclassified as high-segment in

6.5∼7.

Figure 4.17: Discussion on the picture of model identification error

Chapter 4 Experimental Results 39

Figure 4.18: Score distribution map

4.8 Experimental summary

4.8.1 Prediction

Our goal is to evaluate the symmetry of the face, so need to generate a score for

the new face through the trained model. Use the confidence value given by the

model to identify the classification as the indicator, and give the corresponding

score based on the size of the confidence value. Set the model’s scoring criteria

to be based on the average of 8 doctors’ criteria for giving us training data sets

and excluding the differences. For example, the model gives a higher confidence

value for high scores and approaches 100%. Give a relatively high score through

this confidence value, and vice versa. If the confidence value given by the model

is biased towards low scores, the corresponding ones will be predicted. fraction.

In this way, it can predict the facial symmetry score of the new data through the

trained model. And the score in this way is more objective than the score of a

single doctor.Figure 4.19 is the score predicted by the model. The picture on the

left is a high score picture and the model is predicted to be 7.6 points. On the

right is a low score picture, the model is predicted to be 5.3 points.

Chapter 4 Experimental Results 40

Figure 4.19: Model prediction

4.8.2 Total Experiment Comparison

This part draw a comparison chart of all our experimental results, as shown in

Figure 4.20. This chart shows the four training methods and their accuracy in our

experiments. The accuracy ratios of Nearest without fine tuning and Constant

without fine tuning are the accuracy of the test set during training. this thesis do

not verify the true accuracy of the model due to poor training results. Nearest with

fine tuning and Constant with fine tuning are the true accuracy of the verification.

Through all the experiments, it can be found that the pre-process Constant method

is suitable for our target tasks, and the model used for the Transfer Learning

training is more suitable for using the Xception model.

Chapter 4 Experimental Results 41

Figure 4.20: Summary comparison

Chapter 5

Conclusions and Future Works

5.1 Conclusions

This work used Transfer Learning to evaluate facial symmetry before and after

orthognathic surgery, and through Transfer Learning to capture features of the

Pre-Trained model with powerful features. this thesis added a neural layer to the

model to improve the accuracy of our new model and allow the Pre-Trained model

to learn better features. MATLAB processed CT scans into facial contour maps.

In this thesis designed experiments to compare different data pre-process methods

and experiments with different Pre-Trained models. It has been found through

experiments that the data amplification method uses Constant to perform better.

The Xception model can learn better features, and the true accuracy is the best.

Through the results of the experiment, this thesis finally chose the Xception model

with Constant’s data amplification method, combined with the new neural layer

and dataset adjustment. It is applied to the evaluation of facial symmetry before

and after orthognathic surgery. The trained new model allows for effective facial

symmetry assessment.

42

Chapter 5 Conclusions and Future Works 43

5.2 Future Works

In the future, our goal is to collect a larger number of facial data sets and design a

better neural network architecture to make our models more accurate. Compare

the pros and cons of more different Pre-Trained models, and develop our own

models with new data and add comparisons. Expect more refined results to further

explore the possibilities of more medical imaging related applications.

References

[1] R. Anderson, A. P. Gema, , and S. M. Isa. Facial attractiveness classification

using deep learning. In 2018 Indonesian Association for Pattern Recognition

International Conference (INAPR), pages 34–38, Sep. 2018.

[2] Wen-Chung Chiang, Hsiu-Hsia Lin, Chiung-Shing Huang, Lun-Jou Lo, and

Shu-Yen Wan. The cluster assessment of facial attractiveness using fuzzy

neural network classifier based on 3d moiré features. Pattern Recognition,

47(3):1249 – 1260, 2014. Handwriting Recognition and other PR Applications.

[3] Gillian Rhodes. The evolutionary psychology of facial beauty. Annual Review

of Psychology, 57(1):199–226, 2006. PMID: 16097897.

[4] Judith H. Langlois and Lori A. Roggman. Attractive faces are only average.

Psychological Science, 1(2):115–121, 1990.

[5] A.J O’Toole, T Price, T Vetter, J.C Bartlett, and V Blanz. 3d shape and 2d

surface textures of human faces: the role of“averages”in attractiveness and

age. Image and Vision Computing, 18(1):9 – 19, 1999.

[6] David I Perrett, D.Michael Burt, Ian S Penton-Voak, Kieran J Lee, Duncan A

Rowland, and Rachel Edwards. Symmetry and human facial attractiveness.

Evolution and Human Behavior, 20(5):295 – 307, 1999.

[7] Wikipedia contributors. Python (programming language) — Wikipedia,

the free encyclopedia. https://en.wikipedia.org/w/index.php?title=

Python_(programming_language)&oldid=892641634, 2019. [Online; ac-

cessed 16-April-2019].

44

https://en.wikipedia.org/w/index.php?title=Python_(programming_language)&oldid=892641634
https://en.wikipedia.org/w/index.php?title=Python_(programming_language)&oldid=892641634

References 45

[8] Wikipedia contributors. Tensorflow — Wikipedia, the free encyclope-

dia. https://en.wikipedia.org/w/index.php?title=TensorFlow&oldid=

892334274, 2019. [Online; accessed 16-April-2019].

[9] Keras. Keras: The python deep learning library, 2015. [Online; accessed

2018].

[10] Wikipedia contributors. Convolutional neural network — Wikipedia,

the free encyclopedia. https://en.wikipedia.org/w/index.php?title=

Convolutional_neural_network&oldid=891636189, 2019. [Online; ac-

cessed 16-April-2019].

[11] Wikipedia contributors. Transfer learning — Wikipedia, the free en-

cyclopedia. https://en.wikipedia.org/w/index.php?title=Transfer_

learning&oldid=891570550, 2019. [Online; accessed 16-April-2019].

[12] Alessandra Lumini and Loris Nanni. Deep learning and transfer learning

features for plankton classification. Ecological Informatics, 51:33 – 43, 2019.

[13] Qing Wang, Panfei Du, Jingyu Yang, Guohua Wang, Jianjun Lei, and Chun-

ping Hou. Transferred deep learning based waveform recognition for cognitive

passive radar. Signal Processing, 155:259 – 267, 2019.

[14] Rupali Sandip Kute, Vibha Vyas, and Alwin Anuse. Component-based face

recognition under transfer learning for forensic applications. Information Sci-

ences, 476:176 – 191, 2019.

