第一章、序論

自由基(free radical)為具有不成對電子的分子、離子或原子,為 了達到穩定的成對電子,自由基反應性相當活潑,且不同自由基有不 同的活躍性。人體內含有非常多的自由基,主要來源有三方面:生物 合成(biosynthesis)、代謝產物(metabolism)及環境因素。生物合成的自 由基乃根據人體需求經由體內胺基酸合成,例如一氧化氮為神經及心 血管系統訊息傳遞分子。人體內的一氧化氮乃是 NADPH 與 L-精胺酸 (arginine)反應以 NOS (nitric oxide synthases)酵素催化而產生,如 Scheme I 所示[1, 2]。NADPH (Nicotinamide adenine dinucleotide phosphate)為人體內輔酶的一種,在過程中 NADPH 被氧化成 NADP⁺ [2]。

Scheme I

代謝產物則主要是經由食物攝取,藉由體內的生物酶在新陳代謝 過程中形成,其中以超氧自由基(superoxide radicals, O₂^{••})為主,活性 極高,為人體細胞老化及死亡的元兇[3-7],人體內其他常見有害的自 由基如:RO[•]、ROO[•]、OH[•]、O₂^{••},皆由超氧自由基(O₂^{••})衍化而來。 消除超氧自由基必須依靠體內的超氧化歧酶(superoxide dismutase, SOD) [8,9]。體內中有三種SOD酵素(Cu-SOD、Mn-SOD、Fe-SOD)。 SOD先將O₂^{••} 還原成過氧化氫(H₂O₂),再藉由過氧化氫分解酶(catalase) 將過氧化氫轉變為無害的水及氧氣,如eq.(1),(2)所示。

$$2O_2^{-} + 2H^+ \xrightarrow{\text{SOD}} H_2O_2 + O_2$$
 (1)

$$2H_2O_2 \xrightarrow{\text{catalase}} 2H_2O + O_2$$
 (2)

當人體內的 SOD 不足時,通常可利用飲食補充,食物中的蔬菜 水果便是最佳的天然抗氧化劑,可幫助消除體內氧自由基。近代由於 科技進步,人類生活逐漸富裕,攝取的肉類增多,加上工作負擔重, 運動量不足,防腐劑的大量使用,體內的超氧自由基生成量也跟著大 增,以致單靠蔬果的補充經常不能充分消除,因此各種維他命及健康 食品應運而生,一般較常見的如維他命 C 即具有良好的抗氧化效果。 維他命 C 的結構如下 Scheme II 所示:

Scheme II

在不同 pH 下,維他命 C 分別以三種型態存在,H₂A、HA⁻、A²⁻, 且皆具有抗氧化能力[10],還原反應機構可以 eq.(3)-(8)表示:

$$R^{\bullet} + H_2 A \to R + H_2 A^{\bullet +} \tag{3}$$

$$R^{\bullet} + HA^{-} \to R + HA^{\bullet} \tag{4}$$

$$R^{\bullet} + A^{2-} \to R + A^{\bullet-} \tag{5}$$

$$R^{\bullet} + H_2 A^{\bullet +} \rightarrow R + 2H^+ + A \qquad \text{fast} \qquad (6)$$

$$R^{\bullet} + HA^{\bullet} \to R + H^{+} + A \qquad \text{fast} \qquad (7)$$

$$R^{\bullet} + A^{\bullet-} \to R + A \qquad \text{fast} \qquad (8)$$

H₂A⁺、HA、A⁻會立即與體內自由基作用形成無害的A,即使體內無自由基存在,本身也能自行偶合(coupling)而形成A₂,加上良好的水溶性,因此即過量服用亦不會對人體造成傷害。

匈牙利生化學家Szent-Györgyi由於自檸檬中萃取出維他命 C及鑑定出結構而被稱為維他命 C 之父。並因此獲得 1937 年 諾貝爾醫學獎。之後他又發現服用合成純度 100%維他命 C, 效果不如柑橘果芳天然食物好,而合成維他命 C 又是從柑橘類 水果和玫瑰果等植物中所萃取出來,所以認為柑橘類水果可能 含有其他重要成分,效果比維他命 C 為好,後來果然從檸檬皮 中成功分離出另一種化合物,他稱之為檸檬素(citrin),於是把 檸檬素名為「維生素 P」。即聖草酚(Eriodictyol)[11],如 Fig. 1.1 所 示,屬於類黃酮類的黃烷酮(flavonone)結構。

Eriodictyol

類黃酮名稱源自於拉丁語之"flavus",乃為黃色之意,為存在植 物表皮的一種色素,具有遮斷紫外線功能。1983 年 Waiter de Gruyter 將類黃酮物質定義為"自然界中一群含有苯基之有色物質"。屬於多酚 化合物(polyphenols),僅存在於植物體內,含量僅次於纖維素、半纖 維素和木質素,分布於植物的皮、根、葉和果中。類黃酮為植物的二 次代謝物,在植物體中主要功能為調節植物生長、分化與抗菌,吸收 紫外線等[12,13],許多醫學臨床研究發現,類黃酮具有多重醫藥功 能,例如:防癌、抗過敏、抗老化、抗發炎、促進新陳代謝及提高免 痰力等[14-19]。

類黃酮的基本結構分別 A、B 和 C 環(2-phenyl-benzo-α-pyranes), 為 C₆-C₃-C₆型式,其結構 Fig. 1.2 所示:

Figure 1.2、類黃酮的基本結構

每個環的碳上均可接上羥基、甲基、醣基等官能基,C環上的變 化繁多,例如在 C2或 C3的位置可接 phenyl 官能基,C2與 C3可以單 鍵或雙鍵鍵結,C3上連接醣基、C4上的酮基以及C環之開環形式, 因此類黃酮種類十分繁多,目前已有超過 6000 種的天然類黃酮被分離及鑑定,且數目還在持續增加之中[20]。依其結構性分類可區分為 五大類:黃酮類(flavones)、黃烷酮類(flavanones)、黃烷醇類 (flavanonols)、異黃酮類(isoflavones)以及花青素類(anthocyanine),如 Fig. 1.3 所示。

Figure 1.3、類黃酮衍生物之結構

- (1)黃酮類:為類黃酮最基本的結構,具有抗氧化效果的衍生物,如: 芹素(apigenin)、木犀草素(luteolin)、山茶酚(kaempherol)、芸香苷 (rutin)、槲皮素(quercetin)等等。
- (2) 黃烷酮類: C 環之 C₂ 及 C₃ 位置為單鍵, 具有抗氧化效果的衍生物,

如:橘皮苷(hesperidin)、taxifoline 等等。

(3) 黃烷醇類:C環之C4位置之羰基以羥基取代,且C2及C3位置雙

鍵變為單鍵,如:兒茶素(catechin)、表兒茶素(epicatechin)、表沒 食子兒茶素沒食子酸(epigallocatechin gallate)、表沒食子兒茶素 (epigallocatechin)、表兒茶素沒食子酸(epicatechin gallate)等等。

- (4)異黃酮類:苯環不是結合於C環的C2位置,而是C3位置,如:
 daidzein、daidzin 等等。
- (5)花青素類:C環之C1、C2及C3、C4位置為雙鍵,且C3位置有羥基取代,如:矢車菊色素配質(cyanidin)、花翠配質(delphinindin) 等
 等。

類黃酮的醫藥功能主要來自這類化合物的抗氧化及具有與金屬 螯合能力,目前已被發現可與多種金屬離子形成螯合物,例如 AI^{3+} 可與 quercetin 進行螯合反應,使得 AI^{3+} 的活性降低並且排出體外, AI^{3+} 被認為是造成帕金森氏症(Parkinson's disease)及老人癡呆症 (Alzheimer's disease)主因[21,22],Cu²⁺也被報導可與 quercetin、rutin 及 luteolin 進行螯合,防止 Cu²⁺在人體內低密度脂蛋白氧(low density lipoprotein,LDL)的氧化[23],LDL 為導致心血管疾病及腦血管疾病 的主因之一[24];另外體內 Fe²⁺自由離子與代謝過程產生的過氧化氫 會進行 Fenton Reaction,而形成氫氧自由基(OH'),如 eq.(9)所示,為 體內氫氧自由基重要來源之一[25,26],而 Fe²⁺離子與 quercetin 形成螯 合物,可抑制 Fenton Reaction 的進行。

$$Fe^{2+} + H_2O_2 \rightarrow Fe^{3+} + OH^{\bullet} + OH^{-}$$
(9)

類黃酮的另一種重要生物特性為抗氧化性,此抗氧化能力主要來 自類黃酮的多酚性質,此抗氧化性,能夠幫助清除體內自由基 [27]。 儘管如此,有關類黃酮抗氧化能力之研究大多仍停留於醫藥功能與食 品科學應用方面,對於類黃酮的抗氧化性質,特別是反應機構的探 討,資料則相當缺乏。本實驗室近五年開始對類黃酮的化學反應有興 趣,特別是探討氧化還原反應,以期進一步了解類黃酮的抗氧化活 性。目前已完成Ru(NH₃)₅L³⁺ (L = pzCH₃, pz, isn)-flavonoids (catechin, rutin, pyrocatechol)在pH = 1 - 7的完整探討[28],並用Marcus theory 分 析動力學結果,我們發現flavonoids 的 intrinsic reactivities (k_{ex})遠較維 他命C (ascorbic acid) 高了至少三次冪。

