
東海大學

資訊工程研究所

碩士論文

指導教授: 楊朝棟博士

共同指導教授: 劉榮春博士

運用 RNN 執行攻擊檢測與建置即時巨量日誌儲存系
統之視覺化分析應用

Using RNN for Cyberattack Detection in a Network Log

System with Data Visualization

研究生: 江瑋哲

中華民國一零八年六月

1

摘 要

近年來，資訊安全的問題討論度越來越高，從 OpenSSL Heartbleed 漏洞、美國

摩根銀行資訊系統遭駭客入侵、GitHub 遭遇到的 DDoS 的威脅。種種的資訊攻

擊事件都透露出雲端資訊安全的重要性已經是現今所不可忽視的議題。正常情

況下，每個有使用網路的地方就有其網路日誌資料，而日誌資料對於網路管理

人員是非常重要的數據。網路日誌資料包含著種種因素，例如系統錯誤、攻擊

警告、流量大小、訊息傳送情形等等。本文的目的是提供一個網路日誌管理系

統，可對於各類型的用戶做更進一步的視覺化分析。本系統使用 ELK Stack 技

術，資料分析部分則是根據需要的分析目的而去分別對日誌資料做過濾、篩選、

分析之類的處理，最後在視覺化呈現在 Web 瀏覽器上。系統運行的服務上主要

是分別為 Elasticsearch、Logstash 與 Kibana，藉由數據蒐集、過濾處理與資料

分析視覺化的功能，來提供一個網路日誌管理與視覺化分析之服務系統。網路

攻擊檢測部分則是採用深度學習模型進行學習訓練，讓模型可以藉由已知的網

路攻擊特徵來學習每種攻擊的特徵，然後在跟日誌系統上的分析資訊進行交叉

比對，以達到驗證的效果。本文的最終目標是運用視覺化分析呈現各種客製化

的 Network Log 相關圖形，並運用校內計算機中心相關資源，分別過濾出重要

的網路資訊，例如來源地理位置與網路攻擊相關行為，都有在文內作成果展示，

深度學習方面則是運用 RNN 模型對攻擊行為的分類，利用不同的模型進行訓練

與測試比較，包含 DNN、LSTM，找出哪一種模型較適合本文的實驗數據。而

分類出攻擊行為種類希望能有不錯的準確性，使其能夠跟 ELK Stack 運用相關

特徵過濾得來的網路攻擊資訊做交叉比對，讓資訊正確性更為提高。

關鍵字: 網路日誌資料、Elasticsearch、Logstash、Kibana、深度學習、RNN

i

Abstract

In recent years, information security issues have become more and more discussed,

from the OpenSSL Heartbleed vulnerability, the hacking of the US Morgan Bank

information system, and the DDoS threats GitHub encountered. The purpose of

this paper is to provide a network log management system that allows for further

visual analysis of all types of users. The system uses ELK Stack technology, and

the data analysis part is to filter, analyze and analyze the log data according to

the analysis purpose required, and finally visually present it on the web browser.

The services of the system are mainly Elasticsearch, Logstash and Kibana, which

provide a network log management and visual analysis service.The network attack

detection part uses the deep learning model for learning and training, so that

the model can learn the characteristics of each attack by known network attack

features. The ultimate goal of this paper is to use visual analysis to present

various customized Network Log related graphics, and use the relevant resources

of the school computer center to filter out important network information, such

as source location and cyber attack related behavior. In the paper, the results of

deep learning are the classification of attack behavior using RNN model. Different

models are used for training and testing comparison, including DNN and LSTM,

to find out which model is more suitable for the experimental data in this paper.

Keywords: Network Log Data, Elasticsearch, Logstash, Kibana, Deep Learning,

RNN

ii

致謝詞

能夠完成畢業論文必須感謝很多人，首先謝謝我的指導教授楊朝棟博士，從大

三的畢業專題，到大四開始進入 HPC 實驗室，以後最後的研究所時期，老師都

對我非常的照顧，藉由不同的訓練與工作事務讓我能更快速的累積自己的實作

經驗與處事的應對，謝謝老師在學校的指導，相信這段求學經歷對我的未來的

人生會有很大的幫助。

謝謝口試委員許慶賢教授、詹毓偉教授、賴冠州教授、劉榮春教授在百忙之

中抽空參加我的論文口試，每個教授提出的寶貴意見都能使我的碩士論文更加

具有完整性。另外在碩士的在學期間，時常受到實驗室的學長姐、學弟們的幫

助，也非常感謝他們的付出。特別謝謝從大學到研究所的夥伴們，因為有你們

才讓我的求學過能更精采與順利。

最後謝謝我的家人，爸爸、媽媽從小對我的教育與栽培，求學期間的支持與

鼓勵，都是為了讓我成為一個更好的人，非常謝謝他們，讓我能夠更順利的完

成碩士學位，由衷感謝一路上幫助過我的所有人，謝謝你們。

東海大學資訊工程學系 高效能計算實驗室 江瑋哲 一零八年六月

iii

Table of Contents

摘要 i

Abstract ii

致謝詞 iii

Table of Contents iv

List of Figures vi

List of Tables vii

1 Introduction 1
1.1 Motivation . 2
1.2 Thesis Contributions . 3
1.3 Thesis Organization . 4

2 Background Review and Related Works 5
2.1 Big Data . 5
2.2 ELK Stack . 6

2.2.1 Elasticsearch . 7
2.2.2 Logstash . 7
2.2.3 Kibana . 8

2.3 Python . 8
2.3.1 Anaconda . 9
2.3.2 Keras . 10

2.4 Deep Learning . 10
2.4.1 DNN . 11
2.4.2 RNN . 12
2.4.3 LSTM . 13

2.5 Grafana . 14
2.6 Related Works . 14

3 System Design and Implementation 17
3.1 System Architecture . 17
3.2 NetFlow Log System . 19

iv

TABLE OF CONTENTS v

3.2.1 Visualization Analysis of Network Usage 19
3.2.2 Visualization Analysis of Attack Detection 19

3.3 Deep Learning models . 20
3.3.1 Network Log Data Preprocessing 20
3.3.2 DNN model Training and Prediction 20
3.3.3 RNN model Training and Prediction 21
3.3.4 LSTM model Training and Prediction 22

4 Experimental Results 23
4.1 Hardware Environment . 24
4.2 Experimental Results . 24

4.2.1 Visualization of the Network Log System 24
4.2.2 System Monitoring . 29
4.2.3 Training Models . 30
4.2.4 Model Comparison . 32

5 Conclusions and Future Work 36
5.1 Concluding Remarks . 36
5.2 Future Work . 36

References 38

Appendix 42

A ELK Stack Installation 42

B Install the Python environment 44

C Data preprocessing 45

D Merge CSV files 48

E DNN model 49

F RNN model 52

G LSTM model 55

List of Figures

3.1 System architecture . 18

4.1 Source address and destination address 25
4.2 Source and destination count . 25
4.3 Count of each source and destination address 26
4.4 Count of packet . 26
4.5 Source address details . 26
4.6 World heat map . 27
4.7 Geographic location information of source address 27
4.8 Dormitory network usage . 27
4.9 Dormitory network sources . 28
4.10 Cyberattack detection1 . 28
4.11 Cyberattack detection2 . 28
4.12 Average netflow . 29
4.13 Packet data performance . 29
4.14 Netflow performance . 29
4.15 Training situation of DNN model 30
4.16 Neuron architecture of DNN model 30
4.17 Training situation of RNN model 31
4.18 Neuron architecture of RNN model 31
4.19 Training situation of LSTM model 31
4.20 Neuron architecture of LSTM model 32
4.21 Training and validation loss of DNN model 32
4.22 Training and validation acc of DNN model 33
4.23 Training and validation loss of RNN model 33
4.24 Training and validation acc of RNN model 34
4.25 Training and validation loss of LSTM model 34
4.26 Training and validation loss of LSTM model 35

vi

List of Tables

4.1 Hardware specifications . 24
4.2 Initial model comparison . 35
4.3 Final model comparison . 35

vii

Chapter 1

Introduction

In the past, European Union computers were invaded by botnets, which caused

about 3 billions NT dollars in losses. According to statistics from a well-known

Zi’an company, the public was more worried about cybercrime than other crimes.

Cybercrime accounted for 34％, which was obviously higher than robbery 25％

, theft 22％and violent crime 19％. All the signs showed that the development

of the Internet also accompanied the problems of cybersecurity. Consortium and

enterprise also pay more and more attention to the issue of network security.

In recent years, network attacks have become more advanced. Decentralized

Blocking Service (DDoS) attacks are the focus of attention in 2016. Mirai malicious

programs are the accomplices behind them. This malicious program converts the

victim device into a botnet capable of launching DDoS attacks, while Linux and

UNIX systems, that is to say, many Internet of Things (IoT) devices today, are

likely to be victims. However, the most notable victim is Dyn, a DNS service man-

ufacturer, whose well-known customers’websites, such as Twitter, Reddit, Spotify

and SoundCloud, are not accessible, and the economic losses are astronomical.

Therefore, in this dissertation, our goal is to implement a network log storage

and analysis system, and use Deep Laering module to train and detect network

attacks, so that managers can grasp more accurate network threat information at

1

Chapter 1 Introduction 2

any time when analyzing network logs, and can assess the risk of logs and deal

with them early.

The main steps of this paper are as follows:

1. Build a huge log management and analysis system to store and process a

large amount of network data on the server in real time. Use Logstash to collect

and convert network log data into corresponding format fields.

2. Use Elastic search to analyze log data according to field, and then let

Kibana visualize the selected field data.

3. Collaborate with the School Computer Center to analyze more detailed

information about the campus network, such as dormitories, departments, admin-

istrative units and so on, so as to make a clearer classification of the network log

data.

4. Collect the historical network attack log data, train the Lucky Deep Learn-

ing model and learn the relevant features to detect the attack behavior.

