
東 海 大 學

工業工程與經營資訊研究所

碩士論文

以改良式利普希茨最佳化演算法求解

運輸車隊維修排程問題

研 究 生：葉政祐

指導教授：曾宗瑤 副教授

黃嘉彥 教授

中 華 民 國 九 十 九 年 七 月

An Improved Lipschitz optimization algorithm
for solving transportation fleet maintenance

scheduling problem

By
Cheng-Yu Yeh

Advisor: Prof. Tsueng-Yao Tseng
 Prof. Jia-Yen Huang

A Thesis
Submitted to the Institute of Industrial Engineering and Enterprise

Information at Tunghai University
in Partial Fulfillment of the Requirements

for the Degree of Master of Science
in

Industrial Engineering and Enterprise Information

July 2010
 Taichung , Taiwan , Republic of China

I

An Improved Lipschitz optimization algorithm for solving
transportation fleet maintenance scheduling problem

Student: Cheng-Yu Yeh Advisor: Prof. Tsueng-Yao Tseng

Prof. Jia-Yen Huang

Department of Industrial Engineering and Enterprise Information

Tunghai University

ABSTRACT
In this study, we propose an improved Lipschitz optimization algorithm secure a

near-optimal solution for the Transportation Fleet Maintenance Scheduling Problem

(TFMSP). By employing the proposed algorithm and a fine-tune procedure based on

slope-checking, step-size comparison mechanisms, the search steps can be significantly

reduced and the solutions can be secured within a very short run time. We provide a

numerical example to demonstrate the efficiency of the proposed algorithm. To compare the

computational performance, we test these search algorithms by random experiments with

different values of the major setup cost and different size of vehicle groups. Based on our

numerical experiments, we conclude that the proposed search algorithm can significantly

outperform the dynamic Lipschitz optimization algorithm presented by Yao and Huang (2007)

in run time as well as the quality of solutions.

Keywords: Lipschitz, optimization algorithm, maintenance scheduling

II

以改良式利普希茨最佳化演算法求解運輸車隊維修排程問題以改良式利普希茨最佳化演算法求解運輸車隊維修排程問題以改良式利普希茨最佳化演算法求解運輸車隊維修排程問題以改良式利普希茨最佳化演算法求解運輸車隊維修排程問題

學生：葉政祐 指導教授：曾宗瑤 副教授

黃嘉彥 教授

東海大學工業工程與經營資訊研究所

摘要摘要摘要摘要

在本研究中，提出以 Evtushenko演算法為架構的一改良式利普希茨最佳化演算法，

並用以求解運輸車對維修排程問題。透過本研究所提出之演算法及能夠確保搜尋速度的

步距比較和斜率判斷機制，可使搜尋時間及次數大幅降低，提高搜尋的效率。而在不同

車隊大小以及維修的整備成本考量之下，本研究提出隨機數值實驗，並從中得到此改良

式利普希茨最佳化演算法不論是在搜尋速度或是求解品質皆比過去研究還要好之結論。

關鍵字詞關鍵字詞關鍵字詞關鍵字詞：：：：利普希茨利普希茨利普希茨利普希茨、、、、最佳化演算法最佳化演算法最佳化演算法最佳化演算法、、、、維修排程維修排程維修排程維修排程

