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摘 要

近年來隨著人工智慧與機器學習技術發展逐漸成熟，越來越多網路攻擊行為

以此做為發展方向，企圖將其發展成迴避資訊安全偵察的新手段，這也因此大

大增加了資訊安全防護的難度。根據統計 2018 上半年遭洩漏、損毀的數據量相

較於 2017 年同期增加了 72％。但令人驚訝的是 2018 上半年獲報的資訊安全事

件卻比 2017 年同期少 18％。在這些事件中，多數案例為遭受「進階持續性滲透

攻擊」(簡稱 APT)。對於這類型攻擊的防禦方法，可藉由觀察日誌資料並從中

分析是否具有異常行為，並以此進行檢測、辨識攻擊事件。本論文將實作 ELK

Stack 網路日誌系統 (NetFlow Log)，進行視覺化分析日誌數據，並呈現數種

網路攻擊行為特徵，供管理者進一步分析。本論文將導入歷史日誌數據，運用

「極限梯度提升」(簡稱 XGBoost) 進行機器學習，以及運用 Keras 進行深度學

習，建置一個檢測日誌是否具有攻擊事件之模型。本文的最終目標將透過實驗，

在此案例中，尋求最佳的學習模式。而透過實驗證實，在此案例中，XGBoost

機器學習模型對潛在威脅判斷的準確率達 96.01％，全攻擊數據集可以達到 100％

辨識，優於 RNN、DNN 模型。並且本文將進一步的將實驗結果與網路日誌平

台結合，管理者可根據模型判斷結果與 ELK Stack 網路日誌系統互相比對，進

行風險評估。本文所運用之日誌資料為持續性數據，目前數據已達 2TB 以上並

持續增加中。

關鍵字: 網路安全、機器學習、極限梯度提升、ELK Stack、NetFlow Log
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Abstract

With the development of artificial intelligence and machine learning technol-

ogy, more and more cyber attacks have taken this as a development direction.

According to statistics, the amount of data leaked and destroyed in the first half

of 2018 increased by 72％compared with the same period in 2017. Of these events,

most cases suffer from Advanced Progressive Penetration Attacks (APT). For the

defense method of this type of attack, it is possible to detect and identify the

attack event by observing the log data and analyzing whether it has abnormal

behavior. This paper will be implemented as ELK Stack network log system (Net-

Flow Log) to visually analyze log data and present several kinds of network attack

behavior characteristics for further analysis by managers. This paper will import

historical log data, use ”extreme gradient enhancement” (XGBoost for machine

learning), and use Keras for deep learning to build a model to detect whether

the log has an attack event. The ultimate goal of this paper will be to find the

best learning model through experiments in this case. Through experiments, it is

confirmed that in this case, the XGBoost machine learning model has an accuracy

rate of 96.01％for potential threats, and the full attack data set can achieve 100％

recognition, which is better than RNN and DNN models. And this article will

further combine the experimental results with the network log platform. The ad-

ministrator can compare the model judgment results with the ELK Stack network

log system for risk assessment. The log data used in this paper is continuous data,

and the current data has reached more than 2TB and continues to increase.

Keywords: Cyber Security, Machine Learning, ELK Stack, XGBoost, Net-

Flow Log
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Chapter 1

Introduction

In October 2015, AlphaGo defeated its professional opponent in the Go game. It

was officially published in the famous journal Nature in January 2016 [11]. In

this era, artificial intelligence, Machine Learning and Deep Learning came into

being. And gradually mature. Artificial intelligence brings enormous potential,

such as efficiency and productivity. Companies from all over the world are also

exploring business opportunities. Together with big data, they can even calculate

and predict unsuccessful results, making decisions more accurate, clear and fast.

However, in today’s booming information technology era, information security

protection is undoubtedly the most concerned issue for private companies and gov-

ernments. In 2017, the Encrypting Ransomware Worm, WannaCry spread around

the world, and many companies and even national governments were affected [3].

In 2017, Equifax announced that it had suffered a cyber security attack and that

nearly 200,000 customers’ credit card information was stolen during the attack. In

many cases, traditional cyber security protection is clearly not applicable. How-

ever, if the traditional cyber security architecture can be combined with artificial

intelligence, whether it can have more complete and accurate detection capabili-

ties, provide managers with effective risk assessment information, and even find

signs in the early stages of cyber attacks. More targeted anti-blocking or security

protection against information data can be performed.

1



Chapter 1 Introduction 2

Therefore, in this work, our goal is to use XGBoost for Machine Learning,

and then to implement a visualization system for cyber attack behavior to help

administrators detect whether historical network log data has cyber attack behav-

ior. The manager assesses the risk of network logs. The specific objectives are as

follows:

1. Establish a network log system, store network log data in the server in real

time, and perform data preprocessing. Logstash is used to collect log data

and convert it to the required data fields.

2. Use Elasticsearch to search for the required information based on the fields,

and finally use Kibana to visualize the results of the network log data.

3. Use Anaconda Jupyter Notebook as the development environment to write

data preprocessing and XGBoost Machine Learning models.

4. Import historical network log data, use XGBoost Machine Learning model

for binary classification prediction, and detect attack behavior.

1.1 Motivation

In recent years, the means of cyber-attacks have been constantly changing. With

the development of Machine Learning technology, some illegal users use the tech-

nology for cyber-attacks and use Machine Learning aids to help analyze informa-

tion about social networks. In order to improve the attack efficiency, the specific

target of the targeted attack is given according to the information, the attack

success rate is improved, or the artificial intelligence is used to attempt the intru-

sion behavior, the vulnerability is discovered, and the general information security

protection is avoided. For example, by Machine Learning to identify words and

images, the proof code mechanism for preventing automatic attacks is broken. Ac-

cording to Neustar’s International Network Benchmark Index report released in

2018 [2], 82％of cyber security experts said they are worried that attackers will
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use artificial intelligence to attack destructive attacks on the network environment,

but a large number of experts (87％) believe that artificial intelligence can It plays

a huge role in network security and provides great help.

As mentioned above, in the campus network environment, various cyber at-

tacks have appeared and attempts to influence the stability of the campus network

environment. From the network logs, can find out there are many unusual net-

work usage scenarios that are trying to pass the campus network security system.

However, on today’s market, systems with visualized network log data and capa-

ble of detecting cyber attacks are subject to considerable charges. However, if the

budget is limited, how can I analyze the network log data and visualize the attack

behavior in the network log to facilitate the administrator to obtain relevant infor-

mation for prevention? In this work, the open source platform ELK Stack is used

to build a network log system (NetFlow Log). After collecting the network logs,

you can find the log data related to the cyber attack behavior in a large amount

of data, and obtain preliminary information from it. Observe the analysis. After

visualizing the log data, the administrator can use the Machine Learning model to

import historical log data into the model for analysis and detection, and perform

risk assessment based on the cross-validation analysis of the visual information dis-

played by the ELK Stack, even if it has not occurred or is uncertain. the manager

also have sufficient information to make the right decisions and take precautions

to avoid the associated losses in information security.

1.2 Thesis Goal and Contributions

This work builds a network data storage and analysis platform system using ELK

Stack. The system is an open source platform that allows for the storage, analysis

and visualization of data. In addition, use XGBoost for Machine Learning, build

models, and import historical log data to detect the presence of an attack. Here

are the original contributions of this work:
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1. Using the ELK Stack open source platform, the architecture can fully im-

plement the data processing of the network log, analyze the cyber attack

events, and finally visualize, and show how the administrator can use the

ELK Stack to observe and monitor the network log data to avoid attacks.

2. This work uses XGBoost for Machine Learning, and Keras for Deep Learn-

ing. The attack event detection model can effectively help managers detect

possible attack events in historical network logs and conduct risk assessment

based on the information provided to make more accurate judgements.

1.3 Thesis Organization

The structure of this work is as follows. Chapter 2 mainly introduces the research

background and related work. Chapter 3 provides an overview of the visual anal-

ysis of attack events in the ELK Stack log system, using XGBoost for machine

learning and use Keras for deep learning, and building models to detect attack

events in log data. Next, Chapter 4 details the experimental steps and discus-

sions. Finally, in Chapter 5, the conclusions and future work of this work are

provided.



Chapter 2

Background Review and Related

Works

In chapter 2, provide the background of this work and several kit information,

including Python, ELK Stack, XGBoost and so on. The next section will be

discussed in more detail.

2.1 Python and Anaconda3

In this work, the code for Machine Learning is written in Python 3 [10]. Accord-

ing to statistics, Python, C and Java are the three most popular programming

languages. Created by Guivo van Rossum, the Python programming language is

a widely used object-oriented and interpreted computer programming language.

Python has many features that make it one of the most popular programming

languages. For example, the code is highly readable. Compared to C or Java,

Python’s simple syntax makes it easier for beginners to learn, allowing developers

to focus more on solving the problem itself than on language logic. Python is

also highly portable and embeddable. The Python interpreter can be executed on

almost all operating systems, such as Linux, Windows, OS, and does not require

modification of Python code. CPython is a Python interpreter written in C. If

5
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developers intentionally avoid over-reliance on a particular system, Python can

be executed directly on most systems. Python and C can be embedded in each

other. Developers can use C or C++ code. Write programs that are used directly

in Python and vice versa.

Anaconda is a free open source suite with built-in kits for Python developers to

apply to different types of data analysis, big data processing and Machine Learn-

ing. Anaconda also supports different system platforms, and can also be developed

using virtual environments. Developers are free to switch between Python 2 and

Python 3 to avoid many version conflicts. In addition, Anaconda provides devel-

opers with a built-in Spyder compiler and Jupyter notebook environment. This

work use Jupyter Notebook as the development environment and use many soft-

ware packages, such as Scikit-Learn [12], Numpy, Pandas, Matplotlib, Graphviz,

etc., to perform data preprocessing and build Machine Learning models.