在我們開始探討flavonoid的氧化還原反應時,我們主要興趣對象 為quercetin,因為quercetin在植物界中分布最廣,容易獲得,且生物 功能性大,但因水溶性低,而在非水溶液中,過渡金屬錯合物難溶解, 且不穩定,因此一直未做進一步探討,最近我們發現在鹼性溶液中 quercetin可完全溶解[29],但吸收光譜的結果同時發現,quercetin在鹼 性溶液中極不穩定,吸收光譜從373 nm迅速紅位移至413 nm[28],也 因此引起我們的興趣,此不穩定究竟是quercetin特有的性 質抑或所有flavonoid化合物的通性,如為quercetin專屬特性,則另一個需要了解的便是此不穩定性為quercetin在鹼性溶液中的內在性質 (intrinsic property)或是對空氣敏感所引起,為了澄清以上的問題,我 們將同時探討rutin及(±)-taxifolin在相同條件的氧化還原反應。

rutin 結構

Scheme III

槲皮素(quercetin)在植物界中為含量最多之類黃酮分子,槲皮素 結構為A環 resorcinol的C₅、C₇,B環 catechol的3'、4',及C環的 C₃均有OH官能基,C₄則有一酮基。日常食物如蔬菜、水果、茶及 多種的十字花科蔬菜等,均含槲皮素成分,槲皮素存在的部位則包括 植物之種子、核果、花、莖皮及葉片等。近幾年之研究結

果指出槲皮素有多項有益人體健康之作用,具有抗氧化、抗過敏、抗 腫瘤、抗菌及保護心血管疾病,且另外槲皮素已被證明具有預防老人 癡呆症的功能,目前也有許多試驗研究已證實它對人體具保健及治療 效果[30-33]。

蘆丁(rutin),又稱為芸香素,於 19 世紀首次被發現在於喬麥中 [34],主要存在於喬麥、茶及蘋果果皮中[35],具有抗氧化、抗腫瘤 及抗菌等藥理功能[36],也可以保護人體血小板中的脂肪過氧化作用 及預防肝中毒,屬於類黃酮醣苷化合物(flavonol glycoside compound) 一種[37]。結構上為 A(resorcinol)環及 B 環(catechol)各有兩個羥基,C 環上 C₂-C₃ 位置具有共軛雙鍵、C₃ 有一醣基與 C₄ 有一酮基,在水溶 液中溶解度遠比槲皮素好。

花旗松素((±)-taxifolin)又名為 dihydroquercetin 屬於黃烷酮類,結 構與 quercetin 唯一不同之處在於 C₂-C₃ 間為飽和單鍵,因此A 環與 B 環不共軛。主要來源為柑橘類,具有抗癌、抗菌及保護心血管等抗氧 化能力,目前也被廣泛地應用在醫藥及保健食品上[38,39]。

在本論文中,由於O2在水溶液中溶解度很低(~1×10⁻³ M),因此 我們將以Co(edta) 錯合物作為氧化劑,探討 quercetin、rutin 及 (±)-taxifolin 在 pH = 9 – 13 的氧化還原反應。鈷錯合物在生物體系亦 有其重要性,例如維他命 B_{12} 具有鈷(I)金屬中心,可治療惡性貧血 (pernicious anemia)、神經系統等,而鈷-60 也普遍應用於對癌症的放 射治療。我們選用以 Co(edta)⁻錯合物作為氧化劑,可避免在鹼性溶液 中,可能形成之金屬氫氧化物沉澱,例如 Co(NH₃)6³⁺錯合物,在還原 成 Co(II)時,配位會迅速解離,Co²⁺立即與溶液中 OH 離子作用形成 Co(OH)2 沉澱,Co(edta)²⁻在反應過程中維持不變,另外 Co(edta)⁻錯合 物氧化還原反應因牽涉 spin change[48],因此反應速率較為緩慢,得 以在鹼性條件下偵測 flavonoids 之反應動力學,大部分取代穩定錯合 物由於活性較強,在鹼性條件下因反應過快,而無法偵測,例如 Ru(NH₃)L³⁺錯合物,在 pH \geq 7 時,反應速率已超過 stopped-flow 時間 尺度[40-47]。

本研究中,我們將嘗試以 Co(edta) 及 Ru(NH₃)₅(pzCH₃)⁴⁺錯合物為 氧化劑對 quercetin、rutin 及(±)-taxifolin 分別在鹼性(pH = 9 - 13)及酸 性(pH = 1 - 2)條件下探討反應動力學,藉動力學結果的比較,以進一 步了解 quercetin 反應活性的原因。

第二章、實驗

一、藥品

中文名稱	英文名稱	化學式	來源
六氨釕	Hexaamminerutheniu m (III) chloride	Ru(NH ₃) ₆ Cl ₃	Strem
過氯酸鋰	Lithium perchlorate	LiClO ₄	Aldrich
過氯酸	Perchloric acid 69% -72%	HClO ₄	J.T.Baker
鋅粒	Zinc, granular	Zn	Merck
甲醇	Methanol	СН₃ОН	Merck
乙醇	Ethanol	C ₂ H ₅ OH	Merck
乙醚	Diethyl ether	$C_4H_{10}O$	Merck
氯化汞	Mercury(II) chloride	HgCl ₂	Merck
甲苯磺酸銀	silver(I) p-toluenesulfonate(98 %)	C7H7AgO3S	Alfa
鄰苯二酚	Pyrocatechol	$C_5H_6O_2$	Fluka
鹽酸	Hydrochloric acid	HCl	Aldrich
過氯酸鈉	Sodium perchlorate	NaClO ₄	Aldrich

中文名稱	英文名稱	化學式	來源
碘化鉀	Methyl iodide	CH ₃ I	Merck
叱嗪	Pyrazine(pz)	$C_4H_4N_2$	Fluka
三氟醋酸	Trifluoroacetic acid	CF ₃ COOH	RDH
槲黃素	Quercetin dihydrate 98%	$\mathrm{C}_{15}\mathrm{O}_{7}\mathrm{H}_{10} \bullet 2\mathrm{H}_{2}\mathrm{O}$	Aldrich
花旗松素	(±)-Taxifolin	$C_{15}H_{12}O_{7}$	MP Biomedicals
蘆丁	Rutin	C ₂₇ H ₃₆ O ₁₉	北京化學公司 (四川大學吳大誠 教授提供)
氯化鈷六水化 合物	Cobaltous Chloride	$CoCl_2 \cdot 6H_2O$	Cathay
乙二胺四乙基 酸鈉	(Ethylenediamine) tetraacetic acid, disodium salt	$Na_2C_{10}N_2H_{14}$	Cathay
醋酸鉀	Potassium acetate	CH ₃ COOK	Merck
過氧化氫	Hydrogen peroxide 30%	H ₂ O ₂ 30%	Merck

二. 藥品的純化與溶液配製

蒸餾水系統(deionized doubly distilled water)

先將自來水經過三個活性碳濾心處理顆粒狀雜質後,直接進入 Aries 48547 逆滲透裝置,再通入 Barnstead 去離子超純水製造系統, 純化後得二次去離子水,本實驗室的合成、緩衝溶液的配製,以及所 有的反應均採用二次去離子水。

鋅汞齊製備(zinc/mercury amalgam,簡稱 Zn/Hg)

將適量的鋅粒,以6 M 鹽酸(HCl)清洗數分鐘以去除表面氧化物,再以二度水反覆清洗鋅粒,使表面的鹽酸殘留物完全去除;加入 飽和氯化汞溶液(於0.1 M 硫酸溶液中)汞化,即得光亮的鋅汞齊,再 以二度水清洗鋅汞齊的表面,以kimwipe 拭紙拭乾,所得的鋅汞齊必 須立即使用以免被空氣氧化。

亞鉻溶液的製備(chromous solution)

將40克三氯化鉻 CrCl₃·6H₂O 溶於500mL 的1M 過氯酸水溶液 中,加入適量鋅汞齊,再持續通入氫氣直到所有的三價鉻離子完全還 原成藍色二價鉻溶液為止,此時水溶液顏色由綠色轉變成藍色澄清溶 液。

緩衝溶液配製(buffer solution)

 pH = 9-11 碳酸根-碳酸氢根(CO₃²⁻/HCO₃)緩衝溶液 (carbonate-bicarbonatebuffer)

取碳酸鈉 8.3 克,溶於 400 mL 二度去離子水中,以 HCl 滴定到 所需之 pH 值,再以量瓶稀釋到 500 mL 的標線刻度,buffer 溶液 $[CO_3^{2-}] = 0.20M$ 。

三、去氧處理

隔氧處理系統

溶液配製前需在隔氧系統中以飽和氫氣或氮氣下先進行除氧的 步驟,以防止滲入空氣的干擾。我們所使用的隔氧系統如 Fig. 2.1, 鋼瓶中的氫氣,先經過含過量鋅汞齊的 Cr(II)溶液的氣體洗滌瓶,以 除去氫氣鋼瓶中殘留的空氣,再經裝有二度水的氣體洗滌瓶,以防止 含鋅汞齊的溶液直接與空氣接觸而容易被氧化,同時平衡反應瓶內水 溶液的含量,氦氣系統(N₂-line)與氫氣系統(Ar-line)的組合相同,僅 以氯化亞凱取代鉻(II)化合物。

處理過程以針筒及不銹鋼針連結反應溶液,先將溶液置於血清瓶 內,瓶口以血清塞塞住;先插入一短鋼針遠離溶液液面,作為氫氣(或 氦氣)出口以卸除瓶內壓力,再插入一長鋼針沒入溶液中,為氫氣(或 氦氣)入口,通入氣體至少五分鐘,以除去溶液中的溶氧。通入氣體 應避免流量過大導致溶液揮發而影響溶液體積,之後加入反應物,如 Fig. 2.2 所示。

使用李可瓶時,先將所有玻璃磨口處均塗凡士林以防空隙,在將 之連接於去氧系統下,瓶中四孔磨口先旋至位置上,加入配置好的溶 液及鋅汞齊,並持續通入氫氣三十分鐘後,將孔磨口旋轉 90 度,使 溶液靠氫氣的壓力注入接收瓶中反應,如 Fig. 2.3 所示。

16

Air-Sensitive Treatment (N2-line or Ar-line)

註: Ar-line: Scrubbing towers containing

Cr(II) ion and Zn/Hg amalgam.

