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Abstract

In today’s fast-moving information era, there is no doubt that the Internet has
become an indispensable part of human life. However, in the world of the Internet,
it also hides unusual network behavior. Find the hidden unusual network behav-
ior can reduce the vulnerability in the network. This paper proposes a complete
architecture to store and analyze the collected network log data. We process and
integrate the network data collected by each router on the campus, and store the
integrated data. Ceph distributed storage environment with open source, high
performance, high reliability and scalability, and preliminary preprocessing of raw
materials through Python, eliminating redundant fields and unit unification. The
collated data set is divided into two parts analysis, and part of the abnormal anal-
ysis is part of attack identification. In the sub-analysis, we find the abnormal time
period and total flow through the standard deviation of three standard deviations.
On the other hand, we use Keras to identify the cyber attacks on the data. An au-
tomated identification model is built through the Recurring Time Network (RNN)
to identify attacks with fixed features. In addition, the NSL-KDD data set is used
as a training set to evaluate the ability of various deep learning models to identify
attacks without fixed features. In this paper, an identification model is proposed,
and the identification accuracy in the NSL-KDD data set can reach 99.65%. Fi-
nally, the real-time analysis results are accessed through the MySQL database,
and the analysis results are visualized through ECharts, so that managers can

quickly grasp abnormal network behavior and instant attack identification.

Keywords: Data Storage, Ceph, Deep Learning, Cyberattack, NetFlow Log
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Chapter 1

Introduction

In today’s fast-moving information era, there is no doubt that the Internet has
become an indispensable part of human life. However, in the world of the Internet,
it also hides unfair network behavior. Find the hidden unusual network behavior
can reduce the vulnerability in the network. In the past, data records of network
traffic were stored in the databases, but with the development of technology, a
variety of network connections have been generated, and the general database has
been difficult to face the growing data. Therefore, it is necessary to build a high-

performance, reliable and scalable storage environment to store these materials.

The rise of hardware equipment and deep learning have influenced cyber-attack
behavior. Countering this threat needs improvement and new strategy. How to
counter the cyber-attack through deep learning technology will be an important

issue nowadays.

In this experiment use the NetFlow data. The feature of NetFlow is that it
does not contain any packet content and only contains the basic configuration data
of the traffic. The advantage of using NetFlow is that the complete data packet
is lightweight and fast, and is suitable for abnormal detection in a busy network

environment.

In this research, our goal is to implement a Ceph [1] storage environment, store
the generated NetFlow data, and use Keras to analyze the stored NetFlow data,
1



Chapter 1 Introduction 2

and visualize the NetFlow to monitor and identify the threat. Specific goals are

listed below:

1. Establish a decentralized Ceph storage environment and use the CRUSH

algorithm to distribute data in a balanced manner.

2. Instantly store the generated NetFlow data into the Ceph environment as a

historical database.

3. Use Keras to analyze NetFlow data in real time and evaluate different algo-

rithms and models.

4. Visualize the analysis results of NetFlow data using LAMP.

1.1 Motivation

With the rapid development of the Internet, the connection data generated every
minute is enormous. For example, our school light NetFlow data generates nearly
20GB of connection data every day. The amount of data accumulated over a
long period of time is tremendous, and it becomes unsuitable to use a general
storage environment. Ceph supports the scalability of TeraByte to PetaByte, and
the high reliability and high-performance open source distributed storage system
using Crush algorithm for distributed storage and self-healing. Therefore, Ceph
has become the best choice for our storage environment since our school sometimes

has a power outage.

Because today’s cyber attacks are emerging, even the combination of deep
learning attacks is even more difficult to prevent. The traditional database com-
parison has not kept up with the ever-changing new attacks [2], and the time cost
of machine learning is relatively high [3] [4], and the effect of immediate processing
cannot be achieved. Therefore, in order to respond to new types of cyber attacks,
would use deep learning to detect and evaluate cyber attacks through different

algorithms and models. How to find useful information from the collected data
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is the main contribution to the analysis using deep learning. If you can find the
characteristics of the attack and the unusual situation in the collected data, then

deal with the problems immediately, when the attack or abnormality occurs.

In addition to the above, how to visualize the analysis results is worth studying
and discussing. How to help network managers to clearly and quickly find the
source of the problem will be the primary value of data visualization. At present,
mainstream visual tools on the market are charged. For example, Tableau and
Power BI are completely functional. But, if consider development costs and custom
applications, use Echarts combined with Responsive Web Design(RWD) to design

a friendly monitoring environment.

1.2 Thesis Contributions

In this work, propose a complete integrated system architecture. Use Ceph to
create a decentralized historical data storage environment. The original data is
classified by Python, and the data is intensely studied and analyzed by the open
source neural network library Keras. Finally, the real-time analysis results are
stored in MySQL combined with Echarts to analyze the results and make a visual

representation of RWD on the webpage. The following are the main contributions:

1. Use open source software to design a complete system architecture to test
and implement problem solutions. The architecture completes data capture,

data processing, data analysis and analysis visualization.

2. Establish a Ceph decentralized storage environment, through its high fault
tolerance and scalability, reduce the risk and cost of data storage, and in-

crease the data storage limit.

3. Use the RNN training model to identify attacks with fixed features and

assess the true accuracy of the model.

4. Using different layers of RNN, LSTM, and GRU training models, the attacks

with no fixed features are identified and the differences between the models
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are evaluated. An identification model with the highest true accuracy is

proposed.

5. Use Bootstrap to create a responsive web page and visually present the

results of the analysis stored in MySQL by Echarts.

1.3 Thesis Organization

The structure of this paper is as follows. Chapter 2 introduces the background
and related work of using tools. Chapter 3 provides an overview of the overall
system architecture, explains the design and implementation of the various tools
used, and displays the capabilities of each component in the system. Chapter 4
details the experiments and discussions. Finally, the conclusions and future work

of this paper are presented in Chapter 5.



Chapter 2

Background Review and Related
Work

In this section, review the background knowledge for later use of system design

and implementation.

2.1 Background Review

2.1.1 Ceph

Among the areas of software-defined storage, Ceph [5] is open-source software that
can be expanded on a large scale. It can store large amounts of data at a lower
cost, and can balance the needs of system and data reliability. Supporting three
types of services: block storage, object storage, and file system level storage on
the same platform to support more types of storage environments in the future.
The bottom layer of Ceph is a clustered storage environment. In the future, when
expanding capacity, that is, using scale, only more nodes need to be added to the
cluster to achieve the goal. Ceph has automatic repair and management functions,

and can enhance the placement efficiency of data on storage devices through the
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CRUSH [6] algorithm to simultaneously copy data to multiple nodes. When a

node in a cluster fails, it does not affect the operation of the entire storage system.

Figure 2.1 is the three-layer basic architecture of Ceph. The first layer provides
the storage of objects, blocks, and files. The second layer extracts the underlying
data through the RADOS function library. The third layer is a storage space
composed of a plurality of RADOS nodes.

Ceph Architecture

RADOSGW RBD Ceph FS
RADOS Library

FIGURE 2.1: Ceph architecture

2.1.2 Keras

Keras [7] is an open source, high-level deep learning library written in Python
that runs on TensorFlow, CNTK, or Theano. The focus of Keras’ development
is to support rapid experimentation. It focuses on being user-friendly, modular,
and extensible. The main reason why Keras can perform convenient and fast

operations is that it has already trained the input layer, hidden layer, and output
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layer of the model, and only needs to add the correct parameters. Can be used.
Keras supports both convolution and recursive neural networks and can be trained

on CPUs and GPUs using deep learning models.

2.1.3 Recurrent Neural Networks

RNN [8] refers to the recurrent neural network, which is a kind of neural network.
It is usually used for data that is highly correlated in processing time and spatial
sequence. In traditional neural networks, all inputs and outputs are independent of
each other. In time series data, this method may not be suitable for all situations.
This type of problem can be solved by using RNN in cases where it is necessary
to retain previous event information to infer the results. The concept of RNN is
to cyclically pass information states through its own network. The output of the
network depends on previous calculations, so it can handle a wider range of time

series input structures.

Figure 2.2 is Recurrent Neural Networks Architecture.

FIGURE 2.2: RNN architecture
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2.1.4 Long Short Term Memory Network

Long Short Term is a special type of RNN that adds “long-term dependency” in-
formation through memory function [9], mainly to solve the problem of gradient
disappearance and gradient explosion in long sequence training. Compared with
the general RNN; there is an additional Cell state updated with time. The Forget
Gate, Input Gate and Output Gate are used to determine the storage and use of
memory. Control the transmission status through three Gates, remember the in-
formation that needs to be memorized for a long time, and forget the unimportant
information. It can solve the problem of gradient disappearance and explosion in
training. However, because of the increased number of introduced parameters, the

training difficulty is increased.

Figure 2.3 is Long Short Term Memory Network architecture.

FIGURE 2.3: LSTM architecture
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Figure 2.4 is LSTM internal structure.
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2.1.5 Gate Recurrent Unit

The Gate Recurrent Unit (GRU) [10] is also a type of cyclic neural network.
The same as LSTM is to solve the problem of gradient explosion and gradient
disappearing during long-term sequence training. The GRU simplifies the LSTM
Input Gate and Forget Gate into an Update Gate. Compared with LSTM, one
parameter is used, which can speed up execution and reduce memory usage during

training. In terms of results, GRU can also achieve results similar to LSTM. The
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practicality of the GRU will be higher considering the computing power and time

cost of the hardware.

Figure 2.5 is Gate Recurrent Unit Network architecture.

FIGURE 2.5: GRU architecture

Figure 2.6 is GRU internal structure.
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z=o0(x,U* + 5, 1W?) (2.4)
r=o(xU" +s4W") (2.5)

h = tanh(z,U" + (s;_1 0o 7)W") (2.6)
ss=(l—2)oh+z208_ (2.7)

2.1.6 NSL-KDD

The NSL-KDD [11] data set was improved from the KDD99 [12] data set to remove
some of the problems in KDD99 [13]. The NSL-KDD data set is mainly made by
hand, and there is a lack of public data sets based on the intrusion detection
network. Therefore, there are still problems in the NSL-KDD data set, and it is
not the perfect representative of the existing real network. But it can still be used
as a benchmark for effectively evaluating intrusion detection to help researchers
compare different intrusion detection methods. Each flow sample in the data
set has forty-one feature indicators, which are mainly divided into three types
of functions: basic functions, content-based functions, and flow-based functions.
Attacks in the data set are mainly divided into four categories. They are: DoS,
R2L, U2R, Probe. Four types of attacks can be subdivided into different types of
attacks. Therefore, with the addition of normal data, the data set contains a total

of five types.

2.1.7 Grafana

Grafana [14] is a cross-platform open source metric analysis and visualization tool
that can be queried and visualized by the collected data and promptly notified.
Grafana offers fast and flexible client charts that can be customized by setting up
visual indicators and logs in a number of different ways. And Grafana can support
a variety of different databases. Grafana can mix different data source displays in

the same chart.
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2.1.8 Bootstrap

Bootstrap [15] is a set of open source front-end frameworks for web and web
application development, including HTML, CSS and JavaScript frameworks, pro-
viding typography, forms, buttons, navigation and various other components and
Javascript extensions. Through the CSS3+JQuery webpage technology, the graphic
content and database of the same website can be displayed on the device or screen

of different sizes or resolutions in a layout style.

2.1.9 ECharts

ECharts [16] is a free Javascript chart library that runs smoothly on PCs and mo-
bile devices. ECharts is compatible with most browsers today, and the underlying
layer relies on the lightweight Canvas class library ZRender. Provides intuitive,

highly customizable data visualization charts.

2.2 Related Work

In a paper published by Knowledge-Base Systems [3], Liu et al. proposed a de-
tection method for instant port-to-port, using PL-CNN (a convolutional neural
network-based payload classification method) and PL. -RNN (Neural Network-
Based Payload Classification Method) performs attack detection. The two meth-
ods learn feature representation from the original payload without feature en-
gineering and support end-to-end detection. In this paper, we know that deep
learning can be different from the traditional machine learning feature engineering
in the complexity and time-consuming, more accurate and rapid detection. Kim
et al. proposed a C-LSTM neural network [17] in the paper of Expert Systems
with Applications to effectively detect anomalies in network traffic data. This
is a method for automatically extracting time and space information from the
original data. By extracting the spatial features of the CNN and the temporal

characteristics of the LSTM model, it can achieve very good anomaly detection
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performance in the network traffic data. In Computers and Security’s paper, Ring
et al. proposed a new method based on generating anti-neural network (GAN)
to generate pseudo-NetFlow data [18], which can achieve good results for detec-
tion and generation. The main challenge is GAN can only deal with continuous
attributes, and NetFlow usually contains multiple classification attributes. There-
fore, this paper proposes three different preprocessing methods and applies this
method to the CIDDS-001 data set. Experiments show that two of the three meth-
ods can produce high quality data.Tang et al. [19] applied a deep learning method
based on flow anomaly detection in an SDN environment. A deep neural network
(DNN) model was constructed and the NSL-KDD data set training model was
used to obtain 75.75% accuracy. In this work, we propose an identification model
with better accuracy.Fu et al. [20]applied the LSTM and GRU methods to traf-
fic flow prediction and evaluated the performance of the two methods.And found
that LSTM and GRU NNs have better performance than ARIMA, and GRU NNs
perform a little better than LSTM NNs and usually converge faster than LSTM.
Since the results of botnet detection methods are usually not compared, Garcia et
al. presented two botnet detection methods, BClus, CAMNEP [21], in Couputers
and Security, and compared three botnets using real data sets. Detection meth-
ods (BClus, CAMNEP and BotHunter). Analyze the impact of botnet activity on
each method, each method best suited to different botnet phase data sets. This
paper provides some of our ideas for testing botnets. Zhang et al. proposed a new
method for detecting anomalous behavior in network performance data in a pa-
per by Future Generation Computer Systems [22], which consists of two machine
learning algorithms: Boosted Decision Tree (BDT') and simple Feedforward neural
network composition. Evaluate and compare the effectiveness of each algorithm.
In this experiment we also need to find out the behavior of the data set that does

not meet expectations.

Many researchers apply machine learning methods to perform attack detection
through payload classification. For example, Wang et al. proposed a payload-
based anomaly network intrusion detection method.Kozik et al. used the flexibil-

ity of cloud-based architecture [23|, as well as the latest advances in the field of
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large-scale machine learning, shifting computationally more expensive and more
demanding operations. Go to the cloud to efficiently perform traffic classifica-
tion based on complex extreme learning machine models (ELMs) pre-built on the
cloud using edge computing capabilities, reducing performance overhead on edge
devices. Anomaly detection is the practice of identifying items or events that do
not conform to the expected behavior or are not related to other items in the
dataset. Rafal Kozik’s paper in Pattern Recgnition Letters proposes a method to
combine NetFlow with an Extreme Learning Machine (ELM) classifier trained in
the distributed environment of the Apache Spark framework [24]. The main con-
tribution of this research is to use the Map-Reduce model to extend the training
process of the ELM classifier to perform NetFlow-based malware activity detection
algorithms. The results reported on the benchmark dataset indicate that the pro-
posed ELM-based NetFlow analysis can be considered a reliable tool for network
event detection.Data preprocessing is widely recognized as an important stage in
anomaly detection. Davis et al. [25] reviewed the data pre-processing techniques
used by the anomaly-based network intrusion detection system (NIDS), focusing
on what aspects of network traffic are used and which feature constructs and se-
lection methods are used. Hofstede et al. [26]explain all phases of NetFlow’s traffic
output and typical traffic monitoring settings, covering the full range from packet
capture to data analysis. Terzi et al. [27] proposed a new unsupervised anomaly
detection method. Its purpose is to determine the anomaly caused by a UDP flood
attack on a specific IP. This approach is implemented on public NetFlow data in

case studies.