III

TABLE OF CONTENTS

1. Introduction ..1

2. Literature review ..2

2.1 Transportation fleet maintenance scheduling problem.........................2

2.2 Goyal and Gunasekaran’s method ..3

2.3 Yao and Huang’s junction-point search algorithm................................4

2.4 Huang and Yao’s dynamic Lipschitz optimization algorithm...............5

2.5 A brief summary..6

3. The mathematical model for the TFMSP...7

3.1 The assumptions and notation...7

3.2 The mathematical model...8

4. Theoretical analysis..10

4.1 The closed form for finding maintenance frequency..........................10

4.2 The upper and lower bounds...12

4.3 A brief summary..16

5. The proposed improved LipSchitz optimization algorithm.........................17

5.1 A review on the Evtushenko algorithm...17

5.2 A procedure for expediting the Evtushenko algorithm.......................20

5.2.1 The proposed algorithm at the starting point22

5.2.2 Three possible situations when searching for a local minimum..23

5.2.3 Two possible situations when a local minimum is located25

5.3 A fine-tune search procedure ..27

5.4 A summary of the improved Lipschitz optimization algorithm..........31

6. Numerical experiments ..35

6.1 A demonstrative example..35

6.2 Numerical results from random instances...37

7. Conclusion and future research..41

Reference...42

IV

LIST OF FIGURES

Figure 1. The function curve of the gi(T) function ...11

Figure 2. The lower and upper bounds are given by the two values of T where

the objective function of (R1) equals to v(FP).....................................15

Figure 3. Lipschitz function..17

Figure 4. An increasing curve trend leads T
⌣

(k) to be out of lower bound........22

Figure 5. Normal situation of the proposed algorithm23

Figure 6. Backward search without missing local minimum24

Figure 7. Forward search missing local minimum ...25

Figure 8. Backward search missing local minimum...25

Figure 9. Two possible situations when a local minimum is located26

Figure 10. The step size determined by Evtushenko algorithm is larger than the

jumping step size...28

Figure 11. Evtushenko step size smaller than the jumping step size..................28

Figure 12. Use T
⌣

(k) to be the next step while the proposed algorithm is still in

progress (Backward search situation)...29

Figure 13. Backward search for T
⌣

(k) is not needed while current step is

propelled by Evtushenko algorithm and across local minimum30

Figure 14. A flow chart for determination of the next step31

Figure 15. Optimal function value curve of demonstrative example36

V

LIST OF TABLES

Table 1. The data set of the five-group example...35

Table 2. The settings of the parameters in our random experiments37

Table 3. Experimental results for the smaller-size (m = 3, 5 and 7) problems...39

Table 4. Experimental results for the larger-size (m = 10, 25 and 50) problems40

1

1. Introduction

In the past decade, logistics service providers have generally experienced

low profit margins due to the intensive competition that exists in the industry

and prices skyrocketing of the crude oil. It is necessary to have a fleet

maintenance scheduled economically. A well planned maintenance schedule can

not only bring down the cost but also raise the utilization rate of a transportation

fleet.

In this study, we devote our efforts to investigate a mathematical model for

determining the economic maintenance frequency of a transportation fleet. We

name this problem as “the Transportation Fleet Maintenance Scheduling

Problem”, which is abbreviated as the TFMSP. In the TFMSP, the decision

maker needs to determine T (i.e., the basic period) and {kl,k2,…,km} (i.e., the

frequency of maintenance for vehicles in each group) so as to minimize the total

costs incurred per unit time.

The mathematical model for the TFMSP was first proposed by Goyal and

Gunasekaran (1992) and refuted by Dekker and Wildeman (1995). Huang and

Yao (2007) proposed a dynamic Lipschitz algorithm to secure an ε-optimal

solution rapidly, but the search process can be meliorated for a better searching

procedure. Therefore, in this study, we propose an improved Lipschitz

optimization algorithm which can enhance the searching efficiency.

This paper is structured as follows. First, we review the studies in the

literature for the TFMSP in chapter 2. The mathematical model of TFMSP is

presented in chapter 3. Then, in chapter 4, we present on the optimal cost curve

of the problem. Based on Huang and Yao’s (2007) study, the lower and upper

bounds can be defined. An improved Lipschitz optimization algorithm with

slope-checking, step-size comparison mechanisms is proposed in chapter 5. In

the first part of Section 6, a numerical example is given to demonstrate the

implementation of the proposed algorithm. Then, in the second part of Section 6,

randomly generated examples are presented to show that the proposed algorithm

significantly outperforms the search procedure of the traditional Lipschitz

algorithm. Finally, we address our concluding remarks in chapter 7.