[15] Luis H.S. Vogado, Rodrigo M.S. Veras, Flavio. H.D. Araujo, Romuere R.V.

Silva, and Kelson R.T. Aires. Leukemia diagnosis in blood slides using trans-

fer learning in cnns and svm for classification. Engineering Applications of

Artificial Intelligence, 72:415 – 422, 2018.

[16] Gianluigi Ciocca, Paolo Napoletano, and Raimondo Schettini. Cnn-based

features for retrieval and classification of food images. Computer Vision and

Image Understanding, 176-177:70 – 77, 2018.

https://en.wikipedia.org/w/index.php?title=TensorFlow&oldid=892334274
https://en.wikipedia.org/w/index.php?title=TensorFlow&oldid=892334274
https://en.wikipedia.org/w/index.php?title=Convolutional_neural_network&oldid=891636189
https://en.wikipedia.org/w/index.php?title=Convolutional_neural_network&oldid=891636189
https://en.wikipedia.org/w/index.php?title=Transfer_learning&oldid=891570550
https://en.wikipedia.org/w/index.php?title=Transfer_learning&oldid=891570550

References 46

[17] Xinglong Liu, Fei Hou, Hong Qin, and Aimin Hao. Multi-view multi-scale

cnns for lung nodule type classification from ct images. Pattern Recognition,

77:262 – 275, 2018.

[18] Yuzhu Ji, Haijun Zhang, and Q.M. Jonathan Wu. Salient object detection

via multi-scale attention cnn. Neurocomputing, 322:130 – 140, 2018.

[19] Shuai Li, Wenfeng Song, Hong Qin, and Aimin Hao. Deep variance network:

An iterative, improved cnn framework for unbalanced training datasets. Pat-

tern Recognition, 81:294 – 308, 2018.

[20] Qi Xu, Ming Zhang, Zonghua Gu, and Gang Pan. Overfitting remedy by

sparsifying regularization on fully-connected layers of cnns. Neurocomputing,

328:69 – 74, 2019. Chinese Conference on Computer Vision 2017.

[21] Dongmei Han, Qigang Liu, and Weiguo Fan. A new image classification

method using cnn transfer learning and web data augmentation. Expert Sys-

tems with Applications, 95:43 – 56, 2018.

[22] Vojtěch Franc and Jan Čech. Learning cnns from weakly annotated facial

images. Image and Vision Computing, 77:10 – 20, 2018.

[23] Wikipedia contributors. Cuda — Wikipedia, the free encyclopedia. https:

//en.wikipedia.org/w/index.php?title=CUDA&oldid=892701084, 2019.

[Online; accessed 17-April-2019].

[24] Nvidia Cudnn. Nvidia developer cudnn. https://developer.nvidia.com/

cudnn, 2019. [Online; accessed 17-April-2019].

[25] Karen Simonyan and Andrew Zisserman. Very Deep Convolutional Networks

for Large-Scale Image Recognition. arXiv e-prints, page arXiv:1409.1556, Sep

2014.

[26] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep Residual

Learning for Image Recognition. arXiv e-prints, page arXiv:1512.03385, Dec

2015.

https://en.wikipedia.org/w/index.php?title=CUDA&oldid=892701084
https://en.wikipedia.org/w/index.php?title=CUDA&oldid=892701084
https://developer.nvidia.com/cudnn
https://developer.nvidia.com/cudnn

References 47

[27] François Chollet. Xception: Deep Learning with Depthwise Separable Con-

volutions. arXiv e-prints, page arXiv:1610.02357, Oct 2016.

[28] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classifica-

tion with deep convolutional neural networks. In F. Pereira, C. J. C. Burges,

L. Bottou, and K. Q. Weinberger, editors, Advances in Neural Information

Processing Systems 25, pages 1097–1105. Curran Associates, Inc., 2012.

[29] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jonathon Shlens, and

Zbigniew Wojna. Rethinking the inception architecture for computer vision.

CoRR, abs/1512.00567, 2015.

[30] Wikipedia contributors. Rectifier (neural networks) —Wikipedia, the free en-

cyclopedia. https://en.wikipedia.org/w/index.php?title=Rectifier_

(neural_networks)&oldid=890629677, 2019. [Online; accessed 16-April-

2019].

[31] Wikipedia contributors. Softmax function — Wikipedia, the free encyclope-

dia. https://en.wikipedia.org/w/index.php?title=Softmax_function&

oldid=890873030, 2019. [Online; accessed 16-April-2019].

[32] ITREAD01. categorical crossentropy. https://www.itread01.com/

content/1543994346.html, 2018. [Online; accessed2018].

[33] Wikipedia contributors. Early stopping — Wikipedia, the free encyclo-

pedia. https://en.wikipedia.org/w/index.php?title=Early_stopping&

oldid=883916323, 2019. [Online; accessed 17-April-2019].

https://en.wikipedia.org/w/index.php?title=Rectifier_(neural_networks)&oldid=890629677
https://en.wikipedia.org/w/index.php?title=Rectifier_(neural_networks)&oldid=890629677
https://en.wikipedia.org/w/index.php?title=Softmax_function&oldid=890873030
https://en.wikipedia.org/w/index.php?title=Softmax_function&oldid=890873030
https://www.itread01.com/content/1543994346.html
https://www.itread01.com/content/1543994346.html
https://en.wikipedia.org/w/index.php?title=Early_stopping&oldid=883916323
https://en.wikipedia.org/w/index.php?title=Early_stopping&oldid=883916323

Appendix A

Keras with TensorFlow

I. Anaconda Install

https://www.anaconda.com/

II. Create environment

conda create –n cnn python=3.6

activate cnn

III. Cuda10.0 Install

https://developer.nvidia.com/cuda-downloads

IV. Cudnn 7.4 Install

https://developer.nvidia.com/cudnn

V. TensorFlow GPU 1.12 install

download from https://github.com/fo40225/tensorflow-windows-wheel

pip install tensorflow_gpu -1.12.0-cp36-cp36m-win_amd64.whl

48

Appendix 49

VI. Package install

pip install matplotlib pillow pandas scikit-learn opencv-python jupyter

VII. Keras Install

pip install keras

Appendix B

Data Preprocess Code

I. CutTheLeftHalf.ipynb Code

import os, random

import cv2

import numpy as np

fileDir = "C:/Users/HPC/Desktop/true/"

fileDir1 = "C:/Users/HPC/Desktop/a/"

pathDir = os.listdir(fileDir)

for j in range (len(pathDir)):

print(fileDir+pathDir[j])

img = cv2.imread(fileDir+pathDir[j])

x = 0

y = 0

w = 500

h = 750

crop_img = img[y:y+h, x:x+w]

cv2.imwrite(fileDir1+pathDir[j], crop_img)