1.1 Motivation

With the progress of science and technology, the problem of network attack is

becoming more and more diverse, and the adverse reactions caused by information

insecurity are paid more and more attention. As a result, the public pays more

attention to the security issues, especially the leaders who want to get accurate,

safe and trustworthy information so that they can plan effective countermeasures

in advance. The purpose of this system is to provide a system that can monitor

log data and analyze it, to provide continuous visual analysis, so that users can

control the situation at any time. Attack detection is to use deep learning model to

learn and train. Through continuous training, the machine can accurately identify

different types of attacks, and the predicted attack detection can be achieved.

Make analysis and comparison with the log system to ensure the credibility of the

data.

Chapter 1 Introduction 3

The most vulnerable area of cyberattacks is usually the area with the most

frequent network traffic. The university is the most common place to meet this

condition, so this study aims to establish a network log management system that

can be easily used by managers. By managing the network log data through the

system, on the management interface, the required charts can be viewed according

to the requirements, and the charts are drawn and sorted by the system, and the

data sources are discussed through the teachers of the computer center. The

solution is to use the method of regularly uploading the original log data to the

database, so that the network log management system can maintain the source

of the log data, and the results and abnormalities presented by the system can

also be returned to the computer center for relevant response. The instructor also

hopes to make corresponding strategies for the abnormal behavior of the network.

Finally, this study uses Deep Learning to classify the abnormal behavior of the

network to check with the log system to make the data more accurate.

1.2 Thesis Contributions

In this paper, a network log management and analysis system using ELK Stack

is built. The system can store and analyze data, and display the results of visual

analysis on Dashboard. In addition, the part of attack detection uses deep learning

to build and train a model. After importing historical attack data, the model can

learn and train. Finally, after the model reaches a certain degree of accuracy, the

attack data can be classified as an attack type. Here are the contributions to this

article:

1. Use ELK Stack to build a network log data management system, which can

analyze and process network log data, present it to users in a more understandable

visualization, and then filter out and visualize network attacks. This means that

managers can use the system to observe and monitor cyber attacks to handle cyber

attacks.

Chapter 1 Introduction 4

2. The Deep Learning model is used to train and classify attack events. The

model can effectively help managers detect suspicious network resources or ab-

normal behavior in log data, and evaluate and track results based on the results

provided to maintain good network security quality.

1.3 Thesis Organization

The structure of this paper is as follows. Chapter 2 mainly introduces the re-

search background and related work. Chapter 3 will analyze how to make various

visual analysis of network log data in ELK Stack log management system, as well

as how to use Deep Learning to build models to learn to identify attacks in log

data. Chapter 4 then details the implementation steps and discusses the evalua-

tion. Finally, in Chapter 5, the conclusions and future prospects of this paper are

presented.

Chapter 2

Background Review and Related

Works

In the second chapter, this study provides three key points used in this paper: big

data, ELK Stack system and Deep Learning. More details will be shown in the

next introduction.

2.1 Big Data

Big Data means that the scale of data is so huge that it can not be stored, cal-

culated and analyzed in a certain period of time through traditional methods.

According to Matt Aslett, a scientist, he defines Big Data as ”data that was previ-

ously ignored because of technological limitations” and discusses data that could

not be stored and analyzed before. The data volume of various industries in the

world is growing at an alarming rate. It is estimated that the data volume will

grow 10 times from 2013 to 2020, and the total amount of data will increase from

4.4 ZB to 44 ZB. Google handles more than 24 gigabytes of data a day, which

means it handles thousands of times as much data as all paper publications in the

National Library of America. Facebook handles more than 50 billion uploaded

5

Chapter 2 Background Review and Related Works 6

photos every day, and people click on the site and leave messages about billions

of times every day.

The characteristics of Big Data:

• Volume data: Whether it’s science, medicine, the Internet of Things, com-

munity interaction, communication, etc., a lot of data are being generated

all the time.

• Variety data diversity: From the text, location, voice, image, picture, com-

munication and other structured and unstructured all-encompassing infor-

mation, they can interact with each other.

• Velocity data instantaneity: Big data also emphasizes the timeliness of data.

With a large amount of data feedback generated every second, the data of

the past three or four years has been useless.

• Veracity of data: Discuss whether there is any falsification in data collection,

whether it can be recorded accurately, whether the data has abnormal values,

and how to deal with abnormal situations.

2.2 ELK Stack

ELK Stack is the abbreviation of three open source software, namely, Elastic

search, Logstash and Kibana. They are all open source software. In the process

of log data processing, log analysis is usually needed, which means that you can

search the log file directly to get the information you want. However, in large scale

log system, this method is very inefficient. It needs centralized log management

to collect and aggregate the logs. The common solution is to set up a centralized

log collection system to collect, manage and access logs on all nodes.

Generally, large scale system is a distributed deployment architecture. Differ-

ent service modules are deployed on different servers. When problems arise, most

situations need to locate specific service areas according to the key information

Chapter 2 Background Review and Related Works 7

in the problem, and construct a centralized log system, which can improve the

efficiency of positioning problems.

ELK provides a whole set of solutions, and all of them are open source software,

which can be used in conjunction with each other perfectly and efficiently to meet

the needs of many occasions. It is a mainstream log system at present.

The following are the characteristics of ELK Stack:

• Collection of log data from multiple sources

• Steady transmission of log data to central system

• Store log data

• Support Customization Analysis

2.2.1 Elasticsearch

Elasticsearch is a free data analysis and search system. It is an open source suite

based on Lucene. It supports real-time search and analysis functions. It can be

used for reading and writing data, feature filtering and data.

Elasticsearch has the characteristics of real-time search, stability, reliability,

fast and easy to install and use.

Elasticsearch’s search speed is very fast because it uses inverted index tech-

nology to find eligible document lists based on given values and field immediately.

Elasticsearch has become one of the main choices of Machine Learning analysis or

instant log data processing in recent years due to its high scalability , availability

and excellent data analysis efficiency.

2.2.2 Logstash

Logstash is a free open source data system that receives, converts and outputs

data from various sources. It supports more than 50 different types of input and

Chapter 2 Background Review and Related Works 8

output so that users can process various logs or data and define the required

data fields according to different sources. Logstash is different from traditional

log collection methods mainly in the way of collecting logs. Traditional versions

must be written to files through the pipeline provided by internal programs. This

method is feasible in a small number of servers, but checking log data in multi-

servers can be very cumbersome. Logstash solves this problem. Its structured log

greatly improves the convenience of checking log data. More importantly, there are

many additional programs that can be output to various data sources for analysis

and visual processing.

2.2.3 Kibana

Kibana is an Elasticsearch accessibility tool based on browser pages using the

Apache open source protocol. Kibana is an application that uses dashboards as a

foundation. Logically, Kibana is very simple, and most processors are at the panel

level. Each panel is independent and completes separate data processing and

visualization analysis. In addition, Kibana also offers a variety of input features,

such as access logs - [YYYY. MM. DD], System Log - [YYYY. MM. DD] so that

data from different indexes can be seen on the same panel.

Kibana can display various logs through visual analysis and then build various

dashboards through the Elasticsearch search database. Kibana makes it easy to

understand large amounts of data through a variety of visual effects and is easy to

learn. The web browser-based interface enables beginners to quickly learn to create

and share dynamic dashboards and directly display changes to flexible queries. For

the filter, the new version of Kibana replaces the facet filter with the filter agg.

2.3 Python

Python and R are the two most important programming languages in the field of

Deep Learning and Machine Learning. Python is simple and easy to learn, has a

Chapter 2 Background Review and Related Works 9

wide range of applications and a smooth learning curve. It is suitable for use as

an entry-level programming language. Data analysis can be done through pandas,

Numpy, sckikit-learning, Matplotlib and statsmodels. As R is a programming

language developed by statisticians, it is good at statistical analysis and chart

drawing. Python itself is a general language. Besides deep learning, Python can

also be widely used in network development, website construction, game develop-

ment, web crawler and other fields. When you need to integrate system products

and services, you don’t need to worry about the processing of different languages

anymore. More importantly, Python can also be used as glue language which is

very easy and has better performance. In short, Python is a simple, easy-to-learn

but powerful programming language worth investing in, and this paper is also a

study of Python on Deep Learning.

2.3.1 Anaconda

Anaconda is like a simple use package for Python, in addition to Python itself

contains a suite of data analysis, machine learning, deep learning, visualization

and computing that Python commonly uses. Anaconda is an open source and free

software, but additional acceleration and optimization features are chargeable.

Only academic use can apply for a free trial period. In addition, the supported

platforms are Linux, Windows and Mac, which are almost large. A system that

is often used by some people, and a very convenient feature, is that the Python

version can be switched freely, and there is also a jupyter notebook environment

in which the overall convenience is improved.

Important suites of Python:

• Matplotlib: basic visual tools, such as long bars, line charts and so on.

• Seaborn: Another visual tool, some users prefer their visual presentation.

• Numpy: Python is a must-have for multidimensional array (matrix) opera-

tions, with faster computing speeds than built-in features.

Chapter 2 Background Review and Related Works 10

• Pandas: Pandas makes it easy for Python to do almost all of Excel’s func-

tions, such as field summing, filtering, analysis tables.

• SciKit-Learn: The Python machine learning model is basically in this suite.

• Jupyter notebook: A lightweight web-base tool for writing Python, which

is very popular in the field of data analysis. Although the function is not

as powerful as Pycharm and Spyder, it is very convenient to use Jupyter in

addition to the case of using a large number of lines of code.

2.3.2 Keras

Keras is an open source code, Python-based Deep Learning library, developed

mainly by Francois Chollet and other members of the open source community,

authorized by MIT open source code. The main reason why Keras can operate

quickly and conveniently is that it has sorted out the input layer, hidden layer and

output layer of the training model, which can be used. Users only need to add and

fill in the correct parameters, such as the number of neurons, activation function

and so on.

The characteristics of Keras deep learning:

• The training model can be built up more quickly by building part of the

neural network hierarchy.

• Through the back-end system (Theano, Tensorflow), it can run on CPU and

GPU.