2

2. Literature review

In this chapter, we review the literature of the studies in the Transportation

Fleet Maintenance Scheduling Problem.

2.1 Transportation fleet maintenance scheduling problem

In the past, Goyal and Gunasekaran (1992) mentioned some researches

have been dealt with the determining of economic maintenance scheduling in

management science/operations research/industrial engineering (see Luss and

Kander 1974, Luss 1976, Christer and Doherty 1977, Sule and Harmon 1979,

Goyal and Kusy 1985). Recently, many researchers have been addressing their

efforts to the studies on the scheduling of production facilities or machines (see

Wildeman and Dekker 1997, Dekker, et al. 1997, Anily, Glass and Hassin 1998,

1999, Amotz, et al. 2002).

However, these studies did not take the characteristics of maintenance for

the vehicles in a transportation fleet into consideration. We note that the

objective functions in these studies are significantly different in their theoretical

properties from that for the TFMSP. On the other hand, researchers pay limited

attention to the problem of determining the operating and maintenance

schedules for a transportation fleet.

Although some of the researches showed that the aircraft fleet maintenance

scheduling problem has been raised to reduce the cost for many years, the

constraints are completely different due to the special characteristics such as

heterogeneous fleet of aircraft, the regulations of routine inspection given by

Federal Aviation Administration, the consideration of flight hours and number

of take-off and landing cycles (Sriram and Haghani, 2003). Besides, the aircraft

maintenance scheduling is related to assignment (Moudani and Mora-Camino,

2000), maintenance routing and crew scheduling as well (Papadakos, 2009),

which is different from the TFMSP.

3

2.2 Goyal and Gunasekaran’s method

Notation

Z total cost per unit of time

m number of groups of vehicles

T basic maintenance cycle time

S fixed cost incurred in each maintenance cycle for the i th group of vehicles

fi(t) operating cost per unit of time at t time units after the last maintenance

ai fixed operating cost per unit of time

bi increased in the operating cost per unit of time

si fixed cost of maintenance for a vehicle

ni number of vehicles in the group

Xi time required for maintenance work on the vehicle

ki an integer which when multiplied by the basic maintenance cycle time T

gives the maintenance cycle time for the vehicles in the group

Yi utilization factor of a vehicle on the road

zi total cost per unit time for a vehicle

Goyal and Gunasekaran (1992) proposed an approach for TFMSP based on

two equations that are derived by setting the first derivative of Z(T,ki) with

respect to the decision variables to zero:

()

0

1

()
min (,)

i i iY Tk X
m i i i

i i
i i

s a bt dtS
Z T k n

T Tk

−

=

+ +
= +

∫∑ , T>0 and {1,2,3, }ik ∈ ⋯ (1)

1
1 2

2

1

((()) /)
(, , ,) 2

m

i i i i i i i i i
i

m m

i i i i
i

S n s X Y a b X Y k
T k k k

n b k Y

=

=

  + − −    =       

∑

∑
⋯ (2)

1 2((0.5))i i i i i i i
i

i i

s X Y a b X Y
k

TY b

− −
=

 (3)

Step 1.For the first iteration, assume (0)
i ik k= = 1 for all i, and obtain the first

estimate of (1)T T= from (2). At (1)T T= , determine (1)
i ik k= from

(3) for all i. If (1)
ik values are not integers, then select the nearest

4

non-zero integer.

Step 2.Using (0)
i ik k= from (3) for i=1,…,m, we obtain (2)T T= from (2) and

then (2)
i ik k= from (3) using (2)T T= . Repeat the process until the rth

iteration and stop when () (1)r r
i ik k −= for i=1,…,m. The economic policy

is obtained at * ()rT T= and * ()r
i ik k=

Later, in van Egmond, Dekker and Wildeman’s (1995) paper, they have a

full discussion on Goyal and Gunasekaran’s search procedure. They indicate

that the objective function is not convex as Goyal and Gunasekaran (1992)

assumed. And, since the values of ki need to be integers, the determination of

the global optimization is not as easy as Goyal and Gunasekaran suggested.