II. CutTheRightHalf.ipynb Code

import os, random

import cv2

import numpy as np

fileDir = "C:/Users/HPC/Desktop/true/"

fileDir1 = "C:/Users/HPC/Desktop/b/"

50

Appendix 51

pathDir = os.listdir(fileDir)

for j in range (len(pathDir)):

print(fileDir+pathDir[j])

img = cv2.imread(fileDir+pathDir[j])

x = 500

y = 0

w = 500

h = 750

crop_img = img[y:y+h, x:x+w]

cv2.imwrite(fileDir1+pathDir[j], crop_img)

III. FlipTheRightHalfHorizontally.ipynb Code

import os, random

import cv2

import numpy as np

fileDir = "C:/Users/HPC/Desktop/b/"

fileDir1 = "C:/Users/HPC/Desktop/b/"

pathDir = os.listdir(fileDir)

for j in range (len(pathDir)):

print(fileDir+pathDir[j])

img = cv2.imread(fileDir+pathDir[j])

h_flip = cv2.flip(img, 1)

cv2.imwrite(fileDir1+pathDir[j], h_flip)

IV. FusionofLeftandRightSides.ipynb Code

import os, random

import cv2

import numpy as np

fileDir = "C:/Users/HPC/Desktop/a/"

fileDir1 = "C:/Users/HPC/Desktop/b/"

fileDir2 = "C:/Users/HPC/Desktop/c/"

pathDir = os.listdir(fileDir)

for j in range (len(pathDir)):

print(fileDir+pathDir[j])

img = cv2.imread(fileDir+pathDir[j])

img1 = cv2.imread(fileDir1+pathDir[j])

img_mix = cv2.addWeighted(img, 0.5, img1, 0.5, 0)

cv2.imwrite(fileDir2+pathDir[j], img_mix)

Appendix 52

V. DataAmplification.ipynb Code

from keras.preprocessing.image import ImageDataGenerator, array_to_img, img_to_array, load_img

from os import listdir

from os.path import isfile, isdir, join

datagen = ImageDataGenerator(

zca_whitening=True,

rotation_range=20,

width_shift_range=0,

height_shift_range=0,

shear_range=0,

zoom_range=0.2,

horizontal_flip=False,

fill_mode='nearest')

mypath = "C:/Users/HPC/Desktop/full2/train/1/"

files = listdir(mypath)

for f in files:

img = load_img(mypath+f)

x = img_to_array(img)

x = x.reshape((1,) + x.shape)

i = 0

for batch in datagen.flow(x, batch_size=1,

save_to_dir=mypath, save_prefix='1', save_format='jpg'):

i += 1

print(f)

if i > 100:

break

Appendix C

Model Without Fine Tuning

Training Code

II. VGG16.ipynb Code

import tensorflow as tf

import numpy as np

import gc

import matplotlib.pyplot as plt

import pandas as pd

import time

from PIL import Image

from keras.layers import Conv2D, MaxPooling2D, GlobalAveragePooling2D

from keras.layers import Flatten, Dense ,Dropout

from keras.models import Sequential, Model

from sklearn.model_selection import train_test_split

from keras.preprocessing import image

from keras.callbacks import EarlyStopping

from keras.callbacks import ModelCheckpoint

from keras.applications.xception import preprocess_input

from keras.applications.vgg16 import VGG16

base_model = VGG16(input_shape=(250,750, 3), weights='imagenet', include_top=False)

for layer in base_model.layers[:]:

layer.trainable = False

53

Appendix 54

Check the trainable status of the individual layers

for layer in base_model.layers:

print(layer, layer.trainable)

x = base_model.output

x = GlobalAveragePooling2D()(x)

x = Dense(1024, activation='relu')(x)

x = Dense(1024, activation='relu')(x)

x = Dense(512, activation='relu')(x)

x = Dense(512, activation='relu')(x)

x = Dense(256, activation='relu')(x)

x = Dropout(0.25)(x)

x = Dense(128, activation='relu')(x)

x = Dropout(0.25)(x)

predictions = Dense(2, activation='softmax')(x)

model = Model(base_model.input, predictions)

print(model.summary())

from keras.optimizers import *

from keras.callbacks import ReduceLROnPlateau

import os

import numpy as np

from keras.preprocessing.image import ImageDataGenerator

base_dir = 'C:/Users/HPC/Desktop/full'

train_dir = os.path.join(base_dir, 'train')

validation_dir = os.path.join(base_dir, 'test')

train_datagen = ImageDataGenerator(

rescale=1./255,

rotation_range=30,

width_shift_range=0.3,

height_shift_range=0.3,

zoom_range=0.3,

horizontal_flip=True,

)

validation_datagen = ImageDataGenerator(rescale=1./255)

train_batchsize = 4

val_batchsize = 4

train_generator = train_datagen.flow_from_directory(

train_dir,

Appendix 55

target_size=(250, 750),

batch_size=train_batchsize,

class_mode='categorical'

)

validation_generator = validation_datagen.flow_from_directory(

validation_dir,

target_size=(250, 750),

batch_size=val_batchsize,

class_mode='categorical',

shuffle=False)

print(train_generator.class_indices)

from keras import optimizers

model.compile(loss='categorical_crossentropy ',

optimizer=optimizers.RMSprop(lr=0.0001),

metrics=['acc'])

learning_rate_reduction = ReduceLROnPlateau(monitor='acc',

patience=3,

verbose=1,

factor=0.5,

min_lr=0.00001)

from keras.callbacks import EarlyStopping

early_stopping = EarlyStopping(monitor='val_loss', patience=10, verbose=2)

history = model.fit_generator(

train_generator,

steps_per_epoch=train_generator.samples/train_generator.batch_size ,

epochs=1000,

validation_data=validation_generator ,

validation_steps=validation_generator.samples/validation_generator.batch_size,

class_weight='auto',

verbose=1,

callbacks=[learning_rate_reduction ,early_stopping])

import matplotlib.pyplot as plt

acc = history.history['acc']

val_acc = history.history['val_acc']

loss = history.history['loss']

val_loss = history.history['val_loss']

epochs = range(1, len(acc) + 1)

plt.plot(epochs, acc, 'bo', label="Training acc")

plt.plot(epochs, val_acc, 'b', label='Validation_acc ')

plt.title('Training and Validation accuracy')