N₂-line : Scrubbing towers containing

 VCl_2 solution and Zn/Hg amalgam.

Figure 2.1 隔氧處理系統示意圖

Figure 2.2 注射器轉移錯合物溶液裝

Figure 2.3 李可瓶(Zwickel flask)示意圖

四、合成

1. K[Co(edta)] · 2H₂O 之合成(edta=ethylenediaminetetraacetato)[48]

取 8.0 克 CoCl₂·2H₂O 與 20 克 CH₃COOK 及 10 克 Na₂edta 一起 溶於 60 毫升的水中加熱,當溶液接近沸騰時,慢慢的滴入 30 毫升 3 % H₂O₂反應一小時,溶液顏色由深紅色變成紫紅色,冷卻至室溫之 後,加入 90 毫升的乙醇,置於冰浴鍋冰浴,可得紫紅色結晶。利用 熱水法(約 50°C)做再結晶,以乙醇、乙醚清洗,在置於真空乾燥器中 抽乾。產率 12 克,84.6%。

元素分析結果

complex		С%	Н%	N%
$K[Co(edta)^{-}] \cdot 2H_2O$	理論值	28.4	3.79	6.64
	實驗值	28.2	3.70	6.64

2. [Ru(NH₃)₅Cl] Cl₂之合成[49]

將5克Ru(NH₃)₆Cl₃加入6 M 鹽酸 100 毫升,加熱至 110 - 120 ℃,磁石攪拌下迴流4小時,移除熱源後靜置回復室溫。將橘黃色固 體過濾,依序以乙醇及乙醚清洗後減壓抽乾。將粗產物溶於最少量之 60 ℃ 0.1 M 鹽酸中,趁熱過濾後(~約 300 mL),濾液先靜置回復室溫 後再移入冰箱(24 小時),橘黃色晶體產物析出。低溫下快速將產物過 濾(濾液回收),固體依序以少量2 M 鹽酸、乙醇(皆先冰浴降溫)及乙 醚清洗後減壓抽乾。再將濾液加入等體積 12 M 鹽酸後移入冰箱(24 小時),黃色固體析出(起始物回收)。產率:3.5 g,71%。

3. N-methylpyrazinium iodide 之合成

將 3.5 克 pyrazine(0.0433mole)和 5.68 克(約 2.5 mL) CH₃I (~0.04mole)混合溶解後加入少量的 CHCl₃,在室溫下進行反應,此時 溶液成橘色,反應 2-3 天候即有黃色固體沉澱,過濾後收集固體,並 用乙醚清洗後減壓抽乾。產率: 5.2 g(59%)。

4. N-methylpyrazinium p-Toluenesulfonate 之合成

秤取 2 克 *N*-methylpyrazinium iodide 以最少的二度水溶解,另 外取等莫耳 silver(I) *p*-toluenesulfonate,以最少的二度水溶解後,將溶 解後的 silver(I) *p*-toluenesulfonate 逐滴加入 *N*-methylpyrazinium iodide 溶液中,以磁石攪拌混合,最後溶液成透明無色時,移除 AgI 沉澱取 濾液,並以旋轉濃縮機將濾液減少(~5 mL),再轉至真空抽乾直到白 色固體析出,最後送進手套箱真空乾燥一天。產率:2.25 g(82%)。

5. 合成 Ru(NH₃)₅(pzCH₃)(ClO₄)₃[40]

將 80 毫克 Ag₂O 溶於 5 毫升二度水中,逐滴加入三氟醋酸 (trifluoroacetic acid)直到 Ag₂O 完全溶解,再加入 100 毫克 [Ru(NH₃)₅Cl]Cl₂,隨即出現白色沉澱,以 60 °C 水浴加熱幫助反應進 行。冷却制室溫移除 AgCl 沉澱後將濾液置於李可瓶母瓶,加入鋅汞 齊並持續通入氫氣 10~15 分鐘,將溶液以氣壓轉移至內含 300 毫克 *N*-methylpyrazinium *p*-toluenesulfonate 之子瓶(此時溶液變紫色),反應 90 分鐘。先將反應溶液過濾,濾液加入 2 克 NaClO₄,持續通入氫氣 冰浴至紫色產物析出。低溫下快速將產物過濾,固體依序以少量甲醇 及乙醚清洗後減壓抽乾。產率:98 mg, 50 %。

元素分析結果

complex		С%	Н%	N%
$Ru(NH_3)_5(pzCH_3)(ClO_4)_3$	理論值	10.36	3.83	16.93
	實驗值	10.62	3.90	16.44

6. 合成 Ru(NH₃)₅(pzCH₃)(ClO₄)₄[40]

配製 0.5 M Ce(IV)之 6 M 過氯酸溶液,逐滴滴入 100 毫克二價的 Ru(NH₃)₅(pzCH₃)(ClO₄)₃ 化合物中,完全溶解,持續搖晃直到黃色固 體沉出,快速將黃色固體過濾收集,以乙醚清洗後減壓抽乾。產率: 0.08 g(33 %)。

元素分析結果

complex		С%	Н%	N%
Ru(NH ₃) ₅ (pzCH ₃)(ClO ₄) ₄	理論值	8.84	3.27	14.44
	實驗值	8.61	3.41	14.54

五、 分析儀器及方法

1. 微量秤重测量

三位天平 OHAUS TS 400D

四位天平 PRECISA 125A

五位天平 METTLERAE-42C

2. 酸鹼度測量

使用 Orion 420A pH 儀,測量前視緩衝溶液 pH 值分別以 pH = 1.68、4.01、7.00 或 7.00、10.01、12.45 標準溶液先校正儀器,再使 用 SCHOTT instruments pH 計測量溶液之 pH 值。

3. 吸收光譜分析測量

以 Hitachi U-2000 或 HP 8453 UV/VIS 光譜儀測量化合物之紫外-可見光區(UV-VIS)吸收光譜,樣品槽(cell)使用 1.0 公分的石英材質樣 品槽。消光係數 ϵ_{max} 可從化合物吸收波峰 λ_{max} 的吸收值根據 Beer's law (A = ϵbc)求得。

4.¹H-NMR 測量

¹H-NMR 光譜之量測乃是使用中興大學貴儀中心 VARIAN INOVA 600 氫核子共振頻率為 600MHz 的高磁場核磁共振儀(High Field NMR)。

5. 元素分析

送往中興大學或交通大學貴重儀器中心量測,以 Heraeus CHN-O Rapid 元素分析儀,偵測樣品之 N、C、H 元素的含量百分比。

6. 動力學測量

根據反應速率快慢進行反應動力學測量,分別以 HI-TECH SF-61 Dx2 Double mixing Stopped-Flow Spectrophotometer 或 Hewlett Packard HP 8453 UV-Vis Spectrophotometer 測量,並用 FIRSTEK 恆溫槽控制 反應溫度。反應在偽一級(pseudo first order)條件下進行,觀測類黃酮 吸收峰的訊號變化,並以 Co(III)氧化劑為過量,類黃酮的形成隨時間 改變呈現單指數曲線;相對的觀測 Ru(II)吸收峰的訊號變化,並以還 原劑為過量,Ru(II)的形成隨時間改變呈現單指數曲線,ln $| A_{\infty} - A_t |$ 對時間(t)變化為線性關係,如 Fig. 2.4 所示。 k_{obs} 可藉由線性最小平方 差(linear least-square fit)分析 ln $| A_{\infty} - A_t |$ 對時間(s)之關係圖,從斜 率求得。

pH 11.00 , $\mu = 0.1 \text{ M} (\text{LiClO}_4)$, $T = 25^{\circ}\text{C}$

Figure 2.4 Co(edta)⁻ 還原反應圖^a

(a) A_t vs 時間 (b) ln | A_∞−A_t | vs 時間

第三章 結果

一、光譜鑑定

Quercetin、rutin、(±)-taxifolin、Ru(NH₃)₅(pzCH₃)^{3+/4+}及 Co(edta)⁻ 錯合物之吸收光譜列於 Table 1 中, Co(edta)⁻有兩個吸收峰,皆屬於 d-d 的躍遷,且吸收位置不受 pH 改變的影響 (pH = 9~13) [50]。 Ru(NH₃)₅(pzCH₃)⁴⁺在紫外區亦有兩個明顯吸收峰,屬於配位本身 $\pi_L \rightarrow \pi_L$ *電子躍遷,當金屬中心被還原成 Ru(II)後,在可見光區 λ_{max} = 540 nm 另有一強吸收峰出現,屬於 d $\pi \rightarrow \pi_L$ *吸收,與文獻值相符[51]。 所有類黃酮吸收位置大多於紫外光區,分別由兩個發光團 resorcinol(A 環)及 catechol(B 環)所組成,屬於 $\pi \rightarrow \pi$ *電子躍遷,其中 低波長屬於A環,而高波長吸收則由B環引起[52]。