They also show that it is not necessarily the ki minimizing Z when one rounds (3)

to the nearest non-zero integer. Finally, they indicate that Goyal and

Gunasekaran’s search procedure often stops after its first iteration without

obtaining an optimal solution since they assumed ki = ki
(0) = 1.

These three problems explain why Goyal and Gunasekaran’s solution does

not always obtain an optimal solution. In fact, it is often stuck in a local optimal

solution. However, van Egmond, Dekker and Wildeman’s (1995) only

mentioned that one needs to try different starting values to find the global

optimum, but without proposing a new solution approach to solve the TFMSP.

2.3 Yao and Huang’s junction-point search algorithm

Yao and Huang (2006) conducted a full analysis for the TFMSP. By their

theoretical results, they proposed an efficient search algorithm that finds the

optimal solution within a very short run time and out-performs Goyal and

Gunasekaran’s search procedure.

In their study, they indicated the objective function is piece-wise convex

with respect to T, and they defined “junction point” as a particular value of T

where two consecutive convex curves concatenate. The search algorithm is

based on locating all the junction points and calculating the local-minimum

T
⌣

(k) between each pair of junction points. If T
⌣

(k) exists and within two

5

consecutive junction points, then record the objective function value Ψ (k,T) by

substituting T
⌣

(k) into the objective function and compared with the optimal

value on hand.

Besides, they defined the searching range by a lower and upper bound on

the T-axis that can make the searching algorithm more efficient. They used

Common Cycle approach proposed by Hanssmann (1962) to be the upper bound,

i.e., all the vehicle groups share a common maintenance cycle, and they derived

the lower bound from the optimal objective function value *Ψ and optimal

basic cycle time T*. The iteratively searching procedure stops until T is out of

the lower bound.

2.4 Huang and Yao’s dynamic Lipschitz optimization algorithm

Huang and Yao (2007) devoted their efforts to TFMSP by adopting a

dynamic Lipschitz optimization algorithm that can secure an ε-optimal solution

in a very short run time and outperforms Goyal and Gunasekaran’s search

procedure.

In their study, they first conducted theoretical analysis on the mathematical

model of the TFMSP. Based on their theoretical results, the important

foundation is then established to show that the objective function of the TFMSP

is Lipschitz. Next, they employed a relaxed problem to solve the TFMSP. If the

solution is not within an allowance of ε, the Evtushenko algorithm (see Horst

and Pardalos, 1995) is then applied as the Lipschitz optimization tool after

locating the lower and upper bounds by some line search methods (e.g.,

bisection; Bazaraa, et al., 1993).

According to their numerical experiments results, one may discover that

the Lipschitz optimization algorithm is significantly better than Goyal and

Gunasekaran’s method. However, due to the nature of Evtushenko algorithm,

the searching step-size will become very small while the objective function

value on hand is better than the existing one, which lead to great number of

searching iterations, the searching procedures will be endured as well.

6

2.5 A brief summary

To the best of the authors’ knowledge, there exists few researches deal with

transportation fleet maintenance scheduling problem. Although Huang and Yao

proposed a dynamic Lipschitz optimization algorithm which can shorten the run

time compared to a traditional Lipschitz algorithm, it can be further improved

by considering some characteristics of the theoretical properties of the objective

function. In the rest of this study, we will dedicate our efforts to propose an

improved Lipschitz optimization algorithm based on Huang and Yao’s (2007)

study.

7

3. The mathematical model for the TFMSP

In this chapter, before presenting the mathematical model, we first

introduce the assumptions made and the notation used later.

3.1 The assumptions and notation

To discuss the transportation fleet maintenance scheduling problem, we

redefine the following notation for more clarity based on Goyal and

Gunasekaran’s (1992) research.