Chapter 3

System Design and

Implementation

3.1 System Architecture

Figure 3.1 is the system architecture diagram.Use the Python language to auto-
mate the download and storage of complete campus NetFlows data in the Ceph
storage environment. In the virtual machine with GPU environment, NetFlow
data is read by Ceph FUFS, then Python language is used for analysis and judg-
ment, and data is visualized through matplotlib so that can analyze and optimize
the model. And use sqlalchemy to store the analysis results in MySQL. Finally, use
ECharts to present customized analysis results and combine Bootstrap to create

responsive web pages.

In the vSphere ESXi Ceph storage environment [28], built four virtual ma-
chines as Monitor, OSD, and MDS for the Ceph storage environment. A virtual
machine master is used as the master node and the client virtual machine is used
to read the NetFLow data through the MDS, and the three virtual machines estab-
lish the monitor and the OSD as the nodes of the Ceph distributed storage. The
GPU virtual machine node reads the real-time data in Python for data prepro-

cessing, establishes the identification model by using the Keras library, analyzes

15
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the pre-processed data through the identification model, and reads and writes the
analysis result into the MySQL database through the sqlalchemy package. Finally,
the results are displayed through the webpage.

‘ Mym &

‘ Keras ‘ |GQLAlchemg| '
ol B

matpl tlfb‘kw ) l ‘ B ‘

' v | Bootstrap |
NY> - 2 ‘ TensorFlow —
(@ceph )|[@ceph || @ceph ) - — J \

Monitor Monitor Monitor ( Y [ \ _
e N || con | Q=cwers
[+ vbuntu | . ubuntu |5 ubuntu| ( ﬁ th 5 Ty
- — - on
o python” | ey
ESXi {

ANACONDA

[@ceph e

<
<3 ubuntu

"/ vmware

ESXi

FI1GURE 3.1: System architecture

3.2 System Services

This section is introduce the services provided by our system. Including data

collection, data storage, data preprocessing, data analysis and data visualization.

3.2.1 Data Collection

The generation of the entire campus NetFlow data is made up of a collection of
data collected by routers on the campus. NetFlow data updated every 5 minutes
is regularly captured by the Python program and stored in the Ceph storage
environment. The Ceph MDS is used to give the GPU virtual machine data

analysis using NetFlow data.

The NetFLow data format is shown in Figure 3.2. It should be noted that
the NetFlow data recorded by the school is a one-way network connection record.
Therefore, the data records of Out Pkt and Out Byte are both zero. In addition,

Input, Output records the router number that the network connection occurs.
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Dste first seen Date last seen Duration src IP Addr Dst IP Addr Src Pt Dst Pt Proto In Pkt In Byts Out Pkt Out Byte Input Output
2019-86-85 12:59:44.965,2019-05-05 12:59:44,966,  ©.008, 74.125.203.183, 10.71.4.35, 5228, 18252,TCP ,. B 1, 52, o, e, 37, 25
2019-86-05 12 .896,2019-86-85 12:59:44.966,  1.870, 10.73.3.61, 203.104.150.2, 13916, 443,TCP ,. s 18, 1444, o, e, 25, 39
2019-06-85 12 .326,2019-96-05 12:59:44.966,  22.640, 10.20.2.65,  140.125.99.1, 51083,  53,UDP ,. . EN 768, o, e, 25, 26
2019-86-05 12: .326,2019-86-85 12:59:44.966,  22.540, 16.28.2.65,  140.125.99.2, 51085,  53,UDP ,. ) EN 768, o, e, 25, 26
2019-96-05 12 .326,2019-86-95 12:59:44.966,  22.648,  140.128.39.2, 10.20.2.65, 53, 51883,UDP ,. . s,  14e8, o, e, 26, 25
2619-86-85 12 .326,2019-86-85 12:59:44.966,  22. 148.128.98.1, 18.20.2.85, 53, 5188%,UDP ,. ) 3, 1488, o, o, 28, 25
2019-96-05 12 .976,2019-86-95 12:59:44.976, @ 35.231.178.72, 10.22.3.55, 443, 49158,TCP . . 1, 52, e, e, 35, 25
2619-86-85 12: .976,2019-86-85 12:50:44.976, @ 74.125.204.188, 16.70.3.18, 5228, 10105,TCP . o 1, 52, o, e, 37, 15
2019-86-05 12 .976,2019-86-85 12:59:44.976,  @. 13.124.248.104, 10.21.0.34, 443, 52218,TCP ,. . 2, 92, o, e, 35, 25
2019-86-85 12 .976,2019-06-85 12:59:44.976,  @. 12.19.1.9,  140.128.99.1, 4565,  53,UDP ,. - 1, 64, o, e, 25, 26
2019-86-05 12 .736,2019-86-85 12:59:44.976,  19. 10.38.3.47,  24.105.29.76, 2551, 443,TCP ,. s EN 577, o, e, 25, 39
2019-06-05 12: .776,2019-96-05 12:59:44.976, 1. 10.56.1.3, 117.13.232.240, 51462,  30,TCP . . 375, 1745@, o, e, 25, 31
2019-86-05 12: .976,2019-86-85 12:59:44.976,  @. 146.128.99.1, 10.19.1.8, 53, 4585,UDP ,. ) 1, 526, o, e, 26, 25
2019-96-05 12 .026,2019-96-95 12:59:44.976,  14. 172.217.27.142, 10.62.2.25, 443, 3353,TCP . . 4, 228, o, e, 37, 25
2619-86-85 12 .B26,2019-86-85 12:59:44.976,  14. 16.62.2.25, 172.217.27.142, 3359, 443,TCP ,. ) 3, 121, o, o, 25, 37
2019-96-05 12 .976,2019-86-95 12:59:44.976,  @.000, 10.72.7.12, 52.229.175.7%, 51948, 443,TCP . . 2, 8e, e, e, 25, 39
2619-86-85 12 .976,2019-86-85 12:50:44.976,  @.886,  195.35.201.14, 18.20.2.84, 8999, 9858,UDP . . 2, 480, o, e, 35, 25
2019-86-05 12 .776,2019-86-85 12:59:44.976,  1.280, 117.18.232.248, 10.56.1.3, 80, 51482,TCP . . 753, 1.1, o, e, 31, 25
2019-86-85 12 .986,2019-06-85 12:59:44.986, .00, 31.13.87.9, 10.72.6.12, 443, 63483,TCP ,. - 2, 268, o, e, 39, 25
2019-86-05 12 .986,2019-86-85 12:59:44.986,  ©.800, 10.64.0.8, 172.217.168.74, 57946, 443,TCP . s 1, a1, o, e, 25, 37
2019-06-85 12 .986,2019-96-05 12:59:44.936,  @.000, 10.38.3.119, 64.140.165.75, 56088, 445,TCP . . 1, s2, o, o, 25, 39
2019-86-05 12 .986,2019-86-85 12:59:44.986,  ©.800, 52.135.258.253, 10.14.1.11, 443, 1417,TCP ,. ) 1, 168, o, e, 35, 25
2019-96-05 12 .986,2019-96-05 12:59:44.986,  @.000, 173.212.243.121, 10.20.2.84, 6882, 9853,UDP . . 1, 95, o, e, 35, 25
2619-86-85 12 .986,2019-86-85 12:59:44.986,  @.886, 52.139.250.253, 18.73.2.25, 443, 13197,TCP ,. ) 1, 165, o, o, 33, 25
2019-96-05 12 .966,2019-86-95 12:59:44.986,  9.020, 10.20.4.68, 13.116.72.178, 6813, 13875,TCP ,. . 3, 158, e, e, 25, 35
2619-86-85 12: .986,2019-85-85 12:50:44.986,  @.080, 16.22.3.26, 64.233.188.188, 1235, 5228,TCP ,. o 1, a1, o, e, 25, 35
2019-86-05 12: .986,2019-86-85 12:59:44.986,  @.800, 16.18.2.14,  13.35.165.74, 9430, 443,TCP ,. . 1, 41, o, e, 25, 29
2019-86-85 12 .996,2019-06-85 12:59:44.996, .00, 10.22.2.74, 74.125.204.188, 56552, 5228,TCP ,. s 1, 41, o, e, 25, 35
2019-86-05 12 .996,2019-86-85 12:59:44.996,  9.800, 10.71.3.3, 83.143.144.105, 8762, B881%,TCP . s 3, 158, o, e, 25, 37
2019-06-85 12 .996,2019-96-05 12:59:44.996, .00, 16.72.8.21, 203.66.155.172, 63335, 443,UDP ,. . 2, 265, o, o, 25, 39
2019-86-05 12: .996,2019-86-85 12:59:44.996,  ©.800, 172.217.27.142, 18.19.1.37, 443, 55893,TCP ,. o 3, 541, o, e, 35, 25
2019-96-05 12: .546,2019-86-95 12:59:44.996,  3.450, 10.69.2.23, 210.208.95.170, 54125, 33311,TCP ,. i 4, 278, o, e, 25, 37
2619-86-85 12 .996,2019-86-85 12:59:44.996,  9.080, 18.71.3.3, 58.115.145.184, 8758, 0632,TCP . ) 3, 158, o, e, 25, 37
2019-96-05 12 .996,2019-86-95 12:59:44.996,  ©.800, 203.66.155.172, 10.72.8.21, 443, 63335,UDP . . 2, 111, e, e, 3%, 25
2619-86-85 12: .996,2019-85-85 12:50:44.996,  @.886,  203.74.65.218, 18.16.1.12, 443, 62886,TCP B a, 223, o, e, 35, 15
2019-86-05 12: .996,2019-86-85 12:59:44.996,  9.800, 10.71.3.3, 180.150.82.218, 8761, 2177,TCP , . 3, 158, o, e, 25, 37
2619-86-85 .996,2019-06-85 12:50:44.996,  €.08@,  13.35,165.74, 10.10.2.14, 443, 9430,TCP ,. - 1, 52, o, e, 29, 25
2019-86-05 .596,2019-86-85 12:59:44.996,  1.400, 10.22.0.35, 203.66.155.178, 52266, 443,TCP ,. s 2, 8e, o, e, 25, 35
20619-96-65 .596,2019-96-05 12:59:44.996,  1.480, 203.66.155.173, 10.22.0.35, 443, 52286,TCP . . 2, 8@, o, o, 35, 25
2019-86-85 .996,2019-86-85 12:59:44.996,  ©.800, 64.233.185.188, 10.22.3.26, 5228, 1235,TCF ,. ) 1, 52, o, e, 35, 25
2019-96-05 .996,2019-96-95 12:59:44.996,  5.000, 10.71.3.3, 118.233.192.116, 7305, B8587,UDP . . 2, 98, o, e, 25, 37
2619-86-85 .996,2019-86-85 12:59:44.996,  @.886,  52,229.175.79, 18.72.7.12, 443, 51948,TCP ,. ) 1, 48, o, o, 33, 25
2019-96-05 .996,2019-86-95 12:59:44.996,  @.000, 10.16.1.12,  203.74.65.210, 62865, 443,TCP . . 2, 143, e, e, 25, 35
26819-86-85 .776,2019-86-85 12:50:44.996,  15.220, 16.69.3.41,  283.66.155.82, 11442, 443,TCP . . 1152, 49877, o, e, 25, 37
2019-86-05 .586,2019-86-85 12:59:44.996,  3.498, 218.208.95.179, 10.69.2.23, 39311, 54125,TCP ,. . 3, 168, o, e, 37, 25
2619-86-85 .996,2019-06-85 12:59:44.996,  €.08@, 74,125.204.188, 10.22.2.74, 5228, 56552,TCP ,. s 1, 52, o, e, 35, 25
2019-86-05 .996,2019-86-85 12:59:44.996,  ©.800, 52.135.250.253, 10.19.1.55, 443, 57240,TCP . s 1, 165, o, e, 35, 25
20619-96-65 .996,2019-96-05 12:59:44.996, .00, 16.72.3.53, 104.16.151.231, 57095, 443,TCP ,. . 2, 107, o, o, 25, 39
2019-86-85 .996,2019-86-85 12:59:44.996,  .800, 16.59.2.13, 122.11.128.128, 54302, 13000,TCP ,. ) 1, a8, o, e, 25, 31
2019-96-05 .776,2019-86-95 12:59:44.996,  15.228,  203.66.155.82, 10.69.3.41, 443, 11442,TCP . . 2648, 3.9 M, o, e, 37, 25
2619-86-85 .996,2019-86-85 12:59:44.996, .00, 18.71.3.3, 175.144.45.102, 7305, 18699,UDP . ) 1, 132, o, o, 25, 37
2019-96-05 .976,2019-86-95 12:59:45.006,  1.830,  203.194.150.2, 10.73.3.61, 443, 13916,TCP . . 11, 817, e, e, 3%, 25
26819-86-85 .BBE,2019-05-85 12:50:45.806,  @.000, 18.71.3.3,  114.26.56.76, 7305, 7235,UDP . B 5, 392, o, e, 25, 37
2019-86-05 .8R6,2019-86-85 12:59:45.006,  ©.800, 10.69.4.45,  149.128.99.1, 65483,  53,UDP ,. . 1, 67, o, e, 25, 26
2619-86-85 .@86,2019-06-95 12:50:45.006,  €.080,  140.125.29.1, 10.69.4.46, 53, 65483,UDP . s 1, 495, o, e, 26, 25
2019-86-05 .986,2019-86-85 12:59:45.096,  ©.800, 10.71.3.3, 175.142.30.234, 7305, B8789,UDP . s s, 1064, o, e, 25, 37
20619-96-65 .906,2019-96-05 12:59:45.006,  ©.000, 184.18.151.231, 10.72.3.53, 443, 57095,TCP . . 2, 103, o, o, 39, 25
2019-86-85 .886,2019-86-85 12:59:45.006,  ©.800, 10.76.1.9,  183.7.29.222, 58658, 9821,UDP . o 1, 72, o, e, 25, 37
2019-96-05 .286,2019-86-95 12:59:45.806,  2.728,  52.55.289.207, 10.30.3.112, 443, 62803,TCP ,. i EN 918, o, o, 33, 25
2619-86-85 .BBE,2019-86-85 12:59:45.006,  @.000, 10.6.1.7, 103.117.4.281, 52768, 443,TCP ,. o 1, 41, o, e, 25, 29
2019-96-05 .206,2019-86-05 12:59:45.006,  @.000, 10.72.6.29, 103.10.124.162, 61228, 27021,TCP ,. . 1, EEN e, e, 25, 39
26819-86-85 .BBE,2019-05-85 12:50:45.806,  @.886, 153.254.86.142, 18.71.3.5, 443, 13811,TCP ,. B 1, e, o, e, 37, 15
2019-86-05 .8R6,2019-86-85 12:59:45.006,  ©.800, 16.64.1.15,  149.128.99.1, 49788,  53,UDP ,. . 1, 69, o, e, 25, 26

FI1GURE 3.2: NetFlow data format

3.2.2 Data Storage

In the Ceph storage environment, NetFlow data is divided into two parts. One
part is the real-time data area of the current time period, and the other part is
the historical data area of the past time period. When NetFlow data is updated,
new data would be crawled instantly at Ceph Monitor. The captured real-time
data would be retained in the fast-paced machine Ceph Monitor for data pre-
processing and analysis. After the end, the data would be moved to the historical
data area composed of three Ceph OSDs for distributed storage. By prioritizing
data processing in Ceph Monitor, the time cost of storing data in the historical

data area and processing it can be greatly reduced.

In the section where Ceph data is stored. The Controlled Replication Under
Scalable Hashing(CRUSH) algorithm is used to calculate the Placement Group
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ID(PG-ID) to be stored in each data and then calculate the stored OSD posi-
tion. OSDs of different sizes would have different weights, and the data would be

allocated in consideration of the weight when stored.