2.2 Keras

In the field of Deep Learning, CNTK and TensorFlow are widely used in

Deep Learning research. Although both have very powerful features, the actual

application is more difficult. Therefore, the Deep Learning project for this job will

use Keras to build a Deep Learning model.

Keras is an open source neural network library written in Python that can

be executed on TensorFlow, CNTK, Theano, and the main developer is Google

engineer Francois Chollet. Keras is able to quickly implement deep neural net-

works. Keras has the following features, which is why this work chose it as a way

to achieve Deep Learning.

1. User friendly

As an API for rapid development of Deep Learning models. The user expe-

rience is Keres’ first consideration. Kreas provides a consistent and concise

API that greatly helps developers reduce their work.
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2. Modular

In Keras, losses, optimizers, initializers, activations, regularizers, etc. are

independent modules. You can freely configure these modules at a very low

cost and use them to build models.

3. Extensibility

It’s very easy for Keras to add new modules. You need to copy the existing

modules to write new classes or functions. The convenience of adding new

modules makes Keras very suitable for research work.

Keras has many tools to make it easier to work with images and text. In

addition to standard neural networks, Keras also supports Convolutional Neural

Networks (CNN) and Recurrent Neural Networks (RNN).

2.3 ELK Stack

ELK Stack refers to the architecture based on three open source softwares Elas-

ticsearch, Logstash and Kibana [7]. These three softwares can be used to form a

system for querying, collecting, and analyzing logs. This work can get data from

any source and format. Without changing the original system architecture, ELK

Sack is built to instantly search and analyze data and ultimately use visual ca-

pabilities to present the analyzed data results [4]. NetFlow Log is the automated

network log platform built in this work. It is built on top of these three open

source software. In addition, ELK Stack not only has three kits, but also many

other software packages, such as Filebeat, Xpack, ECE, etc., for developers to

apply. The following is a brief introduction to the features of the toolkit used in

this work.

Elasticsearch is a JSON-based real-time distributed data search and analysis

engine that searches data at extremely fast speeds and scales. At the heart of

the ELK Stack, Elasticsarch includes three functions: full-text search, structured
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search and analysis. It is highly reliable, easy to manage and scales out. Elastic-

sarch supports RESTful styles and provides a number of plugins for developers.

Can be embedded for use. While the features included in Elasticsarch are not

absolutely groundbreaking, they are very simple for first time developers and it

can still be satisfied as developers’ needs increase.

Logstash is another open source software that provides a framework for data

collection and processing. Data is often scattered or concentrated in multiple

systems in various forms. Logstash can collect data from multiple sources simul-

taneously and identify and analyze the collected data. After the conversion split,

the data is stored in the appropriate fields, processed and converted to the specified

location, whether it is a database or a file.

Kibana is another core open source software for ELK. It has powerful data

analysis and visualization capabilities. Kibana can use to search, view, and an-

alyze data from Elasticsearch, and visualize the data in multiple ways. Provide

developers or users with easy-to-understand graphics that make it easier for them

to understand and get information from the data.

2.4 Machine Learning

From the moment AlphaGo defeated human professional Go players, artificial in-

telligence has become the most compelling information technology after big data

applications. Machine Learning is a branch of artificial intelligence in artificial

intelligence. It is a way to achieve artificial intelligence. As the name implies,

Machine Learning is the ability to let computers learn automatically from data.

Machine Learning is a multidisciplinary, interdisciplinary field that has emerged

over the past 25 years, involving statistics, decision theory, probability theory,

and many other disciplines. In Machine Learning, we hand over data to a com-

puter. The computer automatically analyzes and identifies the data collected by

the computer, then summarizes the rules known to the computer and automat-

ically improves the algorithm through data and learning experience. Optimized
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performance standards. Finally, the unknown information is predicted by its al-

gorithm law, which is a Machine Learning algorithm.

At present, Machine Learning has been widely used in our lives, such as

weather forecasting, language translation, face recognition [5], license plate recog-

nition, medical diagnosis assistance [6], stock trend analysis, and speech recog-

nition. Machine Learning is divided into supervised learning, semi-supervised

learning and unsupervised learning. First, unsupervised learning, and will not

give pre-marked training examples. Instead, let the machine summarize the input

data to find out the classification that the machine knows. Supervised learning,

on the basis of the information given, marks the samples one by one, giving the

Machine Learning objectives. Based on the purpose of marking the information

we give, the computer can learn a function based on the training dataset, and

according to this marked The sample is summarized in the description, when the

new data is imported into the Machine Learning model, this unknown informa-

tion can be predicted. This method is also the main research method used in this

work. Compared with the above two learning methods, semi-supervised learning

is somewhere in between. In many practical problems, only part of the data can

be given to the target, and semi-supervised learning is to reduce the way of giving

data goals, thereby improving the efficiency of Machine Learning. There are many

ways to learn about Machine Learning. In this chapter, only the part that has

been applied in this work is introduced as a research background.

Next, introduce the decision tree. In decision theory, a decision tree consists

of decision graphs and possible outcomes that are used to help decision-making

achieve program goals [1]. In Machine Learning, a decision tree is a predictive

model. Use tree graphics to help computers judge, segment our data, and make

decisions based on it. Each node in the tree represents a specific target, each forked

path represents a possible feature of data segmentation, and the information gain

is obtained from the action of segmenting the data, and the segmentation process

is repeated until the leaf node. And this leaf node corresponds to the target from

the master node to the leaf node, and has all the feature values on the path.

Decision trees are available for forecasting and data analysis. A complete decision
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tree typically contains three types of nodes, decision nodes, opportunity nodes,

and endpoints. Decision trees have several generation methods, classification tree

analysis, regression tree analysis, CART, CHAID. Compared to other data mining

algorithms such as K-Means and KNN, the use of decision trees has advantages in

the following areas:

1. The decision tree is easy to understand, and the developer can understand

the meaning of the model through the decision tree.

2. Other algorithms typically require data to be deleted from redundant or null

values compared to decision trees.

3. The decision tree can process data for different data attributes simultane-

ously.

4. Generate a decision tree by giving features, which will give the corresponding

logical representation.

5. Compared with other algorithms, it can get a good solution in a short time.

However, the shortcomings of decision trees are also obvious. If there are large

differences in the number of samples in each category, the decision tree will be

significantly biased towards features with most samples.

As the most basic component of XGBoost, need to introduce the CART re-

gression tree. It constructs a decision tree based on the characteristics and data

of the training, and uses this to determine the prediction result of each piece of

data. It uses the gini index to calculate the gain to select the characteristics of

the decision tree. The Gini index formula is as follows:

Gini(D) =
K∑
k=1

pk1− pk (2.1)

pk represents the probability of class classification category (k) in dataset D,

the number of categories is indicated by K. The Gini index calculates the gain

formula as:
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Gini(D,A) =
|D1|
|D|

Gini(D1) +
|D2|
|D|

Gini(D2) (2.2)

D represents the entire dataset, D1 and D2 respectively represent data having

feature A in the dataset and data other than A.

Before talking about Gradient Boosting, I will first introduce Boosting. For

example, completing a dataser to construct multiple classification models, and the

model structure is very simple, such as correct or wrong, call it a weak classifier

(weak learner), and then every time after the classification, will be the last time

The data weight of the classification error is increased, and then a new model is

added to correct the error generated by the existing model, and the classification

is performed again until it cannot be further improved, thereby finally obtaining

good results of the training data and the test data. Gradient Boosting is a Boost-

ing method that is a Machine Learning technique for regression and classification

problems [9]. Gradient Boosting generates prediction models in the form of multi-

ple weak classifiers, and each model is established in the gradient direction of the

loss function of the previous model. Simply put, when the loss function is large,

the model is more error-prone. If our model can make the loss function continue

to drop, then our model will continue to improve. The loss function is reduced

in the gradient direction by multiple improvements, and a good model is finally

obtained [8]. The specific algorithm is as follows:

Input：Training set T=(x1,y1 ),(x2,y2 )﹒﹒﹒,(xn,yn )

Output：Boosting tree fM (x)

Procedures:

• Initialization f0 (x)=0 for m=1,2﹒﹒﹒,M

• Calculating the residual rmi=yi-f((m− 1)) (xi ),i=1,2,﹒﹒﹒,n (3)

• Fitting the residual rmi to learn a regression tree and get T(x:m )

• Update fm (x)=f((m− 1)) (x)+T(x:m )

• Get the regression boosting tree: fM (x)=�(m = 1)M T(x:m )
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2.5 XGBoost

In recent years, XGBoost has become one of the most useful algorithmic tools

in the Machine Learning field due to the most favorite of many award-winning

teams in the Machine Learning competition. It is a gradient supercharger re-

searched and implemented by Chen Tianqi [13]. According to Xqioost founder

Tianqi Chen, XGBoost has been used in the production operations of major com-

panies such as Uber, Airbnb, Amazon and Google. XGBoost stands for eXtreme

Gradient Boosting. XGBoost is a massively parallel enhanced tree tool designed

to provide a scalable, decentralized and lightweight open source software library

that helps us improve speed and performance while learning Machine Learning. It

provides us with a framework for Gradient Boosting. As described in the previ-

ous section, the Gradient Boosting framework takes advantage of the creation of

new models, corrects errors from previous old models, and uses gradient descent

algorithms to minimize the loss of adding new models and ultimately combines all

results for final prediction. Gradient Boosting supports model problems for regres-

sion prediction and classification prediction. The objective function of XGBoost

consists of two parts. The first part is used to calculate the difference between

the predicted score and the true score: Obj(t)= �(i = 1)n L(yi,
(t − 1)+ft (xi ))

+Ω(ft )+constant The second part is normalization Ω(ft ) , and the formula is as

follows:

Ω(ft )=�T+1/2 �(i = 1)T w2
j

T represents the number of leaf nodes, wj represents the weight of the j leaf nodes，

� control the number of leaf nodes, � control the score of the leaf nodes not too

large to prevent over-fitting.