在絕氧狀態下,當 quercetin 溶於 0.01 M NaOH 時,吸收光譜相 當穩定,在 24 小時內吸收維持不變如 Fig. 3.1(a),但當溶液暴露於空 氣中時,quercetin 之 279 nm 及 429 nm 吸收迅速消失,相對地在 314 nm 及 349 nm 另有新的吸收跟著生成,同時在 λ = 294 及 382 nm 處有 兩個 isosbestic points,如 Fig. 3.1(b)所示,直至最後 314 及 349 nm 吸 收完全,光譜不再改變,如 Fig. 3.1(c),此光譜變化現象顯示,quercetin 的不穩定被空氣氧化所導致。而 isosbestic points 的出現表示此光譜變 化乃為單純的氧化反應,並無其他 side reaction 干擾。為了確定此氧 化現象究竟是僅限於對空氣的敏感,抑或 quercetin 本身容易被氧化, 我們同時觀測以 Co(edta)⁻錯合物氧化 quercetin,結果發現光譜變化與 以 O₂之氧化相似,如 Fig. 3.2 所示,顯示兩者氧化機制相同,另外我 們也嘗試將 rutin 和 taxifolin 溶液分別與 O₂及 Co(edta)⁻錯合物作用, 發現即使在飽和 O₂(1.0×10⁻³ M)及過量 Co(edta)⁻錯合物條件下,光譜 變化非常緩慢,顯示此現象為 quercetin 所獨有。

Compound	λ_{max} (nm)	$10^{-3} \varepsilon_{max} (M^{-1} cm^{-1})$
Quercetin ^a	279	21.5
~	425	23.7
Rutin ^a	271	25.5
	400	21.4
(+)-taxifolin ^a	243	19.6
(±) uxitoini	316	23.6
Co(edta) ^{- a}	$382(383)^{c}$	$0.22(0.20)^{c}$
	533(535) ^c	$0.31(0.30)^{c}$
$Ru(NH_2)\epsilon(nzCH_2)^{4+b}$	290	6 50
100(1013)3(p20113)	385	3.00
	- 10	
$Ru(NH_3)_5(pzCH_3)^{3+6}$	540	16.0
	270	7.20
a. 0.01 M NaOH , $T = 25^{\circ}C$		
b. 0.10 M HClO ₄ , $T = 25^{\circ}C$		
c .ref. 54		

Table 1、UV-vis 光譜

Figure 3.1、(a)quercetin 在絕氧狀態下(b) quercetin 與 O2 氧化圖

(c)最後 quercetin 氧化後狀態下, [NaOH] = 0.01 M,

 $T = 25^{\circ}C$

Figure 3.2、quercetin 與 Co(edta) 錯合物氧化圖,

$$[NaOH] = 0.01 \text{ M} \cdot \text{T} = 25^{\circ}\text{C}$$

二、氧化產物鑑定

為了確認類黃酮在鹼性條件下屬於幾個電子氧化,我們將類黃酮 濃度固定(5×10⁻⁵ M),用不同濃度之 $O_2 \& Co(edta)$,錯合物滴定,在[OH] = 0.01 M, μ = 0.10 M LiClO₄, T = 25°C條件下。結果發現當[氧化 劑]/[X²⁻] \geq 2 時,[X²⁻]吸收完全消失,如 Fig. 3.3 所示,因此可以確定, 在鹼性溶液中,類黃酮亦屬雙電子還原反應。

Figure 3.3、quercetin 還原 Co(edta)⁻錯合物之化學計量圖^a a. [quercetin] = 5.0×10⁻⁵ M, [OH⁻] = 0.01 M, µ = 0.10 M LiClO₄, T = 25℃

為了確認氧化產物為何,我們亦探討類黃酮及氧化產物的 ¹H-NMR 光譜,結果列於 Table 2,從表中得知,氧化產物之 H-2'和 H-5' 均有 upfield (>0.2 ppm)位移,H-6'則往 downfield (>0.1 ppm) 位移,而 H-6 及 H-8(A 環)則無太大的改變,顯示在鹼性條件下, flavonoids 的氧化位置也在 catechol 環(B 環),形成 quinone 產物與之 前結果一致[28]。

catechol環上氧化

Table 2、 quercetin、rutin 及(±)-taxifolina 氧化前後之¹H-NMR 訊號^a

	quercetin		rutin		(±)-tax	ifolin
Proton	X ²⁻	Х	X ²⁻	Х	X ²⁻	Х
Н-2'	7.64	7.42	7.49	7.22	6.85	6.59
H-5'	6.73	6.53	6.70	6.33	6.75	6.49
Н-6'	7.50	7.60	7.45	7.53	6.69	6.83
Н-6	5.93	5.95	5.93	5.96	5.22	5.27
H-8	6.13	6.15	6.12	6.14	5.45	5.57

a.在 NaOD = 0.01 M, in ppm.

根據反應計量及¹H-NMR 光譜結果,我們可以確定類黃酮的氧化 反應可以 eq. (10)表示, X²⁻及 X 分別為 flavonoids 及其 quinone 氧化 產物。

$$2Co(edta)^{-} + X^{2-} \xrightarrow{k} 2Co(edta)^{2-} + X$$
(10)

三、反應動力學

為了確定 flavonoids 還原反應之速率決定步驟究竟是第幾個電子,我們分別以錯合物及 flavonoids 為限量試劑,探討反應動力學, 發現 ln(A_i- A_t)對時間(s)做圖均呈線性關係,如 Fig. 3.4 所示,因此可 以確定反應速率決定步驟為第一個電子的氧化,反應速率式可以 eq.(11)、eq.(12)表示。eq.(12)中的2為統計參數(statistical factor),主 要是考慮反應為兩個電子的氧化。

$$-\frac{d[X^{2^{-}}]}{dt} = 2k \left[\text{Co(edta)}^{-} \right] \left[X^{2^{-}} \right]$$
(11)

$$\mathbf{k}_{obs} = 2 \ k \left[\mathrm{Co}(\mathrm{edta})^{-} \right] \tag{12}$$

Figure 3.4、quercetin-[Co(edta)]反應物之 ln(A_i-A_t)對時間(s)作圖^a

(a)[quercetin] =
$$5 \times 10^{-5}$$
 M · [Co(edta)⁻] = 5×10^{-4} M
(b)[quercetin] = 5×10^{-4} M · [Co(edta)⁻] = 5×10^{-5} M
a. 0.01 M NaOH · μ = 0.10 M LiClO₄ · T = 25° C

熱力學及動力學的結果均顯示,在鹼性溶液中,flavonoids的氧 化與在酸性及中性條件下完全相同[28],因此反應機構可表示如下:

$$H_2 X \stackrel{Ka_1}{\longrightarrow} H^+ + H X^-$$
(13)

$$HX^{-} \xrightarrow{Ka_{2}} H^{+} + X^{2-}$$
 (14)

$$Co(edta)^{-} + H_{2}X \xrightarrow{k_{0}} Co(edta)^{2-} + H_{2}X^{*+}$$
(15)

$$Co(edta)^{-} + HX^{-} \xrightarrow{k_{1}} Co(edta)^{2-} + HX^{*}$$
(16)

$$Co(edta)^{-} + X^{2-} \xrightarrow{k_{2}} Co(edta)^{2-} + HX^{*-}$$
(17)

$$Co(edta)^{-} + H_{2}X^{*+} \xrightarrow{fast} Co(edta)^{2-} + 2H^{+} + X$$
(18)

$$Co(edta)^{-} + HX^{*} \xrightarrow{fast} Co(edta)^{2-} + H^{+} + X$$
(19)

$$Co(edta)^{-} + HX^{*-} \xrightarrow{fast} Co(edta)^{2-} + X$$
(20)

根據此反應機構,k值可表示成:

$$k = \frac{k_0 [\mathrm{H}^+]^2 + k_1 \mathrm{Ka}_1 [\mathrm{H}^+] + k_2 \mathrm{Ka}_1 \mathrm{Ka}_2}{[\mathrm{H}^+]^2 + \mathrm{Ka}_1 [\mathrm{H}^+] + \mathrm{Ka}_1 \mathrm{Ka}_2}$$
(21)