In addition, the test of moving the three OSDs to two and three physical
machines for reading and writing was compared. Figure 3.4 is the result of the
reading speed, and Figure 3.5 is the result of the writing speed. It can see that
the distributed ceph storage environment can improve the read and write speed

of files.

File | | | | |
\ \ \file%oid
Objects | H/ | | \H |-
/ \// \ hash(oid) = pgid
PGs ( ) ( ) J‘ ‘[ ) ( ) [ J ( ) [ ) )
CRUSH(pgid) = osd
0SDs
FI1GUurE 3.3: Ceph storage method
Read
48GE/s
4BGB/s
47GE/s
4 6GE/s
45GE/s
44GH/s
43GB/s I
42GB/s
1G 3G 5G
mosd in 1 machine 4 4GE(s 4 6GE/s 4 5G6E/s
mo=d in 2 machine 4 7GE(s 47GE/s 4.6GEs
mosd in 3 machine 4 BGE/=s 47GB/s 45GE/s

mosdinl machine  mosdin2 machine  ®osd in 3 machine

FiGURE 3.4: Ceph read speed comparison
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Write
70.0MB/s
60.0MB/s
50.0MB/s
40.0MB/s
30.0MB/s
20.0MB/s
10.0MB/s
0.0MB/s
1G 3G 5G

mosd in 1 machine 43.1MB/= 37.5MB/s 35.6MB/s

W osd in 2 machine 56.3MB/s 43 8MBf= 46.5MB/s

osd in 3 machine 62.5MB/s 54.3MB/s 51.6MB/s

B osd inl machine  ®osdin 2 machine o=d in 3 machine

FiGURE 3.5: Ceph write speed comparison

3.2.3 Data Preprocess

When a new piece of real-time data is downloaded, this information cannot be
directly used for data analysis. The required about filter out useful data fields and
remove noise that may affect the results of the analysis to improve the quality of
the data. Figure 3.6 is the flow of data processing. Figure 3.7 is the data pre-
processing step. Since the units used by NetFlow data are not identical, have to
convert the data into a uniform format. And delete the meaningless data field.
Some data formats need to be converted to a format that can be analyzed using
LabelEncoder [29] or OneHotEncoder [30]. Finally, the data is sorted into the

input type of the in-depth analysis model for analysis.

3.2.4 Data Analysis

In the part of data analysis, mainly divided into the following two parts:

e Abnomaly detection
Since the flow is periodically fluctuating in days, the unit flow of the current
time period would be close to the unit flow of the previous day [31]. And the
increase the number of consecutively broken traffic would meet a reasonable

range. So when doing anomaly detection, it would be divided into two parts.
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F1cURE 3.6: Data preprocess flow

Original data

Data Cleaning

Data Integration

Training data

@ — Data Transformation

FIGURE 3.7: Data pre-processing step

The first part would compare the unit flow rate of the previous day, and if
the increase in the flow rate is greater than 1009, it would be regarded
as abnormal. The second part would calculate the difference between the
current time and the previous time period, and calculate the average and
standard deviation of the flow difference within 30 days. With a three-sigma

rule in the case of very general distribution, at least 88.89%of the data would
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be included in the range of three standard deviations. Determined the unit
flow rate of more than three standard deviations as a moderate abnormal
flow rate, and determined that the unit flow rate exceeding five standard
deviations by the empirical rule was a high abnormal flow rate. Through
the above two methods, can quickly find the time when abnormal traffic

occurs.

e Attack identification
In the part of the attack identification. For attack methods with fixed fea-
tures, use the RNN model for identification. This type of attack can achieve
a high recognition rate because it has very obvious features that are very dif-
ferent from each other and does not require a very complicated deep learning
model. In addition, for the attack mode without fixed attack characteristics,
use the NSL KDD data set and establish the model to train the data set
through three different ways of the neural network, which are three different
methods: RNN, LSTM and GRU [32]. The ability to identify the attack is
evaluated by the loss value, accuracy value and training time of the three

methods.

Finally, the results of the anomaly detection and attack identification are stored

in MySQL as a visual data display.

Algorithm 1 Attack identification process algorithm

Input: The result of NetFlow data after model prediction , Result;; The numbers
of NetFlow data,N
Output: The attack identification result , Attack;;
1: fori=0;i<=N;i++ do
if Result; = 0 is true then
Attack; = CodeRed,;
else if Result; = 1 is true
Attack; = Nimda

Attack; = Worm
end ifreturn Result;;

2
3
4
5
6: else
7
8
9: end for
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3.2.5 Data Visualization

Part of the visualization of the data, connect to the MySQL database through
PHP to get the JSON format data, then process and load the data through JQuery
and Ajax, and finally the loaded data is presented through the customized chart
of ECharts. Through the above process, can easily visualize the front and rear
data. Finally, the webpage is combined with the Bootstrap framework to achieve

Responsive Web Design that is compatible with various devices.

3.3 System Implementation

In this work, set up four virtual machines under one physical host running ESXi,
one as the master node and the other three as the storage nodes of the Ceph
environment. Establish a complete Ceph storage environment through this cluster.
Create a virtual machine as a data operation node under another physical host
running ESXi and having a GPU. NetFlow data is used by mounting the Ceph
storage cluster. Figure 3.1 shows the version of the Ceph cluster. Figure 3.2 is the

software specification for the GPU machine.

TABLE 3.1: Ceph storage cluster

Master | ceph-osdl | ceph-osd2 | ceph-osd3
Ubuntu 16.04 16.04 16.04 16.04
Ceph version | 13.2.5 | 13.2.5 13.2.5 13.2.5
Python 3.6 3.6 3.6 3.6
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TABLE 3.2: Software Specifications

Version
Ubuntu 16.04
Ceph 13.2.5
Anaconda conda 4.6.11
Python 3.6
CUDA 10.0.13
CuDNN 7.4.2
TensorFlow 1.13.1
Keras 224
Apache 2.4.18 (Ubuntu)
MySQL Ver 14.14 Distrib 5.7.26
PHP 7.0.33-0ubuntu0.16.04.4
phpMyAdmin | 4.5.4.1deb2ubuntu2.1

ESXi provides a remote management monitoring interface, such as the CPU,
memory, and hard disk usage of the physical host. And the use of virtual machines
and events are recorded. Figure 3.8 is the remote management interface of ESXi.

As shown in Figure 3.9, the virtual machine monitoring interface can see the

performance of the virtual machine.
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B 6.5.0 Update 1 (Build 5969303)
5 ERE ' A R (RBHENE vCenter Server) ioeie IR 955 08
<G L v oz Sene E—
E 56 A 32978
it Bim 76278 TR 100178
Bare
Qms
Cwm s
Wik ‘System manufacturer WREE ESXi-6.5.0-20170702001-standard (VMware, Inc.)
£ System ict Name vSphere HA 1B FEE
» @ cPu 5 CPUs x Intel(R) Core(TM) 7-3970X CPU @ 3.50GHz » whotion FEHIE
e 63.94GB
= ~ RERE
b s e 0BBIER 0pER 8 LRBRAER 20196508 2R 10:05:37 +0800
s s =t) 201857205 BT 05:48:12 +0800
TR locaiostocaicomain P o
1P firif 1. vmk0: 140.128.101.174 S a0
oNs (s 18808 B0 A 404
B 140128101250 Bi0s BTN 2013 109045 BEAES 08.00.00 +0600
B8 Pve 5
‘ ~ BE—EERGERE
ERAE 2
- s Eih o OEHANIIECPU  @THAMZIBEIN (5
@ MNetwork A ‘ 50
2ol 1 =
| BB
Ife v Bm v B ~ | EBART ML v HBRa v BXRv v

FI1GURE 3.8: Remote management interface of ESXi
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FIGURE 3.9: Virtual machine monitoring interface

Ceph mgr provides monitoring of Ceph clusters, such as cluster health, current
usage, OSD usage, and I/O-related information. As shown in Figure 3.10, the
usage of the OSD can be monitored through the Ceph dashboard.

1 Recent Notfcations 6 Logout

Object Gateway

Read bytes ¢ Wiites bytes ¢

FiGUrE 3.10: Ceph osd monitored

Establish a MySQL relational database as a data store for real-time data
analysis results. When the new real-time data is entered, the database data would
be updated immediately, and the data repository would be stored for only 30 days
of data to visualize the data, so as to avoid excessive data delay and storage space
exceeding the upper limit. The updated data and historical data are stored in the

Figure 3.11 database.
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total bytes
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total packets
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14196242
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13163541
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13016984
12885005
10436768
13760837

Ficure 3.11: MySQL database
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Experimental Results

4.1 Experimental Environment

This experiment uses two physical machines equipped with ESXi, the specifications
are shown in Table 4.1. One physical host is used to simulate the Ceph distributed
storage environment, and the other physical host is mainly used for deep learning
experiments. In the physical host that simulates the Ceph storage environment,
it includes a Ceph cluster consisting of four virtual machines, one of which is the
Ceph master node, and the other three include Ceph Monitor and Ceph OSD. The
composition of the environment is show in Table 4.2 In the physical host used for
deep learning experiments, this work built a virtual machine running an RTX 2080

ti display card to accelerate the efficiency of deep learning experiments through

the GPU. The composition of the environment is show in Table 4.3

TABLE 4.1: Computing environment

Name CPU RAM | Disk | OS
Ceph ESXi | 6 CPUs x Intel(R) Core(TM) i7-3970X 3.50GHz | 64G | 12T | ESXi-6.5.0
DL ESXi 10 CPUs x Intel(R) Core(TM) i9-9900X 3.50GHz | 128G | 7T ESXi-6.5.0

26
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TABLE 4.2: Ceph virtual machine environment

Name CPU RAM | Disk | OS

master 6 vCPUs | 40G | 1.5T | Ubuntu 16.04
ceph-osdl | 2 vCPUs | 4G 2T Ubuntu 16.04
ceph-osd2 | 2 vCPUs | 4G 2T Ubuntu 16.04
ceph-osd3 | 2 vCPUs | 4G 2T Ubuntu 16.04

TABLE 4.3: Deep learning virtual machine environment

Name

CPU

RAM

Disk

OS

GPU

ubuntu

4 vCPUs

20G

1T

Ubuntu 16.04

RTX 2080ti

4.2 Historical Flow Changes

For the application of historical data, this work collect the collected real-time data

for processing statistics. Calculate the total number of sent traffic for each time

period, the total used traffic size and the total transport packet size, and the

average number of items. Then charted the cumulative calculations and found

that the data would change periodically under normal conditions.Figure 4.1 below

shows the total flow change graph for 30 consecutive days.

1M
0.8M
0.6M

0.4M

0.2M b

Mar 10
2019

Mar 17

Mar 24

Mar 31

Apr7

FIGURE 4.1: Total flow change graph for 30 consecutive days

Through the historical data, can find the difference in traffic between each

time period and the previous time period. By plotting the difference in flow over

time, it can be seen that abnormal flow changes occur at certain times. The point
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in time when these traffic differences occur is what should pay attention to. Figure

4.2 below shows the flow difference variation for 30 consecutive days.

200k

150k

- T L E U T VAU U1 O 1 TR OPL [POY Pt O IR (PP e

Mar 10 Mar 17 Mar 24 Mar 31 Apr7
2019

F1GURE 4.2: Flow difference variation for 30 consecutive days

4.3 Abnormal Analysis Result

From the previous experiments, it can be found that under normal conditions, the
change in total flow would be consistent with the periodicity, and the change in
flow difference would meet the specific interval. Through the above two points
can find the time points that do not meet the periodic flow changes and the large
changes in the flow difference, and mark these time points for the manager to
conduct subsequent investigations. Check whether the total number of traffic at
the current time is abnormal by comparing the total number of traffic at the same
time as the previous day. If the total traffic volume of the current time is greater
than 1.5 times the total traffic volume of the previous day, the current time point
and total traffic volume are marked. In the abnormal flow difference part, this work
can find the average and standard deviation for 30 consecutive days. According
to the standard deviation rule of three times, can quickly find outliers with more
than three standard deviations and mark them as medium flow difference changes,
greater than five. The standard deviation is marked as a high flow change. Figure

4.3 below is the result of the abnormal analysis.
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FIGURE 4.3: Abnormal analysis result

4.4 Attack Identification with Fixed Features

Using Python to classify data with fixed features, possibly attacks, and note the
types of possible attacks. The accumulated data is integrated as a training set for
attack identification as shown in Figure 4.4. And because these types of attacks
have fixed features, this work use Keras to build a simple RNN deep learning
model as shown in Figure 4.5, and through Mean-Square Error (MSE) [33] as the
evaluation criteria for training loss values. The set is trained and verified as shown
in Figure 4.6. Table 4.4 can be seen that for such attacks with fixed features, deep

learning can easily identify these attacks with fixed features.

n

1 % )
MSE =~ (Uinue = Yypred)” (4.1)

i=1
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30

09

0.8

07

06

3 4 5 6 7 8 9 10 1 12 13

0 203.205.138.238 800 283 1440 30 250 420 20 1059214 558370.0 CodeRed aftack
1 199.93.56125 800 000 6420 3.0 250 460 20 1030212 55450.0 Nimda
2 5.136.241.233 4450 0.00 520 1.0 250 460 20 10.3D.3.119 61678.0 Worm attack
3 13.113.1657.96 800 324 1440 30 250 460 20 1072343 607740 CodeRed attack
4 11946206250 800 9.01 1440 3.0 250 450 20 1067224 559350.0 CodeRed aftack
5 11946206251 800 900 1440 30 250 450 20 1067224 583770 CodeRed aftack
6 21314712618 800 143 1440 30 250 410 20 10.6.0.14 1983.0 CodeRed attack
T 104.250139.218 800 1.01 1440 30 250 46.0 20 1030532 530330 CodeRed aftack
8 104250139218 800 101 1440 30 250 460 20 1030532 53031.0 CodeRed attack
9 104.250139.218 800 1.01 1440 30 250 460 20 1030532 530220 CodeRed aftack
10 104.250.139.218 800 101 1440 3.0 250 460 20 1030532 53030.0 CodeRed attack

FIGURE 4.4: Training set for attack identification

Layer (type) Output Shape Param #
simple_rnn 1 (SimpleRNN)  (Nome, Nome, 16) 400
simple rnn_2 (SimpleRNN) (None, 16) 528
dense 1 (Dense) (None, 3) 51

Total params: 97%
Trainable params: 979
Mon-trainable params: 8

FI1GURE 4.5: RNN model architecture
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FIGURE 4.6: Attack Classification Result
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TABLE 4.4: 1-layer RNN model training result

Validation Loss | Validation Accuracy | Training Time

0.0003 1.0 10.03 sec

4.5 Attack Identification without Fixed Features

Because there is no recognized deep learning model criterion in processing data,
the quality of the model needs to be compared through different models to find
the most suitable result. In the training attack identification model, using three-
quarters of the NSL-KDD data set as the training set of the model, and use a
quarter of the NSL-KDD data set as the verification set. Uniformly set batch_ size
to 128, epochs to 100, and join early stopping to monitor val loss value to re-
duce over_fitting. Add ReduceRonPlateau to monitor acc to automatically ad-
just learning rate to improve learning accuracy. Finally, use different methods

to compare differences between layers to evaluate differences between models.