Appendix 56

plt.legend

plt.figure()

plt.plot(epochs, loss, 'bo', label="Training loss")

plt.plot(epochs, val_loss, 'b', label='Validation_loss ')

plt.title('Training and Validation loss')

plt.legend

plt.show()

model.save("trvgg16.h5")

I. VGG19.ipynb Code

import tensorflow as tf

import numpy as np

import gc

import matplotlib.pyplot as plt

import pandas as pd

import time

from PIL import Image

from keras.layers import Conv2D, MaxPooling2D, GlobalAveragePooling2D

from keras.layers import Flatten, Dense ,Dropout

from keras.models import Sequential, Model

from sklearn.model_selection import train_test_split

from keras.preprocessing import image

from keras.callbacks import EarlyStopping

from keras.callbacks import ModelCheckpoint

from keras.applications.xception import preprocess_input

from keras.applications.vgg19 import VGG19

base_model = VGG19(input_shape=(250,750, 3), weights='imagenet', include_top=False)

for layer in base_model.layers[:]:

layer.trainable = False

Check the trainable status of the individual layers

for layer in base_model.layers:

print(layer, layer.trainable)

x = base_model.output

x = GlobalAveragePooling2D()(x)

Appendix 57

x = Dense(1024, activation='relu')(x)

x = Dense(1024, activation='relu')(x)

x = Dense(512, activation='relu')(x)

x = Dense(512, activation='relu')(x)

x = Dense(256, activation='relu')(x)

x = Dropout(0.25)(x)

x = Dense(128, activation='relu')(x)

x = Dropout(0.25)(x)

predictions = Dense(2, activation='softmax')(x)

model = Model(base_model.input, predictions)

print(model.summary())

from keras.optimizers import *

from keras.callbacks import ReduceLROnPlateau

import os

import numpy as np

from keras.preprocessing.image import ImageDataGenerator

base_dir = 'C:/Users/HPC/Desktop/full'

train_dir = os.path.join(base_dir, 'train')

validation_dir = os.path.join(base_dir, 'test')

train_datagen = ImageDataGenerator(

rescale=1./255,

rotation_range=30,

width_shift_range=0.3,

height_shift_range=0.3,

zoom_range=0.3,

horizontal_flip=True,

)

validation_datagen = ImageDataGenerator(rescale=1./255)

train_batchsize = 4

val_batchsize = 4

train_generator = train_datagen.flow_from_directory(

train_dir,

target_size=(250, 750),

batch_size=train_batchsize,

class_mode='categorical'

)

validation_generator = validation_datagen.flow_from_directory(

Appendix 58

validation_dir,

target_size=(250, 750),

batch_size=val_batchsize,

class_mode='categorical',

shuffle=False)

print(train_generator.class_indices)

from keras import optimizers

model.compile(loss='categorical_crossentropy ',

optimizer=optimizers.RMSprop(lr=0.0001),

metrics=['acc'])

learning_rate_reduction = ReduceLROnPlateau(monitor='acc',

patience=3,

verbose=1,

factor=0.5,

min_lr=0.00001)

from keras.callbacks import EarlyStopping

early_stopping = EarlyStopping(monitor='val_loss', patience=10, verbose=2)

history = model.fit_generator(

train_generator,

steps_per_epoch=train_generator.samples/train_generator.batch_size ,

epochs=1000,

validation_data=validation_generator ,

validation_steps=validation_generator.samples/validation_generator.batch_size,

class_weight='auto',

verbose=1,

callbacks=[learning_rate_reduction ,early_stopping])

import matplotlib.pyplot as plt

acc = history.history['acc']

val_acc = history.history['val_acc']

loss = history.history['loss']

val_loss = history.history['val_loss']

epochs = range(1, len(acc) + 1)

plt.plot(epochs, acc, 'bo', label="Training acc")

plt.plot(epochs, val_acc, 'b', label='Validation_acc ')

plt.title('Training and Validation accuracy')

plt.legend

plt.figure()

plt.plot(epochs, loss, 'bo', label="Training loss")

plt.plot(epochs, val_loss, 'b', label='Validation_loss ')

plt.title('Training and Validation loss')

Appendix 59

plt.legend

plt.show()

model.save("trvgg19.h5")

III. ResNet50.ipynb Code

import tensorflow as tf

import numpy as np

import gc

import matplotlib.pyplot as plt

import pandas as pd

import time

from PIL import Image

from keras.layers import Conv2D, MaxPooling2D, GlobalAveragePooling2D

from keras.layers import Flatten, Dense ,Dropout

from keras.models import Sequential, Model

from sklearn.model_selection import train_test_split

from keras.preprocessing import image

from keras.callbacks import EarlyStopping

from keras.callbacks import ModelCheckpoint

from keras.applications.xception import preprocess_input

from keras.applications.resnet50 import ResNet50

base_model = ResNet50(input_shape=(250,750, 3), weights='imagenet', include_top=False)

for layer in base_model.layers[:]:

layer.trainable = False

Check the trainable status of the individual layers

for layer in base_model.layers:

print(layer, layer.trainable)

x = base_model.output

x = GlobalAveragePooling2D()(x)

x = Dense(1024, activation='relu')(x)

x = Dense(1024, activation='relu')(x)

x = Dense(512, activation='relu')(x)

x = Dense(512, activation='relu')(x)

x = Dense(256, activation='relu')(x)

x = Dropout(0.25)(x)

x = Dense(128, activation='relu')(x)