動力學反應分別在 pH = 9 - 13 或 pH = 1 - 2 條件下量測, 在鹼 性條件下反應條件控制在 μ = 0.10 LiClO₄; 酸性條件下則 μ = 1.0 HClO₄/LiClO₄,溫度皆控制在 T = 25°C,因 O₂ 的溶解度低($\leq 1.0 \times 10^{-3}$ M) [53],所以選擇 Co(edta)⁻及 Ru(NH₃)₅(pzCH₃)⁴⁺錯合物為氧化劑, 並且以氧化劑為過量([complex] ≥ 10 [X²⁻]),以確定反應在偽一級 (pseudofirst-order)條件下進行。觀察反應速率常數 k_{obs}分別列於 Table A1 - A5, k_{obs}與[氧化劑]濃度呈線性關係,如 Fig. 3.5 - 3.9 所示。

Figure 3.5、pH9.00 - 11.86, quercerin 氧化反應之 k_{obs} vs. [Co(edta)] 錯合物作圖,T=25°C,μ=0.10 M LiClO₄

■pH10.01 □pH11.22 ◆pH11.50 ◇pH11.81 ●pH11.99
 Figure 3.6、pH10.86 - 11.86, rutin 氧化反應之 k_{obs} vs. [Co(edta)⁻]
 錯合物作圖,T=25°C, μ=0.10 M LiClO₄

■0.01 M □0.02 M ◆0.03 M ◇0.05 M ●0.07 M ○0.10 M Figure 3.7、[OH⁻] = 0.01-0.1M, taxifolin 氧化反應之 k_{obs} vs. [Co(edta)⁻] 錯合物作圖,T=25°C, μ=0.10 M LiClO₄

■ 0.10 M □ 0.07 M ◆ 0.05 M ◇ 0.03 M ● 0.01 M Figure 3.8、pH = 1.0 - 2.0, Ru(NH₃)₅(pzCH₃)⁴⁺錯合物還原反應之 k_{obs} vs. quercetin 作圖, T = 25°C, μ = 1.00 M LiClO₄

■ 0.10 M □ 0.07 M ◆ 0.05 M \diamond 0.03 M ● 0.01 M Figure 3.9、pH = 1.0 - 2.0, Ru(NH₃)₅(pzCH₃)⁴⁺錯合物還原反應之 k_{obs} vs. taxifolin 作圖, T = 25°C, μ = 1.00 M LiClO₄

二級反應速率常數 k,可以單參數線性最小平方差(linear least square fits)法分析 k_{obs}與[Co(edta)⁻]圖,從斜率獲得,結果列於 Table 3-4。

	duercetin	- 10 30	rutin		taxifolin ^b
pН	k, M ⁻¹ s ⁻¹	pН	k, M ⁻¹ s ⁻¹	pН	k, M ⁻¹ s ⁻¹
9.00	(3.57±0.08)	10.01	$(1.03\pm0.02)\times10^{-2}$	12.00	(1.46±0.10)×10 ⁻²
9.15	(5.05±0.07)	10.22	(1.53±0.01)×10 ⁻²	12.20	(2.02±0.01)×10 ⁻²
9.30	(5.65±0.09)	10.50	(2.98±0.05)×10 ⁻²	12.30	(2.40±0.01)×10 ⁻²
9.45	(7.40±0.08)	10.81	(4.54±0.10)×10 ⁻²	12.50	(3.15±0.03)×10 ⁻²
9.60	(9.60±0.02)	10.99	(5.90±0.06)×10 ⁻²	12.70	$(4.02\pm0.09)\times10^{-2}$
9.80	(1.49±0.01)×10	12.00	(1.04±0.02)×10 ⁻¹	13.00	(5.20±0.02)×10 ⁻²
10.00	(3.06±0.05)×10				
10.15	(4.19±0.03)×10				
10.31	(5.80±0.05)×10				
10.45	(7.85±0.01)×10				
10.60	(8.30±0.06)×10				
10.86	(1.06±0.07)×10 ²				
11.10	$(1.63\pm0.02)\times10^2$				
11.36	$(2.21\pm0.01)\times10^2$				
11.62	$(2.84\pm0.02)\times10^2$				
$\frac{11.86}{2}$	$(3.44\pm0.05)\times10^2$	5°C			
a. μ – 0 h 10Η	1 = 0.01 - 0.10 M	50			
0. [011	J 0.01 0.10 M				

 Table 3、pH = 9.0 -13.0, Co(edta)

 <

(quercetin	taxifolin		
[H ⁺],M	k, $M^{-1}s^{-1}$	[H ⁺],M	k, $M^{-1}s^{-1}$	
0.01	(4.51±0.02)×10 ⁴	0.01	$(1.62\pm0.08)\times10^3$	
0.03	(1.52±0.01)×10 ⁴	0.03	(7.50±0.01)×10 ²	
0.05	(9.25±0.01)×10 ³	0.05	(5.50±0.01)×10 ²	
0.07	$(6.80\pm0.01)\times10^3$	0.07	$(4.68\pm0.03)\times10^2$	
0.10	$(5.35\pm0.01)\times10^3$	0.10	$(4.13\pm0.06)\times10^2$	
1.00	(5.55±0.01)×10 ³			

Table 4、pH = 1.0 - 2.0, $Ru(NH_3)_5(pzCH_3)^{4+}$

错合物與

quercetin 及

taxifolin

還原反應之速率常數
 k^a

a. μ = 1.0 M LiClO_4/HClO_4 + T = 25 $^\circ \! C$

1. pH = 9.0 - 13.0

(a) quercetin

(1)pH = 9.0 - 9.8

在此 pH 值範圍(pH = 9.0 - 9.8), $[H^+]^2 + K_{a1}[H^+] >> K_{a1}K_{a2}$,

k₁K_{a1}[H⁺]+k₂K_{a1}K_{a2}>>k₀[H⁺]²,因此 eq. (21)可簡化為 eq.(22)

$$k = \frac{k_1 K_{a1} [H^+] + k_2 K_{a1} K_{a2}}{[H^+]^2 + K_{a1} [H^+]}$$
(22)

但當我們 k 與 1/[H⁺]作圖時,發現兩者呈良好線性關系,如 Fig. 3.10 所示,因此 K_{a1}[H⁺]>> [H⁺]²,而 eq.(22)可進一步簡化為 eq.(23)

$$k = \frac{k_1[H^+] + k_2 K_{a2}}{[H^+]}$$
(23)

利用非線性最小平方差(non-linear least square fit)根據 eq. (23)分析 k vs. [H⁺],可得到 k₁ 值及 k₂K_{a2} 值,分別為(1.67±0.10) M⁻¹s⁻¹及 (2.06±0.07)×10⁻⁹。

(2) pH = 10.86 - 11.86

k vs.[H⁺]關係如 Fig. 3.11(a),由於在此條件下,除ko[H⁺]^a可忽
 略,又因[H⁺]² << K_{a1}[H⁺] + K_{a1}K_{a2},因此 eq. (21)可簡化為 eq. (24)

$$k = \frac{k_1 K_{a1} [H^+] + k_2 K_{a1} K_{a2}}{K_{a1} [H^+] + K_{a1} K_{a2}}$$
(24)

但由於 1/k vs. [H⁺]呈線性關係如 Fig. 3.11(b)所示。因此可以確定 k₂K_{a1}K_{a2} >> k₁K_{a1}[H⁺],此 eq. (24)可在簡化成 eq. (25),依據 eq. (25)

$$k = \frac{k_2 K_{a2}}{[H^+] + K_{a2}}$$
(25)

以非線性最小平方差(non-linear least square fit)分析 k vs. $[H^+]$ 數 據,求得 k₂及 pK_{a2}值,分別為 k₂ = $(4.6\pm0.1)\times10^2$ M⁻¹s⁻¹,K_{a2} = $(4.05\pm0.07)\times10^{-12}$ (pK_{a2} = 11.40)。從所得之 K_{a2},代入 eq. (23)及 pH = 9.0 - 9.8 時所得 k₂K_{a2} 值((2.06±0.07)×10⁻⁹),求得在 pH = 9.0 - 9.8 時 k₂ = $(5.08\pm0.07)\times10^2$ M⁻¹s⁻¹ 與在本 pH 範圍內所得 k₂幾乎一致。

(b) rutin pH = 10.01 - 10.99

在此pH範圍,我們發現1/k vs. [H⁺] 亦呈線性關係,如Fig. 3.12(b) 所示。因此 rate law 應遵照 eq. (25),以非線性最小平方差分析 k vs. [H⁺](如 Fig. 3.12(a)),可得到 k₂及 pK_{a2}值,分別為 k₂ = (1.4±0.1)×10⁻¹ M⁻¹s⁻¹, K_{a2} = (7.5±0.1)×10⁻¹²(pK_{a2} = 11.12)。

(a)k vs. [H⁺]作圖 (b)1/k vs. [H⁺]作圖

(d) taxifolin

 $[OH^{-}] = 0.01 - 0.10$

在此 pH 範圍, 1/k vs. [H⁺] 亦呈良好線性關係, 如 Fig. 3.13(b) 所示。因此 rate law 亦可以 eq. (25)表示,依據 eq. (25) 以非線性 最小平方差分析 k vs. [H⁺] (Fig. 3.13(a)),可得到 k₂及 pK_{a2}值,分 別為 k₂ = (7.35±0.06)×10⁻² M⁻¹s⁻¹, K_{a2} = (2.41±0.04)×10⁻¹³(pK_{a2} = 12.62)。