XGBoost uses the above objective function value as an evaluation function and

applies the same concept as the CART regression tree. It uses a greedy algorithm

to find all feature points and find the best segmentation point and best features.

In addition, the maximum depth of the decision tree can be set at the same time,

and the splitting is stopped to prevent overfitting when the sum of sample weights

is less than the threshold. XGBoost fully supports the scikit-learn suite in Python
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and supports random gradient enhancements. Subsampling can be done in each

split level column, and all CPU cores can be built in parallel during model training

so that XGBoost can demonstrate its powerful learning performance in a series

of difficult Machine Learning tasks. In addition to XGBoost, which runs on a

single host, it also supports distributed frameworks such as Hadoop and Spark.

Therefore, organize a group of machines to train very large models. In this work,

XGBoost will be used to implement Machine Learning and will predict the attack

behavior of network log data.

2.6 Deep Learning

Deep Learning is not a completely new concept, but it has received renewed

attention in recent years due to the advancement of computer hardware. IBM Wat-

son, who won the puzzle quiz award in 2011,and Google AlphaGo, which defeat

the World Go Chess in 2016 are the best endorsements. The so-called Deep Learn-

ing is a kind of ”neural network” that imitates the neural network of the human

body, and deepens its network. Deep Learning is a branch of Machine Learning.

The Deep Learning has the ability to automatically extract features. Through

the linear or non-linear transformation in the processing layer, the features in

the data that are sufficient to represent the data will be extracted. Deep Learning

involves many very complex statistical principles, it divided into four types: super-

vised learning, semi-supervised learning, unsupervised learning, and reinforcement

learning. Each of the four learning styles has advantages and disadvantages, su-

pervised learning will be used in this work, and this work will understand and use

it as a tool to detect cyber attacks.

Next, introduce DNN. DNN means Deep Neural Networks. It is a popular

topic in the field of machine learning in the industry and academia in recent

years. The success of the DNN algorithm has raised the previous machine learning

recognition rate to a new level. The generalized DNN contains variants such as

CNN and RNN, and in practical applications, the so-called Deep Neural Networks
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usually incorporates several known structures, such as LSTM or convolution layer.

However, in a narrow sense, the difference between DNN and RNN and CNN is

that DNN is especially expressed as a fully connected neuron structure, and does

not contain convolution units or temporal associations. DNN is sometimes called

Multi-Layer perceptron (MLP) However, DNN also has its limitations:

1. Huge number of parameters

Since DNN uses a fully-connected neuron structure, the expansion of the

number of parameters is often brought about in this structure, which not

only easily leads to over-fitting, but also tends to cause local optimum.

2. Local optimum

With the deepening of the neural network, the optimization function makes

it easier for the model to fall into a locally optimal situation, deviating from

the true global optimal solution. For situations where the amount of training

data is limited, performance is even lower than for shallow networks.

3. Gradient disappearance or gradient explosion

The gradient decays when using the sigmoid function in the backpropagation

gradient. As the number of neural network layers increases, the gradient is

infinitely close to zero at the bottom.

Next is RNN. The neural network used to process sequence data is called

RNN. In the neural network model of DNN, the neural layers are fully connected,

but the nodes of each layer are not connected. This neural network model is

very inefficient in processing sequence problems. For example, in the prediction

of advertising promotion, you need to understand the user’s browsing habits or

preferences and use it as a basis. The principle of the RNN model is to connect the

output of the neuron back to the input of the neuron. The network memorizes the

previous message and uses it for the calculation of the current output. That is to

say, the output of the RNN is not only affected by the input of the previous layer,

but also by the output of the same layer of neurons. RNN also has the following

different applications.
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1. One-to-One

Fixed input and output lengths, such as the relationship of functions, it is

generally not called a sequence problem, it is a mapping relationship.

2. One-to-Many

Single input, multiple outputs. The textual description of the image is a One-

to-Many problem. Enter a picture to output a sequence of text describing

the image.

3. Many-to-One

Multiple inputs, single output. Many-to-One applications, such as entering

a paragraph of text, emotionally classify it.

4. Many-to-Many

Multiple inputs, multiple outputs. A typical Many-to-Many application is

language translation.

2.7 Related Works

Before starting this research, there are many of the theories, ideas, and experi-

mental structures of our predecessors, which allowed us to have better results in

our experiments. According to the background of this work [18], Iman Sharafaldin

et al [27] gave us a lot of inspiration, also analyzed a large amount of data and

visualized it, and proposed a classification of cyber attacks. In addition, at the

IEEE International Conference on Smart Computing (SMARTCOMP) in 2017, a

conference paper published by X. Yuan et al, mentioned [29] the defense mecha-

nism of DDos and its use of Deep Learning to establish a DDoS attack, also given

us inspired. In addition to these, there are many papers that give us a lot of

constructive references [28].

In a paper published by Rafał Kozik et al [26], the flexibility of cloud-based

architecture was used for large-scale Machine Learning, shifting high computing
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requirements and high-storage parts to the cloud. The cloud first builds a complex

learning model and then uses edge computing to execute it.

In a paper published by Muhammad Al-Qurishi et al [19], a model for predict-

ing Sybil attacks using Deep Learning is proposed. The Sybil attack effectively

denies the reception or transmission of real nodes on the network by creating

enough false identities, effectively blocking the network services of other users.

Through its experiments, it is possible to effectively provide high-precision pre-

dictions even when importing uncleaned data. The network log data used in this

work is provided by the campus network security system, and the training and

prediction are raw data. Through experiments, even complete attack behavior

data can be highly accuracy without error judgment.

James Zhang et al, have proposed a method to detect abnormal behavior of

network performance data [16], which uses Open Science Grid to collect and use

perfSONAR servers and uses Boosted Decision Tree (BDT) and simple feedforward

neural networks for Machine Learning. In this work, eXtreme Gradient Boosting

is also used for decision classification to detect anomalous behavior in network

log data. The network log data is divided into attack and non-attack, and finally

submitted to ELK for visualization analysis.

As stated in the motivation in Chapter 1, today’s hackers can use pollution

training data to achieve classification that undermines Machine Learning and input

design data into training data to reduce detection accuracy. The paper published

by Sen Chen et al, proposes a two-stage learning enhancement method KUA-

FUDET [17] to learn and identify malware through confrontation detection. This

includes the training phase of selecting and extracting features, and the testing

phase of using the first phase of training. In the study of this work, the sorting

extraction of feature importance was also used, and the complete attack data and

the general original log data were imported as experimental data for reference

comparison.
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Hongyu Liu et al, have proposed a point-to-point detection method [20]. Based

on the Deep Learning model of convolutional neural networks and recurrent neu-

ral networks, payload classification (PL-RNN) is performed and used for attack

detection. XGBoost is used in this work to learn log data and summarize its

important features. It effectively detects the difference between normal data and

aggressive behavior and serves as the basis for both classifications.In addition, a

paper published by Peiyuan Sun et al, [30] a Machine Learning-based approach

was proposed, which can model the attack behavior based on intuitive observation.

Ibrahim Ghafir et al, have proposed a Machine Learning-based system [22]

that can detect and predict APT attacks accurately and quickly. The system can

be evaluated experimentally and APT can be predicted in an early step. The

prediction accuracy rate is 84.8％. In this work, Machine Learning is also used to

quickly build a predictive model to classify network logs. It has half of the cyber

attack behavior and has high accuracy. In addition, in this work has constructed

a visualization system that provides network log data so that administrators can

easily view log data at any point in time.

The paper presented by Ozgur Koray Sahingoz et al [25], mentions that phish-

ing is one of the methods used by hackers today, and it proposes a real-time anti-

phishing system, which has been experimentally proven to detect the network.

Authentic rate of 97.98％when phishing URL

The paper presented by Abebe Abeshu Diro and Naveen Chilamkurti [23],

mentions that applying Deep Learning for attack detection is the preferred ap-

proach because of its high feature extraction capabilities.In this work, also hope

Machine Learning can make progress in detecting attacks.

At the 2015 International Conference on Information and Communication

Technology and Systems (ICTS), P. P. I. Langi et al, presented an assessment

of Logstah and Elasticsearch [21].The managers of the Institute of Nuclear Phys-

ica, Italy (INFN), used ELK Stack to set up a monitoring system to facilitate the

management of each node’s activities [24].In a conference paper, T. Ram Prakash
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et al, proposed the construction of the ELK Stack system and how to geograph-

ically identify network users [15]. In addition, the paper by Chao-Tung Yang et

al [14], also proposed a visual platform system using ELK Stack as a statisti-

cal analysis of air quality and influenza-like illness. This work refer to the ELK

Stack construction method, and finally successfully import the network log of the

campus network security system and analyze the data.



Chapter 3

System Design and

Implementation

This chapter describes how to use artificial intelligence to build predictive

models and use ELK Stack to visualize the implementation of system architecture

and network log data. In addition, this work will build a Deep Learning model

using DNN and RNN to compare with the XGBoost Machine Learning model.

The network logs collected in this work are based on campus network devices,

with more than 7 million data per day, approximately 2 to 3G. 2 TB has been

collected and continues to increase.