Appendix 60

x = Dropout(0.25)(x)

predictions = Dense(2, activation='softmax')(x)

model = Model(base_model.input, predictions)

print(model.summary())

from keras.optimizers import *

from keras.callbacks import ReduceLROnPlateau

import os

import numpy as np

from keras.preprocessing.image import ImageDataGenerator

base_dir = 'C:/Users/HPC/Desktop/full'

train_dir = os.path.join(base_dir, 'train')

validation_dir = os.path.join(base_dir, 'test')

train_datagen = ImageDataGenerator(

rescale=1./255,

rotation_range=30,

width_shift_range=0.3,

height_shift_range=0.3,

zoom_range=0.3,

horizontal_flip=True,

)

validation_datagen = ImageDataGenerator(rescale=1./255)

train_batchsize = 4

val_batchsize = 4

train_generator = train_datagen.flow_from_directory(

train_dir,

target_size=(250, 750),

batch_size=train_batchsize,

class_mode='categorical'

)

validation_generator = validation_datagen.flow_from_directory(

validation_dir,

target_size=(250, 750),

batch_size=val_batchsize,

class_mode='categorical',

shuffle=False)

print(train_generator.class_indices)

Appendix 61

from keras import optimizers

model.compile(loss='categorical_crossentropy ',

optimizer=optimizers.RMSprop(lr=0.0001),

metrics=['acc'])

learning_rate_reduction = ReduceLROnPlateau(monitor='acc',

patience=3,

verbose=1,

factor=0.5,

min_lr=0.00001)

from keras.callbacks import EarlyStopping

early_stopping = EarlyStopping(monitor='val_loss', patience=10, verbose=2)

history = model.fit_generator(

train_generator,

steps_per_epoch=train_generator.samples/train_generator.batch_size ,

epochs=1000,

validation_data=validation_generator ,

validation_steps=validation_generator.samples/validation_generator.batch_size,

class_weight='auto',

verbose=1,

callbacks=[learning_rate_reduction ,early_stopping])

import matplotlib.pyplot as plt

acc = history.history['acc']

val_acc = history.history['val_acc']

loss = history.history['loss']

val_loss = history.history['val_loss']

epochs = range(1, len(acc) + 1)

plt.plot(epochs, acc, 'bo', label="Training acc")

plt.plot(epochs, val_acc, 'b', label='Validation_acc ')

plt.title('Training and Validation accuracy')

plt.legend

plt.figure()

plt.plot(epochs, loss, 'bo', label="Training loss")

plt.plot(epochs, val_loss, 'b', label='Validation_loss ')

plt.title('Training and Validation loss')

plt.legend

plt.show()

model.save("trresnet.h5")

Appendix 62

IV. Xception.ipynb Code

import tensorflow as tf

import numpy as np

import gc

import matplotlib.pyplot as plt

import pandas as pd

import time

from PIL import Image

from keras.layers import Conv2D, MaxPooling2D, GlobalAveragePooling2D

from keras.layers import Flatten, Dense ,Dropout

from keras.models import Sequential, Model

from sklearn.model_selection import train_test_split

from keras.preprocessing import image

from keras.callbacks import EarlyStopping

from keras.callbacks import ModelCheckpoint

from keras.applications.xception import preprocess_input

from keras.applications.xception import Xception

base_model = Xception(input_shape=(250,750, 3), weights='imagenet', include_top=False)

for layer in base_model.layers[:]:

layer.trainable = False

Check the trainable status of the individual layers

for layer in base_model.layers:

print(layer, layer.trainable)

x = base_model.output

x = GlobalAveragePooling2D()(x)

x = Dense(1024, activation='relu')(x)

x = Dense(1024, activation='relu')(x)

x = Dense(512, activation='relu')(x)

x = Dense(512, activation='relu')(x)

x = Dense(256, activation='relu')(x)

x = Dropout(0.25)(x)

x = Dense(128, activation='relu')(x)

x = Dropout(0.25)(x)

predictions = Dense(2, activation='softmax')(x)

model = Model(base_model.input, predictions)

print(model.summary())

from keras.optimizers import *

Appendix 63

from keras.callbacks import ReduceLROnPlateau

import os

import numpy as np

from keras.preprocessing.image import ImageDataGenerator

base_dir = 'C:/Users/HPC/Desktop/full'

train_dir = os.path.join(base_dir, 'train')

validation_dir = os.path.join(base_dir, 'test')

train_datagen = ImageDataGenerator(

rescale=1./255,

rotation_range=30,

width_shift_range=0.3,

height_shift_range=0.3,

zoom_range=0.3,

horizontal_flip=True,

)

validation_datagen = ImageDataGenerator(rescale=1./255)

train_batchsize = 4

val_batchsize = 4

train_generator = train_datagen.flow_from_directory(

train_dir,

target_size=(250, 750),

batch_size=train_batchsize,

class_mode='categorical'

)

validation_generator = validation_datagen.flow_from_directory(

validation_dir,

target_size=(250, 750),

batch_size=val_batchsize,

class_mode='categorical',

shuffle=False)

print(train_generator.class_indices)

from keras import optimizers

model.compile(loss='categorical_crossentropy ',

optimizer=optimizers.RMSprop(lr=0.0001),

metrics=['acc'])

learning_rate_reduction = ReduceLROnPlateau(monitor='acc',

patience=3,

verbose=1,

Appendix 64

factor=0.5,

min_lr=0.00001)

from keras.callbacks import EarlyStopping

early_stopping = EarlyStopping(monitor='val_loss', patience=10, verbose=2)

history = model.fit_generator(

train_generator,

steps_per_epoch=train_generator.samples/train_generator.batch_size ,

epochs=1000,

validation_data=validation_generator ,

validation_steps=validation_generator.samples/validation_generator.batch_size,

class_weight='auto',

verbose=1,

callbacks=[learning_rate_reduction ,early_stopping])

import matplotlib.pyplot as plt

acc = history.history['acc']

val_acc = history.history['val_acc']

loss = history.history['loss']

val_loss = history.history['val_loss']

epochs = range(1, len(acc) + 1)

plt.plot(epochs, acc, 'bo', label="Training acc")

plt.plot(epochs, val_acc, 'b', label='Validation_acc ')

plt.title('Training and Validation accuracy')

plt.legend

plt.figure()

plt.plot(epochs, loss, 'bo', label="Training loss")

plt.plot(epochs, val_loss, 'b', label='Validation_loss ')

plt.title('Training and Validation loss')

plt.legend

plt.show()

model.save("trxception.h5")