• Keras code is concise, easy to maintain and extensible.

2.4 Deep Learning

Deep Learning [1] [2] is a kind of ”artificial neural network” which imitates the

human neural network and makes such a network deeper. Neural network is an

Chapter 2 Background Review and Related Works 11

algorithm in the field of machine learning. Machine Learning is the most important

technology to realize artificial intelligence.

In 2012, the winning team of ILSVRC, an International Conference on image

recognition race, applied deep neuron-like network to make it far ahead of other

teams in accuracy, thus making deep neuron-like network become the focus of

attention, that is, Deep Learning. In addition, the application of Deep Learning

is not only image, but also in various fields, including image generation, natural

language generation, automatic translation, robot control and so on. In June 2016,

AlphaGo, an artificial intelligence using Deep Learning, defeated the world’s top

chess players. In every field with human intelligence, it seems that there is a

certain feasibility of Deep Learning [3] [4].

Machine Learning is divided into four branches: supervised learning, semi-

supervised learning, unsupervised learning and reinforcement learning. Super-

vised learning is the most common type of machine learning. Supervised learning

algorithm is based on a set of samples for prediction. For example, it can use

historical prices to estimate future prices. The challenge of supervised learning

is that the process of tagging data can be expensive and time-consuming. If the

labels are limited, this study can use unlabeled samples to enhance supervised

learning. In semi-supervised learning, this research uses both unlabeled data and

a small amount of labeled data to improve learning accuracy. When unsupervised

learning is performed, the machine obtains completely unlabeled data. Reinforce-

ment learning is to let the model execute directly, and then feedback the results

back for training.

2.4.1 DNN

Artificial intelligence is no longer a new topic, and even Deep Neural Networks

(DNN) is also a ”old age” technology. In the past, DNN was limited by tech-

nological development. Although there were occasional signs of revival, it never

lasted for too long. Since 2005, AI has received attention, but there has been no

Chapter 2 Background Review and Related Works 12

good improvement. It has been a sudden rise in 2012, and it has been the focus of

research in the past two years. According to IEK estimates, the global automotive

electronics output will reach＄450 billion in 2023, which is 1.67 times higher than

in 2015.

DNN (Deep Neural Networks) is a branch of Machine Learning. It mainly

uses supervised or unsupervised learning as a way to train machines to improve

the efficiency and accuracy of machine training. The difference between DNN

and RNN and CNN is that DNN refers to the fully connected neuron structure,

and does not contain convolution units or temporal associations. DNN will also

have some problems in use. For example, the upper and lower neurons of a fully-

connected DNN can form a connection with each other, which is easy to cause

overfitting to lead to regional optimality.

2.4.2 RNN

Recursive Neural Network (RNN) [5] [6] [7] has a feature that the output of each

layer in a multi-layer neural network is directly appended to the self-loop of the

input. By this architecture, the input before the input of the layer can be mem-

orized. When the input data is a continuous sequence, the input memory before

the input can be incorporated into the thinking mode of the next input.

That is to say, the current output is affected not only by the input of the

previous layer, but also by the output of the same layer (i.e. the previous one),

similar to the statistical Time Series.

In addition, RNN can have many changes and applications:

• One to one: Input and output of fixed length, which is the general Neural

Network model.

• One to many: Single input, multiple output, such as image captioning, input

an image, want to detect multiple objects in the image, and give titles one

by one, which is called ”Sequence output”.

Chapter 2 Background Review and Related Works 13

• Many to one: Multiple inputs and single outputs, such as Sentiment Analy-

sis, input a large paragraph to determine whether the sentence is a positive

or negative emotional expression, which is called ”Sequence input”.

• Many to many: Multiple inputs and outputs, such as machine translation,

input an English sentence and translate it into Chinese, which is called

”Sequence input and sequence output”.

• Another kind of many-to-many: Synchronize’s multiple inputs and outputs,

such as Video Classification, input a movie, hoping to produce a title for

each frame, which is called Synchronize input sequence and output.

2.4.3 LSTM

LSTM (Long Short-term Memory, LSTM) [8] [9] is a modified RNN, mainly to

solve the problem of gradient disappearance and gradient explosion in the process

of constant time series. In simple terms, LSTM can perform better in long-term

sequence training than a normal RNN because LSTM solves the above-mentioned

RNN [10] problem by adopting an improved memory management architecture.

• 　 Forgetting the stage: The forgetting stage is mainly to selectively forget

the input value of a node on the team, that is, forgetting the bad value, the

choice is better.

• Selecting the memory stage: Selecting the memory stage mainly involves

selective memory of the input values, more memory with higher importance,

and less memory with lower importance.

• Output phase: The output phase will determine the output value of the

current state.

Chapter 2 Background Review and Related Works 14

2.5 Grafana

Grafana is an open source visualization tool that can be used on a variety of dif-

ferent materials, but Graphite and Elasticsearch are the most commonly used.

Fundamentally, it’s an upgraded version of Graphite-web that includes more con-

venient dashboard features, editing options for more options, and no additional

monitoring due to different data sources. software. Users can create a variety

of charts through Grafana. Compared to other monitoring software, Grafana has

easier to configure configuration settings. These features can greatly reduce the

burden on users.

2.6 Related Works

Raghav Rastogi et al. [11] used ELK Stack to build a log management system to

filter network failures, information security and error messages. The log system of

this article has a reference to his implementation. Pingkan P. I. Langi et al. [12]

used an API from Twitter to get the data and uses two methods to enter data

into Elasticsearch. The first way is through Twitter River, and the second way is

through Logstash, which compares the evaluation of Twitter River and Logstash

performance. This article refers to his experimental results and the method of

entering data fields.

Gianluigi Ciocca et al. introduced a bigdata log analysis method based on

recurrent neural network to predict the most likely future events. Converts the

log (unstructured text data) of each component of bigdata to structured data.

This article refers to the method of conversion of the data. Carela-Español et

al. [13] studied the traffic classification problem of NetFlow data and uses the ML

model for training. This article has reference to its method of traffic classification

and filtering characteristics. Magdi S. et al. []MAHMOUD2019101 used the RNN

model to train and use it for attack detection. This paper refers to the structure

and training methods of its training model.

Chapter 2 Background Review and Related Works 15

In recent year, the issue of information security [13] [14] has been highly con-

cerned. From loopholes on OpenSSL, Heartbleed, cyberattack on JP Morgan

Chase, GitHub threatened by Distributed Denial of Service attack, DDoS. Vari-

ous cyber-attacks [15] [16] show the importance of storage safety, and this issue

should not be overlooked nowadays. In 2018 World Economy Review, the cyber-

attack has been ranked in second place. In normal circumstance, the network log

data [17] is used whenever the internet is used. Network log data [18] is essential

to web administrator, which provides data like system error, cyberattack warning,

mobile data gigabytes, message sending status etc. The purpose of this thesis is to

provide a network log data management system, which can do visualization anal-

yse for each type of users. The system uses ELK Stack technology, accordingly

filter, screen and analyse network log data base on different purpose. And finally

apply visualization [19] [20] effects on web browser.

System service is mainly composed by Elasticsearch, Logstash and Kibana

[21].The services of the system are mainly composed by Elasticsearch [22], Logstash

and Kibana, which provide a network log management and visual analysis service

by combining distributed search and analysis services, data collection, filtering

processing and data analysis visualization.The network attack detection [23] [24]

[25] part uses the deep learning model for learning and training, so that the model

can learn the characteristics of each attack by known network attack features [26],

and then cross-match the analysis information on the log system to Achieve the

effect of verification.

There is also a related study that uses the LSTM model to predict the impact

of weather variables on the weather. The prediction model proposed in the paper

is an extension of the LSTM model. By adding the intermediate variable signal to

the LSTM storage area, it is easier for the model to learn and identify the patterns

in the training data set. The architecture also explores various architectures, in-

cluding single-layer LSTM and multi-layer LSTM. The data set is weather variable

data collected by Weather Underground at the airport in Indonesia. At this time,

the better model was built in the multi-layer LSTM model, and the experimental

results obtained a verification accuracy of 0.8. This study allowed me to recognize

Chapter 2 Background Review and Related Works 16

the different types of LSTM operations, allowing my experiment to have other

attempts.

Chapter 3

System Design and

Implementation

This chapter will introduce how to use ELK Stack to visualize the analysis of

network log data and implementation, as well as show the deep learning detection

model. The network log collected in this paper is a machine from the computer

center in the school. Every day, there are more than 8 million pieces of data.

According to the amount of data during the school period, the single piece of data

is about 2 to 3 G. At present, it has accumulated to 6 TB, and will upgrade the

relevant equipment level according to the hardware situation in the future.

3.1 System Architecture

In this article, the study will first introduce how to deploy the entire ELK Stack

system, then use the log data of the computer center to import and write the

configuration file so that it can read the corresponding log data field for the system

to visually analyze. And the paper discusses how to use ELK Stack to build a

network log system to make a variety of visual analysis of the campus, and use

deep learning model to detect attacks, to assist the reliability of the network log

system in information security. The basic environment of the network log system

17

Chapter 3 System Design and Implementation 18

is to build a set of ELK Stack system on the server first, and add related kits to

assist, combined with the network resources of the campus computer center, and

finally present a variety of visual analysis to provide managers and visitors with a

clearer understanding of the campus network information.

The other part is to install Anaconda3 on Windows 10 and use Juypter Note-

book as the development environment of Python, then preprocess the log data,

then import the deep learning model to train and learn, and detect the attack

behavior of other network log data.This section will use different types of deep

learning to make comparisons, and refer to the classification accuracy of the ex-

perimental data to select a better model.

Finally, the Grafana monitors the performance of Elasticsearch. After the

log system is deployed, as the data volume accumulates, the system performance

needs to be mastered at any time. Grafana can instantly monitor the data traffic

and current performance usage on the system.