3.1 System Architecture

In this work will install Anaconda3 on Window10 and use Juypter Notebook as

the Python development environment. After pre-processing the network log data

in the development environment, using XGBoost for Machine Learning and exe-

cute historical network log data to check the cyber-attack behavior. In addition,

construct a network log system on Linux systems using open source software such

as ELK Stack to visualize the cyber attack behavior for more intuitive analysis by

managers.

19
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Figure 3.1: System architecture

As shown in Figure 3.1, the network logs are collected and submitted to the

ELK for visual analysis to present the results of the cyber attack behavior detection

to the administrator. On the other hand, Python, which imports network logs,

performs data preprocessing and performs model training. Finally, the model

submits the cyber attack prediction result to managers. If the ELK Stack analyzes

the log data into a normal data stream, but the model prediction results show that

the data stream is an attack behavior, the administrator can use the results of both

parties for cross-validation analysis to perform risk assessment. It can prevent the

impact of hidden cyber attacks or unknown cyber attacks.

3.2 NetFlow Log System

First, using Linux built-in shell scripts to write scripts and schedules, so that the

machine can automatically download the network log data from the server side.

After data processing, Logstash collects and filters the log data, and then Logstash

is transferred to Elasticsearch for later data search or analysis, and then Kibana

is used to visualize the analyzed data and finally present it on the website. The

above is the NetFlow Log System, a campus network log platform.
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3.2.1 Network Usage

Before analyzing the cyber attack behavior, this work can set up several frequently

used domains and visualize the log data, from which the administrator can monitor

the network for abnormal use. In addition, in this paper, these domains are divided

into search engines, auction sites, online communities, entertainment, and high-

risk domains. All of the above domain IPs are public IP and can only be observed

by the administrator.

3.2.2 Attack Data Analysis

Cyber attacks tend to hide their packaging and pretend to be a secure data stream

to trick the information security system. However, just like walking in the snow,

we will definitely leave footprints. In this work selected several kinds of cyber

attacks and recorded their eigenvalues. Then use Elasticsearch to filter the cyber

log data. Data visualization of suspected cyber attacks is monitored by managers.

3.3 Machine Learning with XGBoost

In this section, discuss how to use XGBoost for Machine Learning and construc

a dichotomy prediction model to detect the cyber attack behavior in network log

data and determine which data streams in the network log data are suspected of

having cyber attacks behavior, and which are normal. XGBoost has the following

advantages, which are why chose it:

1. Provides many options to prevent overfitting, such as: normalization, max-

imum depth of the tree, and subsampling by column.

2. XGBoost supports parallel construction. After selecting the best classifica-

tion point, it can calculate the node gain of the same level in parallel, and

the training speed is fast. Have the processing of sparse data.
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3. Cross-validation, early stop, when the number of training reaches the pre-set

number of iterations and the prediction result is not in the ascension, the

training is stopped early to avoid over-fitting and speed up the training.

4. Support setting sample weights, even if the data samples are not balanced,

can train the model by adjusting the weights.

3.3.1 Data Preprocessing

First, the log data must be preprocessed to convert the data to a format that

the machine can learn. The algorithm is as follows.1 In addition, our log data has

an average of about 500,000 data per data, and the data of suspected aggression

accounts for about 1.8％ of the total number of single log data.

Algorithm 1 Data Preprocess for Prediction model
Input: Nfdump.txt log data from the campus network environment, Dataset;
Output: Training, Test, and Prediction Dataset;

1: Python read Dataset;
2: Let column in Dataset = data feature;
3: Del unneeded data and blanks;
4: if (data = cyber attacks behavior) then
5: mark data = Attack = 1;
6: else(data != cyber attacks behavior)
7: mark data = Normal = 0;
8: end if
9: return Dataset;

10: Training Dataset = Split 66％Dataset;
11: Test Dataset = Split 33％Dataset;
12: Prediction Dataset = full Dataset;

3.3.2 XGBoost Model Training

Undertake the preprocessing data of 3.3.1, and then import the data into the

model for Machine Learning training. However, compared to data with cyber-

attacks, normal network usage data accounts for the vast majority of the logs, and

may not even appear at all. Therefore, how to make the model learn the correct

features is the primary goal.
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In order to avoid Machine Learning to classify data, the data of cyber-attack

behaviour is classified as normal traffic or noise. Therefore, collecting log data for

multiple time periods and filter out the data with attack characteristics to form a

training set. Our training set will try to train by writing data from different attacks

and non-attacks. Finally, in this work, both attack and non-attack data contain

approximately 50％ of the data, providing the best model feedback. The training

set contains a total of approximately 150,000 log data, and the validation set

contains 50％ of the data, including attack data and non-attack data, for a total

of approximately 77,000 data. In addition, useing random floating parameters

to adjust the parameters in XGBoost, use L1 and L2 normalization to perform

regular gradient enhancement, avoid overfitting or inappropriate, and the feature

importance is passed after each training to adjust the characteristics of the log

data.

3.3.3 XGBoost Model Prediction

In the forecast set, use two types of data to import Machine Learning model

predictions. The first is data consisting of 100％ complete attack data, and the

second is new unmodified log data. This verifies the correctness and versatility of

our model. Finally, the training and validation of the model is completed, which

will have high precision and good F1 score. The algorithm is as follows.2

Algorithm 2 The Prediction model for cyber attacks
Input: New raw log Data from Nfdump.txt;
Output: The amount of predicted data for cyber attacks;

1: Upload Nfdump.txt to website;
2: Python read New raw log Data;
3: New raw log Data do Data Preprocess;
4: Load Prediction model;
5: if (data = cyber attacks behavior) then
6: Count data = Attack;
7: else(data != cyber attacks behavior)
8: Count data = Normal;
9: end if

10: return Count;
11: validation accuracy
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3.4 Deep Learning with Keras

In this chapter, discuss how to use Keras for Deep Learning, In the field of

Deep Learning, CNTK and TensorFlow are widely used in Deep Learning research.

Although both have very powerful features, the actual application is more diffi-

cult. Therefore, the Deep Learning project for this job will use Keras to build a

dichotomy prediction model, and perform the cyber attack behavior detection on

network log data, and determine which data streams in the network log data are

suspected of having the cyber attack behavior, and which are normal. In this work,

the DNN model and the RNN model will be built, and they will be experimented

with the same data as XGBoost Machine Learning model.

3.4.1 Deep Neural Networks Model

First, the log data is pre-processed as in Section 3.3.1, and the data is converted

into a format that the machine can learn. After the data is imported into the DNN

model, it is trained in a supervised learning manner. In order to ensure that the

DNN model can produce a global optimal solution during the experiment, this

work uses the scikit-learn suite to optimize the parameters in the model. Since

the purpose of this work is to predict potential attacks, there are several types of

attacks in the data set. However, the characteristics of cyberattack behavior are

very scattered, which leads to the problem of over-fitting or gradient disappearing

even after numerous adjustments. In order to ensure the fairness of the experiment,

the data set is also given a full attack data set, as well as a new unmodified log

data resource for validation.

3.4.2 Recurrent Neural Network Model

In addition to the DNN solution, the data problem in the Deep Learning mode

also has RNN. Since DNN cannot fully predict full attack data, and often there

is over-fitting or gradient disappearance, RNN can also deal with data problems
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and can greatly improve the problem of DNN over-fitting. Therefore, this work is

connected to the DNN model to rebuild an RNN model and give the same data

to conduct experiments. In order to ensure that the RNN model can produce a

global optimal solution during the experiment, this work uses the scikit-learn suite

to optimize the parameters in the model.



Chapter 4

Experimental Results

This section describe the use of XGBoost to build a Machine Learning model,

and using Keras to build DNN and RNN Deep Learning models for binary clas-

sification prediction, and how to use ELK Stack to analyze network usage and

attack behavior characteristics. In Section 4.1, introduced the implementation of

the experimental environment and the NetFlow Log. Sections 4.2 through 4.3

show the results of the ELK Stack analysis network log visualization. Section 4.4

to 4.5 are the data preprocessing and prediction results of the XGBoost model.

At last, Section 4.6 to 4.7 are the prediction results of the Deep Learning model

DNN and RNN.

4.1 Experimental Environment

This section describes our hardware lab environment. This experiment uses two

hosts, one with Linux as the operating system, as the server that sets up the ELK

Stack. The other is to use Window10 as the operating system, install Anaconda 3

and related kits as the Python development environment, and build the XGBoost

Machine Learning model. Detailed hardware devices are shown in Table 4.1.

26
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Table 4.1: Hardware specifications

Item Disk Core Ram OS
NetFlow

Log 8TB 10 CPUs x Intel(R)Core(TM)
i7-6950X CPU @ 3.00GHz 128G Ubuntu

18.04
Machine
Learning 1TB Intel(R)Core(TM)

i7-7700 CPU @ 3.60GHz 16G Windows
10

4.2 ELK Stack Network Usage

In order to more easily confirm the network usage on campus, this experiment

finds the public IP addresses of major commercial websites, search engines, social

networks, etc. through the Internet. This information can be easily found on web-

sites such as ipinfo.io. Use Elasticsearch to filter the required domain information,

remove the non-service local IP address to avoid information miscellaneous, record

the required domain name, and use Kibana to visualize it. Figure 4.1 shows the

pie chart of Network usage.

Figure 4.1: Network usage

4.3 ELK Stack Attack Analysis

In this experiment, the characteristics of several kinds of the cyber attack behav-

iors are selected as the screening conditions, and after ELK analysis, the data is

visualized and presented, which provides an intuitive way for the administrator
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to observe the cyber attack behavior. As Figure 4.2, Figure 4.3, Figure 4.4, and

Figure 4.5 shown below.