Z total cost per unit of time

m number of groups of vehicles

T basic maintenance cycle time

S fixed cost incurred in each maintenance cycle

fi(t) operating cost per unit of time at t time units after the last maintenance for a
vehicle of the ith group

ai fixed operating cost per unit of time for a vehicle of the i th group

bi increased in the operating cost per unit of time for a vehicle of the i th group

si fixed cost of maintenance for a vehicle of the i th group

ni number of vehicles of the i th group

Xi time required for maintenance work on each vehicle of the i th group

ki an integer variable; kiT gives the maintenance cycle time for the vehicles of
the i th group

Yi utilization factor of a vehicle of the ith group on the road

There are m groups of vehicles, and the number of vehicles is denoted as ni

for the i th group. In the TFMSP, the decision maker plans the schedules of

maintenance for vehicle groups in some basic period, denoted by T (e.g., in days,

weeks, or bi-weeks, etc.). The maintenance work of vehicles in a group is

executed at a fixed, equal-time interval that is called the maintenance cycle for

that group of vehicles. The vehicles in the i th group are sent for maintenance

once in ki basic periods, where ki is positive integer. Therefore, kiT is

maintenance cycle for vehicles in the i th group. We note that the model for the

TFMSP is for preventive maintenance, and the model does not take unplanned

8

fleet vehicle failures into consideration. Therefore, the maintenance capacity is

not limited resource since it requires less man-power and maintenance time for

routine maintenance schedule.

3.2 The mathematical model

With regard to costs of the TFMSP, we consider two categories: operating

cost and the maintenance cost. The operating cost of a vehicle depends on the

length of the maintenance cycle and it is assumed to increase linearly with

respect to time since the maintenance work on the vehicle. Specifically, the

operating cost at time t after the last maintenance for a vehicle in group i is

given by fi(t) = ai + bit, where ai is the fixed cost and bi indicates the increase in

the operating cost per unit of time. In addition, for each vehicle in group i, we

assume that it takes Xi units of time for its maintenance work and Yi as the

utilization factor of a vehicle in the i th group on the road, where Xi and Yi are

known constants (One may refer to Yanagi, 1992 for further discussions on the

utilization factor of a vehicle.). Accordingly, the actual time during which a

vehicle can operate is equal to Yi(kiT－Xi), and the total operating cost for a

vehicle in group i is given by
() ()

0 0
() ()

i i i i i iY k T X Y k T X

i i if t dt a b t dt
− −

= +∫ ∫

= Yi(ai – bi Xi Yi) kiT + 0.5 Yi
2 ki

2T2 – Xi Yi(ai – 0.5bi Xi Yi)

Notice that, the expression above is the integral outcome for total operating cost,

and we do not go deep into the meaning for each term.

On the other hand, the average fixed cost of maintenance for a vehicle in

group i is given by si /(kiT). Besides, as maintenance work is carried out at

intervals of T, a fixed cost, denoted by S, will be incurred for all vehicle groups

scheduled for maintenance in each basic period. We define the average total cost

1 2 ,
1

({ , , , },) : ()
m

m i i
i

S
Z k k k T k T u

T =

= + Φ +∑⋯ , where 1
2(,) i i

i i i i i
i

n C
k T n C k T

k T
Φ = + ,

9

1 (0.5)i i i i i i i iC s X Y a b X Y= − − , 2
2 0.5i i iC bY= , and

1

()
m

i i i i i i
i

u nY a b X Y
=

= −∑ is a

constant since all the parameters are given in its expression. Therefore, the

mathematical model for the TFMSP can be expressed as problem (P0).

(P0) 1 2
0, , 1, , 0, , 1, ,

1

inf ({ , , , },) inf (,)
i i

m

m i i
T k i m T k i m

i

S
Z k k k T k T u

T+ +> ∈Ζ = > ∈Ζ = =

   = + Φ +    
∑

⋯ ⋯

⋯ (4)

We note that since the fixed cost for the maintenance of a group of vehicle

si is generally greater than the fixed operating cost ai in practice, it is reasonable

to assume that C1i > 0 with si > ai and Yi < 1 (which is the utilization factor of a

vehicle). Also, it is obvious that C2i > 0.