4.5.1 RNN Model

In the experiment of RNN model effectiveness evaluation, tested the training re-
sults of the RNN model using the 1st to 4th layers respectively. Figure 4.7 is the
training model of the 1-Layer RNN. Figure 4.8 is a graph of the loss value and
accuracy of the 1-layer RNN training. It can see that the training has stopped
after running 100 epochs, and there is no over_ fitting. 1-layer RNN results such

as Table 4.5
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Layer (type) Output Shape Param #
simple_rnn_1 (SimpleRWN)  (None, 16) o012
dropout_1 (Dropout) {None, 16) a

dense_1 (Dense) {MNone, 5) 85

Total params: 897
Trainabls params: 997
Men-trainable params: @

FiGure 4.7: 1-Layer RNN model

Training and Validation accuracy Training and Validation loss
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(a) Accuracy value result of 1-layer RNN model (b) Loss value result of 1-layer RNN model

FIGURE 4.8: 1-layer RNN accuracy and loss

TABLE 4.5: 1-layer RNN model training result

Validation Loss | Validation Accuracy | Training Time
0.0485 0.9857 524.50 sec

Figure 4.9 is the training model of the 2-Layer RNN. The changes in Accuracy
and Loss of the training shown in Figures 4.10 can be seen to stop after running
100 epochs, without over_fitting. The training result is shown in Table 4.6.Found
that adding a layer of RNN can improve the Accuarcy of the model and reduce

the Loss value for better performance.
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Layer (type) Dutput Shape Param #
simplernn 1 (SimpleRWN)  (None, None, 16)  e12
dropout_1 (Dropout) {None, Neone, 168) 2

simple rnn_2 (SimpleRNMN) {None, 16) 528
dropout_2 (Dropout) {None, 16) e

dense_1 (Dense) {Mone, 5) 85

Total params: 1,525
Trainable params: 1,525
Mon-trainable params: @

FIGURE 4.9: 2-layer RNN model

Training and Validation accuracy Training and Validation loss
0.99 - L
030 A
0.98 A
oo ) 0.25 -
0.96 - 0.20 -
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.
0 2 a0 8 80 100 0 2 @ 8 8 100
(a) Accuracy value result of 2-layer RNN model (b) Loss value result of 2-layer RNN model

FicUurE 4.10: 2-layer RNN accuracy and loss

TABLE 4.6: 2-layer RNN model training result

Validation Loss | Validation Accuracy | Training Time
0.0333 0.9901 686.55 sec

Train the 2-layer RNN model with the addition of a 1-layer RNN. The ar-
chitecture of the 3-layer RNN model is shown in Figure 4.11. In the changes of
Accuracy and Loss trained in the 3-layer RNN model as shown in Figure 4.12,
no over_fitting occurs. The training results are shown in Table 4.7. The 3-layer
RNN only increases the value of Accuracy by 0.002, while the loss value is only
reduced by 0.009, but it increases by about 1.21 times in the training time than
the 2-layer RNN.
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Layer (type) Output Shape Param #
simple_rnn 1 (SimpleRW)  (None, Nome, 16)  o12
dropout_1 {(Dropout) {None, None, 18) 2
simple_rnn_2 (SimpleRNN) {None, None, 18) E28
dropout_2 {Dropout) {None, None, 18) 2
simple_rnn_3 (SimpleRNN) {None, 18) £28
dropout_3 (Dropout) {None, 16) a
dense_1 (Dense) {None, 5) 85

0.99 1

0.98

0.97 1

0.96

0.95

0.94

0.93

092

091

Total params: 2,853
Trainable params: 2,853
Mon-trainable params: @

F1GurE 4.11: 3-layer RNN model

Training and Validation accuracy

—

] 20 40 60 80 100

(a) Accuracy value result of 3-layer RNN model

Training and Validation loss
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(b) Loss value result of 3-layer RNN model

FicURE 4.12: 3-layer RNN accuracy and loss

TABLE 4.7: 3-layer RNN model training result

Validation Loss | Validation Accuracy | Training Time

0.0324

0.9903

830.77 sec

Finally, use the 4-layer RNN model for training. The 4-layer RNN model

architecture is shown in Figure 4.13. The changes in Accuracy and Loss in training

are shown in Figure 4.14. The result of the training is shown in Table 4.8. Can

find that the 4-layer RNN model takes longer to train than the 2-layer RNN and

the 3-layer RNN, but the performance in Accuracy and Loss is worse than that of

the 2-layer RNN and the 3-layer RNN.
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Layer (type) OQutput Shape Param #
simple_rnn 1 (SimpleRWN)  (Nome, Nome, 16) 912
dropout_1 (Dropout) {Mone, Mone, 16) 2
simple_rnn_2 (SimpleRNH) {Mone, Mone, 16) 528
dropout_2 (Dropout) {None, Mone, 16) e
simple_rnn_3 (SimpleRNN) (MNone, Mone, 16) 528
dropout_3 (Dropout) {Mone, Mone, 18) e

simple rnn_4 (SimpleRNM) (Mone, 16) 528
dropout_4 (Dropout) {Mone, 16) e

dense_1 (Dense) {Mone, 5) 85

Total params: 2,581
Trainable params: 2,581
Hon-trainable params: @

FIGURE 4.13: 4-layer RNN model

Training and Validation accuracy Training and Validation loss
0.99 .
0.98 025
0.97
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(a) Accuracy value result of 4-layer RNN model (b) Loss value result of 4-layer RNN model

FIGURE 4.14: 4-llayer RNN accuracy and loss

TABLE 4.8: 4-layer RNN model training result

Validation Loss | Validation Accuracy | Training Time

0.0347 0.9898 967.11 sec

According to the experimental results of different layers of RNN, can find that

the appropriate increase of the number of training layers can improve the perfor-

mance of the training model, but excessively increasing the number of training
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layers would cause the performance of the model to decline. As far as the ex-
perimental results are concerned, the 2-layer RNN model has a relatively better

performace.

4.5.2 LSTM Model

In the next experiment, use the LSTM training model to perform the experiment.
The results of the LSTM training model for different layers are also compared for

Accuracy, Loss values, and training time.

Figure 4.15 is an architectural diagram of the 1-layer LSTM model. Figure 4.16
shows the Accuracy and Loss change graph of the training set and the verification

set. Training results as shown in Table 4.9

Layer (type) Qutput Shape Param #
lstn1 (s7)  (None, 16) 348
dropout_1 (Dropout) {Mone, 16) a

dense_1 (Dense) {None, 5) 85

Total params: 3,733
Trainable params: 3,733
Mon-trainable params: @

FiGUurE 4.15: 1-layer LSTM model

Training and Validation accuracy Training and Validation loss
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(a) Accuracy value result of 1-layer LSTM model (b) Loss value result of 1-layer LSTM model

FIGURE 4.16: 1-layer LSTM accuracy and loss
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TABLE 4.9: 1-layer LSTM model training result

Validation Loss | Validation Accuracy | Training Time

0.0367 0.9907

761.50 sec

Figure 4.17 is an architectural diagram of the 2-layer LSTM model. Figure 4.18

shows the Accuracy and Loss change graph of the training set and the verification

set. Training results as shown in Table 4.10

0.98

0.96

094

092

0.90

Layer {type) Output Shape Param #
Istn1 (LSTM)  (None, Nome, 16) 3648
dropout_1 (Dropout) {Mone, Neone, 16) 2

lstm 2 (LSTM) (None, 16) 2112
dropout_2 (Dropout) (None, 16) a

dense_1 (Dense) {Mone, 5) 85

Total params: 5,845
Trainable params: 5,845
Mon-trainable params: @

FIGURE 4.17: 2-layer LSTM model
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(a) Accuracy value result of 2-layer LSTM model

Training and Validation loss
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(b) Loss value result of 2-layer LSTM model

FIGURE 4.18: 2-layer LSTM accuracy and loss

TABLE 4.10: 2-layer LSTM model training result

Validation Loss | Validation Accuracy | Training Time

0.0267 0.9924

1108.47 sec
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Figure 4.19 is an architectural diagram of the 3-layer LSTM model. Figure 4.20

shows the Accuracy and Loss change graph of the training set and the verification

set. Training results as shown in Table 4.11

098
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092

090

088

086

n&4

(a) Accuracy value result of 3-layer LSTM model

Layer (type) CQutput Shape Param #
lstn1 (LsTW)  (None, None, 16) 3648
dropout_1 (Dropout) {Mone, Mone, 16) 2

lstm_2 (LSTM) {Mone, Mone, 16) 21132
dropout_2 (Dropout) {Mone, Mone, 16) 2

lstm_3 (LSTM) (None, 16) 2112
dropout_3 (Dropout) {Mone, 16) 2

dense_1 (Dense) {Mone, 5) 85

Total params: 7,957

Trainable params: 7,957
Mon-trainable params: @

FIGURE 4.19: 3-layer LSTM model

Training and Validation accuracy

Training and Validation loss
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(b) Loss value result of 3-layer LSTM model

FIGURE 4.20: 3-layer LSTM accuracy and loss

TABLE 4.11: 3-layer LSTM model training result

Validation Loss

Validation Accuracy

Training Time

0.0340

0.9904

1377.52 sec

Figure 4.21 is an architectural diagram of the 3-layer LSTM model. Figure 4.22

shows the Accuracy and Loss change graph of the training set and the verification

set. Training results as shown in Table 4.12
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Layer (type) Output Shape Param #
lstn1 (LsT)  (None, None, 16) 3648
dropout_1 {Dropout) {None, None, 18) 2

lstm_2 (LSTM) {None, None, 18) 2112
dropout_2 (Dropout) {None, MNone, 18) a

Istm_3 (LSTM) {None, HNone, 18) 2112
dropout_3 (Dropout) {MNone, HNone, 18) a

lstm 4 (LSTM) (None, 16) 21132
dropout_4 (Dropout) {None, 16) e

dense 1 (Dense) {None, 5) 85

Total params: 1@,869
Trainable params: 1@,86%9
Mon-trainable params: @

FIGURE 4.21: 4-layer LSTM model
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(a) Accuracy value result of 4-layer LSTM model (b) Loss value result of 4-layer LSTM model

FIGURE 4.22: 4-layer LSTM accuracy and loss

TABLE 4.12: 4-layer LSTM model training result

Validation Loss | Validation Accuracy | Training Time
0.0323 0.9901 1643.36 sec

From the experiments of the LSTM model, it can be found that the best
performance in the 2-layer LSTM model architecture is degraded from the 3-layer
LSTM model Accuracy.



Chapter 4 Experimental Results 40

In addition, this work add CuDNNLSTM specifically for use in the GPU envi-
ronment to compare with the original LSTM model. Figure 4.23 is an architectural
diagram of the 2-layer CuDNNLSTM model. The comparison between the training
results and the 2-layer LSTM is shown in Table 4.13.It can be seen that although
the performance of Accuracy and Loss values is reduced, it is 0.32 times faster in

training time.

Layer (type) Output Shape Param #
Cudnnlstm 1 (CUOMLSTM)  (Nome, 1, 16) 3712
dropout_1 (Dropout) {None, 1, 16) e
cu_dnnlstm_2 (CubDNHLSTM) {None, 16) 2176
dropout_2 (Dropout) {None, 16) e

dense_1 (Dense) {None, 5) 85

Total params: 5,973
Trainable params: 5,873
Hon-trainable params: @

FIGURE 4.23: 2-layer CuDNNLSTM model

TABLE 4.13: Comparison of 2-layer LSTM and 2-layer CuDNNLSTM model

Model Validation Loss | Validation Accuracy | Training Time
LSTM 0.0267 0.9924 1108.47 sec
CuDNNLSTM 0.0332 0.9906 761.66 sec

In the 3-layer and 4-layer environments, also used CuDNNLSTM for experi-
ments. The comparison between the 3-layer LSTM and CuDNNLSTM is shown
in Table 4.14. The comparison of the 4-layer LSTM with CuDNNLSTM is shown
in Table 4.15. It can be found that the 3-layer and 4-layer training models are
better than the 2-layer training models when using CuDNNLSTM.
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TABLE 4.14: Comparison of 3-layer LSTM and 3-layer CuDNNLSTM model

Model Validation Loss | Validation Accuracy | Training Time
LSTM 0.0340 0.9904 1377.52 sec
CuDNNLSTM 0.0318 0.9912 918.11 sec

TABLE 4.15: Comparison of 4-layer LSTM and 4-layer CuDNNLSTM model

Model Validation Loss | Validation Accuracy | Training Time
LSTM 0.0323 0.9901 1643.36 sec
CuDNNLSTM 0.0306 0.9911 1063.75 sec

4.5.3 GRU Model

In the next experiment, use the LSTM training model to perform the experiment.
The results of the LSTM training model for different layers are also compared for

Accuracy, Loss values, and training time.

Figure 4.24 is a model architecture diagram of a layer 1 GRU. Figure 4.25 show
the Accuracy and Loss changes for the training and validation sets. It can be found
that the training stops at epoch 56 because the GRU converges faster than LSTM
and triggers learning rate reduction frequently, which makes it easier to trigger
early stopping. The training results of the 1-layer GRU model are shown in Table
4.16.

Layer (type) Qutput Shape Param #
grui (V)  (Nome, 18) 273
dropout_1 (Dropout) {None, 16) a

dense_1 (Dense) {None, 5) as

Total params: 2,821
Trainable params: 2,821
Mon-trainable params: @

FIGURE 4.24: 1-layer GRU model
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(a) Accuracy value result of 1-layer GRU model (b) Loss value result of 1-layer GRU model

FIGURE 4.25: 1-layer GRU accuracy and loss

TABLE 4.16: 1-layer GRU model training result

Validation Loss | Validation Accuracy | Training Time
0.0153 0.9898 405.74 sec

Figure 4.26 is a model architecture diagram of a layer 2 GRU. Figure 4.27

show the Accuracy and Loss changes for the training and validation sets. Also

trigger early stopping and stop training at epoch 55. The result of the training

is like Table 4.17

Layer (type) Output Shape Param #
grut (GRU)  (Nome, Nome, 16) 2736
dropout_1 (Dropout) {None, Hone, 16) 2

gru_2 (GRU) {None, 16) 1584
dropout_2 (Dropout) {None, 16) 2

dense_1 (Dense) {None, 5) 85

Total params: 4,485
Trainable params: 4,485
Hon-trainable params: @

FIGURE 4.26: 2-layer GRU model
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(a) Accuracy value result of 2-layer GRU model

FIGURE 4.27: 2-layer GRU accuracy and loss
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(b) Loss value result of 2-layer GRU model

TABLE 4.17: 2-layer GRU model training result

Validation Loss | Validation Accuracy

Training Time

0.0140 0.9896

561.70 sec

Figure 4.28 is a model architecture diagram of a 3-layer GRU. Figure 4.29

show the Accuracy and Loss changes for the training and validation sets. Also

trigger early stopping and stop training at epoch 65. The result of the training

is like Table 4.18

Layer (type) Output Shape Param #
gruti (RU)  (None, None, 16) 2736
dropout_1 (Dropout) {None, MNone, 16) a

gru_2 (GRU) {None, MNone, 16) 1584
dropout_2 (Dropout) {None, MNone, 16) a

gru_3 (GRU) {None, 16) 1584
dropout_3 (Dropout) {None, 16) a

dense_1 (Dense) {None, &) 85

Total params: 5,989
Trainable params: 5,989
Mon-trainable params: @

FIGURE 4.28: 3-layer GRU model
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FIGURE 4.29: 3-layer GRU accuracy and loss

TABLE 4.18: 3-layer GRU model training result

Validation Loss | Validation Accuracy | Training Time
0.0105 0.9912 828.30 sec

Figure 4.30 is a model architecture diagram of a 3-layer GRU. Figure 4.31

show the Accuracy and Loss changes for the training and validation sets. And did

not trigger early stopping. The result of the training is like Table 4.19

Layer (type) Output Shape Param #
grut (GRU)  (None, Nome, 16) 2736
dropout_1 {Dropout) {None, None, 18) 2

gru_2 (GRU} {None, None, 1&) 1584
dropout_2 (Dropout) {None, None, 1&) 2

gru_3 (GRU} {None, None, 18) 1584
dropout_3 (Dropout) {None, None, 18) 2

gru_4 (GRU} {None, 18) 1584
dropout_4 (Dropout) {None, 18) 2

dense_1 (Dense) {None, 5) 85

Total params: 7,573
Trainable params: 7,573
Mon-trainable params: @

F1GURE 4.30: 4-layer GRU model
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FIGURE 4.31: 3-layer GRU accuracy and loss

TABLE 4.19: 4-layer GRU model training result

Validation Loss | Validation Accuracy | Training Time
0.0126 0.9908 1482.76 sec

In the training results of the GRU model, can find the highest accuracy in the
3-layer GRU training model. The following is a comparison of the results of the
LSTM model with different layers and the GRU model. From Table 4.20,4.21,4.22
and 4.23, the training speed of the GRU in each epoch is similar to the speed
of the LSTM. And the Accuracy indicator of the verification set differs from the
actual verified Accuracy during training. In addition, it is worth mentioning that
although the convergence speed of GRU is fast, it is easy to trigger early stoppping
and the result of each training is quite different. So this work still choose LSTM

in use.