Figure 4.2: CodeRed

Figure 4.3: Worm Sasser

Figure 4.4: SQL Slammer
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Figure 4.5: ICMP DDOS

4.4 Machine Learning Data Preprocessing

In the network log data of the campus environment, there are about 500,000 data

per data, and the data of suspected aggression accounts for about 1.8％ of the

total. In order to achieve better training conditions, the experiment will have the

best training results after about 50％ of each experimental attack and non-attack.

Therefore, this experiment uses ELK Stack to filter the attack data of other time

periods, and then extract the log data from the database for integration. Finally,

the log data is pre-processed to complete the pre-operation of the training set and

the verification set. A total of about 200,000 pieces of data will be divided into

66％ as a training set and 33％ as a verification set. Figure 4.6 shows the data

description.

Figure 4.6: Data description
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4.5 XGBoost Model Prediction

As shown in Figure 4.7, the XGBoost parameter is adjusted several times and

optimized by using floating parameters to obtain the parameter values.

Figure 4.7: XGBoost adjusted model

As shown in Figure 4.8, the training set is imported into the XGBoost model

for training, and the initial accuracy rate is 98.24％.

Figure 4.8: Data training

XGBoost can derive the feature gain score from the model training results and

calculate the feature importance score to the developer, as shown in Figure 4.9.

Figure 4.9: Feature score



Chapter 4 Experimental Results 31

Fig. 4.10 is a bar graph in which the feature importance is sorted according

to the score. In order ”Dst Pt”,”In Byte”,”Src Pt”,”Output”,”In Pkt ”,”Dura-

tion”,”Proto”,”Input”.

Figure 4.10: Graph of feature score

As shown in Figure 4.11, Gain represents the relative contribution of the fea-

ture to the model, and a high value means that it is more important for prediction.

Figure 4.11: Gain pyplot
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Weight indicates the number of times the feature is used to split the node. As

shown in Figure 4.12.

Figure 4.12: Weight pyplot

Cover in Fig. 4.13 represents the relative number of observations associated

with this feature, for example, 100 observations, 4 features, and 3 trees, assuming

f1 is used to determine 10, 5, and 2 observations in t1, t2, and t3, respectively.

Calculate the coverage of this feature as 10 + 5 + 2 = 17 observations.

Figure 4.13: Cover pyplot
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Total Gain represents the total gain that a feature brings in each split node in

all trees as shown in Fig. 4.14. The number of all samples covered by a feature at

each split node is called Total Cover as shown in Figure 4.15.

Figure 4.14: Total Gain pyplot

Figure 4.15: Total Cover pyplot
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Figure 4.16 shows the decision tree of XGBoost. Can clearly understand the

logic that the decision tree wants to express. Leaf refers to the predicted value, and

those probability values   associated with the leaf nodes represent the conditional

probability that a particular branch of a given tree reaches the leaf node. The

branches of the tree can be presented as a set of rules.

Figure 4.16: XGBoost decision tree

In the end, the prediction, as described in Chapter 3, in order to verify the

correctness and versatility of the model, the data used in the prediction is the new

raw log data, and the clean data is handed over to the model after preprocessing.

The predicted result is as high as 96.01％. In order to verify the correctness of the

model, a set of full-attack prediction sets is resampled here, and the accuracy rate

is as high as 100％. This proves that the attack data can be fully recognized when

there are attack behavior characteristics in the log data. As shown in Tabel4.2.

Table 4.2: Model predictions

Predictions
Dataset

Predictions
Accuracy

Predictions
Count

New raw
log data 96.01%

Item Attack Normal
Val label 6,342 127,424

Model Preds 11,679 122,087

Full attack
log data 100%

Item Attack Normal
Val label 5,679 0

Model Preds 5,679 0
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Finally, the Scikit-Learn built-in evaluation indicator suite is applied to test

the model’s mean square error (MSE), model accuracy, and F1 Score model cor-

rectness. As shown in Tabel 4.3. All have good results.

Table 4.3: Model score

Evaluation index Score
MSE 2.53％

Accuracy 97.47％
F1 Score 97.54％

4.6 DNN Model Prediction

Figure 4.17 is the DNN model established by this work. Including an input

layer and the final output layer, it also contains two hidden layers and three

dropout layers, which are fully connected. All parameters seek the best solution

by scikit-learn.

Figure 4.17: DNN model
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The DNN model is doing data training. Figure 4.18 shows the state of training

and the time spent.

Figure 4.18: DNN model trainging

Figure 4.19 shows the training and validation loss values for this DNN model.

It can be seen from the figure that the loss value of the training data keeps de-

creasing and is infinitely close to the validation data.

Figure 4.19: DNN training and validation loss
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Figure 4.20 shows the training and validation accuracy values for this DNN

model. From the figure that the accuracy of the training set is constantly increasing

and close to the verification set. This is a good model.

Figure 4.20: DNN training and validation accuracy

The model validation set prediction results are shown in Tabel 4.4. The data

used for prediction is the same as the data used by XGBoost. The DNN model

predicts results as high as 96.89％. In order to verify the versatility of the model,

a set of full attack prediction sets is also sampled here, with an accuracy of only

69.66％.Compared with the previous accuracy record, it is very unexpected for

such a result. The experimental result of this DNN model is the best.

Table 4.4: DNN model predictions

Predictions
Dataset

Predictions
Accuracy

Predictions
Count

Y_test data 93.18％
Item Attack Normal

Val label 45587 45610
Model Preds 45711 45486

New raw
log data 96.89％

Item Attack Normal
Val label 567122 4373

Model Preds 558100 13395

Full attack
log data 69.66％

Item Attack Normal
Val label 5679 0

Model Preds 3956 1723
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4.7 RNN Model Prediction

Figure 4.21 is the RNN model established by this work. The difference between

the RNN model and the DNN model is that the output of the RNN is not only

affected by the input of the previous layer, but also by the output of the same

layer of neurons. All parameters seek the best solution by scikit-learn.

Figure 4.21: RNN model

Same as DNN, figure 4.23 the time spent on model training, as well as the

training and validation loss values and accuracy for this RNN model.

Figure 4.22: RNN model training
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Figure 4.23 shows the training and validation loss values for this RNN model.Figure

4.24 shows the training and validation accuracy values for this RNN model. It can

be seen from these two figures that this RNN model is also training in a good

direction, and to a good accuracy rate.

Figure 4.23: RNN training and validation loss

Figure 4.24: RNN training and validation accuracy
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The prediction results of the RNN model are shown in Tabel 4.5. The data

used for prediction is the same as the data used in the first two models. The

RNN model predicts results as high as 97.61％, even surpassing the accuracy of

XGBoost. In order to verify the versatility of the model, the same set of attack

data were also used for prediction, but the accuracy was only 70.85％. However,

the results of one of the best experiments compared to DNN are still slightly

improved.

Table 4.5: RNN model predictions

Predictions
Dataset

Predictions
Accuracy

Predictions
Count

Y_test data 93.34％
Item Attack Normal

Val label 45587 45610
Model Preds 45786 45411

New raw
log data 97.61％

Item Attack Normal
Val label 567122 4373

Model Preds 562197 9298

Full attack
log data 70.85％

Item Attack Normal
Val label 5679 0

Model Preds 4024 1655



Chapter 5

Conclusions and Future Works

5.1 Conclusions

This paper introduces a network log system built using ELK Stack, which allows

administrators to easily visualize charts and see the information they need from

tens of millions of data. In terms of security protection, applied XGBoost construct

Machine Learning model, and successfully identified the attack characteristics in

the data, and also had a high accuracy rate of 96％ in the prediction set. In

this work also compare Machine Learning with Deep Learning models, shown

in Tabel 5.1. From the experimental results, XGBoost won an overwhelming

victory in the data prediction of the full attack. If the model is unable to fully

detect the attack signature in the full attack data set, how do you ensure that

the amount of abnormal data predicted in the general data is correct? Therefore,

after the experimental results were presented, this work chose to use XGBoost

as the Machine Learning model for the log data attack prediction. This attack

prediction model can help us detect the ELK as the analyzed data. If the ELK

Stack analyzes a log as normal data, and the model prediction results show that

these data streams have aggressive behavior characteristics, the manager can use

the two-party results to cross verification, further risk assessment of information

security.

41
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Table 5.1: Comparison of experimental results of three models

Predictions Accuracy
Model XGBoost DNN RNN

New raw
log data 96.01％ 96.89％ 97.61％

Full attack
log data 100％ 69.66％ 70.85％

5.2 Future Works

ELK Stack will collect more functional values related to the attack behavior

and further visualize the Network log data as an analysis chart. Network usage

will add the remaining large domain IP domains to it and distinguish each dif-

ferent domain. Convenient for management to observe. XGBoost is one of the

most popular Machine Learning models, and I think its limitations are not lim-

ited to the two categories of attack and non-attack log data. In the future, hope

to more actively increase the data characteristics of the attack behavior, enrich

our database, and continue to study XGBoost, use XGBoost to create a multi-

classification model, can directly identify the type of attack, and can find unusual

data from the network log, and Distinguish between non-attack data. In addi-

tion, cross-validation can be used in conjunction with Deep Learning to compare

predictions and improve information security.
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Appendix A

ELK Stack Installation

I. Installation front package

# sudo apt-get update

# sudo apt-get install -y vim ntp curl ssh

II. install openjdk-8-jdk

# sudo apt-get install -y openjdk-8-jdk

# sudo ln -s /usr/lib/jvm/java-8-openjdk-amd64 /usr/lib/jvm/jdk

III. Add the environment variable

# sudo vim .bashrc

export JAVA_HOME=/usr/lib/jvm/jdk/

# source .bashrc

IV. Authentication key

# wget -qO - https://artifacts.elastic.co/GPG-KEY-elasticsearch | sudo apt-key add -

V. Install package

47
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# sudo apt-get install apt-transport-https ca-certificates -y