Figure 3.13、[OH⁻] = 0.01 - 0.1M, Co(edta)⁻錯合物與 taxifolin 反應之 (a) k vs. [H⁺]作圖 (b) 1/k vs. [H⁺]作圖

2. pH = 1.0 - 2.0

在此條件下只有 $Ru(NH_3)_5(pzCH_3)^{4+}$ 錯合物具有足夠的氧化力 ($E_{1/2} = 0.92 V[28]$)可以氧化[H_2X],動力學測量以 flavonoids 為過量, 觀測 $Ru(NH_3)_5pzCH_3^{3+}$ 錯合物($\lambda_{max} = 540 \text{ nm}$)的形成,在此範圍內,[H^+] >> K_{a1},K_{a2} , eq.(21)可簡化為 eq.(26)

$$k = \frac{k_o [H^+]^2 + k_1 K_{a1} [H^+] + k_2 K_{a1} K_{a2}}{[H^+]^2}$$
(26)

但不管 quercetin 或 taxifolin,當我們以 k vs. 1/[H⁺]作圖時,發現 均呈良好線性關係,如 Fig. 3.14(b)及 3.15(b)所示,因此可以確定 $(k_0[H^+]^2 + k_1K_{a1}[H^+]) >> k_2K_{a1}K_{a2}, eq.(26)可進一步簡化為 eq.(27)$

$$k = \frac{k_0 [H^+] + k_1 K_{a1}}{[H^+]} \quad (27)$$

利用非線性最小平方差(non-linear least square fit)根據 eq. (27) 分析 k vs. [H⁺],可得到 k₀及 k₁K_{a1}值,分別為 k₀ = $(3.5\pm0.40)\times10^{2}$ (quercetin)、 $(2.84\pm0.08)\times10^{2}$ (taxifolin) M⁻¹s⁻¹, k₁K_{a1} = (4.47 ± 0.01) ×10² (quercetin)、 $(1.34\pm0.02)\times10^{1}$ (taxifolin)。

Figure 3.14、pH = 1.0 - 2.0, Ru(NH₃)₅(pzCH₃)⁴⁺錯合物與 quercetin 反 應之(a)k vs. [H⁺]作圖 (b) k vs. 1/[H⁺]作圖

Figure 3.15、pH = 1.0-2.0, Ru(NH₃)₅(pzCH₃)⁴⁺錯合物與 taxifolin 反應 之(a) k vs. [H⁺]作圖 (b) k vs. 1/[H⁺]作圖

第四章、討論

flavonoids 的氧化反應速率常數 k₀、k₂及 pKa₂ 列於 Table 5, 從表

Table 5、Ru(NH₃)₅(pzCH₃)⁴⁺、Co(edta)⁻ 錯合物之還原反應速率常數

flavonoids	$k_{0} M^{-1} s^{-1}$	$k_{2} M^{-1} s^{-1}$	pKa ₂
quercetin	(3.5±0.4)×10 ^{2 [a]}	(4.6±0.1)×10 ^{2 [b]}	11.40
rutin	$(3.4\pm0.1)\times10^{2}$ [c]	(1.4±0.1)×10 ^{-1 [b]}	11.12
taxifolin	$(2.84\pm0.08)\times10^{2[a]}$	$(7.35\pm0.07)\times10^{-2}$ [b]	12.62

[a] Using Ru(NH₃)₅(pzCH₃)⁴⁺ oxidizing agent

[b] Using Co(edta)⁻ oxidizing agent

[c] Reference 28

中得知,quercetin 的 k2值遠比 rutin 及 taxifolin 大上 3 次冪以上,雖 然文獻報導 flavonoids 在鹼性條件下的反應活性,因 catechol 環上之 氫氧基均已去質子化而增加,但由於反應速率均在相同條件下偵測, 如此大的速率差明顯不是這個原因,由於在鹼性條件下,quercetin C3 上氫氧基已去質子化,而使 O 上未配位電子對密度增加,且 C2-C3 間之雙鍵造成 pyrone 環 (C 環) 與 catechol 環 (B 環)的共軛性,使 得 C3 上之氧化的未配位電子對可藉此共軛關係不定域至 catechol 環,大大增加了 catechol 環上的電子密度,而使 quercetin 容易被氧化。 另外,氧化產物也可藉著 quinone 在 B 及 C 環上的 tautomerization(eq. 28)而穩定下來,進一步有利 quercetin 的氧化,反觀 rutin,C₃上之 OR 基並不能因在鹼性下而解離,因而氧上的電子密度並未因此而增

m,雖然有 B 及 C 環的共軛,但 catechol 上的電子密度並未受到大 影響,而 taxifolin 在 C₃ 環上的氫氧基雖然也去質子化,但因 C₂-C₃ 為單鍵,B 環及 C 環無法形成共軛,而使 C₃上 O 的未配位電子對定 域在 C₃上,無法影響 catechol 環,不僅如此,rutin 及 taxifolin 的氧 化產物均無 tautomerization 穩定性。酸性條件下的動力學結果,進一 步支持以上論點。在 pH = 1.0 - 2.0 條件下,quercetin 在 C₃上 OH 維 持質子化狀態,因此未顯著增加 catechol 環上的電子密度,與 rutin 與 taxifolin 相同,因此反應速率應無太大差異,quercetin、rutin 及 taxifolin 之 k₀ 值分別為 $3.5 \times 10^2 \times 3.4 \times 10^2$ 及 2.84×10^2 M⁻¹s⁻¹,如 Table 8 所示。

本實驗室過去曾探討 flavonoids 與 $Ru(NH_3)_5L^{3+}$ 錯合物的氧化還 原動力學,但無法偵測 pH \geq 7.0 的反應速率,除了 $Ru(NH_3)_5L^{3+}$ 錯合

46

物在中性溶液中所可能造成的 disproportionation 反應外,主要原因乃 是 Ru(III) 錯合物的反應活性太高之緣故,由於 Ru(NH3)5L3+/2+ 與 Co(edta)^{-/2-}之還原電位相當接近,例如 Ru(NH₃)₅isn^{3+/2+}及 Co(edta)^{-/2-} 之 E1/2 分別為 0.38 及 0.37 V,因此 eq.(17)之反應能障(平衡常數)對兩 系統而言應差不多相同,因此根據 Marcus 理論[41], $Ru(NH_3)_{5L}^{3+}$ 及 Co(edta) 之內在活性(intrinsic reactivity)及反應(eq.(17))之電荷效應, 應是造成兩系統反應速率差異的因素, $Ru(NH_3)_{sisn}^{3+/2+}$ 與 Co(edta)^{-/2-} 之自身氧化還原速率常數(kex)分別為 1.1×10⁵[41]及 3.5×10⁻⁷ M⁻¹s⁻¹ [55]。此差異可使 Ru(NH3)5isn³⁺錯合物以氧化速率大過 Co(edta) 錯合 物至少 10^5 倍,另外 Ru(NH₃)₅L³⁺與 flavonoids 反應,將兩相反電荷(+3, -2)的反應物拉到一起,在離子對形成步驟將遠較 Co(edta) 與 flavonoids 的相同電荷(-1, -2)為有利,此因素亦將相當程度提升 Ru(NH3)5L3+錯合物的氧化速率。錯合物的穩定性及低反應活性,可 使 Co(edta) 错合物成為在鹼性溶液中探討 flavonoids 還原反應的良好 氧化劑。

47

第五章、結論

- quercetin、rutin 及(±)-taxifolin 在鹼性溶液中可進行雙電子氧化,
 形成 quinone 產物。
- 在酸性條件下, quercetin 在 C₃ 上 OH 沒有去質子化,因此 catechol 環上的電子密度不會增加,所以在 k₀值與其它 flavonoids 無太大 差異。
- quercetin 的反應速率常數 k₂比 rutin 及 taxifolin 大了 10³ 倍以上, 主要是由於 C₃上的羥基去質子化和 pyrone 與 catechol 之間的共振 效應的影響。
- 4. Co(edta) 错合物的穩定性及低反應活性使其成為鹼性溶液中,探討 flavonoids 氧化反應的良好選擇。

第六章、參考文獻

- [1] P. B. Lane, S. S. Gross, Sci. and Med. 8 (2002) 96.
- [2] J. Weaver, S. Porasuphatana, P. Tsai, G. L. Cao, T. A. Budzichowski,