TABLE 4.20: Comparison of 1-layer ISTM and 1-layer GRU model

Model | Validation Loss | Validation Accuracy | Training Time | Each Epoch
LSTM 0.0367 0.9907 761.50 sec 7.61 sec
GRU 0.0153 0.9898 405.74 sec 7.24 sec

TABLE 4.21: Comparison of 2-layer LSTM and 2-layer GRU model

Model | Validation Loss | Validation Accuracy | Training Time | Each Epoch
LSTM 0.0267 0.9924 1108.47 sec 11.08 sec
GRU 0.0140 0.9896 561.70 sec 10.21 sec
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TABLE 4.22: Comparison of 3-layer LSTM and 3-layer GRU model

Model | Validation Loss | Validation Accuracy | Training Time | Each Epoch
LSTM 0.0340 0.9904 1377.52 sec 13.77 sec
GRU 0.0105 0.9912 828.30 sec 12.74 sec

TABLE 4.23: Comparison of 4-layer LSTM and 4-layer GRU model

Model | Validation Loss | Validation Accuracy | Training Time | Each Epoch
LSTM 0.0323 0.9901 1643.36 sec 16.43 sec
GRU 0.0126 0.9908 1482.76 sec 14.82 sec

4.5.4 CNN Model

Next, use CNN to build a model for experimentation. Generally, CNN is mainly
used to process image recognition. This work convert the original data into two-
dimensional image data, and compare the results of different CNN models through

feature extraction of CNN.

Figure 4.32 is a 1 to 4 layer CNN model architecture diagram. Figure 4.33

shows the Accuracy change graph of the training set and the verification set.
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Layer (type) Output Shape Param #
Layer (type) Output Shape Param # convid_1 (ConviD) (Mone, 48, 64) 256
convld 1 (CenviD) (None, 40, 64) 256 convid_2 (ConviD) (None, 48, 64) 12352
max_poolingld 1 (MaxPoolingl (None, 28, 64) e max_poolingld_1 (MaxPoolingl (None, 28, &64) ]
flatten_1 (Flatten) (None, 128@) e flatten_1 (Flatten) (Nene, 1288) e
dense_1 (Dense) (Mone, 128) 163968 dense_1 (Dense) (None, 128) 1639568
dropout_1 (Dropout) (None, 128) @ drapout_1 (Dropout) (Nene, 128) @
dense_2 (Dense) (None, 5) 645 dense_2 (Dense) (None, 5) 645
Total params: 164,862 Total params: 177,221
Trainable params: 164,869 Trainable params: 177,221
Non-trainable params: @ Non-trainable params: @

(a) 1-layer CNN model (b) 2-layer CNN model

Layer (type) Output Shape Param #
Layer (type) Output Shape Param # convild_1 (ConviD) (None, 48, 64) 256
convld_1 (ConvlD) (None, 48, 64) 256 convld_2 (ConviD) (Neone, 4@, 64) 12352
convld_2 (ConviD) (None, 48, 64) 12352 max_poolingld_1 (MaxPoolingl (Mcne, 28, 64) ]
max_poolingld_1 (MaxPoolingl (Nene, 28, 64) e convld_3 (ConviD) (None, 28, 128) 24724
convld_3 (ConvlD) (Neone, 28, 128) 24784 convld_4 (ConviD) (None, 28, 128) 49280
max_poolingld 2 (MaxPoolingl (None, 28, 128) ] max_poolingld_2 (MaxPoolingl (Mcne, 1@, 128) ]
flatten_1 (Flatten) (None, 256@) ] flatten_1 (Flatten) (None, 128@) ]
dense_1 (Dense) (None, 128) 327888 dense_1 (Dense) (None, 128) 1633968
dropout_1 (Dropout) (Mene, 128) ] dropout_1 (Dropout) (MNone, 128) [:]
dense_2 (Dense) (MNone, 5) 645 dense_2 (Dense) (MNone, 5) 845
Total params: 365,765 Total params: 251,285
Trainable params: 365,765 Trainable params: 251,285
Non-trainable params: @ Non-trainable params: @

(c) 3-layer CNN model (d) 3-layer CNN model

FIGURE 4.32: CNN model



Chapter 4 Experimental Results

48

0.985

0.980

0975

0970

0.965

0.960

0.955

0995

0.990

0.985 1

0.980 1

0.975 1

0.970

0.965

Training and Validation accuracy

o 20 40 &0 80 100

(a) 1-layer CNN model accuracy

Training and Validation accuracy

o0

(c¢) 3-layer CNN model accuracy

0.995

0.9%0

0.985

0.980

0.975

0.970

0.965

0960

1000

0995

0.9%0

0.985

0.980

0.975

0.970 1

0.965

0.960

Training and Validation accuracy

10 20 30 40 50 60

(b) 2-layer CNN model accuracy

Training and Validation accuracy

(d) 3-layer CNN model accuracy

FIGURE 4.33: CNN model accuracy

This experimental result shows that CNN also has the ability to process data

type data and has good accuracy. In addition, can find that when the learn-

ing rate is reduced, the feature extraction of the CNN model can be significantly

improved, and the accuracy of the model can be improved.

Figure 4.34 shows the Loss change graph of the training set and the verification

set. Can see that when the same learning rate is lowered, the Loss value would

also decrease. There is no over_fitting.
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FIGURE 4.34: CNN model loss

The training results of the 1st to 4th CNN models are shown in Figure 4.24.

From this experiment, can know that under the 4-layer CNN model, there would

be the highest accuracy. And in the case of three layers, the accuracy occurs below

the two layers and four layers. The training speed is faster than LSTM and GRU,

and the verification set Accuracy is the same as the actual Accuracy, and the same

problem as the GRU model does not occur. The results show that CNN also has

the ability to process data type data and can effectively reduce training time.

TABLE 4.24: CNN model training result

Model | Validation Loss | Validation Accuracy | Training Time | Each Epoch
1-Layer 0.0166 0.9864 566.79 sec 5.66 sec
2-Layer 0.0107 0.9954 405.33 sec 6.53 sec
3-Layer 0.0166 0.9953 326.63 sec 7.42 sec
4-Layer 0.0162 0.9959 312.10 sec 8.21 sec
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Based on the above experimental results, compare the results of the four ex-
periments and use the average epoch training time to compare the training time.
Figure 4.35 below is a comparison of four models of Accuracy. Figure 4.36 below

is a comparison of four models of Training time.

Accuracy
0098
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0.982
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WRNN ®ISTM WGRU WCNN

FI1GURE 4.35: Comparison of 4 training models
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FIGURE 4.36: Comparison of 4 training time
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4.5.5 CNN and LSTM Model

CNN has strong performance in extracting features, but CNN cannot handle con-
tinuous time issues. In contrast, LSTM is specifically designed to handle continu-
ous time issues. In this paper, propose a model architecture that combines CNN
and CuDNNLSTM, with CNN extraction features and rapid training capabilities,
and CuDNNLSTM'’s ability to process continuous time. The experiment was also

performed using the NSL-KDD data set.

The architecture of the model is shown in Figure 4.37. tested two layers of CNN
combined with LSTM and four layers of CNN in combination with LSTM. Figure
4.38 shows the Accuracy change graph of the training set and the verification set.
Figure 4.39 shows the Loss change graph of the training set and the verification
set. can see that the changes in Accuracy and Loss are very stable after adding
CuDNNLSTM. The result of the experiment is X, and the results prove that our

proposed model architecture has the best performance.

Layer (type) Output Shape Param #
convld_1 (ConviD) (None, 48, 64) 192
convld_2 (ConviD) (None, 48, 64) 8256
Layer (type) Output Shape Param # max_poolingld 1 (MaxPoolingl (None, 28, 64) @
convid_1 (ConvlD) (None, 48, 64) 192 convld_3 (ConviD) (None, 28, 128) 16512
convid_2 (ConviD) (Mone, 48, 64) 8256 convid_4 (ConviD) (None, 28, 128) 32896
max_poolingld_1 (MaxPoolingl (None, 28, &4) ] max_poolingld_2 (MaxPoolingl (None, 1@, 128) 2
dropout_1 (Dropout) (None, 20, 64) ] dropout_1 (Dropout) (None, 18, 128) @
cu_dnnlstm_1 (CuDMNLSTM) (None, 78) 38088 cu_dnnlstm_1 (CuDNNLSTH) (None, 78) s6eee
dropout_2 (Dropout) (None, 78) ] dropout_2 (Dropout) (None, 78) [:]
dense_1 (Dense) {None, 5) 355 dense_1 (Dense) {None, 5) 355
Total params: 46,383 Total params: 114,211
Trainable params: 46,883 Trainable params: 114,211
Non-trainable params: @ Mon-trainable params: @
(a) 2CNN and LSTM model (b) 4CNN and LSTM model

FIGURE 4.37: CNN and LSTM model
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TABLE 4.25: Comparison of 2CNN LSTM and 4CNN LSTM model
Model Validation Loss | Validation Accuracy | Training Time | Each Epoch
2CNN LSTM 0.0132 0.9961 477.90 sec 9.19 sec
4CNN LSTM 0.0122 0.9965 437.85 sec 10.18 sec

Finally, reduce the input characteristics to carry out the experiment, because

the NetFlow data collected by the school can provide very few features compared

with NSL-KDD, and record the one-way network transmission data, only a few

features are performed. Fuzzy identification.

It can be seen that if the characteristics data of duration, protocol type,

src_ byte and dst__byes which are the same as NetFlow in NSL-KDD are used, the

result is very poor, such as Table 4.26, and almost no attack can be recognized.
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TABLE 4.26: NetFlow input result

Model Validation Loss | Validation Accuracy
2CNN LSTM 0.8470 0.5556
4CNN LSTM 0.8486 0.5556

But when add feature TCP Flags, such as Table 4.27, it can see that the
accuracy of our proposed training model is significantly improved. This is because
a large part of the NSL-KDD data is the DoS attack data, and the characteristic
TCP Flags is an important feature of the DoS attack resolution. In the absence

of TCP Flags features, the model cannot be well resolved.

TABLE 4.27: NetFlow and TCP Flags input result

Model Validation Loss | Validation Accuracy
2CNN LSTM 0.453 0.8569
4CNN LSTM 0.440 0.8640

Although the model presented has a good performance on the NSL-KDD
dataset. Unfortunately, there are no key features in the NetFlow data obtained.
At this stage, it is impossible to carry out good identification. In the future, hope

to achieve better performance after obtaining more and more complete data.

4.6 Visualization of Results

In the Ceph section, this work use the Mimic version. The official itself has visual
dashboard features. Simply start the Ceph mgr function under the corresponding
Ceph machine and you can get information about Ceph and display the informa-
tion on the dashboard. Figure 4.40 is the home page of Ceph Dashboard. Shows
the current health of Ceph, the usage of storage space, the work execution log,
and the operation of the Ceph cluster. Figure 4.41 shows the access status of the
Ceph File System.
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FIGURE 4.40: Ceph dashbord
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FIGURE 4.41: Ceph FS dashbord

In addition, this paper uses Grafana to build Ceph’s Dashboard. As shown in

Figure 4.42, can monitor the operation of Ceph very clearly.



Chapter 4 Experimental Results 95

CLUSTER STATE

Status or ools Cluster Capacity Used Capacity

6.00 TiB 1.838TiB

0SD STATE

0sDs IN Agerage PGs per 0SD Average OSD Apply Latency Average OSD Commit Latency

CLUSTER
Capacity

64T

5978

55T

5078

a5TB

T8
0500

0SD Apply + Commit Latency Monitor Latency (Currently not available with Ceph MGR)

FIGURE 4.42: Ceph grafana dashbord

Store the analysis results and attack identification of the real-time data in the
MySQL database. Use PHP to load MySQL data and visualize the results through
ECharts, and use the Bootstrap framework to render on web pages of various
mobile devices. Through this method can monitor the total usage of real-time data
as shown in Figure 4.43. Figure 4.44 shows the instantaneous accumulated network
traffic and abnormal traffic occurrence. Figure 4.45 shows the results of the instant

attack identification.

mEEER

769170
total flows

54373876815
total byte

FIGURE 4.43: Total usage of real-time data
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Conclusions and Future Work

Due to the frequent occurrence of cyber attacks in recent years, campus network
monitoring software is generally expensive. These software typically include a
database, attack detection, and a fixed front-end web page. In order to solve
this problem, we propose an architecture that uses Ceph to do data storage en-
vironment, deep learning to identify attacks, and design monitoring web pages

according to requirements.