# echo "deb https://artifacts.elastic.co/packages/6.x/apt stable main"| sudo tee -a /etc/apt/sources.list.d/elastic-6.x.list

# sudo apt-get update

VI. Install Elasticsearch

# sudo apt-get install -y elasticsearch

VII. Modify Elasticsearch.yml

# sudo vim /etc/elasticsearch/elasticsearch.yml

network.host: IP address

http.port: 9200

VIII. Start Elasticsearch

# sudo systemctl start elasticsearch

IX. Install Logstash

# sudo apt-get install logstash

X. Start Logstash

# sudo systemctl start logstash

XI. Install Kibana

# sudo apt-get install kibana

XII. Modify Kibana.yml



Appendix 49

# sudo vim /etc/kibana/kibana.yml

server.port:5601

server.host: "IP address"

elasticsearch.url: "http://IP address:9200"

XIII. Start Kibana

# sudo systemctl start kibana

XIII. ELK Stack monitoring website

# http://IP address:5601
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Data processing

I. Load and pyplot dataset

from pandas import read_csv

from pandas import datetime

from matplotlib import pyplot

series = read_csv('nfcapd.201901091445.txt', engine='python', skipfooter=4, header=None, skiprows=[0])

series.columns = ['Date first seen', 'Date last seen', 'Duration', 'Src IP Addr', 'Dst IP Addr', 'Src Pt', 'Dst Pt', 'Proto', 'Flags', 'In Pkt', 'In Byte', 'Out Pkt', 'Out Byte', 'Input', 'Output']

import pandas as pd

series.to_csv('out1.csv', encoding="utf-8-sig")

II. Data processing

import re

import pandas

dataset = pandas.read_csv('out1.csv', engine='python', skipfooter=4) #, usecols=[1,6]

#dataset.set_index ("Date first seen", inplace=True)

#dataset.index = pd.DatetimeIndex(dataset.index)

#dataset.sort_values('Date first seen', inplace=True)

del dataset["嚜 �"] ,dataset["Flags"],dataset["Out Pkt"],dataset["Out Byte"]#,dataset["Date first seen"],dataset["Date last seen"]

dataset

if dataset['In Byte'].dtype != 'int64':

dataset['In Byte']=dataset['In Byte'].str.lstrip()

dataset['In Byte']=dataset['In Byte'].str.rstrip()

InByte = dataset['In Byte'].str.strip().str.split('.',0,True)

50
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InByte.columns = ['0', '1']

InByte = InByte.fillna('.0')

InByte['1'] = InByte['1'].replace(' M', '00.0', regex=True)

InByte['1'] = InByte['1'].replace(' G', '00000.0', regex=True)

dataset['In Byte'] = InByte['0']+InByte['1']

InByte = dataset['In Byte'].str.strip().str.split('.',0,True)

dataset['In Byte'] = InByte[0]

dataset['In Byte'] = dataset['In Byte'].astype(int)

if dataset['In Pkt'].dtype != 'int64':

dataset['In Pkt']=dataset['In Pkt'].str.lstrip()

dataset['In Pkt']=dataset['In Pkt'].str.rstrip()

InPkt = dataset['In Pkt'].str.strip().str.split('.',0,True)

InPkt.columns = ['0', '1']

InPkt = InPkt.fillna('.0')

InPkt['1'] = InPkt['1'].replace(' M', '00.0', regex=True)

InPkt['1'] = InPkt['1'].replace(' G', '00000.0', regex=True)

dataset['In Pkt'] = InPkt['0']+InPkt['1']

InPkt = dataset['In Pkt'].str.strip().str.split('.',0,True)

dataset['In Pkt'] = InPkt[0]

dataset['In Pkt'] = dataset['In Pkt'].astype(int)

dataset['Dst Pt'] = dataset['Dst Pt'].astype(int)

dataset

dataflow = dataset

from sklearn.preprocessing import LabelEncoder

dataflow['Proto'] = dataflow['Proto'].str.lstrip()

dataflow['Proto'] = dataflow['Proto'].str.rstrip()

le = LabelEncoder()

le.fit(['ICMP','IGMP', 'TCP','UDP'])

dataflow['Proto'] = le.transform(dataflow['Proto'])

le.transform(['ICMP','IGMP','TCP','UDP'])

dataflow['Src IP Addr'] = dataflow['Src IP Addr'].str.lstrip()

dataflow['Src IP Addr'] = dataflow['Src IP Addr'].str.rstrip()

dataflow['Dst IP Addr'] = dataflow['Dst IP Addr'].str.lstrip()

dataflow['Dst IP Addr'] = dataflow['Dst IP Addr'].str.rstrip()

III. Attack data analysis

CodeRed = dataflow.loc[(dataflow['Dst Pt'].astype(int) == 80 ) & (dataflow['In Pkt'].astype(int)==3) & (dataflow['In Byte'].astype(int)==144)]

CodeRed['attack']='attack'
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if CodeRed.shape[0] > 1:

print(CodeRed['Src IP Addr'].drop_duplicates(keep='first'))

else:

print("no CodeRed attack")

Nimda = dataflow.loc[(dataflow['Dst Pt'].astype(int) == 80 ) ]

from collections import Counter

A = Nimda['Src IP Addr'].value_counts() >=1000

A = Counter(A)[1]

if A !=0 :

for i in range (A):

Nimda_IP=Nimda['Src IP Addr']

Cou_IP=Counter(Nimda_IP)

Top_IP = Cou_IP.most_common()[i][0]

Top_IP_Cou = Cou_IP.most_common()[i][1]

if (Top_IP_Cou >=1000):

Nimda_A = Nimda.loc[(Nimda['Src IP Addr'] == Top_IP )]

Nimda_A['attack']='attack'

print(Top_IP + "對外連線次數為 %d" % (Top_IP_Cou))

else:

Nimda_A=None

print('no Nimda attack')

else:

Nimda_A=None

print('no Nimda attack')

from collections import Counter

Worm = dataflow.loc[(dataflow['Dst Pt'].astype(int) == 445 ) & (dataflow['Proto'] == 2)]

A = Worm['Src IP Addr'].value_counts() >=1000

A = Counter(A)[1]

Worm_A = None

if A !=0 :

for i in range (0,A):

Worm_IP=Worm['Src IP Addr']

Worm_Cou_IP=Counter(Worm_IP)

Worm_Top_IP = Worm_Cou_IP.most_common()[i][0]

Worm_Top_IP_cou = Worm_Cou_IP.most_common()[i][1]

Worm_A = pd.concat([Worm_A, dataflow.loc[(dataflow['Dst Pt'].astype(int) == 445 ) & (dataflow['Proto'] == 2) & (dataflow['Src IP Addr'] == Worm_Top_IP)]])

Worm_A['attack']='attack'

if Worm_Top_IP_cou > 1000 :

print ("IP: " + Worm_Top_IP + "在 Port445的TCP連接次數為 %d" % (Worm_Top_IP_cou))

else:

print("no Worm attack")

else:

print("no Worm attack")

attack= pd.concat([CodeRed, Nimda_A, Worm_A])
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IV. Merge multiple attack data

all_attack= pd.concat([attack1, attack2, attack3, attack4, attack5, attack6,attack7 ,attack8 ,attack9 ,attack10 ,attack11 ,attack12])

all_attack

V. None attack data

series = read_csv('nfcapd.201901091700.txt', engine='python', skipfooter=4, header=None, skiprows=[0])

series.columns = ['Date first seen', 'Date last seen', 'Duration', 'Src IP Addr', 'Dst IP Addr', 'Src Pt', 'Dst Pt', 'Proto', 'Flags', 'In Pkt', 'In Byte', 'Out Pkt', 'Out Byte', 'Input', 'Output']

series.to_csv('out13.csv', encoding="utf-8-sig")

dataset = pandas.read_csv('out13.csv', engine='python', skipfooter=4)

del dataset["嚜 �"] ,dataset["Flags"],dataset["Out Pkt"],dataset["Out Byte"]#,dataset["Date first seen"],dataset["Date last seen"]

if dataset['In Byte'].dtype != 'int64':

dataset['In Byte']=dataset['In Byte'].str.lstrip()

dataset['In Byte']=dataset['In Byte'].str.rstrip()

InByte = dataset['In Byte'].str.strip().str.split('.',0,True)

InByte.columns = ['0', '1']

InByte = InByte.fillna('.0')

InByte['1'] = InByte['1'].replace(' M', '00.0', regex=True)

InByte['1'] = InByte['1'].replace(' G', '00000.0', regex=True)

dataset['In Byte'] = InByte['0']+InByte['1']

InByte = dataset['In Byte'].str.strip().str.split('.',0,True)

dataset['In Byte'] = InByte[0]

dataset['In Byte'] = dataset['In Byte'].astype(int)

if dataset['In Pkt'].dtype != 'int64':

dataset['In Pkt']=dataset['In Pkt'].str.lstrip()

dataset['In Pkt']=dataset['In Pkt'].str.rstrip()

InPkt = dataset['In Pkt'].str.strip().str.split('.',0,True)

InPkt.columns = ['0', '1']

InPkt = InPkt.fillna('.0')

InPkt['1'] = InPkt['1'].replace(' M', '00.0', regex=True)

InPkt['1'] = InPkt['1'].replace(' G', '00000.0', regex=True)

dataset['In Pkt'] = InPkt['0']+InPkt['1']