Appendix D

Model Fine Tuning Training Code

I. VGG16.ipynb Code

import tensorflow as tf

import numpy as np

import gc

import matplotlib.pyplot as plt

import pandas as pd

import time

from PIL import Image

from keras.layers import Conv2D, MaxPooling2D, GlobalAveragePooling2D

from keras.layers import Flatten, Dense ,Dropout

from keras.models import Sequential, Model

from sklearn.model_selection import train_test_split

from keras.preprocessing import image

from keras.callbacks import EarlyStopping

from keras.callbacks import ModelCheckpoint

from keras.applications.xception import preprocess_input

from keras.applications.vgg16 import VGG16

base_model = VGG16(input_shape=(250,750, 3), weights='imagenet', include_top=False)

x = base_model.output

x = GlobalAveragePooling2D()(x)

x = Dense(1024, activation='relu')(x)

x = Dense(1024, activation='relu')(x)

x = Dense(512, activation='relu')(x)

65

Appendix 66

x = Dense(512, activation='relu')(x)

x = Dense(256, activation='relu')(x)

x = Dropout(0.25)(x)

x = Dense(128, activation='relu')(x)

x = Dropout(0.25)(x)

predictions = Dense(2, activation='softmax')(x)

model = Model(base_model.input, predictions)

print(model.summary())

from keras.optimizers import *

from keras.callbacks import ReduceLROnPlateau

import os

import numpy as np

from keras.preprocessing.image import ImageDataGenerator

base_dir = 'C:/Users/HPC/Desktop/full'

train_dir = os.path.join(base_dir, 'train')

validation_dir = os.path.join(base_dir, 'test')

train_datagen = ImageDataGenerator(

rescale=1./255,

rotation_range=30,

width_shift_range=0.3,

height_shift_range=0.3,

zoom_range=0.3,

horizontal_flip=True,

)

validation_datagen = ImageDataGenerator(rescale=1./255)

train_batchsize = 4

val_batchsize = 4

train_generator = train_datagen.flow_from_directory(

train_dir,

target_size=(250, 750),

batch_size=train_batchsize,

class_mode='categorical'

)

validation_generator = validation_datagen.flow_from_directory(

validation_dir,

target_size=(250, 750),

batch_size=val_batchsize,

Appendix 67

class_mode='categorical',

shuffle=False)

print(train_generator.class_indices)

from keras import optimizers

model.compile(loss='categorical_crossentropy ',

optimizer=optimizers.RMSprop(lr=0.0001),

metrics=['acc'])

learning_rate_reduction = ReduceLROnPlateau(monitor='acc',

patience=3,

verbose=1,

factor=0.5,

min_lr=0.00001)

from keras.callbacks import EarlyStopping

early_stopping = EarlyStopping(monitor='val_loss', patience=10, verbose=2)

history = model.fit_generator(

train_generator,

steps_per_epoch=train_generator.samples/train_generator.batch_size ,

epochs=1000,

validation_data=validation_generator ,

validation_steps=validation_generator.samples/validation_generator.batch_size,

class_weight='auto',

verbose=1,

callbacks=[learning_rate_reduction ,early_stopping])

import matplotlib.pyplot as plt

acc = history.history['acc']

val_acc = history.history['val_acc']

loss = history.history['loss']

val_loss = history.history['val_loss']

epochs = range(1, len(acc) + 1)

plt.plot(epochs, acc, 'bo', label="Training acc")

plt.plot(epochs, val_acc, 'b', label='Validation_acc ')

plt.title('Training and Validation accuracy')

plt.legend

plt.figure()

plt.plot(epochs, loss, 'bo', label="Training loss")

plt.plot(epochs, val_loss, 'b', label='Validation_loss ')

plt.title('Training and Validation loss')

plt.legend

plt.show()

Appendix 68

model.save("vgg16.h5")

II. VGG19.ipynb Code

import tensorflow as tf

import numpy as np

import gc

import matplotlib.pyplot as plt

import pandas as pd

import time

from PIL import Image

from keras.layers import Conv2D, MaxPooling2D, GlobalAveragePooling2D

from keras.layers import Flatten, Dense ,Dropout

from keras.models import Sequential, Model

from sklearn.model_selection import train_test_split

from keras.preprocessing import image

from keras.callbacks import EarlyStopping

from keras.callbacks import ModelCheckpoint

from keras.applications.xception import preprocess_input

from keras.applications.vgg19 import VGG19

base_model = VGG19(input_shape=(250,750, 3), weights='imagenet', include_top=False)

x = base_model.output

x = GlobalAveragePooling2D()(x)

x = Dense(1024, activation='relu')(x)

x = Dense(1024, activation='relu')(x)

x = Dense(512, activation='relu')(x)

x = Dense(512, activation='relu')(x)

x = Dense(256, activation='relu')(x)

x = Dropout(0.25)(x)

x = Dense(128, activation='relu')(x)

x = Dropout(0.25)(x)

predictions = Dense(2, activation='softmax')(x)

model = Model(base_model.input, predictions)

print(model.summary())

from keras.optimizers import *

from keras.callbacks import ReduceLROnPlateau

import os

import numpy as np

Appendix 69

from keras.preprocessing.image import ImageDataGenerator

base_dir = 'C:/Users/HPC/Desktop/full'

train_dir = os.path.join(base_dir, 'train')

validation_dir = os.path.join(base_dir, 'test')

train_datagen = ImageDataGenerator(

rescale=1./255,

rotation_range=30,

width_shift_range=0.3,

height_shift_range=0.3,

zoom_range=0.3,

horizontal_flip=True,

)

validation_datagen = ImageDataGenerator(rescale=1./255)

train_batchsize = 4

val_batchsize = 4

train_generator = train_datagen.flow_from_directory(

train_dir,

target_size=(250, 750),

batch_size=train_batchsize,

class_mode='categorical'

)

validation_generator = validation_datagen.flow_from_directory(

validation_dir,

target_size=(250, 750),

batch_size=val_batchsize,

class_mode='categorical',

shuffle=False)

print(train_generator.class_indices)

from keras import optimizers

model.compile(loss='categorical_crossentropy ',

optimizer=optimizers.RMSprop(lr=0.0001),

metrics=['acc'])

learning_rate_reduction = ReduceLROnPlateau(monitor='acc',

patience=3,

verbose=1,

factor=0.5,

min_lr=0.00001)

from keras.callbacks import EarlyStopping

early_stopping = EarlyStopping(monitor='val_loss', patience=10, verbose=2)