5.1 Concluding Remarks

This work provides a fully open source solution architecture that combines storage,
analysis and monitoring. By using the Ceph architecture to store ever-increasing
historical data, it can achieve the ability to achieve massive storage at relatively low
cost. Designed an anomaly detection method to find out when the network traffic
increased significantly. In terms of attack identification, designed experiments to
compare the recognition rate and training time of multiple deep learning models
for cyber attacks.Finally, designing a graphical web page with ECharts can help

managers quickly identify network problems.

o7
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5.2 Future Work

Limited by the limitations of the original NetFlow data, except for specific attacks
with fixed features. The proposed model cannot be accurately identified due to
the lack of many key features in the face of unfixed feature attacks, and it is
impossible to achieve effective identification. In the future, hope to be able to
obtain more complete data and use the ever-increasing historical data to find key
features to accurately identify multiple cyber attacks. In addition, in the historical
data, due to the influence of hardware facilities and network speed, the reading
analysis is slow. In the future, hope to be able to apply the system to a hardware
environment with Solid-state drive, and use a distributed computing architecture
under the system to the physical host, and finally achieve faster performance with

high-speed network.
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Appendix A

Ceph Installation

Set host

$ sudo vim /etc/hostname

$ sudo vim /etc/hosts

Create cephuser

$ useradd -m -s /bin/bash cephuser

$ passwd cephuser

$ echo ”cephuser ALL = (root) NOPASSWD:ALL” | sudo tee /etc/sudoers.d/cephuser
$ chmod 0440 /etc/sudoers.d/cephuser

$ sed -i s’/Defaults requiretty/#Defaults requiretty’/g /etc/sudoers

Install python and parted

$ sudo apt-get install -y python python-pip parted

Create ssh-ker and set config

ssh -keygen

vim ~/.ssh/config

chmod 644 ~/.ssh/config

ssh -keyscan ceph-osdl ceph-o0sd2 ceph-o0sd3 ceph-client monl >> ~/.ssh/known_ hosts
ssh-copy-id ceph-osdl

ssh-copy-id ceph-osd2

ssh-copy-id ceph-o0sd3

&Ph PH LhH H O H &PhL L P

ssh -copy-id monl

Install and set ntp
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$ sudo apt-get install ntp

$ sudo ntpdate - s ntp.ubuntu.com pool.ntp.org

install ceph-deploy

$ sudo pip install ceph-deploy

Create cluster

mkdir cluster
cd cluster/

ceph-deploy new ceph-osdl ceph-o0sd2 ceph-osd3

&hH HL LH &P

vim ceph.conf

ceph-deploy install ceph

$ ceph-deploy install master ceph-osdl ceph-o0sd2 ceph-osd3

$ ceph-deploy mon create-initial

ceph-deploy osd create --data /dev/sdb ceph-osdl
ceph-deploy osd create --data /dev/sdb ceph-osd2

$

$

$ ceph-deploy osd create --data /dev/sdb ceph-o0sd3

$ ceph-deploy admin ceph-admin monl ceph-osdl ceph-o0sd2 ceph-o0sd3
3

sudo chmod 644 /etc/ceph/ceph.client.admin.keyring

create mgr

$ ceph-deploy mgr create ceph-osd{1,2,3}

install mds

$ ceph-deploy mds create master

create pool and file system

$ ceph osd pool create cephfs_data 128
$ ceph osd pool create cephfs_metadata 128
$ ceph fs new cephfs cephfs_metadata cephfs_data

add client and mount FUSE
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ceph-deploy install client
sudo apt-get install -y ceph-fuse

sudo mkdir netflow

&hH Ph LH &P

sudo ceph-fuse -m 140.128.101.175:6789 netflow/

open dashboard

ceph mgr module enable dashboard
ceph dashboard create-self -signed-cert
ceph dashboard set-login-credentials admin admin

ceph mgr services

S P R P

”dashboard”: "https://140.128.101.176:8080/”,
}

open Prometheus

ceph mgr module enable prometheus
ss -tlnp|grep 9283

ceph mgr services

$
$
$
$ tar -zxvf prometheus-*.tar.gz
$ cd prometheus-*

$ cp prometheus promtool /usr/local/bin/

$ mkdir /etc/prometheus && mkdir /var/lib /prometheus
$ vim /usr/lib /systemd/system/prometheus.service
[Unit ]

Description=Prometheus
Documentation=https://prometheus. io

[Service]

Type=simple

WorkingDirectory=/var/lib /prometheus
EnvironmentFile=-/etc/prometheus/prometheus.yml
ExecStart=/usr/local/bin/prometheus \

--config. file /etc/prometheus/prometheus.yml \
--storage.tsdb.path /var/lib/prometheus/

[Install]

WantedBy=multi-user . target

$ vim /etc/prometheus/prometheus.yml

global:

scrape_interval: 15s

evaluation interval: 15s

scrape__configs:

- job_name: ’prometheus’
static__configs:

- targets: [’140.128.101.175:9090°]

- job_name: ’ceph’
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static__configs:

targets:
- 140.128.101.176:9283
- 140.128.101.172:9283
- 140.128.98.54:9283
systemctl daemon-reload
systemctl start prometheus

systemctl status prometheus

install grafana

$
$
$
$

wget https://s3-us-west-2.amazonaws.com/grafana-releases/release/grafana-5.2.2-1.x86__
yum -y localinstall grafana-5.2.2-1.x86_64.rpm
systemctl start grafana-server

systemctl status grafana-server

4. rpm



Appendix B

CUDA 10.0, cuDNN7.4 and

tensorflow 1.12 Installation

GPU set

$ sudo vim /etc/modprobe.d/blacklist.conf
$ # for nvidia display device install
blacklist vgal6fb

blacklist nouveau

blacklist rivafb

blacklist rivatv

blacklist nvidiafb

$ sudo update-initramfs -u

$ sudo reboot

$ wget -c https://cn.download.nvidia.com/XFree86/Linux-x86_64/430.14/NVIDIA-Linux-x86_64-430.14.run
$ sudo chmod +x NVIDIA-Linux-x86_64-430.14.run

$ sudo ./NVIDIA-Linux-x86_64-430.14.run

update check

sudo apt-get update

sudo apt-get install libglul -mesa libxi-dev libxmu-dev -y

]

3

$ sudo apt-get --yes install build-essential

$ sudo apt-get install python-pip python-dev -y
$

sudo apt-get install python-numpy python-scipy -y

download, install and set CUDA

$ wget https://developer.nvidia.com/compute/cuda/10.0/Prod/local installers/cuda_10.0.130_410.48 linux
$ sudo chmod +x cuda_10.0.130_410.48 _linux.run
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$ sudo ./cuda_10.0.130_410.48 linux
$ sudo ./cuda_10.0.130_410.48 _linux
$ sudo ./cuda_10.0.130_410.48 _linux

$ sudo apt-get install

$ sudo vim ~/.bashrc

libglul -mesa

--driver
--toolkit

--samples

libxi -dev libxmu-dev libglul -mesa-dev

export PATH=/usr/local/cuda/bin :$PATH

export LD LIBRARY PATH=/usr/local/cuda/64:3LD LIBRARY PATH

$ source ~/.bashrc

--silent
--silent

--silent

download, install and set CuDNN

wget -c¢ https://developer.nvidia.com/compute/machine-learning/cudnn/secure/v7.4.2/prod

tar -xvf cudnn-10.0-linux-x64-v7.3.1.20.tgz

sudo cp cuda/include/cudnn.h /usr/local/cuda/include/
sudo cp cuda/lib64/lib* /usr/local/cuda/lib64/

sudo chmod +r libcudnn.so.7.4.2

sudo In -sf libcudnn.so.7.4.2 libcudnn.so.7

sudo In -sf libcudnn.so.7 libcudnn.so

sudo ldconfig

$
$
$
$
$ cd /usr/local/cuda/lib64/
$
$
$
$

/10.0_20181213

tensorflow download

$ wget -c https://github.com/fo40225/tensorflow -windows-wheel /raw/master /1.12.0/py36 /GP{
$ pip install tensorflow_gpu-1.12.0-cp36-cp36m-win_amd64.whl

I/cudalOOcudnn’
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Anaconda Installation

download anaconda

$ wget https://repo.anaconda.com/archive/Anaconda3-2019.03-Linux-x86_64.sh

install anaconda

$ bash Anaconda3-2019.03-Linux-x86_64.sh

bashrc activate

$ source ~/.bashrc

conda create and activate

$ conda create --name tf python=3.6
$ conda activate tf

$ conda install jupyter

set jupyter passwd

$ jupyter notebook --generate-config
$ ipython
$ from notebook.auth import passwd

$ passwd ()

connect set
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$ sudo vim ~/.jupyter/jupyter__notebook_ config.py
$ c.NotebookApp.ip="%*"

$ c¢.NotebookApp. password = u’#passwd’

$ c¢.NotebookApp.open_browser = False

$ c¢.NotebookApp.port =8889

jupyter open

$ jupyter noetbook
$ https://localhost -ip:8889
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download netflow data

#!/usr/bin/python3

import urllib

import urllib.request

from urllib.request import urlretrieve

import datetime

import time

times = datetime.datetime.now() - datetime.timedelta (seconds=300)
times = times. strftime ("%Y/adZd0M")

time. sleep (30)

url = ’http://140.128.197.43/nfcapd.’ + times + ’.txt’

filesname = ’netflow2/nfcapd.’ + times + ’.txt’

urlretrieve (url, filesname)
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flow count

import re

import os

import pandas as pd

import numpy as np

from pandas import read_csv

path = ’netflow’

files = os.listdir (path)

files_csv = list(filter (lambda x: x[-4:]==".txt’ , files))

def get_last_line(inputfile):

filesize = os.path.getsize (inputfile)
blocksize = 1024

dat_ file = open(inputfile, ’'rb’)

last line = b””

lines = []

if filesize > blocksize:

maxseekpoint = (filesize // blocksize)
maxseekpoint -= 1

dat__file.seek (maxseekpoint * blocksize)
lines = dat_file.readlines ()

while ((len(lines)<2) | ((len(lines)>=2)&(lines[l]==b’\r\n’))):
maxseekpoint -= 1

dat_ file.seek (maxseekpoint * blocksize)
lines = dat__file.readlines ()

elif filesize:

dat_file.seek (0, 0)

lines = dat_file.readlines ()

if lines:

for i in range(len(lines)-4,-1,-1):
last__line = lines[i].strip ()

if (last_line != b’’):

72




Appendix 73

break
dat__file.close ()

return last_ line

data_list = []

num_ filter = re.compile(r’\d+’)

for file in files csv:

tmp = get_last_line(path +’/’+ file)
tmp
list = re.findall (r”\d+\.?\d*” ,tmp)

tmp. decode ()

arrl = np.array(list)

data={"total flows ’:[arrl[0]], total bytes’:[arrl[1]],’ total packets’:[arrl[2]], avg bpj
df=pd.DataFrame(data)

data__list .append (df)

all_data = pd.concat(data_list)

all_data.to_csv(”all_sum.csv”,index=False)

all_sum = read_csv(’all sum.csv’, engine=’python’)

files_ csvl = pd.DataFrame(files_ csv)

splitfile = files_csv1[0].str.strip().str.split(’.’,0,True) #split#k% % 5 B F 5 7|
all_sum [’ filename’] = splitfile [1]

all_sum = all_sum.set_index (’filename *)

all_sum.to_csv(”all_sum.csv”, index=True)

>:larrl[3]], a
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abnormal check

from pandas import read_csv
from matplotlib import pyplot
import matplotlib.pyplot as plt
Y%matplotlib inline

import pandas as pd

import numpy as np

from sklearn.preprocessing import StandardScaler

dataset = read_csv(’all_sum.csv’, header=0)

dataset [’ filename '] = pd.to_datetime(dataset[’filename '], format="%YYn%dYdA")
dataset .set__index(”filename”, inplace=True)

dataset = dataset.sort__index ()

#dataset = dataset[’2019-01-14 12’ : ’2019-01-18 15:05:00]

del dataset[’total bytes’],dataset|[’total packets’],dataset|[’avg bps’],dataset[’avg pps
df=dataset .copy ()

for i in range(289, len(dataset| : ])-1):

if dataset[’total flows’][i]-dataset[’total flows ’]|[i-288]>dataset[’total flows ’][i-288
ty=dataset [’total flows ’|[i]-dataset[’total flows ’][i+1]

td=dataset [’ total flows ’]|[i]-dataset[ total flows’][i-1]

if (20000>ty >10000)&(20000>td >10000):

print (dataset.index[i], dataset[’total flows ’][i-1], dataset[’total flows’][i],dataset]
if (ty>20000)&(td>20000):

print (dataset.index[i], dataset[’total flows ’|[i-1], dataset[’total flows ’|[i],dataset|
dataset[’1’]=None

dataset[’2’]=None

dataset[’3’]=None

for i in range(1l,len(dataset| : ])):

dtl=abs(dataset [’ total flows ’|[i]-dataset[ total flows ’][i-1])

dataset [’1 7] [i]=dtl

dataset [:][’3’]=None

dataset [:][’2’] =None

mean = dataset [:][’1 7]
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mu = np.mean(mean)

std3 = np.std (mean)*3

std5 = np.std (mean)*5

for i in range(1l, len(dataset[:-1])):

if (mutstd5>dataset[’1’][i]>mutstd3)&(dataset [’ total flows ’][i-1]<dataset[’total flows ’]
dt2=dataset [’1’][1i]

dataset [’2 7] [i]=dt2

for i in range(l, len(dataset[:-1])):

if (dataset[’1’][i]>mutstd5)&(dataset [’ total flows ’][i-1]<dataset[’total flows’'|[i]):
dt3=dataset [’1’][1i]

dataset [’3’][i]=dt3

import plotly

from plotly.graph_objs import Scatter, Layout, Bar

import plotly.graph_objs as go

plotly . offline .init_ notebook_mode(connected=True)

trace0 = Scatter (

x = dataset [:].index,

y = dataset [:][’total flows’],
mode = ’lines ’,

name = ’flows’,

xaxis='x",

)

yaxis=’y

)

tracel = Bar(

x = dataset [:].index,
y = dataset [:][’2],
name = ¥ ji E 7,
yaxis=’y2’

)

trace2 = Bar(

x = dataset [:].index,
y = dataset [:][’3 7],
name = B i & 7,
yaxis="y2’

)

data = [trace0, tracel, trace2]

layout = go.Layout(

yaxis2=dict (anchor="x", overlaying="y’, side="right’)# & % & # f i1} 5\
)
fig = go.Figure(data=data, layout=layout)

plotly . offline.iplot (fig, filename=’scatter -mode’)
plotly . offline .init_notebook__mode(connected=True)
x1 = dataset [: |.index

yl = dataset [:][ 1]

plotly . offline.iplot ({

"data”: [Scatter(x=x1, y=yl)],

”layout”: Layout(title="flow”)

i3]

[i]):
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Attack Identification with Fixed
Features RNN Model

from keras.models import Sequential

from keras.layers import Dense, SimpleRNN, Dropout

import numpy as np

from pandas import read_ csv

np.random. seed (7)

dataset = read csv(”attack data.csv”,header=None, skiprows=[0])
del dataset [0]

del dataset[1],dataset[2]

from sklearn.preprocessing import LabelEncoder, OneHotEncoder
dataset [3] = dataset[3].str.lstrip ()

dataset [11] = dataset [11].str.rstrip()

le = LabelEncoder ()

le.fit (dataset[11])

dataset [11] = le.transform(dataset [11])

le. fit (dataset [3])

dataset [3] = le.transform (dataset [3])

le. fit (dataset[13])

dataset [13] = le.transform(dataset[13])

Y train = OneHotEncoder(sparse = False).fit transform( dataset[[13]] )
dataset = dataset.values

dataset2 = read_csv(”attack_ datad.csv”,header=None, skiprows=[0])
del dataset2[0]

dataset2 [3] = dataset2 [3].str.lstrip ()

dataset2[11] = dataset2[11].str.rstrip()

le. fit (dataset2[11])

dataset2[11] = le.transform(dataset2[11])

le.fit (dataset2[3])
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dataset2 [3] = le.transform(dataset2[3])

del dataset2[1],dataset2[2]

le.fit (dataset2[13])

dataset2[13] = le.transform(dataset2[13])

Y val = OneHotEncoder (sparse = False).fit_transform( dataset2[[13]] )
dataset2 = dataset2.values

X_val = dataset2[3:,1:9]

Y val =Y _wval[3:]

X = dataset [3:,1:9]

Y = Y_train[3:]

X = np.reshape (X, (X.shape[0], 1, X.shape[l]))

X_val = np.reshape(X_ val, (X_val.shape[0], 1, X_val.shape[l]))
# create model

model = Sequential ()

model . add (SimpleRNN (16 ,input_ dim=8, return_sequences=True))
model . add (SimpleRNN (16, return_sequences=False))

model.add (Dense (3, activation="softmax”))