InPkt = dataset['In Pkt'].str.strip().str.split('.',0,True)

dataset['In Pkt'] = InPkt[0]

dataset['In Pkt'] = dataset['In Pkt'].astype(int)

dataset['Dst Pt'] = dataset['Dst Pt'].astype(int)

dataflow = dataset

from sklearn.preprocessing import LabelEncoder

dataflow['Proto'] = dataflow['Proto'].str.lstrip()

dataflow['Proto'] = dataflow['Proto'].str.rstrip()

le = LabelEncoder()
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le.fit(['ICMP','IGMP', 'TCP','UDP'])

dataflow['Proto'] = le.transform(dataflow['Proto'])

le.transform(['ICMP','IGMP','TCP','UDP'])

dataflow['Src IP Addr'] = dataflow['Src IP Addr'].str.lstrip()

dataflow['Src IP Addr'] = dataflow['Src IP Addr'].str.rstrip()

dataflow['Dst IP Addr'] = dataflow['Dst IP Addr'].str.lstrip()

dataflow['Dst IP Addr'] = dataflow['Dst IP Addr'].str.rstrip()

#CodeRed檢測

CodeRed_13 = dataflow.loc[(dataflow['Dst Pt'].astype(int) == 80 ) & (dataflow['In Pkt'].astype(int)==3) & (dataflow['In Byte'].astype(int)==144)]

CodeRed_13['attack']='attack'

if CodeRed_13.shape[0] > 1:

print(CodeRed_13['Src IP Addr'].drop_duplicates(keep='first'))

else:

print("no CodeRed attack")

#Nimda檢測

Nimda = dataflow.loc[(dataflow['Dst Pt'].astype(int) == 80 ) ]

from collections import Counter

A = Nimda['Src IP Addr'].value_counts() >=1000

A = Counter(A)[1]

if A !=0 :

for i in range (A):

Nimda_IP=Nimda['Src IP Addr']

Cou_IP=Counter(Nimda_IP)

Top_IP = Cou_IP.most_common()[i][0]

Top_IP_Cou = Cou_IP.most_common()[i][1]

if (Top_IP_Cou >=1000):

Nimda_13 = Nimda.loc[(Nimda['Src IP Addr'] == Top_IP )]

Nimda_13['attack']='attack'

print(Top_IP + "對外連線次數為 %d" % (Top_IP_Cou))

else:

Nimda_13=None

print('no Nimda attack')

else:

Nimda_13=None

print('no Nimda attack')

#震荡波病毒分析

from collections import Counter

Worm = dataflow.loc[(dataflow['Dst Pt'].astype(int) == 445 ) & (dataflow['Proto'] == 2)]

A = Worm['Src IP Addr'].value_counts() >=1000

A = Counter(A)[1]

Worm_13 = None

if A !=0 :

for i in range (0,A):

Worm_IP=Worm['Src IP Addr']

Worm_Cou_IP=Counter(Worm_IP)
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Worm_Top_IP = Worm_Cou_IP.most_common()[i][0]

Worm_Top_IP_cou = Worm_Cou_IP.most_common()[i][1]

Worm_13 = pd.concat([Worm_13, dataflow.loc[(dataflow['Dst Pt'].astype(int) == 445 ) & (dataflow['Proto'] == 2) & (dataflow['Src IP Addr'] == Worm_Top_IP)]])

Worm_13['attack']='attack'

if Worm_Top_IP_cou > 1000 :

print ("IP: " + Worm_Top_IP + "在 Port445的TCP連接次數為 %d" % (Worm_Top_IP_cou))

else:

print("no Worm attack")

else:

print("no Worm attack")

Normal_data = pd.concat([dataflow, CodeRed_13, Nimda_13, Worm_13])

Normal_data = Normal_data.drop_duplicates(subset = None, keep = False, inplace=False)

Normal_data['attack']='None attack'

Normal_data = Normal_data[0:114000]

Normal_data

VI. Concat normal and attack data

all_data= pd.concat([Normal_data, all_attack])

all_data

VII. LabelEncoder

all_data['Src IP Addr'] = all_data['Src IP Addr'].str.lstrip()

all_data['Dst IP Addr'] = all_data['Dst IP Addr'].str.rstrip()

le = LabelEncoder()

le.fit(all_data['Dst IP Addr'])

all_data['Dst IP Addr'] = le.transform(all_data['Dst IP Addr'])

le.fit(all_data['Src IP Addr'])

all_data['Src IP Addr'] = le.transform(all_data['Src IP Addr'])

le.fit(all_data['attack'])

all_data['attack'] = le.transform(all_data['attack'])

VIII. Data to csv

all_data.to_csv('all_data.csv')
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XGBoost Machine model

I. Import XGBoost packages

import os

os.environ["PATH"] += os.pathsep + 'C:\ProgramData\Anaconda3\Library\bin'

import numpy as np

import xgboost as xgb

import pandas as pd

from pandas import read_csv

from xgboost import XGBClassifier

from xgboost import plot_importance

from matplotlib import pyplot

from sklearn.model_selection import train_test_split

from sklearn.metrics import accuracy_score

from sklearn.preprocessing import LabelEncoder

\noindent II. Unzip hbase-1.0.0-hadoop2-bin.tar.gz\\

\begin{lstlisting} [frame=single]

# tar zxf hbase-1.0.0-hadoop2-bin.tar.gz

II. Data spilt

np.random.seed(7)

dataset = read_csv("all_data.csv")

del dataset["Unnamed: 0"],dataset["Date first seen"],dataset["Date last seen"],dataset['Src IP Addr'],dataset['Dst IP Addr']

#,dataset["Input"],dataset["Output"],dataset['Src IP Addr'],dataset['Dst IP Addr']

# split data into X and Y

X = dataset[['Duration','Src Pt','Dst Pt','Proto','In Pkt','In Byte','Input','Output']].values #特征集
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#'Date first seen','Date last seen','Input','Output','Src IP Addr','Dst IP Addr'

Y = dataset[['attack']].values#標籤集

# split data into train and test sets # 拆分数据集

X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size=0.33, random_state=7)

feature_names = ['Duration','Src Pt','Dst Pt','Proto','In Pkt','In Byte','Input','Output']

#'Duration','Src IP Addr','Dst IP Addr','Input','Output'

dtrain = xgb.DMatrix(X_train, y_train, feature_names = feature_names)

dtest = xgb.DMatrix(X_test, y_test, feature_names = feature_names)

dataset.info()

III. XGBoost model

model = xgb.XGBClassifier(learning_rate = 0.008597735392699073, objective = 'binary:logistic',

n_estimators = 472, n_jobs = 4,

max_depth = 4, min_child_weight = 8,

seed = 30, max_delta_step = 6,

subsample = 0.7065226970496071, colsample_bytree = 0.515980616951696,

gamma = 0.044644589297517134, scale_pos_weight = 46,#1

reg_alpha = 80, reg_lambda = 38)

IV. XGBoost model training and test

eval_set = [(X_train, y_train),(X_test, y_test)]

model.fit(X_train, y_train,

early_stopping_rounds=49,

eval_metric=["rmse","auc","error", "logloss"],

eval_set=eval_set,

verbose=True)

y_pred = model.predict(X_test)

predictions = [round(value) for value in y_pred]

accuracy = accuracy_score(y_test, predictions)

print("Accuracy: %.2f%%" % (accuracy * 100.0))

V. save XGBoost model

model.save_model('001.model')

VI. XGBoost model attack val
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np.random.seed(7)

dataset = read_csv("allattack.csv")

del dataset['Unnamed: 0'],dataset['Date first seen'],dataset['Date last seen'],dataset['Src IP Addr'],dataset['Dst IP Addr']

#,dataset['Src IP Addr'],dataset['Dst IP Addr'],dataset['Input'],dataset['Output']

X_val = dataset[['Duration','Src Pt','Dst Pt','Proto','In Pkt','In Byte','Input','Output']]

Y_val = dataset[['attack']]

X_val.to_csv('X_val')

Y_val.to_csv('Y_val')

feature_names = ['Duration','Src Pt','Dst Pt','Proto','In Pkt','In Byte','Input','Output']

#,'Src IP Addr','Dst IP Addr','Input','Output'

# split data into X and Y

X_val = dataset[['Duration','Src Pt','Dst Pt','Proto','In Pkt','In Byte','Input','Output']].values #特征集

#'Date first seen','Date last seen','Src IP Addr','Dst IP Addr','Input','Output'

Y_val = dataset[['attack']].values#標籤集

attack_x = xgb.DMatrix(X_val, feature_names = feature_names)

#attack_y = xgb.DMatrix(Y_val)

#Val_attack = xgb.DMatrix(Y_val)#, feature_names = feature_names)

bst = xgb.Booster(model_file='001.model')

#assert np.sum(np.abs(preds - y_pred)) == 0

preds = bst.predict(attack_x)

predictions = [round(value) for value in preds]

accuracy = accuracy_score(Y_val, predictions)

print("Accuracy: %.2f%%" % (accuracy * 100.0))

import numpy as np

predictions = model.predict(X_val)

np.set_printoptions(threshold=np.inf)

d = np.rint(predictions)

from collections import Counter

def row_counter(d):

lit_of_tups = [tuple(ele) for ele in d]

return Counter(lit_of_tups)

row_counter(d)

print("異常數據量 :", (row_counter(d)[(1.0,)]))

VI. XGBoost model new raw val

dataset = read_csv("attack_01val.csv")

del dataset['Unnamed: 0'],dataset['Date first seen'],dataset['Date last seen'],dataset['Src IP Addr'],dataset['Dst IP Addr']

#,dataset['Src IP Addr'],dataset['Dst IP Addr'],dataset['Input'],dataset['Output']

#X_val = dataset[['Duration','Src Pt','Dst Pt','Proto','In Pkt','In Byte','Input','Output']]

#Y_val = dataset[['attack']]

#X_val.to_csv('X_val')
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#Y_val.to_csv('Y_val')

feature_names = ['Duration','Src Pt','Dst Pt','Proto','In Pkt','In Byte','Input','Output']