Figure 3.1: System architecture

Chapter 3 System Design and Implementation 19

3.2 NetFlow Log System

First, this paper use a shell script to download files from the server, which collects

NetFlow log data to the local computer. Then,the paper use ELK Stack for

preliminary analysis, Logstash will continue to collect and filter log data, and do

format processing. Elastic search stores data passed in by Logstash. Finally, this

paper will use Kibana to visualize the log data on the website.

3.2.1 Visualization Analysis of Network Usage

Network log data are constantly updated. If managers want to get the simplest

and most understandable information as quickly as possible, the focus is on the

application of visual analysis. In the campus, each building has its own network

domain, in order to facilitate the management of the network usage of each build-

ing, it is necessary to filter out the network domain of each building separately.

This paper uses the most commonly used flow analysis to visualize the flow of each

building. There are two important elements in the network flow, that is, source

and destination. The analysis of IP usage profiles between source and destination

presents the relationship charts of IP, port and proto, which makes it easier for

administrators to view their relevant information. Geographical location informa-

tion can also make visual heat maps that can view the frequency of network usage

from around the world and locally at once.

3.2.2 Visualization Analysis of Attack Detection

Part of the cyberattack behavior is to use the different characteristics of each

attack behavior, and use the filtering method to extract the abnormal data for

visual analysis. Features like CodeRed and Worm are relatively fixed values and

can be easily analyzed. The characteristics of DDOS are relatively unfixed, so a

feature range is set for analysis processing.

Chapter 3 System Design and Implementation 20

3.3 Deep Learning models

In this chapter, the paper will discuss how to use Deep Learning model training

and demonstrate the accuracy of cyber attack classification for web log data. This

paper experiments and tests the cyberattack behavior of the school with a large

amount of data. Because the network log data lacks network attack data, the data

source uses the CodeRed, Nimda and Worm attacks with more data to perform

the training test.

In the experiment, Keras was used to perform the experiment and test of

the model. The Python version used version 3.6, then used Anaconda3’s jupyter

notebook suite to write Python, and finally compared the accuracy of different

models’ attack behavior classification.

3.3.1 Network Log Data Preprocessing

As follow Algorithm1, the log data is preprocessed to convert the data into a format

that the deep learning model can learn. Then extract the data with network attack

behavior, and then classify according to its behavior characteristics, and prepare

enough data to make the training and classification accuracy more reliable.

In the case of multiple classifications, in order to make training more effective,

try to make the number of different network attacks more average. Our training

set is collected from log data at different times, so the model does not learn the

same data at the same time. The exact green color of the completed model will

be shown in the following sections.

3.3.2 DNN model Training and Prediction

The part of the DNN model is to use the supervised learning method to train.

When the preset parameters have not been adjusted at the beginning, it is easy

to encounter the overfitting situation, and the result of the test set is not as

Chapter 3 System Design and Implementation 21

Algorithm 1 Data Preprocessing
Input: Network Log Source , NFDump.txt;
Output: Training, Test Dataset of models;

1: Read file with Python; Dataset = NFDump.txt
2: Remove spaces and unnecessary data;
3: Mark three types of attack data;
4: if This is the data with the attack data, Mark as 1, 2 and 3 according to

different attack types then Delete unmarked data
5: else(There are no attack data in Dataset)
6: Delete Dataset
7: end if
8: Save file with Python

expected. Then, by adjusting the learning rate, neurons and optimizer, it can

slowly improve the situation, and the number of training sets can be improved.

Finally, the accuracy of the verification set can reach an accuracy of 99.98

In the aspect of the test set, four sets of test data were extracted from different

dates and times, and the accuracy rates were 98.88％, 99.97％, 99.47％and 99.91％

, respectively, and the average effect could reach 99％or more, representing that

the model has Quite high accuracy.

3.3.3 RNN model Training and Prediction

The part of RNN model is also trained by supervised learning. In order to compare

the differences of different neural network models, the training set also uses the

same training set as other models. In the process of training, the model of RNN is

obviously better than DNN. It is easier to achieve high accuracy. The optimizer is

also used in the same way as DNN. There is almost no overfitting in the training

process. The test set is also using the same four sets of data as DNN, which are

from different dates. Time, in order to understand the difference in accuracy more

clearly. In the aspect of the test set, four sets of test data were extracted from

different dates and times, and the accuracy rates were 100％, 99.98％, 100％and

99.98％, respectively, and the average effect could be close to 100％.

Chapter 3 System Design and Implementation 22

3.3.4 LSTM model Training and Prediction

In the part of the LSTM model, training is also carried out using supervised

learning. The training effect is very close to the RNN model. It may be that the

long-term sequence is not obvious to the training set, and the RNN test result is

close to 100％, making it difficult to distinguish the RNN. The difference between

the model and the LSTM model, the accuracy of the verification set is very close

to the RNN model.

Finally, the test set is also based on the same four sets of data as the other

models, the test results are 100％, 99.98％, 100％and 99.98％, respectively, the

same as the RNN model.

Chapter 4

Experimental Results

In this chapter, the study will describe which parts of the log data are analyzed in

the web log management system. First, the system operation process is explained.

The study uses the Nfdump of the computer center as the data source of the

log data, and use the data periodically uploaded to the database to complete

the original log data of our network log system. The original log data will be

advanced to Logstash. The read and format fields are processed, and then sent

to Elasticsearch for storage and waiting for Kibana to send data request signals.

After receiving the signal, the corresponding log data is sent to Kibana, and finally

to Kibana. The above is a scientific analysis.

The system monitoring part uses another machine to set up the Grafana mon-

itoring system on the machine. It is responsible for linking to Elasticsearch on the

log system. Elasticsearch will return the system information in time, including

data traffic and system usage. These information can be used by users. In order

to get a quick grasp of system usage.

Finally, the model comparison part. After training and testing of the three

models, RNN and LSTM are more suitable training models. In terms of classifi-

cation, all three models can achieve high accuracy, but comprehensively evaluate

training time and execution time. And other conditions, the model of the RNN

23

Chapter 4 Experimental Results 24

type is considered to be the optimal model for the current data type, and the

detailed results of the comparison will be presented below.

4.1 Hardware Environment

This section describes our hardware experimental environment. This paper uses

two hosts, one is Linux, as the basic environment of ELK Stack. The other one

uses Windows 10 as the operating system and installs Anaconda 3 and Python

environment as the model training environment. Hardware devices are shown in

Table 4.1.

Table 4.1: Hardware specifications

Item Disk Core Ram OS

Network Log system 8TB Intel(R)Core(TM)
i7-6950X CPU @ 3.00GHz 128G Ubuntu

18.04.02

Deep Learning 1TB Intel(R)Core(TM)
i7-6700 CPU @ 3.40GHz 16G Windows 10

Grafana 1TB Intel(R)Core(TM)
i7-6700 CPU @ 3.40GHz 16G Windows 10

4.2 Experimental Results

4.2.1 Visualization of the Network Log System

Visual analysis of log data is based on different types of needs to make correspond-

ing chart presentations, such as student dormitory, is the most frequent area of

traffic anomalies, and there are many reasons for abnormal traffic, computer poi-

soning, hacker intrusion and the use of plug-in software can lead to abnormal

traffic, which can be clearly found through the log data.

In the following results, the meanings and causes of various visualizations will

be explained, and detailed explanations and operations will be made separately.

Chapter 4 Experimental Results 25

Figure 4.1 tells us an overview of the source and destination IP. The larger

the font, the higher the number of connections in the total proportion.This part

is visualized using source address and destination address.

Figure 4.1: Source address and destination address

4.2 shows the number of connections between the source address and the des-

tination address, so that the administrator can clearly see that the previous high

number of connections is those IP, when abnormal circumstances occur, you can

also refer to this figure as a basis.

Figure 4.2: Source and destination count

Figure 4.3 is the information that summarizes the other two pictures, showing

a visual analysis of proportional and counting, and a clearer understanding of

various details.

Chapter 4 Experimental Results 26

Figure 4.3: Count of each source and destination address

Figure 4.4 extracts the number of Packets independently, and some attacks are

related to this factor, so the graph is deliberately made for independent display.

Figure 4.4: Count of packet

Figure 4.5 shows the detailed IP usage. The source IP, Port, and network

protocols used are all presented. In particular, the IP with the most usage ratio

can be used to control the network usage.

Figure 4.5: Source address details

Figure 4.6 shows the use of connections around the world, especially in ther-

mal mode. Figure 4.7 shows the source IP from the world’s respective detailed

Chapter 4 Experimental Results 27

geographic information, from country to city with clear information available for

management review.

Figure 4.6: World heat map

Figure 4.7: Geographic location information of source address

Dormitory network is usually the place where every school is most vulnerable

to various emergencies. Each building will be allocated to a separate domain.

Managers must first extract and filter the domain separately. After all dormitory

domains are filtered out, a complete scale map will be presented, as shown in Fig.

4.8.

Figure 4.8: Dormitory network usage

Chapter 4 Experimental Results 28

In order to facilitate the search, the student network is divided into several

regions, which can quickly inspect the use of the network. As shown in Figure 4.9,

the use of each student partition is at a glance. This is the most convenient part

of visual analysis. It can customize its own charts according to users’ needs.

Figure 4.9: Dormitory network sources

Figures 4.10 and 4.11 are related features of using network attack behavior,

classifying the suspicious source of each network attack, and managing the time

of the network traffic to select the time of the attack behavior to be queried. The

source of cyber attacks can be more quickly integrated.

Figure 4.10: Cyberattack detection1

Figure 4.11: Cyberattack detection2

Chapter 4 Experimental Results 29

4.2.2 System Monitoring

System monitoring is the use of Grafana to link Elasticsearch in the log system,

so that the system can immediately transmit system information to Grafana for

analysis and processing. As shown in Figure 4.12, Figure 4.13 and Figure 4.14, the

system’s traffic and packet data can be displayed instantly, which makes it easier

for the monitor to grasp the system usage.

Figure 4.12: Average netflow

Figure 4.13: Packet data performance

Figure 4.14: Netflow performance

Chapter 4 Experimental Results 30

4.2.3 Training Models

This section will show the models used for training and testing in this article,

and the training of the models, which will be described separately in the following

charts.