# Compile model

model . summary ()

import time

start = time.time()

sgd = SGD(1r=0.001)

model. compile (loss="mse’, optimizer="RMSprop’, metrics=["accuracy’])

history = model. fit (X, Y, epochs=40, batch size=10, shuffle=True, verbose=1, validation
score = model.evaluate (X, Y, verbose=0)

print (’Validation loss:’, score[0])

print (’Validation accuracy:’, score[1l])

stop = time.time ()

print (str(stop-start) + 7§ )

import matplotlib.pyplot as plt

acc = history. history [ acc’]

val _acc = history . history[’val acc’]
loss = history.history[’loss ]
val_loss = history.history[’val_loss’]

epochs = range (1, len(acc) + 1)

plt.plot (epochs, acc, ’'bo’, label="Training acc”)
plt.plot (epochs, val acc, ’b’, label=’Validation acc’)
plt.title (’Training and Validation accuracy’)
plt.legend

plt.figure ()

plt.plot (epochs, loss, ’bo’, label="Training loss”)
plt.plot (epochs, val_loss, ’'b’, label="Validation_loss’)
plt.title (’Training and Validation loss’)

plt.legend

plt.show ()

| data=(X_val,
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NSL-KDD Training of Rnn Model

import pandas as pd

import numpy as np

import h5py

np.random.seed (1337) # for reproducibility

from sklearn.preprocessing import OneHotEncoder

from keras.models import Sequential

from keras.layers import Dense, Dropout, Activation

from sklearn.model_ selection import train_test_split

from sklearn.preprocessing import Normalizer

from keras.layers import ConvolutionlD, Dropout, Flatten, MaxPoolinglD

from keras.layers import LSTM, GRU, SimpleRNN, CuDNNLSTM

from keras.callbacks import ModelCheckpoint, EarlyStopping, ReduceLROnPlateau, CSVLogger
from pandas.core.frame import DataFrame

def get_total data():

data = pd.read_csv(’/home/hpcuser /KDD/KDDTrain+.csv’, header=None)
data[l]=data[1l].map({ tcp’:0, ’udp’:1, ’icmp’:2})

data[2]=data[2].map({’aol’:0, ’auth’:1, ’bgp’:2, ’courier’:3, ’csnet_ns’:4,’ctf’:5, ’day
data[3]=data[3].map({’OTH’:0, 'REJ’:0, ’'RSTO’:0,’RSTOS0’:0, ’'RSTR’:0, ’S0’:0,’S1’:0, ’SZ

data[4l]=data[41].map({ 'normal’:0, ’ipsweep’:4, ’'mscan’:4, ’'nmap’:4, ’portsweep’:4, ’sal
data[2] = (data[2]-data[2].min())/(data[2].max() - data[2].min())

data[4] = (data[4]-data[4].min())/(data[4].max() - data[4].min())

data[5] = (data[5]-data[5].min())/(data[5].max() - data[5].min())

data[22] = (data[22]-data[22].min())/(data[22].max() - data[22].min())

data[23] = (data[23]-data[23].min())/(data[23] . max() - data[23].min())

data[31] = (data[31]-data[31].min())/(data[31].max() - data[31].min())

data[32] = (data[32]-data[32].min())/(data[32].max() - data[32].min())

return data

def get_target_data():

data = get_total_data()

enc = OneHotEncoder (sparse = False)

enc. fit ([[0], [1], [2], [3], [4]])
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result = enc.transform(data[[41]])

return DataFrame(result)

def get_input_data():

data = get_total data()

del data[41]

data = data.iloc [:,0:4]

return data

if  mame — ’ main ’:
data_input = get_input_data()
data_ target = get_target_data()

x_train, x_test, y_train, y_test = train_test_split(

data_input, data_target, test_size=0.25, random_ state=42)

x_ train = x_ train.values

y_train = y_ train.values

X test = x test.values

y_test = y_test.values

X_train = np.reshape(x_train, (x_train.shape[0], 1, x_train.shape[l]))

X _test = np.reshape(x_test, (x_test.shape[0], 1, x test.shape[l]))
batch size = 128

# RNN

model = Sequential ()

model. add (SimpleRNN (16 ,input_ dim=4, return sequences=True))
model.add (Dropout (0.1))

model. add (SimpleRNN (16 ,input_ dim=40, return_sequences=False))
model . add (Dropout (0.1))

model.add (Dense (5, activation="softmax”))

model . summary ()

learning_rate_reduction = ReduceLROnPlateau(monitor="acc’,
patience=3,

verbose=1,

factor=0.5,

min_1r=0.00001)

from keras.callbacks import EarlyStopping

)

early_stopping = EarlyStopping(monitor="val_loss’, patience=10, verbose=2)

import time

start = time.time()

model. compile (loss=’categorical crossentropy’,optimizer='adam’, metrics=["accuracy ’])
history = model. fit (X_train, y_train, batch_ size=batch_ size, nb_epoch=100, validation dg
model . save (?RNN2layer model. hdf5”)

score = model.evaluate (X_test, y_test, verbose=0)

)

print (’Validation loss:’, score[0])

print (’Validation accuracy:’, score[l])

ta=(X_test, y_



Appendix

81

stop = time.time ()
print (str(stop-start) + 7§ ”)

import matplotlib.pyplot as plt

acc = history. history [ acc’]

val_acc = history.history[’val acc’]
loss = history.history[’loss ’]

val_ loss = history. history[’val loss’]

epochs = range(1l, len(acc) + 1)

plt.plot (epochs, acc, ’bo’, label="Training acc”)
plt.plot (epochs, val_acc, ’b’, label="Validation_acc’)
plt.title (’Training and Validation accuracy’)
plt.legend

plt.figure ()

plt.plot (epochs, loss, ’bo’, label="Training loss”)
plt.plot (epochs, val_loss, ’'b’, label="Validation_loss’)
plt.title (' Training and Validation loss )

plt.legend

plt .show ()

from sklearn import metrics

# Measure accuracy

pred = model. predict (X__test)

pred = np.argmax(pred, axis=1)

y_eval = np.argmax(y_test,axis=1)

score = metrics.accuracy_ score(y_eval, pred)

print (”Validation score: {}”.format(score))
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NSL-KDD Training of LSTM
Model

import pandas as pd

import numpy as np

import h5py

np.random.seed (1337) # for reproducibility

from sklearn.preprocessing import OneHotEncoder

from keras.models import Sequential

from keras.layers import Dense, Dropout, Activation

from sklearn.model_selection import train_ test_ split

from sklearn.preprocessing import Normalizer

from keras.layers import ConvolutionlD, Dropout, Flatten, MaxPoolinglD

from keras.layers import LSTM, GRU, SimpleRNN, CuDNNLSTM

from keras.callbacks import ModelCheckpoint, EarlyStopping, ReduceLROnPlateau, CSVLoggerl

from pandas.core.frame import DataFrame

def get_ total data():

data = pd.read_csv(’/home/hpcuser /KDD/KDDTrain+.csv’, header=None)
data[l]=data[1].map({ tcp’:0, ’udp’:1, ’icmp’:2})

[
data[2]=data[2].map({ aol’:0, ’auth’:1, ’bgp’:2, ’courier’:3, ’csnet_ns’:4,’ctf’:5, ’day
[

data[3]=data [3].map({’OTH’:0, ’'REJ’:0, ’RSTO’:0,’RSTOS0’:0, 'RSTR’:0, ’S0’:0,’S1’:0,

data[41]=data[41].map({ 'normal’:0, ’ipsweep’:4, ’'mscan’:4, ’'nmap’:4, ’portsweep’:4, ’

data[2] = (data[2]-data[2].min())/(data[2].max() - data[2].min())
data[4] = (data[4]-data[4].min())/(data[4].max() - data[4].min())
data[5] = (data[5]-data[5].min())/(data[5].max() - data[5].min())
data[22] = (data[22]-data[22].min())/(data[22].max() - data[22].min())
data[23] = (data[23]-data[23].min())/(data[23] . max() - data[23].min())
data[31] = (data[31]-data[31].min())/(data[31].max() - data[31].min())
data[32] = (data[32]-data[32].min())/(data[32].max() - data[32].min())

return data
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def get_target_data():

data = get_total data()

enc = OneHotEncoder (sparse = False)
enc. fit ([[0], [1], [2], [3], [4]])

result = enc.transform(data[[41]])

return DataFrame(result)

def get_input_ data():
data = get_total data()
del data[41]

data = data.iloc[:,0:4]
return data

if  mame — ’ main ’:
data_input = get_input_data()
data_target = get_ target_ data()

x_train, x_test, y_train, y_test = train_ test_split(

data_input, data_target, test_size=0.25, random_ state=42)

x_ train = x_ train.values

y_train = y_ train.values

X test = x_ test.values

y_test = y_test.values

X _train = np.reshape(x_train, (x_train.shape[0], 1, x train.shape[l]))

X _test = np.reshape(x_test, (x_test.shape[0], 1, x_ test.shape[l]))
batch size = 128

# LSTM

model = Sequential ()

model.add (LSTM(16 ,input_ dim=40, return_sequences=True))
model.add (Dropout (0.1))

model . add (LSTM(16 ,input_dim=40, return_sequences=False))
model . add (Dropout (0.1))

model.add (Dense (5, activation="softmax”))

model . summary ()

learning_rate_reduction = ReduceLROnPlateau(monitor="acc’,
patience=3,

verbose=1,

factor=0.5,

min_1r=0.00001)

from keras.callbacks import EarlyStopping

)

early stopping = EarlyStopping(monitor="val loss’, patience=10, verbose=2)
import time

start = time.time()
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model. compile(loss=’categorical_crossentropy ’,optimizer="adam’, metrics=[’accuracy ’])
history = model. fit (X_train, y_train, batch_size=batch_size, nb_epoch=100, validation_d4
model.save ("LSTM2layer model. hdf5”)

score = model.evaluate(X_test, y_test, verbose=0)

print (’Validation loss:’, score[0])
print (’Validation accuracy:’, score[l])
stop = time.time ()

print (str(stop-start) + 74 7)

import matplotlib.pyplot as plt

acc = history.history [ acc’]

val acc = history.history[’val acc’]
loss = history . history[’loss ’]
val_loss = history.history[’val_ loss’]

epochs = range (1, len(acc) + 1)

plt.plot (epochs, acc, ’'bo’, label="Training acc”)
plt.plot (epochs, val_acc, ’b’, label=’Validation_acc’)
plt.title (’Training and Validation accuracy’)
plt.legend

plt.figure ()

plt.plot (epochs, loss, ’bo’, label="Training loss”)
plt.plot (epochs, val_loss, ’'b’, label=’Validation_loss’)
plt.title (’Training and Validation loss’)

plt.legend

plt.show ()

from sklearn import metrics

# Measure accuracy

pred = model. predict (X_ test)

pred = np.argmax(pred,axis=1)

y_eval = np.argmax(y_test,axis=1)

score = metrics.accuracy_score(y_eval, pred)

print (" Validation score: {}”.format(score))

ta=(X_test, y_
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NSL-KDD Training of GRU
Model

import pandas as pd

import numpy as np

import h5py

np.random.seed (1337) # for reproducibility

from sklearn.preprocessing import OneHotEncoder

from keras.models import Sequential

from keras.layers import Dense, Dropout, Activation

from sklearn.model_selection import train_ test_ split

from sklearn.preprocessing import Normalizer

from keras.layers import ConvolutionlD, Dropout, Flatten, MaxPoolinglD

from keras.layers import LSTM, GRU, SimpleRNN, CuDNNLSTM

from keras.callbacks import ModelCheckpoint, EarlyStopping, ReduceLROnPlateau, CSVLoggerl

from pandas.core.frame import DataFrame

def get_ total data():

data = pd.read_csv(’/home/hpcuser /KDD/KDDTrain+.csv’, header=None)
data[l]=data[1].map({ tcp’:0, ’udp’:1, ’icmp’:2})

[
data[2]=data[2].map({ aol’:0, ’auth’:1, ’bgp’:2, ’courier’:3, ’csnet_ns’:4,’ctf’:5, ’day
[

data[3]=data [3].map({’OTH’:0, ’'REJ’:0, ’RSTO’:0,’RSTOS0’:0, 'RSTR’:0, ’S0’:0,’S1’:0,

data[41]=data[41].map({ 'normal’:0, ’ipsweep’:4, ’'mscan’:4, ’'nmap’:4, ’portsweep’:4, ’

data[2] = (data[2]-data[2].min())/(data[2].max() - data[2].min())
data[4] = (data[4]-data[4].min())/(data[4].max() - data[4].min())
data[5] = (data[5]-data[5].min())/(data[5].max() - data[5].min())
data[22] = (data[22]-data[22].min())/(data[22].max() - data[22].min())
data[23] = (data[23]-data[23].min())/(data[23] . max() - data[23].min())
data[31] = (data[31]-data[31].min())/(data[31].max() - data[31].min())
data[32] = (data[32]-data[32].min())/(data[32].max() - data[32].min())

return data
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def get_target_data():

data = get_total data()

enc = OneHotEncoder (sparse = False)
enc. fit ([[0], [1], [2], [3], [4]])

result = enc.transform(data[[41]])

return DataFrame(result)

def get_input_ data():
data = get_total data()
del data[41]

data = data.iloc[:,0:4]
return data

if  mame — ’ main ’:
data_input = get_input_data()
data_target = get_ target_ data()

x_train, x_test, y_train, y_test = train_ test_split(

data_input, data_target, test_size=0.25, random_ state=42)

x_ train = x_ train.values

y_train = y_ train.values

X test = x_ test.values

y_test = y_test.values

X _train = np.reshape(x_train, (x_train.shape[0], 1, x train.shape[l]))

X _test = np.reshape(x_test, (x_test.shape[0], 1, x_ test.shape[l]))
batch size = 128

# GRU

model = Sequential ()

model . add (GRU(16 ,input_ dim=40, return_sequences=True))
model.add (Dropout (0.1))

model .add (GRU(16 ,input_ dim=40, return_sequences=False))
model . add (Dropout (0.1))

model.add (Dense (5, activation="softmax”))

model . summary ()

learning_rate_reduction = ReduceLROnPlateau(monitor="acc’,
patience=3,

verbose=1,

factor=0.5,

min_1r=0.00001)

from keras.callbacks import EarlyStopping

)

early stopping = EarlyStopping(monitor="val loss’, patience=10, verbose=2)
import time

start = time.time()
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model. compile(loss=’categorical_crossentropy ’,optimizer="adam’, metrics=[’accuracy ’])
history = model. fit (X_train, y_train, batch_size=batch_size, nb_epoch=100, validation_d4
model . save (?”GRU2layer__model . hdf5”)

score = model.evaluate(X_test, y_test, verbose=0)

print (’Validation loss:’, score[0])
print (’Validation accuracy:’, score[l])
stop = time.time ()

print (str(stop-start) + 74 7)

import matplotlib.pyplot as plt

acc = history.history [ acc’]

val acc = history.history[’val acc’]
loss = history . history[’loss ’]
val_loss = history.history[’val_ loss’]

epochs = range (1, len(acc) + 1)

plt.plot (epochs, acc, ’'bo’, label="Training acc”)
plt.plot (epochs, val_acc, ’b’, label=’Validation_acc’)
plt.title (’Training and Validation accuracy’)
plt.legend

plt.figure ()

plt.plot (epochs, loss, ’bo’, label="Training loss”)
plt.plot (epochs, val_loss, ’'b’, label=’Validation_loss’)
plt.title (’Training and Validation loss’)

plt.legend

plt.show ()

from sklearn import metrics

# Measure accuracy

pred = model. predict (X_ test)

pred = np.argmax(pred,axis=1)

y_eval = np.argmax(y_test,axis=1)

score = metrics.accuracy_score(y_eval, pred)

print (" Validation score: {}”.format(score))

ta=(X_test, y_
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NSL-KDD Training of CNN
Model

import pandas as pd

import numpy as np

import h5py

np.random.seed (1337) # for reproducibility

from sklearn.preprocessing import OneHotEncoder

from keras.models import Sequential

from keras.layers import Dense, Dropout, Activation

from sklearn.model_selection import train_ test_ split

from sklearn.preprocessing import Normalizer

from keras.layers import ConvolutionlD, Dropout, Flatten, MaxPoolinglD

from keras.layers import LSTM, GRU, SimpleRNN, CuDNNLSTM

from keras.callbacks import ModelCheckpoint, EarlyStopping, ReduceLROnPlateau, CSVLoggerl

from pandas.core.frame import DataFrame

def get_ total data():

data = pd.read_csv(’/home/hpcuser /KDD/KDDTrain+.csv’, header=None)
data[l]=data[1].map({ tcp’:0, ’udp’:1, ’icmp’:2})