Appendix 70

history = model.fit_generator(

train_generator,

steps_per_epoch=train_generator.samples/train_generator.batch_size ,

epochs=1000,

validation_data=validation_generator ,

validation_steps=validation_generator.samples/validation_generator.batch_size,

class_weight='auto',

verbose=1,

callbacks=[learning_rate_reduction ,early_stopping])

import matplotlib.pyplot as plt

acc = history.history['acc']

val_acc = history.history['val_acc']

loss = history.history['loss']

val_loss = history.history['val_loss']

epochs = range(1, len(acc) + 1)

plt.plot(epochs, acc, 'bo', label="Training acc")

plt.plot(epochs, val_acc, 'b', label='Validation_acc ')

plt.title('Training and Validation accuracy')

plt.legend

plt.figure()

plt.plot(epochs, loss, 'bo', label="Training loss")

plt.plot(epochs, val_loss, 'b', label='Validation_loss ')

plt.title('Training and Validation loss')

plt.legend

plt.show()

model.save("vgg19.h5")

III. ResNet50.ipynb Code

import tensorflow as tf

import numpy as np

import gc

import matplotlib.pyplot as plt

import pandas as pd

import time

from PIL import Image

from keras.layers import Conv2D, MaxPooling2D, GlobalAveragePooling2D

Appendix 71

from keras.layers import Flatten, Dense ,Dropout

from keras.models import Sequential, Model

from sklearn.model_selection import train_test_split

from keras.preprocessing import image

from keras.callbacks import EarlyStopping

from keras.callbacks import ModelCheckpoint

from keras.applications.xception import preprocess_input

from keras.applications.resnet50 import ResNet50

base_model = ResNet50(input_shape=(250,750, 3), weights='imagenet', include_top=False)

x = base_model.output

x = GlobalAveragePooling2D()(x)

x = Dense(1024, activation='relu')(x)

x = Dense(1024, activation='relu')(x)

x = Dense(512, activation='relu')(x)

x = Dense(512, activation='relu')(x)

x = Dense(256, activation='relu')(x)

x = Dropout(0.25)(x)

x = Dense(128, activation='relu')(x)

x = Dropout(0.25)(x)

predictions = Dense(2, activation='softmax')(x)

model = Model(base_model.input, predictions)

print(model.summary())

from keras.optimizers import *

from keras.callbacks import ReduceLROnPlateau

import os

import numpy as np

from keras.preprocessing.image import ImageDataGenerator

base_dir = 'C:/Users/HPC/Desktop/full'

train_dir = os.path.join(base_dir, 'train')

validation_dir = os.path.join(base_dir, 'test')

train_datagen = ImageDataGenerator(

rescale=1./255,

rotation_range=30,

width_shift_range=0.3,

height_shift_range=0.3,

zoom_range=0.3,

horizontal_flip=True,

)

Appendix 72

validation_datagen = ImageDataGenerator(rescale=1./255)

train_batchsize = 4

val_batchsize = 4

train_generator = train_datagen.flow_from_directory(

train_dir,

target_size=(250, 750),

batch_size=train_batchsize,

class_mode='categorical'

)

validation_generator = validation_datagen.flow_from_directory(

validation_dir,

target_size=(250, 750),

batch_size=val_batchsize,

class_mode='categorical',

shuffle=False)

print(train_generator.class_indices)

from keras import optimizers

model.compile(loss='categorical_crossentropy ',

optimizer=optimizers.RMSprop(lr=0.0001),

metrics=['acc'])

learning_rate_reduction = ReduceLROnPlateau(monitor='acc',

patience=3,

verbose=1,

factor=0.5,

min_lr=0.00001)

from keras.callbacks import EarlyStopping

early_stopping = EarlyStopping(monitor='val_loss', patience=10, verbose=2)

history = model.fit_generator(

train_generator,

steps_per_epoch=train_generator.samples/train_generator.batch_size ,

epochs=1000,

validation_data=validation_generator ,

validation_steps=validation_generator.samples/validation_generator.batch_size,

class_weight='auto',

verbose=1,

callbacks=[learning_rate_reduction ,early_stopping])

import matplotlib.pyplot as plt

acc = history.history['acc']

val_acc = history.history['val_acc']

Appendix 73

loss = history.history['loss']

val_loss = history.history['val_loss']

epochs = range(1, len(acc) + 1)

plt.plot(epochs, acc, 'bo', label="Training acc")

plt.plot(epochs, val_acc, 'b', label='Validation_acc ')

plt.title('Training and Validation accuracy')

plt.legend

plt.figure()

plt.plot(epochs, loss, 'bo', label="Training loss")

plt.plot(epochs, val_loss, 'b', label='Validation_loss ')

plt.title('Training and Validation loss')

plt.legend

plt.show()

model.save("resnet50.h5")

IV. Xception.ipynb Code

import tensorflow as tf

import numpy as np

import gc

import matplotlib.pyplot as plt

import pandas as pd

import time

from PIL import Image

from keras.layers import Conv2D, MaxPooling2D, GlobalAveragePooling2D

from keras.layers import Flatten, Dense ,Dropout

from keras.models import Sequential, Model

from sklearn.model_selection import train_test_split

from keras.preprocessing import image

from keras.callbacks import EarlyStopping

from keras.callbacks import ModelCheckpoint

from keras.applications.xception import preprocess_input

from keras.applications.vgg16 import VGG16

from keras.applications.xception import Xception

base_model = Xception(input_shape=(250,750, 3), weights='imagenet', include_top=False)

x = base_model.output

x = GlobalAveragePooling2D()(x)