L. J. Roman, G. M. Rosen, J. Pharmacology and Experimental Therapeutics 302 (2002) 781.

- [3] P. Greenwald, C. K. Clifford, J. A. Milner, *Eur. J. Cancer*, 37 (2001) 948.
- [4] E. Cadenas, A. Boveris, C. I. Ragan, A. O. M. Stoppani, Arc. Biochem. Biophys, 180 (1997) 248.
- [5] F. Visioli, L. Borsani, C. Galli, *Cardiovascular Research*, 47 (2000) 419.
- [6] Y. H. Wei, H. C. Lee, Oxidative stress and Mtdna Mutation in Aging, (2002) 617.
- [7] B. Halliwell, Chem. Phys. Lipids, 44 (1987) 327.
- [8] J. M. McCord, I. Fridovich, Free Rradic. Biol. Med., 5 (1988) 363.
- [9] T. D. H. Bugg, Tetrahedron, 59 (2003) 7075.
- [10] L. M. Lin, M. H. Lien, A. Yeh, Int. J. Chem. Kin., 37 (2005) 126.
- [11] S. Fried, R. D. Kleene, Notes 62 (1940) 3258.
- [12] J. B. Harborne, C. A. Williams, *Phytochemistry*, 55 (2000) 481.
- [13] D. P. Ormrod, L. G. Landry, P. L. Conklin, *Physiologia Plantarum*, 93 (1995) 602.
- [14] H. Arima, H. Ashida, G. Danno, *Biosci. Biotechnol. Biochem.*, 66 (2002) 1009.
- [15] L. Wang, Y. C. Tu, T. W. Lian, J. T. Hung, J. H. Yen, M. J. Wu, J. Agric. Food Chem., 54 (2006) 9798.
- [16] C. Bosetti, M. Rossi, J. K. McLaughlin, E. Negri, R. Talamini, P. Lagiou, M. Montella, V. Ramazzotti, S. Franceschi, *Cancer Epidemiol Biomarkers Prev*, 16 (2007) 98.
- [17] D. Grassi, C. Lippi, S. Necozione, G. Desideri, C. Ferri, Am. J. Clin. Nutr., 81 (2005) 611.
- [18] S. T. Francis, K. Head, P. G. Morris, I. A. Macdonald, J. Cardiovasc. *Pharmacol.*, 47 (2006) S210-S214.
- [19] D. B. McPhail, R. C. Hartlry, P. T. Gardner, G. G. Duthie, J. Agric. Food Chem., 51 (2003) 1684.
- [20] P. G. Pietta, J. Nat. Prod., 63 (2000) 1035.

- [21] J. P. Cornard, J. C. Merlin, J. Inorg. Biochem., 92 (2002) 19.
- [22] M. Bishnoi, K. Chopra, S. K. Kulkarni, Fundam. Clin. Pharmacol., 21 (2007) 521.
- [23] J. E. Brown, H. Khodr, R. C. Hider, C. A. Rice-Evans, *Biochem. J.*, 330 (1998) 1173.
- [24] J. L. Witztum, D. J. Steinberg, J. Clin. Invest., 88 (1991) 1785.
- [25] I. F. Cheng, K. Breen, *BioMetals*, 13 (2000) 77.
- [26] S. Caillet, H. Yu, S. Lessard, G. Lamourrux, D. Ajdukovic, M. Lacroix, *Food Chem.*, 100 (2007) 542.
- [27] C. A. Rice-Evans, N. J. Miller, G. Paganga, *Trends Plant Sci.*, 2 (1997) 152.
- [28] J. Sung, K. S. Huang, T. J. Lai, Y. Y. Chen, C. Y. Lin, A. Yeh, D. Wu, *Inorg. Chem.*, 47 (2008) 11361.
- [29] C. S. Yang, J. M. Huang, H. L. Newmark, Annu. Rev. Nutr. 21 (2001) 381.
- [30] P. Hollmam, M. Hertog. M. Katan, Food Chem. 57 (1996) 43.
- [31] B. Havsteen, Biochem. Pharmacol. 32 (1983) 1141.
- [32] M. Chopra, P. E. Fitzsimons, J. J. Strain, D. I. Thurnham, A. N. Howard, *Clin. Chem.* 46 (2000) 1162.
- [33] M. A. Pereira, C. J. Grubbs, L. H. Barnes, H. Li, G. R. Olson, I. Eto, *Carcinogenesis* 17 (1996) 1305.
- [34] J. Tang, J. Guo, J. Yuan, *LWT*, 41 (2006) 1060.
- [35] M. G. Hertog, P. C. Hollman, M. B. Katan, D. Krombout, *Nutr. Cancer*, 20 (1993) 21.
- [36] R. Guo, P. Wei, W. Liu, J. Pharm. Biomed. Anal., 43 (2007) 1580.
- [37] B. D. Oomah, G. Mazza, J. Agric. Food Chem., 44 (1996) 1746.
- [38] P. Janeiro, O. Corduneanu, A. M. O. Brett, *Electroanalysis.*, 17 (2005) 1059.
- [39] P. Trouillas, P. Marsal, D. Siri, R. Lazzaroni, C. Calliste, A. Marfak, J. L. Duroux, *Food Chem.*, 88 (2004) 571.
- [40] C. Creutz, H. Taube, J. Am. Chem. Soc., 95 (1973) 1086.
- [41] M. J. Akhtar, A. Haim, *Inorg. Chem.*, 27 (1988) 1608.

- [42] H. E. Toma, J. M. Malin, Inorg. Chem., 12 (1973) 1039.
- [43] U. Furholz, A. Haim, J. Phys. Chem., 90 (1986) 3686.
- [44] C. H. Hung, H. Y. Hung, J. Y. Liao, A. Yeh, *Inorg. Chem.*, 29 (1990) 2940.
- [45] H. Y. Hung, W. J. Chen, C. C. Yang, A. Yeh, *Inorg. Chem.*, 30 (1991) 1862.
- [46] M. H. Chen, S. Lee, S. Liu, A. Yeh, Inorg. Chem., 35 (1996) 2627.
- [47] C. N. Chen, M. C. Wu, A. Yeh, Thomas Y. R. Tsai, *Inorg. Chim. Acta*, 267 (1998) 81.
- [48] F. D. Dwyer, E. C. Gyarfas, D. P. Meller, J. Phys. Chem., 63 (1959) 371.
- [49] L. H. Vogt, J. L. Katz, S. E. Wiberley, Inorg. Chem., 4 (1965) 1157.
- [50] R. Farina, R. G. Wilkins, Inorg. Chem., 7 (1968) 514.
- [51] H. E. Toma, J. M. Malin, Inorg. Chem., 12 (1973) 1039.
- [52] A. I. Potapovich, V. A. Kostyuk, *Biochemistry*, 68 (2003) 514.
- [53] A. Seidell, W.F. Linke, "Solubilities of inorganic Compounds", 4th., van Nostrand, Princeton, N. J. (1964) 1228.
- [54] 東海大學化學系, 黃代莉碩士論文
- [55] Y. A. Im, D. H. Busch, J. Am. Chem. Soc., 83 (1961) 3357.

(Appendix One)

Table A1、pH = 1.0 - 2.0, Ru(NH₃)₅(pzCH₃)⁴⁺ 錯合物與 quercetin

$[H^+]$	[H ₂ X],M	k_{obs},s^{-1}	$[\mathrm{H}^+]$	[H ₂ X],M	k_{obs},s^{-1}
0.01	3.00×10 ⁻⁴	27.3	0.07	3.00×10^{-4}	4.03
	6.00×10 ⁻⁴	54.5		6.00×10^{-4}	8.14
	8.99×10 ⁻⁴	80.8		9.00×10 ⁻⁴	12.2
	1.20×10^{-3}	108		1.21×10^{-3}	16.4
0.03	3.00×10 ⁻⁴	9.20	0.10	3.02×10^{-4}	3.21
	6.00×10 ⁻⁴	18.2		6.03×10 ⁻⁴	6.46
	9.03×10 ⁻⁴	27.7		9.01×10 ⁻⁴	9.63
	1.20×10^{-3}	36.6		1.20×10^{-3}	12.9
0.05	3.01×10 ⁻⁴	5.61	1.0	3.01×10 ⁻⁴	3.36
	6.04×10 ⁻⁴	11.6		6.00×10 ⁻⁴	6.65
	8.99×10 ⁻⁴	16.6		9.00×10 ⁻⁴	10.0
	1.20×10 ⁻³	22.1		1.20×10^{-3}	13.4

還原反應之 kobs^a

a. $\mu = 1.0 \text{ M HClO}_4/\text{LiClO}_4$, $T = 25^{\circ}\text{C}$

Table A2、pH = 1.0 - 2.0, Ru(NH₃)₅(pzCH₃)⁴⁺ 錯合物與 taxifolin

$[\mathrm{H}^+]$	$[H_2X],M$	k_{obs}, s^{-1}	$[\mathrm{H}^+]$	$[H_2X],M$	k_{obs}, s^{-1}
0.01	1.50×10^{-4}	4.68×10 ⁻¹	0.07	1.51×10 ⁻⁴	1.42×10 ⁻¹
	2.52×10^{-4}	8.19×10 ⁻¹		2.50×10 ⁻⁴	2.34×10 ⁻¹
	3.51×10 ⁻⁴	1.14		3.49×10 ⁻⁴	3.27×10 ⁻¹
	4.50×10^{-4}	1.46		4.50×10 ⁻⁴	4.21×10 ⁻¹
0.03	1.50×10^{-4}	2.26×10 ⁻¹	0.10	1.51×10 ⁻⁴	1.24×10 ⁻¹
	2.48×10^{-4}	3.71×10 ⁻¹		2.48×10 ⁻⁴	2.06×10 ⁻¹
	3.50×10^{-4}	5.27×10 ⁻¹		3.50×10 ⁻⁴	2.89×10 ⁻¹
	4.50×10 ⁻⁴	6.75×10 ⁻¹		4.49×10 ⁻⁴	3.71×10 ⁻¹
0.05	1.50×10^{-4}	1.64×10 ⁻¹			
	2.51×10^{-4}	2.76×10 ⁻¹			
	3.50×10 ⁻⁴	3.86×10 ⁻¹			
	4.50×10 ⁻⁴	4.94×10 ⁻¹			