As shown in Figure 4.15, this is the training situation of the dnn model.

Figure 4.15: Training situation of DNN model

As shown in Figure 4.16, this is the neural layer hierarchy of the model and

model of the DNN.

Figure 4.16: Neuron architecture of DNN model

Chapter 4 Experimental Results 31

As shown in Figure 4.17, this is the training situation of the dnn model.

Figure 4.17: Training situation of RNN model

As shown in Figure 4.18, this is the training situation of the dnn model.

Figure 4.18: Neuron architecture of RNN model

As shown in Figure 4.19, this is the training situation of the dnn model.

Figure 4.19: Training situation of LSTM model

As shown in Figure 4.20, this is the training situation of the dnn model.

Chapter 4 Experimental Results 32

Figure 4.20: Neuron architecture of LSTM model

4.2.4 Model Comparison

In the classification part of the network attack, the three models have good accu-

racy in the verification set, as shown in Figure 4.21 and Figure 4.22, which is the

training and verification of the DNN model.

Figure 4.21: Training and validation loss of DNN model

Figure 4.23 and Figure 4.24 show the training and verification of the RNN

model, which is better than the DNN model.

Chapter 4 Experimental Results 33

Figure 4.22: Training and validation acc of DNN model

Figure 4.23: Training and validation loss of RNN model

Finally, the training and verification scenarios of the LSTM model are shown

in Figure 4.25 and Figure 4.26, which is very similar to the RNN model.

As Table 4.2 and Table 4.3 show, the initial training results show that the

training results of the RNN model are much better than the other two models,

but after stopping the neurons and some parameters, a very high accuracy can be

Chapter 4 Experimental Results 34

Figure 4.24: Training and validation acc of RNN model

Figure 4.25: Training and validation loss of LSTM model

achieved.

Combining the two comparison results, the paper can know that the RNN

model is more suitable for the data sources in this paper.

Chapter 4 Experimental Results 35

Figure 4.26: Training and validation loss of LSTM model

Table 4.2: Initial model comparison

DNN RNN LSTM
Verification set accuracy 89.882％ 96.947％ 96.194％
Test.1 set accuracy 92.84％ 99.47％ 99.47％
Test.2 set accuracy 90.98％ 97.48％ 97.48％
Test.3 set accuracy 93.27％ 99.98％ 99.47％
Test.4 set accuracy 91.85％ 100％ 98.78％

Table 4.3: Final model comparison

DNN RNN LSTM
Verification set accuracy 99.978％ 99.997％ 99.994％
Test.1 set accuracy 98.88％ 100％ 100％
Test.2 set accuracy 99.98％ 99.98％ 99.98％
Test.3 set accuracy 99.47％ 100％ 100％
Test.4 set accuracy 99.91％ 99.98％ 99.98％

Chapter 5

Conclusions and Future Work

This chapter is stated for the concluding remarks and the future works of this

study.

5.1 Concluding Remarks

In conclution, the paper introduces a network log management and analysis system

based on ELK Stack. Users can easily understand the general situation of network

usage in the service area through the system. They can make detailed adjustments

to the visual analysis of each area. The RNN model is also used for network attack

classification, which can achieve more than 98％accuracy and is used for sorting

out attack types. The recording system and the attack behavior are mutually

comparable so that managers can obtain more accurate information.

5.2 Future Work

In the future, hoping to collect more information related to cyber attacks through

the ELK Stack and compare them to the attack classification based on Deep

Learning and Kibana’s visual analysis. Network usage will provide appropriate

36

Chapter 5 Conclusions and Future Work 37

visual analysis of different areas, which will make it easier for managers to view

configuration files for network log data. This part of deep learning not only hopes

to identify more types of attacks, but also hopes to be used to predict attack

behavior in the future.

References

[1] Hongyu Liu, Bo Lang, Ming Liu, and Hanbing Yan. Cnn and rnn based pay-

load classification methods for attack detection. Knowledge-Based Systems,

163:332–341, 2019.

[2] Imon Banerjee, Yuan Ling, Matthew C. Chen, Sadid A. Hasan, Curtis P.

Langlotz, Nathaniel Moradzadeh, Brian Chapman, Timothy Amrhein, David

Mong, Daniel L. Rubin, Oladimeji Farri, and Matthew P. Lungren. Compar-

ative effectiveness of convolutional neural network (cnn) and recurrent neural

network (rnn) architectures for radiology text report classification. Artificial

Intelligence in Medicine, 2018.

[3] Olivier Brun, Yonghua Yin, and Erol Gelenbe. Deep learning with dense

random neural network for detecting attacks against iot-connected home en-

vironments. Procedia Computer Science, 134:458 – 463, 2018. The 15th

International Conference on Mobile Systems and Pervasive Computing (Mo-

biSPC 2018) / The 13th International Conference on Future Networks and

Communications (FNC-2018) / Affiliated Workshops.

[4] Rojalina Priyadarshini and Rabindra Kumar Barik. A deep learning based

intelligent framework to mitigate ddos attack in fog environment. Journal of

King Saud University - Computer and Information Sciences, 2019.

[5] Tae-Young Kim and Sung-Bae Cho. Web traffic anomaly detection using

c-lstm neural networks. Expert Systems with Applications, 106:66–76, 2018.

[6] Qinghan Xue and Mooi Choo Chuah. New attacks on rnn based healthcare

learning system and their detections. Smart Health, 9-10:144–157, 2018.

38

REFERENCES 39

[7] Weiling Chen, Chai Kiat Yeo, Chiew Tong Lau, and Bu Sung Lee. Leveraging

social media news to predict stock index movement using rnn-boost. Data ＆

Knowledge Engineering, 118:14 – 24, 2018.

[8] YiFei Li and Han Cao. Prediction for tourism flow based on lstm neural

network. Procedia Computer Science, 129:277 – 283, 2018. 2017 International

Conference on Identification, Information and Knowledgein the Internet of

Things.

[9] Afan Galih Salman, Yaya Heryadi, Edi Abdurahman, and Wayan Suparta.

Single layer ＆ multi-layer long short-term memory (lstm) model with inter-

mediate variables for weather forecasting. Procedia Computer Science, 135:89

– 98, 2018. The 3rd International Conference on Computer Science and Com-

putational Intelligence (ICCSCI 2018) : Empowering Smart Technology in

Digital Era for a Better Life.

[10] Jitendra Kumar, Rimsha Goomer, and Ashutosh Kumar Singh. Long short

term memory recurrent neural network (lstm-rnn) based workload forecasting

model for cloud datacenters. Procedia Computer Science, 125:676 – 682, 2018.

The 6th International Conference on Smart Computing and Communications.

[11] T. Prakash, M. Kakkar, and K. Patel. Geo-identification of web users through

logs using elk stack. In 2016 6th International Conference - Cloud System

and Big Data Engineering (Confluence), pages 606–610, 2016.

[12] P. P. I. Langi, , W. Najib, and T. B. Aji. An evaluation of twitter river

and logstash performances as elasticsearch inputs for social media analysis

of twitter. In 2015 International Conference on Information Communication

Technology and Systems (ICTS), pages 181–186, Sep. 2015.

[13] Valentín Carela-Español, Pere Barlet-Ros, Albert Cabellos-Aparicio, and

Josep Solé-Pareta. Analysis of the impact of sampling on netflow traffic

classification. Computer Networks, 55:1083–1099, 2011.

[14] Meir Kalech. Cyber-attack detection in scada systems using temporal pattern

recognition techniques. Computers ＆ Security, 84:225–238, 2019.

REFERENCES 40

[15] Rafał Kozik, Michał Choraś, Massimo Ficco, and Francesco Palmieri. A

scalable distributed machine learning approach for attack detection in edge

computing environments. Journal of Parallel and Distributed Computing,

119:18–26, 2018.

[16] Ozgur Koray Sahingoz, Ebubekir Buber, Onder Demir, and Banu Diri. Ma-

chine learning based phishing detection from urls. Expert Systems with Ap-

plications, 117:345–357, 2019.

[17] Chun-Yu Wang, Chi-Lung Ou, Yu-En Zhang, Feng-Min Cho, Pin-Hao Chen,

Jyh-Biau Chang, and Ce-Kuen Shieh. Botcluster: A session-based p2p botnet

clustering system on netflow. Computer Networks, 145:175–189, 2018.

[18] Pin Wu, Zhihui Lu, Quan Zhou, Zhidan Lei, Xiaoqiang Li, Meikang Qiu,

and Patrick C.K. Hung. Bigdata logs analysis based on seq2seq networks for

cognitive internet of things. Future Generation Computer Systems, 90:477–

488, 2019.

[19] R. Rastogi, A. S, S. G, P. G, P. D, and A. Singh. Design and development

of generic web based framework for log analysis. In 2016 IEEE Region 10

Conference (TENCON), pages 232–236, 2016.

[20] M. Moh, S. Pininti, S. Doddapaneni, and T. Moh. Detecting web attacks

using multi-stage log analysis. In 2016 IEEE 6th International Conference on

Advanced Computing (IACC), pages 733–738, Feb 2016.

[21] Robert Appleyard and James H. Adams. Using the elk stack for castor ap-

plication logging at ral. page 027, 03 2016.

[22] S Bagnasco, D Berzano, A Guarise, S Lusso, M Masera, and S Vallero. Mon-

itoring of IaaS and scientific applications on the cloud using the elasticsearch

ecosystem. Journal of Physics: Conference Series, 608:012016, may 2015.

[23] Rafał Kozik. Distributing extreme learning machines with apache spark

for netflow-based malware activity detection. Pattern Recognition Letters,

101:14–20, 2018.

REFERENCES 41

[24] Mariam Kiran and Anshuman Chhabra. Understanding flows in high-speed

scientific networks: A netflow data study. Future Generation Computer Sys-

tems, 94:72–79, 2019.

[25] Julio Navarro, Aline Deruyver, and Pierre Parrend. A systematic survey on

multi-step attack detection. Computers ＆ Security, 76:214–249, 2018.