Appendix 74

x = Dense(1024, activation='relu')(x)

x = Dense(1024, activation='relu')(x)

x = Dense(512, activation='relu')(x)

x = Dense(512, activation='relu')(x)

x = Dense(256, activation='relu')(x)

x = Dropout(0.25)(x)

x = Dense(128, activation='relu')(x)

x = Dropout(0.25)(x)

predictions = Dense(2, activation='softmax')(x)

model = Model(base_model.input, predictions)

print(model.summary())

from keras.optimizers import *

from keras.callbacks import ReduceLROnPlateau

import os

import numpy as np

from keras.preprocessing.image import ImageDataGenerator

base_dir = 'C:/Users/HPC/Desktop/full'

train_dir = os.path.join(base_dir, 'train')

validation_dir = os.path.join(base_dir, 'test')

train_datagen = ImageDataGenerator(

rescale=1./255,

rotation_range=30,

width_shift_range=0.3,

height_shift_range=0.3,

zoom_range=0.3,

horizontal_flip=True,

)

validation_datagen = ImageDataGenerator(rescale=1./255)

train_batchsize = 4

val_batchsize = 4

train_generator = train_datagen.flow_from_directory(

train_dir,

target_size=(250, 750),

batch_size=train_batchsize,

class_mode='categorical'

)

validation_generator = validation_datagen.flow_from_directory(

Appendix 75

validation_dir,

target_size=(250, 750),

batch_size=val_batchsize,

class_mode='categorical',

shuffle=False)

print(train_generator.class_indices)

from keras import optimizers

model.compile(loss='categorical_crossentropy ',

optimizer=optimizers.RMSprop(lr=0.0001),

metrics=['acc'])

learning_rate_reduction = ReduceLROnPlateau(monitor='acc',

patience=3,

verbose=1,

factor=0.5,

min_lr=0.00001)

from keras.callbacks import EarlyStopping

early_stopping = EarlyStopping(monitor='val_loss', patience=10, verbose=2)

history = model.fit_generator(

train_generator,

steps_per_epoch=train_generator.samples/train_generator.batch_size ,

epochs=1000,

validation_data=validation_generator ,

validation_steps=validation_generator.samples/validation_generator.batch_size,

class_weight='auto',

verbose=1,

callbacks=[learning_rate_reduction ,early_stopping])

import matplotlib.pyplot as plt

acc = history.history['acc']

val_acc = history.history['val_acc']

loss = history.history['loss']

val_loss = history.history['val_loss']

epochs = range(1, len(acc) + 1)

plt.plot(epochs, acc, 'bo', label="Training acc")

plt.plot(epochs, val_acc, 'b', label='Validation_acc ')

plt.title('Training and Validation accuracy')

plt.legend

plt.figure()

plt.plot(epochs, loss, 'bo', label="Training loss")

plt.plot(epochs, val_loss, 'b', label='Validation_loss ')

plt.title('Training and Validation loss')

Appendix 76

plt.legend

plt.show()

model.save("trxce.h5")

Appendix E

Verify True Accuracy Code

I. VerifyTrueAccuracy.ipynb Code

import os

import matplotlib

import matplotlib.pyplot as plt

import pandas as pd

import cv2

import numpy as np

from glob import glob as gb

import matplotlib.image as mpimg

import seaborn as sns

get_ipython().run_line_magic('matplotlib', 'inline')

np.random.seed(2)

from keras.applications.xception import Xception

from sklearn.model_selection import train_test_split

from sklearn.metrics import confusion_matrix

import itertools

from keras.utils.np_utils import to_categorical

from keras.optimizers import RMSprop

from keras.callbacks import ReduceLROnPlateau

import sys

from keras.layers import *

from keras.optimizers import *

from keras.applications import *

from keras.models import Model

from keras.preprocessing.image import ImageDataGenerator

from keras.callbacks import ModelCheckpoint, EarlyStopping

from keras import backend as k

77

Appendix 78

def convert2label(vector):

string_array=[]

for results in vector:

if results==0:

string_array.append('low')

elif results==1:

string_array.append('upp')

return string_array

test = []

img = cv2.imread('./true/001_20.jpg')

plt.figure(figsize=(5,5))

img2 = cv2.resize(img, (750,250), interpolation=cv2.INTER_CUBIC)

imga = np.asarray(img2)

test.append(imga)

test = np.array(test)

test.shape

test = test.astype('float32') / 255.0

from keras.models import load_model

model = load_model("./trvgg160525.h5")

ss = model.predict(test)

a=np.array(ss).round(decimals=5)

print(a)

results = np.argmax(ss,axis = 1)

y = convert2label(results)

plt.figure(figsize=(5,5))

plt.imshow(img)

if a[0,0]<0.4 and a[0,1]<0.4 and a[0,2]<0.4 and a[0,3]<0.4 and a[0,4]<0.4:

print('error')

else :

print(np.max(a))

print(results)

print(y)

	摘要
	Abstract
	致謝詞
	Table of Contents
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivation
	1.2 Thesis Goal and Contributions
	1.3 Thesis Organization

	2 Background Review and Related Work
	2.1 Background Review
	2.1.1 Deep Learning with Python
	2.1.2 TensorFlow
	2.1.3 Keras
	2.1.4 Facial Symmetry Data Set
	2.1.5 Convolutional Neural Network
	2.1.6 Transfer Learning

	2.2 Related Works

	3 System Design and Implementation
	3.1 System Architecture
	3.2 Data Pre-processing
	3.2.1 Data 3D to 2D
	3.2.2 Data tailoring and feature enhancement
	3.2.3 Data amplification

	3.3 CNN Training
	3.4 Transfer Learning with Pre-trained Model
	3.5 Training Detail
	3.6 Facial Symmetry Standard

	4 Experimental Results
	4.1 Experimental Environment
	4.2 Image Processing of CT Image
	4.3 Differences in the Blank Value Complement
	4.4 Verification of True Accuracy
	4.5 Transfer Learning for Face Symmetry
	4.6 Deep Learning without Fine Tuning
	4.6.1 Train with Nearest Mode without Fine Tuning
	4.6.2 Train with Constant Mode without Fine Tuning

	4.7 Deep Learning Fine Tuning
	4.7.1 Train with Nearest Mode with Fine Tuning
	4.7.2 Train with Constant Mode with Fine Tuning

	4.8 Experimental summary
	4.8.1 Prediction
	4.8.2 Total Experiment Comparison

	5 Conclusions and Future Works
	5.1 Conclusions
	5.2 Future Works

	References
	Appendix
	A Keras with TensorFlow
	B Data Preprocess Code
	C Model Without Fine Tuning Training Code
	D Model Fine Tuning Training Code
	E Verify True Accuracy Code