[
data[2]=data[2].map({ aol’:0, ’auth’:1, ’bgp’:2, ’courier’:3, ’csnet_ns’:4,’ctf’:5, ’day
[

data[3]=data [3].map({’OTH’:0, ’'REJ’:0, ’RSTO’:0,’RSTOS0’:0, 'RSTR’:0, ’S0’:0,’S1’:0,

data[41]=data[41].map({ 'normal’:0, ’ipsweep’:4, ’'mscan’:4, ’'nmap’:4, ’portsweep’:4, ’

data[2] = (data[2]-data[2].min())/(data[2].max() - data[2].min())
data[4] = (data[4]-data[4].min())/(data[4].max() - data[4].min())
data[5] = (data[5]-data[5].min())/(data[5].max() - data[5].min())
data[22] = (data[22]-data[22].min())/(data[22].max() - data[22].min())
data[23] = (data[23]-data[23].min())/(data[23] . max() - data[23].min())
data[31] = (data[31]-data[31].min())/(data[31].max() - data[31].min())
data[32] = (data[32]-data[32].min())/(data[32].max() - data[32].min())

return data
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def get_target_data():

data = get_total data()

enc = OneHotEncoder (sparse = False)
enc. fit ([[0], [1], [2], [3], [4]])

result = enc.transform(data[[41]])

return DataFrame(result)

def get_input_ data():
data = get_total data()
del data[41]

data = data.iloc[:,0:4]
return data

if  mame — ’ main ’:
data_input = get_input_data()
data_target = get_ target_ data()

x_train, x_test, y_train, y_test = train_ test_split(

data_input, data_target, test_size=0.25, random_ state=42)

x_ train = x_ train.values

y_train = y_ train.values

X test = x_ test.values

y_test = y_test.values

X_train = np.reshape(x_train, (x_train.shape[0], x_train.shape[l], 1))

X _test = np.reshape(x_test, (x_test.shape[0], x_test.shape[l], 1))

model = Sequential ()

model.add (ConvolutionlD (64, 3, border mode="same”,activation="relu”,input_shape=(40, 1)
model.add (ConvolutionlD (64, 3, border_mode="same”, activation="relu”))
model . add (MaxPooling1D (pool length=(2)))

model.add (Flatten ())

model.add (Dense (128, activation="relu”))

model . add (Dropout (0.5))

model.add (Dense (5, activation="softmax”))

model . summary ()

learning_rate_reduction = ReduceLROnPlateau(monitor="acc’,

patience=3,

verbose=1,

factor=0.5,

min_1r=0.00001)

from keras.callbacks import EarlyStopping

early stopping = EarlyStopping(monitor="val loss’, patience=10, verbose=2)
import time

start = time.time()

model. compile(loss=’categorical__crossentropy ’,optimizer="adam’, metrics=[’accuracy ’])
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history = model. fit (X_train, y_train, batch_size=batch_size, nb_epoch=100, validation_dg

model . save (?”CNN2layer_model. hdf5”)

score = model.evaluate (X_test, y_test, verbose=0)

print (’ Validation loss:’, score[0])
print (’Validation accuracy:’, score[l])
stop = time.time ()

print (str(stop-start) + 7§ 7)

import matplotlib.pyplot as plt

acc = history. history [ acc’]

val acc = history.history[’val acc’]
loss = history.history[’loss ’]

val_ loss = history. history[’val_ loss’]

epochs = range(1l, len(acc) + 1)

plt.plot (epochs, acc, ’'bo’, label="Training acc”)
plt.plot (epochs, val_acc, ’b’, label=’Validation_acc’)
plt.title (' Training and Validation accuracy’)
plt.legend

plt.figure ()

plt.plot (epochs, loss, ’bo’, label="Training loss”)
plt.plot (epochs, val loss, ’'b’, label="Validation_ loss’)
plt.title (’Training and Validation loss’)

plt.legend

plt .show ()

from sklearn import metrics

# Measure accuracy

pred = model. predict (X__test)

pred = np.argmax(pred,axis=1)

y_eval = np.argmax(y_ test,axis=1)

score = metrics.accuracy_score(y_eval, pred)

print (" Validation score: {}”.format(score))

ta=(X_test, y_
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NSL-KDD Training of 2CNN
CuDNNLSTM Model

import pandas as pd

import numpy as np

import h5py

np.random.seed (1337) # for reproducibility

from sklearn.preprocessing import OneHotEncoder

from keras.models import Sequential

from keras.layers import Dense, Dropout, Activation

from sklearn.model_selection import train_ test_ split

from sklearn.preprocessing import Normalizer

from keras.layers import ConvolutionlD, Dropout, Flatten, MaxPoolinglD

from keras.layers import LSTM, GRU, SimpleRNN, CuDNNLSTM

from keras.callbacks import ModelCheckpoint, EarlyStopping, ReduceLROnPlateau, CSVLoggerl

from pandas.core.frame import DataFrame

def get_ total data():
data = pd.read_csv(’/home/hpcuser /KDD/KDDTrain+.csv’, header=None)

data[l]=data[1].map({ tcp’:0, ’udp’:1, ’icmp’:2})

data[2]=data[2].map({’aol’:0, ’auth’:1, ’bgp’:2, ’courier’:3, ’csnet ns’:4,’ctf’:5,
data[3]=data [3].map({’OTH’:0, 'REJ’:0, 'RSTO’:0,’RSTOS0’:0, 'RSTR’:0, ’S0’:0,’S1’:0
data[41l]=data[41].map({ 'normal’:0, ’ipsweep’:4, ’'mscan’:4, ’'nmap’:4, ’portsweep’:4,
’apache2’:1,’back’:1, ’land’:1, ’mailbomb’:1, ’neptune’:1, ’pod’:1,’ processtable ’:1
"buffer__overflow ’:3, ’httptunnel ’:2, ’loadmodule’:3, ’perl’:3, ’ps’:3,’rootkit ’:3,

"daytime’:6, ’disc:
, ’S2’:0, ’S3’:0,°’S
"saint ’:4, ’satan’
K

, ’smurf’:1, ’teard

’sqlattack 7:3, ’xte

"ftp__write ’:2,’guess_passwd’:2, ’imap’:2, ’multihop’:2, ’named’:2, ’'phf’:2,’sendmail’:2 | ’snmpgetattac

data[2] = (data[2]-data[2].min())/(data[2].max() - data[2].min())
data[4] = (data[4]-data[4].min())/(data[4].max() - data[4].min())
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data[5] = (data[5
= (data ]-data[22
]-data[23
]-data[31
]

-data[32

]
] (22
] = (data[23
] = (data[31
] (data[32
return data
def get_target__data():
data = get_total data()
enc = OneHotEncoder (sparse =
enc. fit ([[0], [1], [2], [3],
result = enc.transform (data [
return DataFrame(result)
def get_input_data():
data = get__total data()
del data[41]
data = data.iloc [:,0:40]

return data

data_input = get_input_ data(

-data[5].min())/(data[5].max() - data[5].min())

].min())/(data[22].max() - data[22].min
].min())/(data[23].max(
].min())/(data[31].max(
] [ (

(

- data[23].min(

(
.min())/(data[32].max (

)
) - data[31].min
) - data[32].min

False)
[411)
[41]])

)

data_target = get_target_data()

x__train, x_test, y_train, y__

test = train_ test__split(

data__input, data_target, test_size=0.25, random_ state=42)

x_ train = x_ train.values
y_train = y_ train.values
X test = x_test.values

y_test = y_ test.values

X__train = np.reshape(x_train,

X__test = np.reshape(x_test,
model = Sequential ()

#clstm

model.add (ConvolutionlD (64,
model.add (Convolutionl1D (64,
model. add (MaxPooling1D (pool _
model . add (Dropout (0.25))
model . add (CuDNNLSTM(70) )
model . add (Dropout (0.25))

(

(x_train.shape[0] ,x_train.shape[1l],1))
(x_test.shape[0] ,x_test.shape[1l],1))

2, border__mode="same” ,activation="relu”,input__

2, border__mode="same”, activation="relu”))

length=(2)))

model.add (Dense (5, activation="softmax”))

shape=(40,

1)
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model . summary ()

learning_rate_reduction = ReduceLROnPlateau(monitor="acc’,
patience=3,

verbose=1,

factor=0.5,

min_1r=0.00001)

from keras.callbacks import EarlyStopping

early__stopping = EarlyStopping(monitor="val_loss’, patience=10, verbose=2)

import time

start = time.time ()

model. compile(loss="categorical crossentropy”, optimizer="adam”,metrics=["accuracy ’])

# train

history = model. fit (X_train, y_train,batch_size=128 ,nb_epoch=100,validation_data=(X_te
model.save(”2cnnlstm model. hdf5”)

score = model.evaluate (X__test, y_test, verbose=0)

print (’Validation loss:’, score[0])
print (’Validation accuracy:’, score[l])
stop = time.time ()

print (str(stop-start) + 7§ ”)

import matplotlib.pyplot as plt

acc = history. history [ acc’]

val acc = history.history[’val acc’]

loss = history.history[’loss ’]

val_loss = history.history[’val loss’]

epochs = range(1l, len(acc) + 1)

plt.plot (epochs, acc, ’'bo’, label="Training acc”)
plt.plot (epochs, val_acc, ’b’, label=’Validation_acc’)
plt.title (’Training and Validation accuracy’)
plt.legend

plt.figure ()

plt.plot (epochs, loss, ’bo’, label="Training loss”)
plt.plot (epochs, val_loss, ’'b’, label="Validation_loss’)
plt.title (’Training and Validation loss’)
plt.legend

plt .show ()

from sklearn import metrics

# Measure accuracy

pred = model. predict (X__test)

pred = np.argmax(pred, axis=1)

y_eval = np.argmax(y__test,axis=1)

score = metrics.accuracy_score(y_eval, pred)

print (" Validation score: {}”.format(score))

st, y__test),cal
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NSL-KDD Training of 4CNN
CuDNNLSTM Model

import pandas as pd

import numpy as np

import h5py

np.random.seed (1337) # for reproducibility

from sklearn.preprocessing import OneHotEncoder

from keras.models import Sequential

from keras.layers import Dense, Dropout, Activation

from sklearn.model_selection import train_ test_ split

from sklearn.preprocessing import Normalizer

from keras.layers import ConvolutionlD, Dropout, Flatten, MaxPoolinglD

from keras.layers import LSTM, GRU, SimpleRNN, CuDNNLSTM

from keras.callbacks import ModelCheckpoint, EarlyStopping, ReduceLROnPlateau, CSVLoggerl

from pandas.core.frame import DataFrame

def get_ total data():
data = pd.read_csv(’/home/hpcuser /KDD/KDDTrain+.csv’, header=None)

data[l]=data[1].map({ tcp’:0, ’udp’:1, ’icmp’:2})

data[2]=data[2].map({’aol’:0, ’auth’:1, ’bgp’:2, ’courier’:3, ’csnet ns’:4,’ctf’:5,
data[3]=data [3].map({’OTH’:0, 'REJ’:0, 'RSTO’:0,’RSTOS0’:0, 'RSTR’:0, ’S0’:0,’S1’:0
data[41l]=data[41].map({ 'normal’:0, ’ipsweep’:4, ’'mscan’:4, ’'nmap’:4, ’portsweep’:4,
’apache2’:1,’back’:1, ’land’:1, ’mailbomb’:1, ’neptune’:1, ’pod’:1,’ processtable ’:1
"buffer__overflow ’:3, ’httptunnel ’:2, ’loadmodule’:3, ’perl’:3, ’ps’:3,’rootkit ’:3,

"daytime’:6, ’disc:
, ’S2’:0, ’S3’:0,°’S
"saint ’:4, ’satan’
K

, ’smurf’:1, ’teard

’sqlattack 7:3, ’xte

"ftp__write ’:2,’guess_passwd’:2, ’imap’:2, ’multihop’:2, ’named’:2, ’'phf’:2,’sendmail’:2 | ’snmpgetattac

data[2] = (data[2]-data[2].min())/(data[2].max() - data[2].min())
data[4] = (data[4]-data[4].min())/(data[4].max() - data[4].min())
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data[5] = (data[5]-data[5].min())/(data[5].max() - data[5].min())

]
data[22] = (data[22]-data[22].min())/(data[22].max() - data[22].
data[23] = (data[23]-data[23].min())/(data[23].max(
data[31] = (data[31]-data[31].min())/(data[31].max(
data[32] = (data[32]-data[32].min())/(data[32].max(

return data

def get_target__data():

data = get_total data()

enc = OneHotEncoder(sparse = False)
enc. fit ([[0], [1], [2], [3], [4]])
result = enc.transform(data[[41]])
return DataFrame(result)

def get_input_data():

data = get__total data()

del data[41]

data = data.iloc [:,0:40]

return data

data_input = get_input_data()
data_target = get_target_data()

x__train, x_test, y_train, y_test = train_test__split(

data__input, data_target, test_size=0.25, random_ state=42)

x_ train = x_ train.values
y_train = y_ train.values
X test = x_test.values
y_test = y_ test.values

) - data[23].
) - data[31].
) - data[32].

X_train = np.reshape(x_train, (x_train.shape[0],x_train.shape[l],1))

X_test = np.reshape(x_test, (x_test.shape[0],x_test.shape[l],1))

model = Sequential ()

#clstm

model.add (Convolution1D (64, 2, border_mode="same”,activation="relu”,input_shape=(40, 1)

model.add (Convolution1D (64, 2, border mode="same”, activation="relu”))

model. add (MaxPoolinglD (pool length=(2)))

model . add (Convolution1D (128, 2, border_mode="same”, activation="relu”))

model . add (MaxPooling1D (pool length=(2)))
model. add (Dropout (0.25))
model . add (CuDNNLSIM(70))

(
(
(
model . add (Convolution1D (128, 2, border_ mode="same”, activation="relu”))
(
(
(
(
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model . add (Dropout (0.25))

model.add (Dense(5, activation="softmax”))

model . summary ()

learning_rate_reduction = ReduceLROnPlateau(monitor="acc’,
patience=3,

verbose=1,

factor=0.5,

min_1r=0.00001)

from keras.callbacks import EarlyStopping

)

early stopping = EarlyStopping(monitor="val_loss’, patience=10, verbose=2)

import time

start = time.time ()

model. compile (loss="categorical__crossentropy”, optimizer="adam”,metrics=[’accuracy ’])

# train

history = model. fit (X_train, y_ train,batch size=128 ,nb_epoch=100,validation data=(X_te

model.save (”2cnnlstm__model. hdf5”)

score = model.evaluate (X _ test, y_ test, verbose=0)
print (’Validation loss:’, score[0])

print (’Validation accuracy:’, score[l])

stop = time.time ()

print (str(stop-start) + 7§ ”)
import matplotlib.pyplot as plt

acc = history . history [’acc’]

val_acc = history . history[’val_acc’]
loss = history.history[’loss ’]
val__loss = history.history[’val_loss’]

epochs = range(1l, len(acc) + 1)

plt.plot (epochs, acc, ’'bo’, label="Training acc”)
plt.plot (epochs, val acc, ’b’, label="Validation_ acc’)
plt.title (’Training and Validation accuracy’)
plt.legend

plt.figure ()

plt.plot (epochs, loss, ’bo’, label="Training loss”)
plt.plot (epochs, val loss, ’'b’, label="Validation loss’)
plt.title (’Training and Validation loss’)

plt.legend

plt .show ()

from sklearn import metrics

# Measure accuracy

pred = model. predict (X__test)

pred = np.argmax(pred, axis=1)

y_eval = np.argmax(y_ test,axis=1)

score = metrics.accuracy_score(y_eval, pred)

print (”Validation score: {}”.format(score))

s5t, y_test),cal
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