[26] Magdi S. Mahmoud, Mutaz M. Hamdan, and Uthman A. Baroudi. Modeling

and control of cyber-physical systems subject to cyber attacks: A survey of

recent advances and challenges. Neurocomputing, 338:101–115, 2019.

Appendix A

ELK Stack Installation

Set related kits
$ sudo apt - get update

$ sudo apt - get i n s t a l l -y vim ntp cur l ssh

Install openjdk8
$ sudo apt - get i n s t a l l -y openjdk -8 - jdk

Set openjdk8
$ sudo ln - s /usr/ l i b /jvm/java -8 - openjdk -amd64 /usr/ l i b /jvm/jdk

Set .bashrc
$ sudo vim . bashrc

$ export JAVA_HOME=/usr/ l i b /jvm/jdk/

$ source . bashrc

Install apt-transport-https ＆ ca-certificates
$ sudo apt - get i n s t a l l apt - transport - https ca - c e r t i f i c a t e s -y

Set key

42

Appendix 43

$ wget -qO - https :// a r t i f a c t s . e l a s t i c . co/GPG-KEY- e l a s t i c s ea r ch |

sudo apt - key add -

Set and install Elasticsearch
$ echo ”deb https :// a r t i f a c t s . e l a s t i c . co/packages /6.x/apt stab le main ” |

sudo tee -a /etc/apt/ sources . l i s t . d/ e l a s t i c - 6 . x . l i s t

$ sudo apt - get update

$ sudo apt - get i n s t a l l -y e l a s t i c s ea r ch

Set elasticsearch.yml
$ sudo vim /etc/ e l a s t i c s ea r ch / e l a s t i c s ea r ch . yml

Start Elasticsearch
$ sudo systemctl s ta r t e l a s t i c s ea r ch

Install Logstash
$sudo apt - get i n s t a l l logstash

Install Kibana
$ sudo apt - get i n s t a l l kibana

Set kibana.yml
$ sudo vim /etc/kibana/kibana . yml

Start Logstash
$ sudo systemctl s ta r t logstash

Start Kibana
$ sudo systemctl s ta r t kibana

Appendix B

Install the Python environment

Set Python environmental location
md \pythonwork

cd \pythonwork

Set Anaconda environment
conda create - -name tensorf low python=3.6 anaconda

act ivate tensorf low

Install Tensorflow and Keras
pip i n s t a l l tensorf low

pip i n s t a l l keras

jupyter notebook

44

Appendix C

Data preprocessing

from pandas import read_csv

from pandas import datetime

from matplotl ib import pyplot

from sklearn . preprocess ing import LabelEncoder

from sklearn . preprocess ing import OneHotEncoder

import re

import pandas

import pandas as pd

s e r i e s = read_csv (’ nfcapd .201902151305. txt ’ , engine=’python ’ ,

sk ip foote r=4, header=None , skiprows=[0])

s e r i e s . columns = [’ Date f i r s t seen ’ , ’Date l a s t seen ’ ,

’Duration ’ , ’ Src IP Addr ’ , ’Dst IP Addr ’ , ’ Src Pt ’ ,

’Dst Pt ’ , ’ Proto ’ , ’ Flags ’ , ’ In Pkt ’ , ’ In Byte ’ ,

’Out Pkt ’ , ’Out Byte ’ , ’ Input ’ , ’Output ’]

s e r i e s . to_csv (’ datapro1 . csv ’ , encoding=”utf -8 - s i g ”)

rowNum=se r i e s . shape [0]

colNum=se r i e s . columns . s i z e

data = pandas . read_csv (’ datapro1 . csv ’ , engine=’python ’ , sk ip footer=4)

del data [” Flags ”] , data [”Out Pkt ”] , data [”Out Byte ”]

i f data [’ In Byte ’] . dtype != ’ int64 ’ :

data [’ In Byte ’]=data [’ In Byte ’] . s t r . l s t r i p ()

data [’ In Byte ’]=data [’ In Byte ’] . s t r . r s t r i p ()

InByte = data [’ In Byte ’] . s t r . s t r i p () . s t r . s p l i t (’ . ’ , 0 , True)

InByte . columns = [’ 0 ’ , ’ 1 ’]

InByte = InByte . f i l l n a (’ . 0 ’)

InByte [’ 1 ’] = InByte [’ 1 ’] . rep lace (’ M’ , ’00 .0 ’ , regex=True)

InByte [’ 1 ’] = InByte [’ 1 ’] . rep lace (’ G’ , ’00000.0 ’ , regex=True)

data [’ In Byte ’] = InByte [’0 ’]+ InByte [’ 1 ’]

InByte = data [’ In Byte ’] . s t r . s t r i p () . s t r . s p l i t (’ . ’ , 0 , True)

data [’ In Byte ’] = InByte [0]

45

Appendix 46

data [’ In Byte ’] = data [’ In Byte ’] . astype (int)

i f data [’ In Pkt ’] . dtype != ’ int64 ’ :

data [’ In Pkt ’]=data [’ In Pkt ’] . s t r . l s t r i p ()

data [’ In Pkt ’]=data [’ In Pkt ’] . s t r . r s t r i p ()

InPkt = data [’ In Pkt ’] . s t r . s t r i p () . s t r . s p l i t (’ . ’ , 0 , True)

InPkt . columns = [’ 0 ’ , ’ 1 ’]

InPkt = InPkt . f i l l n a (’ . 0 ’)

InPkt [’ 1 ’] = InPkt [’ 1 ’] . replace (’ M’ , ’00 .0 ’ , regex=True)

InPkt [’ 1 ’] = InPkt [’ 1 ’] . replace (’ G’ , ’00000.0 ’ , regex=True)

data [’ In Pkt ’] = InPkt [’0 ’]+ InPkt [’ 1 ’]

InPkt = data [’ In Pkt ’] . s t r . s t r i p () . s t r . s p l i t (’ . ’ , 0 , True)

data [’ In Pkt ’] = InPkt [0]

data [’ In Pkt ’] = data [’ In Pkt ’] . astype (int)

data [’ Dst Pt ’] = data [’ Dst Pt ’] . astype (int)

dataflow = data

from sklearn . preprocess ing import LabelEncoder

dataflow [’ Proto ’] = dataflow [’ Proto ’] . s t r . l s t r i p ()

dataflow [’ Proto ’] = dataflow [’ Proto ’] . s t r . r s t r i p ()

l e = LabelEncoder ()

l e . f i t ([’ICMP’ , ’IGMP’ , ’TCP’ , ’UDP’])

dataflow [’ Proto ’] = l e . transform (dataflow [’ Proto ’])

l e . transform ([’ICMP’ , ’IGMP’ , ’TCP’ , ’UDP’])

dataflow [’ Src IP Addr ’] = dataflow [’ Src IP Addr ’] . s t r . l s t r i p ()

dataflow [’ Src IP Addr ’] = dataflow [’ Src IP Addr ’] . s t r . r s t r i p ()

dataflow [’ Dst IP Addr ’] = dataflow [’ Dst IP Addr ’] . s t r . l s t r i p ()

dataflow [’ Dst IP Addr ’] = dataflow [’ Dst IP Addr ’] . s t r . r s t r i p ()

CodeRed = dataflow . loc [(dataflow [’ Dst Pt ’] . astype (int) == 80) &

(dataflow [’ In Pkt ’] . astype (int)==3) & (dataflow [’ In Byte ’] . astype (int)==144)]

CodeRed [’ attack ’]= ’0 ’

i f CodeRed . shape [0] > 1:

pr int (CodeRed [’ Src IP Addr ’] . drop_duplicates (keep=’ f i r s t ’))

e l s e :

pr int (”no CodeRed attack ”)

Nimda = dataflow . loc [(dataflow [’ Dst Pt ’] . astype (int) == 80)]

from co l l e c t i on s import Counter

A = Nimda [’ Src IP Addr ’] . value_counts () >=1000

A = Counter (A) [1]

i f A !=0 :

fo r i in range (A) :

Nimda_IP=Nimda [’ Src IP Addr ’]

Cou_IP=Counter (Nimda_IP)

Top_IP = Cou_IP.most_common() [i] [0]

Top_IP_Cou = Cou_IP.most_common() [i] [1]

i f (Top_IP_Cou >=1000):

Nimda_A = Nimda . loc [(Nimda [’ Src IP Addr ’] == Top_IP)]

Nimda_A[’ attack ’]= ’1 ’

pr int (Top_IP + ”對外連線次數為%d” % (Top_IP_Cou))

e l s e :

Appendix 47

Nimda_A=None

print (’ no Nimda attack ’)

e l s e :

Nimda_A=None

print (’ no Nimda attack ’)

from co l l e c t i on s import Counter

Worm = dataflow . loc [(dataflow [’ Dst Pt ’] . astype (int) == 445) &

(dataflow [’ Proto ’] == 2)]

A = Worm[’ Src IP Addr ’] . value_counts () >=1000

A = Counter (A) [1]

Worm_A = None

i f A !=0 :

fo r i in range (0 ,A) :

Worm_IP=Worm[’ Src IP Addr ’]

Worm_Cou_IP=Counter (Worm_IP)

Worm_Top_IP = Worm_Cou_IP.most_common() [i] [0]

Worm_Top_IP_cou = Worm_Cou_IP.most_common() [i] [1]

Worm_A = pd . concat ([Worm_A, dataflow . loc [(dataflow [’ Dst Pt ’] . astype (int)

== 445) & (dataflow [’ Proto ’] == 2) & (dataflow [’ Src IP Addr ’] ==

Worm_Top_IP)]])

Worm_A[’ attack ’]= ’2 ’

i f Worm_Top_IP_cou > 1000 :

pr int (”IP : ” + Worm_Top_IP + ”在Port445的TCP連接次數為%d” %

(Worm_Top_IP_cou))

e l s e :

pr int (”no Worm attack ”)

e l s e :

pr int (”no Worm attack ”)