#,'Src IP Addr','Dst IP Addr','Input','Output'

# split data into X and Y

X_01val = dataset[['Duration','Src Pt','Dst Pt','Proto','In Pkt','In Byte','Input','Output']].values #特征集

#'Date first seen','Date last seen','Src IP Addr','Dst IP Addr','Input','Output'

Y_01val = dataset[['attack']].values#標籤集

attack_x = xgb.DMatrix(X_01val, feature_names = feature_names)

#attack_y = xgb.DMatrix(Y_val)

#Val_attack = xgb.DMatrix(Y_val)#, feature_names = feature_names)

bst = xgb.Booster(model_file='001.model')

#assert np.sum(np.abs(preds - y_pred)) == 0

preds = bst.predict(attack_x)

predictions = [round(value) for value in preds]

accuracy = accuracy_score(Y_01val, predictions)

print("Accuracy: %.2f%%" % (accuracy * 100.0))

import numpy as np

predictions = model.predict(X_val)

np.set_printoptions(threshold=np.inf)

d = np.rint(predictions)

from collections import Counter

def row_counter(d):

lit_of_tups = [tuple(ele) for ele in d]

return Counter(lit_of_tups)

row_counter(d)

print("異常數據量 :", (row_counter(d)[(1.0,)]))
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DNN model

I. Import keras packages

import numpy as np

from pandas import read_csv

from matplotlib import pyplot as plt

import math

from keras.models import Sequential

from keras.layers import Dense

from keras.layers import Dropout

from sklearn.model_selection import train_test_split

from sklearn.preprocessing import LabelEncoder

from sklearn.preprocessing import OneHotEncoder

from keras import optimizers

from keras.optimizers import Adadelta

II. Read training csv data and spilt

filename = 'BB_all_data.csv'

footer = 1

data = read_csv(filename, header=None, engine='python', skiprows=footer)

#data = read_csv(filename)

del data[0], data[1], data[2], data[5]

#, data[8], data[9], data[3], data[11]

data = data.values

X = data[:,1:8]

Y = data[:,9]

#Y = A
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X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size=0.4, random_state=8)

III. DNN model construction and training

model = Sequential()

model.add(Dense(256, input_dim=7, kernel_initializer='uniform', activation='softplus '))

model.add(Dropout(0.3))

model.add(Dense(256, kernel_initializer='uniform', activation='softplus '))

model.add(Dropout(0.5))

model.add(Dense(1, kernel_initializer='uniform', activation='sigmoid'))

model.summary()

optimizer=Adadelta(lr=0.001)

model.compile(optimizer=optimizer , loss='binary_crossentropy', metrics=['accuracy '])

# Fit the model

history = model.fit(X_train, y_train, epochs=50, batch_size=100, verbose=2, validation_data=(X_test, y_test))

IV. Accuracy of the test

predictions = model.predict(X_test)

import matplotlib.pyplot as plt

history_dict= history.history

loss_values = history_dict['loss']

val_loss_values = history_dict['val_loss']

epochs = range(1,len(loss_values)+1)

plt.plot(epochs, loss_values, 'bo', label='Training loss')

plt.plot(epochs, val_loss_values, 'b', label='Validation loss')

plt.title('Training and validation loss')

plt.xlabel('Epochs')

plt.ylabel('Loss')

plt.legend()

plt.axis([0, 30, 0.0, 4.5])

plt.show()

import matplotlib.pyplot as plt

history_dict= history.history

acc = history_dict['acc']

val_acc = history_dict['val_acc']

epochs = range(1,len(loss_values)+1)

plt.plot(epochs, acc, 'bo', label='Training acc')

plt.plot(epochs, val_acc, 'b', label='Validation acc')

plt.title('Training and validation acc')

plt.xlabel('Epochs')

plt.ylabel('acc')

plt.legend()
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plt.axis([0, 30, 0.3, 1.0])

plt.show()

score = model.evaluate(X_test, y_test, verbose=0)

print('Test loss:', score[0])

print('Test accuracy:', score[1])

print("Accuracy: %.2f%%" % (score[1] * 100.0))

V. model normal val predictions

filename = 'attack_01val.csv'

footer = 1

data = read_csv(filename, header=None, engine='python', skiprows=footer)

del data[0], data[1], data[2], data[3]

#, data[8], data[9], data[3], data[11]

data

data = data.values

X = data[:,1:8]

Y = data[:,9]

from keras.models import load_model

model = load_model('BB_DL_model ')

from sklearn.metrics import accuracy_score

score, acc = vmodel.evaluate(X, Y,batch_size=128)

print('Test score:', score)

print('Test accuracy:', acc)

print("Accuracy: %.2f%%" % (acc * 100.0))

import numpy as np

predictions = model.predict(X_v)

np.set_printoptions(threshold=np.inf)

d = np.rint(predictions)

from collections import Counter

def row_counter(d):

lit_of_tups = [tuple(ele) for ele in d]

return Counter(lit_of_tups)

row_counter(d)

print("異常數據量 :", (row_counter(d)[(1.0,)]))
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RNN model

I. Import keras packages

import pandas as pd

import numpy as np

from keras.models import Sequential

from keras.layers import Dense, Dropout, Activation, Flatten, LSTM, TimeDistributed, RepeatVector

from keras.layers.normalization import BatchNormalization

from keras.optimizers import Adam

from keras.callbacks import EarlyStopping, ModelCheckpoint

import matplotlib.pyplot as plt

from pandas import read_csv

from sklearn.preprocessing import LabelEncoder

from sklearn.preprocessing import OneHotEncoder

import math

from keras.models import Sequential

from keras.layers import Dense

from keras.layers import Dropout

from sklearn.model_selection import train_test_split

from keras.layers import Input, SimpleRNN, Activation

from keras import optimizers

from keras.optimizers import RMSprop

II. Data spilt

filename = 'BB_all_data.csv'

footer = 1

data = read_csv(filename, header=None, engine='python', skiprows=footer)
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#data = read_csv(filename)

del data[0], data[1], data[2], data[5]

data = data.values

X = data[:,1:8]

Y = data[:, 9]

#Y = A

X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size=0.4, random_state=8)

X_train = np.reshape(X_train, (X_train.shape[0], 1, X_train.shape[1]))

X_test = np.reshape(X_test, (X_test.shape[0], 1, X_test.shape[1]))

III. RNN model construction

# sudo vim ~/.bashrc

model = Sequential()

model.add(SimpleRNN(256, input_dim=7, kernel_initializer='uniform', activation='softplus', return_sequences=True))

model.add(Dropout(0.3))

model.add(SimpleRNN(256, input_dim=7, kernel_initializer='uniform', activation='softplus', return_sequences=False))

model.add(Dropout(0.5))

model.add(Dense(1, kernel_initializer='uniform', activation='sigmoid'))

model.summary()

from keras import optimizers

from keras.optimizers import Adadelta

optimizer=Adadelta(lr=0.001)

model.compile(optimizer=optimizer , loss='binary_crossentropy', metrics=['accuracy '])

history = model.fit(X_train, y_train, epochs=50, batch_size=100, verbose=2, validation_data=(X_test, y_test))

predictions = model.predict(X_test)

print(predictions)

IV. RNN model test accuracy

import matplotlib.pyplot as plt

history_dict= history.history

loss_values = history_dict['loss']

val_loss_values = history_dict['val_loss']

epochs = range(1,len(loss_values)+1)

plt.plot(epochs, loss_values, 'bo', label='Training loss')

plt.plot(epochs, val_loss_values, 'b', label='Validation loss')

plt.title('Training and validation loss')

plt.xlabel('Epochs')
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plt.ylabel('Loss')

plt.legend()

plt.axis([0, 50, 0.0, 3.5])

plt.show()

import matplotlib.pyplot as plt

history_dict= history.history

acc = history_dict['acc']

val_acc = history_dict['val_acc']

epochs = range(1,len(loss_values)+1)

plt.plot(epochs, acc, 'bo', label='Training acc')

plt.plot(epochs, val_acc, 'b', label='Validation acc')

plt.title('Training and validation acc')

plt.xlabel('Epochs')

plt.ylabel('acc')

plt.legend()

plt.axis([0, 50, 0.3, 1.00])

plt.show()

score = model.evaluate(X_test, y_test, verbose=0)

print('Test loss:', score[0])

print('Test accuracy:', score[1])

print("Accuracy: %.2f%%" % (score[1] * 100.0))

V. Save RNN model’)

model.save('attack_rnn_model ')

VI. RNN model attack data accuracy

filename = 'allattack.csv'

footer = 1

vdata = read_csv(filename, header=None, engine='python', skiprows=footer)

#data = read_csv(filename)

del vdata[0], vdata[1], vdata[2], vdata[3]

#, data[8], data[9], data[3], data[11]

from keras.models import load_model

vmodel = load_model('attack_rnn_model ')

vdata = vdata.values

X_v = vdata[:,1:8]

Y_v = vdata[:,9]
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#Y_v = B

X_v = np.reshape(X_v, (X_v.shape[0], 1, X_v.shape[1]))

from sklearn.metrics import accuracy_score

score, acc = vmodel.evaluate(X_v, Y_v,batch_size=128)

print('Test score:', score)

print('Test accuracy:', acc)

print("Accuracy: %.2f%%" % (acc * 100.0))

import numpy as np

predictions = model.predict(X_v)

np.set_printoptions(threshold=np.inf)

d = np.rint(predictions)

from collections import Counter

def row_counter(d):

lit_of_tups = [tuple(ele) for ele in d]

return Counter(lit_of_tups)

row_counter(d)

print("異常數據量 :", (row_counter(d)[(1.0,)]))
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