還原反應之 kobs^a

a. $\mu = 1.0 \text{ M HClO}_4/\text{LiClO}_4$, $T = 25^{\circ}\text{C}$

Table A3、pH = 9.00-11.86, Co(edta) 錯合物與 quercetin 氧化反應

pН	Co(edta),M	k_{obs},s^{-1}	pН	Co(edta),M	k_{obs},s^{-1}
9.00	1.01×10^{-3}	6.82×10^{-3}	10.0	1.00×10^{-3}	6.52×10^{-2}
	1.50×10^{-3}	1.02×10^{-2}		1.50×10^{-3}	8.38×10 ⁻²
	2.01×10 ⁻³	1.40×10^{-2}		2.04×10^{-3}	1.28×10^{-1}
	2.53×10 ⁻³	1.88×10 ⁻²		2.52×10 ⁻³	1.55×10 ⁻¹
9.15	1.00×10 ⁻³	9.51×10 ⁻³	10.15	1.00×10 ⁻³	8.64×10 ⁻²
	1.50×10^{-3}	1.44×10^{-2}		1.50×10^{-3}	1.24×10^{-1}
	2.01×10^{-3}	2.02×10^{-2}		2.01×10^{-3}	1.70×10^{-1}
	2.51×10 ⁻³	2.60×10^{-2}		2.52×10 ⁻³	2.09×10 ⁻¹
9.30	1.00×10^{-3}	1.07×10^{-2}	10.31	1.00×10^{-3}	1.19×10 ⁻¹
	1.51×10^{-3}	1.65×10^{-2}		1.51×10^{-3}	1.80×10^{-1}
	2.03×10 ⁻³	2.29×10 ⁻²		2.00×10^{-3}	2.37×10 ⁻¹
	2.51×10 ⁻³	2.92×10 ⁻²		2.52×10 ⁻³	2.86×10 ⁻¹
9.45	1 02×10 ⁻³	1.48×10^{-2}	10.45	1.01×10^{-3}	1.64×10^{-1}
9.15	1.51×10^{-3}	2.16×10^{-2}	10.15	1.01×10^{-3}	2.35×10^{-1}
	2.01×10^{-3}	2.10^{-10} 2.95×10 ⁻²		2.01×10^{-3}	3.15×10^{-1}
	2.01×10^{-3}	3.79×10^{-2}		2.01×10^{-3}	3.15×10^{-1}
	2.31*10	5.79*10		2.35*10	5.75*10
9.60	1.00×10 ⁻³	1.78×10 ⁻²	10.60	1.00×10 ⁻³	1.67×10 ⁻¹
	1.50×10 ⁻³	2.79×10 ⁻²		1.51×10^{-3}	2.49×10 ⁻¹
	2.00×10^{-3}	3.85×10 ⁻²		2.00×10 ⁻³	3.26×10 ⁻¹
	2.51×10 ⁻³	4.88×10 ⁻²		2.50×10 ⁻³	4.19×10 ⁻¹
0.80	1.02×10^{-3}	2.04×10^{-2}	10.96	1.00×10^{-3}	2.12×10^{-1}
7.00	1.02×10^{-3}	2.94^{10}	10.00	1.00^{10} $1.50^{10^{-3}}$	2.12×10^{-1}
	1.30×10 2.00 × 10 ⁻³	4.42×10		1.30×10 2.01 × 10 ⁻³	5.23×10
	2.00×10^{-3}	0.03×10		2.01×10 2.50×10 ⁻³	$4.1/\times 10$
	2.50×10	/.45×10 ⁻		2.30×10 ⁻³	5.26×10

 $\gtrsim k_{obs}{}^a$

a. $\mu = 0.1 \text{ M LiClO}_4 \cdot \text{T} = 25^{\circ}\text{C}$

pН	Co(edta),M	k_{obs}, s^{-1}	pН	Co(edta),M	k_{obs}, s^{-1}
11.10	1.00×10^{-3}	3.26×10 ⁻¹	11.62	1.02×10^{-3}	5.81×10 ⁻¹
	1.50×10^{-3}	4.96×10 ⁻¹		1.51×10^{-3}	8.60×10 ⁻¹
	2.01×10 ⁻³	6.53×10 ⁻¹		2.00×10 ⁻³	1.14
	2.50×10 ⁻³	8.19×10 ⁻¹		2.50×10 ⁻³	1.42
11.36	1.00×10 ⁻³ 1.51×10 ⁻³ 2.00×10 ⁻³ 2.51×10 ⁻³	4.41×10 ⁻¹ 6.68×10 ⁻¹ 8.83×10 ⁻¹ 1.11	11.86	1.00×10 ⁻³ 1.50×10 ⁻³ 2.00×10 ⁻³ 2.50×10 ⁻³	6.22×10 ⁻¹ 1.04 1.36 1.76

a. $\mu = 0.1 \text{ M LiClO}_4$, $T = 25^{\circ}C$

pН	Co(edta),M	k_{obs}, s^{-1}	pН	Co(edta),M	k_{obs}, s^{-1}
10.01	4.01×10^{-3}	8.07×10 ⁻⁵	10.81	2.01×10^{-3}	1.84×10^{-4}
	5.02×10 ⁻³	1.06×10^{-4}		3.00×10 ⁻³	2.85×10 ⁻⁴
	6.01×10 ⁻³	1.30×10 ⁻⁴		4.00×10^{-3}	3.40×10 ⁻⁴
	7.00×10 ⁻³	1.39×10 ⁻⁴		5.01×10 ⁻³	4.65×10 ⁻⁴
10.22	2.01×10 ⁻³	6.03×10 ⁻⁵	10.99	2.00×10^{-3}	2.30×10 ⁻⁴
	3.02×10 ⁻³	9.62×10 ⁻⁵		3.00×10 ⁻³	3.42×10 ⁻⁴
	4.00×10^{-3}	1.18×10 ⁻⁴		4.00×10^{-3}	4.79×10 ⁻⁴
	5.01×10 ⁻³	1.56×10 ⁻⁴		5.01×10 ⁻³	5.96×10 ⁻⁴
10.50	2.01×10 ⁻³	1.23×10 ⁻⁴	12.00	2.00×10 ⁻³	3.97×10 ⁻⁴
	3.01×10 ⁻³	1.78×10^{-4}		3.09×10 ⁻³	6.04×10 ⁻⁴
	4.00×10^{-3}	2.27×10 ⁻⁴		4.00×10 ⁻³	8.03×10 ⁻⁴
	5.02×10 ⁻³	3.08×10 ⁻⁴		5.01×10 ⁻³	1.09×10 ⁻³

Table A4、pH = 10.01-10.99, Co(edta)
 错合物與 rutin 氧化反應之 k_{obs}^{a}

a. $\mu = 0.1 \text{ M LiClO}_4 \text{ , } T = 25^{\circ}\text{C}$

Table A5、[OH⁻] = 0.01-0.1M, Co(edta)⁻ 錯合物與 taxifolin 氧化

[OH ⁻]	Co(edta),M	k_{obs}, s^{-1}	[OH ⁻]	Co(edta),M	k_{obs}, s^{-1}
0.01	4.00×10^{-3}	1.12×10^{-4}	0.05	4.00×10 ⁻³	2.44×10 ⁻⁴
	5.00×10 ⁻³	1.48×10 ⁻⁴		5.04×10 ⁻³	3.25×10 ⁻⁴
	6.00×10 ⁻³	1.77×10^{-4}		6.00×10 ⁻³	3.73×10 ⁻⁴
	7.01×10 ⁻³	2.03×10 ⁻⁴		7.05×10 ⁻³	4.47×10 ⁻⁴
0.02	4.04×10^{-3}	1.63×10 ⁻⁴	0.07	4.01×10 ⁻³	3.22×10 ⁻⁴
	5.00×10 ⁻³	2.01×10 ⁻⁴		5.04×10 ⁻³	4.05×10 ⁻⁴
	5.99×10 ⁻³	2.41×10 ⁻⁴		5.98×10 ⁻³	4.79×10 ⁻⁴
	7.00×10 ⁻³	2.82×10 ⁻⁴		7.05×10 ⁻³	5.62×10 ⁻⁴
0.03	4.02×10 ⁻³	1.93×10 ⁻⁴	0.10	4.00×10 ⁻³	4.12×10 ⁻⁴
	5.01×10 ⁻³	2.41×10 ⁻⁴		5.00×10 ⁻³	5.25×10 ⁻⁴
	6.00×10 ⁻³	2.88×10 ⁻⁴		5.98×10 ⁻³	6.24×10 ⁻⁴
	7.00×10 ⁻³	3.36×10 ⁻⁴		7.00×10 ⁻³	7.33×10 ⁻⁴

反應之 k_{obs}^a

a. $\mu = 0.1 \text{ M LiClO}_4$, $T = 25^{\circ}C$

附錄二

(Appendix Two)