CodeRed = CodeRed [0 : 9]

Nimda_A = Nimda_A[0 : 9]

Worm_A = Worm_A[0 : 9]

attack1= pd . concat ([CodeRed , Nimda_A, Worm_A])

attack1

attack_data= pd . concat ([attack1 , attack2])

attack_data

attack_data [’ Src IP Addr ’] = attack_data [’ Src IP Addr ’] . s t r . l s t r i p ()

attack_data [’ Dst IP Addr ’] = attack_data [’ Dst IP Addr ’] . s t r . l s t r i p ()

l e = LabelEncoder ()

l e . f i t (attack_data [’ Src IP Addr ’])

attack_data [’ Src IP Addr ’] = l e . transform (attack_data [’ Src IP Addr ’])

l e . f i t (attack_data [’ Dst IP Addr ’])

attack_data [’ Dst IP Addr ’] = l e . transform (attack_data [’ Dst IP Addr ’])

attack_data . to_csv (’0604. csv ’)

attack_data

Appendix D

Merge CSV files

from pandas import read_csv

from pandas import datetime

from matplotl ib import pyplot

import pandas as pd

import re

s e r i e s = pd . read_csv (’ f i n a l . csv ’ , engine=’python ’ , sk ip foote r=0,

header=None , skiprows=[0])

del s e r i e s [0] , s e r i e s [1]

s e r i e s . columns = [’ Date f i r s t seen ’ , ’Date l a s t seen ’ ,

’Dst IP Addr ’ , ’Dst Pt ’ , ’Duration ’ , ’ In Byte ’ , ’ In Pkt ’

, ’ Input ’ , ’Output ’ , ’ Proto ’ , ’ Src IP Addr ’ , ’ Src Pt ’ , ’ attack ’]

s e r i e s . to_csv (’ datarnn . csv ’)

s e r i e s

48

Appendix E

DNN model

import numpy as np

from pandas import read_csv

from matplotl ib import pyplot as p l t

import math

from keras . models import Sequential

from keras . layers import Dense

from keras . layers import Dropout

from sklearn . model_selection import tra in_test_spl i t

from sklearn . preprocess ing import LabelEncoder

from sklearn . preprocess ing import OneHotEncoder

from keras . layers import Input , SimpleRNN, Activation

from keras import optimizers

from keras . optimizers import RMSprop

from co l l e c t i on s import Counter

f i lename = ’ rnndata1 . csv ’

footer = 1

data = read_csv (filename , header=None , engine=’python ’ , skiprows=footer)

del data [0] , data [1] , data [2] , data [5]

A = OneHotEncoder(sparse = False) . f it_transform (data [[1 3]])

data = data . values

X = data [: , 1 : 8]

Y = A

X_train , X_test , y_train , y_test = train_test_spl i t (X, Y,

test_s ize =0.33 , random_state=8)

model = Sequential ()

model . add(Dense (64 , input_dim=7, act ivat ion=’relu ’))

model . add(Dropout (0 . 5))

model . add(Dense (128 , act ivat ion=’relu ’))

model . add(Dropout (0 . 5))

model . add(Dense (256 , act ivat ion=’relu ’))

49

Appendix 50

model . add(Dense (128 , act ivat ion=’relu ’))

model . add(Dropout (0 . 3))

model . add(Dense (3 , act ivat ion=’softmax ’))

model . summary()

rmsprop = RMSprop(l r =0.001)

model . compile (optimizer=rmsprop , l o s s=’categorical_crossentropy ’ ,

metrics=[’ accuracy ’])

h i story = model . f i t (X_train , y_train , epochs=40, batch_size=200,

validation_data=(X_test , y_test))

pred ict ions = model . predict (X_test)

pr int (pred ict ions)

history_dict= history . h is tory

loss_values = history_dict [’ loss ’]

val_loss_values = history_dict [’ val_loss ’]

acc = history_dict [’ acc ’]

val_acc = history_dict [’ val_acc ’]

epochs = range (1 , len (loss_values)+1)

pl t . plot (epochs , loss_values , ’bo ’ , l abe l=’Training loss ’)

p l t . plot (epochs , val_loss_values , ’b ’ , l abe l=’Validation loss ’)

p l t . t i t l e (’ Training and val idat ion loss ’)

p l t . x labe l (’Epochs ’)

p l t . y labe l (’ Loss ’)

p l t . legend ()

p l t . axis ([0 , 40 , 0 .00 , 0 . 10])

p l t . show()

epochs = range (1 , len (loss_values)+1)

pl t . plot (epochs , acc , ’bo ’ , l abe l=’Training acc ’)

p l t . plot (epochs , val_acc , ’b ’ , l abe l=’Validation acc ’)

p l t . t i t l e (’ Training and val idat ion acc ’)

p l t . x labe l (’Epochs ’)

p l t . y labe l (’ acc ’)

p l t . legend ()

p l t . axis ([0 , 40 , 0 .99 , 1 . 00])

p l t . show()

score = model . evaluate (X_test , y_test , verbose=0)

print (’ Test l o s s : ’ , score [0])

pr int (’ Test accuracy : ’ , score [1])

pr int (”Accuracy : %.2 f%%” % (score [1] * 100.0))

pred ict ions = model . predict (X_test)

np . set_printoptions (threshold=np . i n f)

d = np . r in t (pred ict ions)

from co l l e c t i on s import Counter

def row_counter (d) :

lit_of_tups = [tuple (e l e) fo r e l e in d]

Appendix 51

return Counter (lit_of_tups)

row_counter (d)

row_counter (y_test)

model . save (’ attackdnn_model ’)

f i lename = ’0602. csv ’

footer = 1

vdata = read_csv (filename , header=None , engine=’python ’ , skiprows=footer)

del vdata [0] , vdata [1] , vdata [2] , vdata [5]

V = OneHotEncoder(sparse = False) . f it_transform (vdata [[1 3]])

vdata = vdata . values

X_v = vdata [: , 1 : 8]

Y_v = V

from keras . models import load_model

vmodel = load_model (’ attack_model ’)

from sklearn . metrics import accuracy_score

score , acc = vmodel . evaluate (X_v, Y_v, batch_size=10)

pr int (’ Test score : ’ , score)

pr int (’ Test accuracy : ’ , acc)

pr int (”Accuracy : %.2 f%%” % (acc * 100.0))

pred ict ions = model . predict (X_v)

np . set_printoptions (threshold=np . i n f)

d = np . r in t (pred ict ions)

from co l l e c t i on s import Counter

def row_counter (d) :

lit_of_tups = [tuple (e l e) fo r e l e in d]

return Counter (lit_of_tups)

row_counter (d)

def row_counter (Y_v) :

lit_of_tups = [tuple (e l e) fo r e l e in Y_v]

return Counter (lit_of_tups)

row_counter (Y_v)

def row_counter (Y_v) :

lit_of_tups = [tuple (e l e) fo r e l e in Y_v]

return Counter (lit_of_tups)

row_counter (Y_v)

print (’CodeRed ’ , row_counter (Y_v) [(1 . 0 , 0 .0 , 0 . 0)])

pr int (’Nimda’ , row_counter (Y_v) [(0 . 0 , 1 .0 , 0 . 0)])

pr int (’Worm’ , row_counter (Y_v) [(0 . 0 , 0 .0 , 1 . 0)])

Appendix F

RNN model

import numpy as np

from pandas import read_csv

from matplotl ib import pyplot as p l t

import math

from keras . models import Sequential

from keras . layers import Dense

from keras . layers import Dropout

from sklearn . model_selection import tra in_test_spl i t

from sklearn . preprocess ing import LabelEncoder

from sklearn . preprocess ing import OneHotEncoder

from keras . layers import Input , SimpleRNN, Activation

from keras import optimizers

from keras . optimizers import RMSprop

from co l l e c t i on s import Counter

from keras . layers import Input , SimpleRNN, Activation , LSTM

filename = ’ rnndata1 . csv ’

footer = 1

data = read_csv (filename , header=None , engine=’python ’ , skiprows=footer)

del data [0] , data [1] , data [2] , data [5]

A = OneHotEncoder(sparse = False) . f it_transform (data [[1 3]])

data = data . values

X = data [: , 1 : 8]

Y = A

X_train , X_test , y_train , y_test = train_test_spl i t (X, Y,

test_s ize =0.33 , random_state=8)

X_train = np . reshape (X_train , (X_train . shape [0] , 1 , X_train . shape [1]))

X_test = np . reshape (X_test , (X_test . shape [0] , 1 , X_test . shape [1]))

model = Sequential ()

model . add(SimpleRNN(16 , input_dim=7, return_sequences=True))

model . add(Dense (32 , act ivat ion=”re lu ”))

52

Appendix 53

model . add(SimpleRNN(16 , input_dim=7, return_sequences=True))

model . add(SimpleRNN(16 , input_dim=7, return_sequences=False))

model . add(Dense (3 , act ivat ion=”softmax ”))

model . summary()

rmsprop = RMSprop(l r =0.001)

model . compile (optimizer=rmsprop , l o s s=’categorical_crossentropy ’ ,

metrics=[’ accuracy ’])

h i story = model . f i t (X_train , y_train , epochs=40, batch_size=200,

validation_data=(X_test , y_test))

pred ict ions = model . predict (X_test)

pr int (pred ict ions)

history_dict= history . h i story

loss_values = history_dict [’ loss ’]

val_loss_values = history_dict [’ val_loss ’]

acc = history_dict [’ acc ’]

val_acc = history_dict [’ val_acc ’]

epochs = range (1 , len (loss_values)+1)

pl t . plot (epochs , loss_values , ’bo ’ , l abe l=’Training loss ’)

p l t . plot (epochs , val_loss_values , ’b ’ , l abe l=’Validation loss ’)

p l t . t i t l e (’ Training and val idat ion loss ’)

p l t . x labe l (’Epochs ’)

p l t . y labe l (’ Loss ’)

p l t . legend ()

p l t . axis ([0 , 40 , 0 .00 , 0 . 10])

p l t . show()

epochs = range (1 , len (loss_values)+1)

pl t . plot (epochs , acc , ’bo ’ , l abe l=’Training acc ’)

p l t . plot (epochs , val_acc , ’b ’ , l abe l=’Validation acc ’)

p l t . t i t l e (’ Training and val idat ion acc ’)

p l t . x labe l (’Epochs ’)

p l t . y labe l (’ acc ’)

p l t . legend ()

p l t . axis ([0 , 40 , 0 .99 , 1 . 00])

p l t . show()

score = model . evaluate (X_test , y_test , verbose=0)

print (’ Test l o s s : ’ , score [0])

pr int (’ Test accuracy : ’ , score [1])

pr int (”Accuracy : %.2 f%%” % (score [1] * 100.0))

pred ict ions = model . predict (X_test)

np . set_printoptions (threshold=np . i n f)

d = np . r in t (pred ict ions)

from co l l e c t i on s import Counter

def row_counter (d) :

lit_of_tups = [tuple (e l e) fo r e l e in d]

Appendix 54

return Counter (lit_of_tups)

row_counter (d)

row_counter (y_test)

model . save (’ attackdnn_model ’)

f i lename = ’0602. csv ’

footer = 1

vdata = read_csv (filename , header=None , engine=’python ’ , skiprows=footer)

del vdata [0] , vdata [1] , vdata [2] , vdata [5]

V = OneHotEncoder(sparse = False) . f it_transform (vdata [[1 3]])

vdata = vdata . values

X_v = vdata [: , 1 : 8]

Y_v = V

from keras . models import load_model

vmodel = load_model (’ attackrnn_model ’)

from sklearn . metrics import accuracy_score

score , acc = vmodel . evaluate (X_v, Y_v, batch_size=10)

pr int (’ Test score : ’ , score)

pr int (’ Test accuracy : ’ , acc)

pr int (”Accuracy : %.2 f%%” % (acc * 100.0))

pred ict ions = model . predict (X_v)

np . set_printoptions (threshold=np . i n f)

d = np . r in t (pred ict ions)

from co l l e c t i on s import Counter

def row_counter (d) :

lit_of_tups = [tuple (e l e) fo r e l e in d]

return Counter (lit_of_tups)

row_counter (d)

def row_counter (Y_v) :

lit_of_tups = [tuple (e l e) fo r e l e in Y_v]

return Counter (lit_of_tups)

row_counter (Y_v)

def row_counter (Y_v) :

lit_of_tups = [tuple (e l e) fo r e l e in Y_v]

return Counter (lit_of_tups)

row_counter (Y_v)

print (’CodeRed ’ , row_counter (Y_v) [(1 . 0 , 0 .0 , 0 . 0)])

pr int (’Nimda’ , row_counter (Y_v) [(0 . 0 , 1 .0 , 0 . 0)])

pr int (’Worm’ , row_counter (Y_v) [(0 . 0 , 0 .0 , 1 . 0)])

Appendix G

LSTM model

import numpy as np

from pandas import read_csv

from matplotl ib import pyplot as p l t

import math

from keras . models import Sequential

from keras . layers import Dense

from keras . layers import Dropout

from sklearn . model_selection import tra in_test_spl i t

from sklearn . preprocess ing import LabelEncoder

from sklearn . preprocess ing import OneHotEncoder

from keras . layers import Input , SimpleRNN, Activation

from keras import optimizers

from keras . optimizers import RMSprop

from co l l e c t i on s import Counter

from keras . layers import Input , SimpleRNN, Activation , LSTM

filename = ’ rnndata1 . csv ’

footer = 1

data = read_csv (filename , header=None , engine=’python ’ , skiprows=footer)

del data [0] , data [1] , data [2] , data [5]

A = OneHotEncoder(sparse = False) . f it_transform (data [[1 3]])

data = data . values

X = data [: , 1 : 8]

Y = A

X_train , X_test , y_train , y_test = train_test_spl i t (X, Y,

test_s ize =0.33 , random_state=8)

X_train = np . reshape (X_train , (X_train . shape [0] , 1 , X_train . shape [1]))

X_test = np . reshape (X_test , (X_test . shape [0] , 1 , X_test . shape [1]))

model = Sequential ()

model . add(LSTM(16 , input_dim=7, return_sequences=True))

model . add(Dense (32 , act ivat ion=”re lu ”))

55

Appendix 56

model . add(LSTM(16 , input_dim=7, return_sequences=True))

model . add(LSTM(16 , input_dim=7, return_sequences=False))

model . add(Dense (3 , act ivat ion=”softmax ”))

model . summary()

rmsprop = RMSprop(l r =0.001)

model . compile (optimizer=rmsprop , l o s s=’categorical_crossentropy ’ ,

metrics=[’ accuracy ’])

h i story = model . f i t (X_train , y_train , epochs=40, batch_size=200,

validation_data=(X_test , y_test))

pred ict ions = model . predict (X_test)

pr int (pred ict ions)

history_dict= history . h i story

loss_values = history_dict [’ loss ’]

val_loss_values = history_dict [’ val_loss ’]

acc = history_dict [’ acc ’]

val_acc = history_dict [’ val_acc ’]

epochs = range (1 , len (loss_values)+1)

pl t . plot (epochs , loss_values , ’bo ’ , l abe l=’Training loss ’)

p l t . plot (epochs , val_loss_values , ’b ’ , l abe l=’Validation loss ’)

p l t . t i t l e (’ Training and val idat ion loss ’)

p l t . x labe l (’Epochs ’)

p l t . y labe l (’ Loss ’)

p l t . legend ()

p l t . axis ([0 , 40 , 0 .00 , 0 . 10])

p l t . show()

epochs = range (1 , len (loss_values)+1)

pl t . plot (epochs , acc , ’bo ’ , l abe l=’Training acc ’)

p l t . plot (epochs , val_acc , ’b ’ , l abe l=’Validation acc ’)

p l t . t i t l e (’ Training and val idat ion acc ’)

p l t . x labe l (’Epochs ’)

p l t . y labe l (’ acc ’)

p l t . legend ()

p l t . axis ([0 , 40 , 0 .99 , 1 . 00])

p l t . show()

score = model . evaluate (X_test , y_test , verbose=0)

print (’ Test l o s s : ’ , score [0])

pr int (’ Test accuracy : ’ , score [1])

pr int (”Accuracy : %.2 f%%” % (score [1] * 100.0))

pred ict ions = model . predict (X_test)

np . set_printoptions (threshold=np . i n f)

d = np . r in t (pred ict ions)

from co l l e c t i on s import Counter

def row_counter (d) :

lit_of_tups = [tuple (e l e) fo r e l e in d]

Appendix 57

return Counter (lit_of_tups)

row_counter (d)

row_counter (y_test)

model . save (’ attacklstm_model ’)

f i lename = ’0602. csv ’

footer = 1

vdata = read_csv (filename , header=None , engine=’python ’ , skiprows=footer)

del vdata [0] , vdata [1] , vdata [2] , vdata [5]

V = OneHotEncoder(sparse = False) . f it_transform (vdata [[1 3]])

vdata = vdata . values

X_v = vdata [: , 1 : 8]

Y_v = V

from keras . models import load_model

vmodel = load_model (’ attack_model ’)

from sklearn . metrics import accuracy_score

score , acc = vmodel . evaluate (X_v, Y_v, batch_size=10)

pr int (’ Test score : ’ , score)

pr int (’ Test accuracy : ’ , acc)

pr int (”Accuracy : %.2 f%%” % (acc * 100.0))

pred ict ions = model . predict (X_v)

np . set_printoptions (threshold=np . i n f)

d = np . r in t (pred ict ions)

from co l l e c t i on s import Counter

def row_counter (d) :

lit_of_tups = [tuple (e l e) fo r e l e in d]

return Counter (lit_of_tups)

row_counter (d)

def row_counter (Y_v) :

lit_of_tups = [tuple (e l e) fo r e l e in Y_v]

return Counter (lit_of_tups)

row_counter (Y_v)

def row_counter (Y_v) :

lit_of_tups = [tuple (e l e) fo r e l e in Y_v]

return Counter (lit_of_tups)

row_counter (Y_v)

print (’CodeRed ’ , row_counter (Y_v) [(1 . 0 , 0 .0 , 0 . 0)])

pr int (’Nimda’ , row_counter (Y_v) [(0 . 0 , 1 .0 , 0 . 0)])

pr int (’Worm’ , row_counter (Y_v) [(0 . 0 , 0 .0 , 1 . 0)])

	摘要
	Abstract
	致謝詞
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivation
	1.2 Thesis Contributions
	1.3 Thesis Organization

	2 Background Review and Related Works
	2.1 Big Data
	2.2 ELK Stack
	2.2.1 Elasticsearch
	2.2.2 Logstash
	2.2.3 Kibana

	2.3 Python
	2.3.1 Anaconda
	2.3.2 Keras

	2.4 Deep Learning
	2.4.1 DNN
	2.4.2 RNN
	2.4.3 LSTM

	2.5 Grafana
	2.6 Related Works

	3 System Design and Implementation
	3.1 System Architecture
	3.2 NetFlow Log System
	3.2.1 Visualization Analysis of Network Usage
	3.2.2 Visualization Analysis of Attack Detection

	3.3 Deep Learning models
	3.3.1 Network Log Data Preprocessing
	3.3.2 DNN model Training and Prediction
	3.3.3 RNN model Training and Prediction
	3.3.4 LSTM model Training and Prediction

	4 Experimental Results
	4.1 Hardware Environment
	4.2 Experimental Results
	4.2.1 Visualization of the Network Log System
	4.2.2 System Monitoring
	4.2.3 Training Models
	4.2.4 Model Comparison

	5 Conclusions and Future Work
	5.1 Concluding Remarks
	5.2 Future Work

	References
	Appendix
	A ELK Stack Installation
	B Install the Python environment
	C Data preprocessing
	D Merge CSV files
	E DNN model
	F RNN model
	G LSTM model