We define 1 2
1

({ , , , },) : (,)
m

m i i
i

S
k k k T k T

T =

Ψ = + Φ∑⋯ since u is a constant.

Then, solving the problem (P0) is equivalent to obtain the optimal solution for

the problem (P) as follows.

(P) 1 2
0, , 1, , 0, , 1, ,

1

inf ({ , , , },) inf (,)
i i

m

m i i
T k i m T k i m

i

S
k k k T k T

T+ +> ∈Ζ = > ∈Ζ = =

   Ψ = + Φ    
∑

⋯ ⋯

⋯ (5)

In the TFMSP, we dedicated our efforts to minimize the total costs incurred

per unit of time, i.e., to determine the basic period T and the frequency of

maintenance for vehicles in each group for decision maker.

10

4. Theoretical analysis

In this chapter, we conduct theoretical analysis on the mathematical model

of the TFMSP based on Huang and Yao’s (2007) research. In section 4.1, we

discuss the maintenance frequency for each group of vehicles, which can also

provide us more insight about the optimal objective function curve. A relaxation

method of the TFMSP is introduced to set the search range in section 4.2. A

brief summary is presented in section 4.3.

4.1 The closed form for finding maintenance frequency

As presented by Huang and Yao (2007), the right-side of (5), i.e., (,)i ik TΦ ,

which has the following properties for 0, {1, , }T i m> ∈ … with given ik +∈Ζ .

1. (,)i ik TΦ is strictly convex;

2. (,)i ik TΦ has a minimum for * /i iT x k= with *
ix given by:

*
1 2i i ix C C= (6)

3. The function (,)i ik TΦ obtains its minimal objective function value by

1 22 i i in C C (7)

Moreover, Huang and Yao defined a new function)(Tgi by taking the

optimal value of ki at any value 'T >0 for the function (,)i ik TΦ as follows.

{ }() : inf (,)
i

i i i
k

g T k T
+∈Ζ

= Φ (8)

Therefore, the function)(Tgi is a curve that concatenates *(('), ')i ik T TΦ

where * (')ik T is the optimal value of ki at a given value of 'T T= . By

graphically displaying the)(Tgi curve, one may observe that)(Tgi is actually

the lower envelop of all the functions of (,)i ik TΦ with respect to T.

Besides, one may notice that there is a particular value of T where two

consecutive convex curves (,)i ik TΦ and (1,)i ik TΦ + concatenate. Huang

and Yao defined such points as “junction point” for)(Tgi , and derived a

closed-form for the location of the junction points. They defined the difference

11

function (,)i k T∆ by

1 1 1
2 2 2

(,) (1,) (,)

(1)
(1) (1)

i i i

i i i i i i
i i i i i i

k T k T k T

n C n C n C
n C k T n C kT n C T

k T kT k k T

∆ =Φ + −Φ

= + + − − =− +
+ +

 (9)

and located the junction points by letting (,) 0i k T∆ = as follows.

1
2

2

2((0.5))
()

(1) (1)
i i i i i i i i

i
i i i

C s X Y a b X Y
k

C k k b Y k k
δ

− −
= =

+ +
 (10)

Importantly, such a junction point provides us the information on at “what

value of T” where one should change the value of k so as to obtain the optimal

value for the)(Tgi function.

Figure 1. The function curve of the gi(T) function

Also, Huang and Yao proved the following lemma as an easier way to

obtain the optimal multiplier * ()ik T +∈Ζ for the)(Tgi function for any given

0T> (() (1)i ik kδ δ< − by the closed-form of δi(k) in equation (10)).

Lemma 1. For any given T > 0, an optimal value of * ()ik T +∈Ζ for the)(Tgi

function is given by

* 1
2

2

1 1 4
() 1

2 2
i

i
i

C
k T

C T

 
 = − + +   

 (11)

with .   denoting the upper-entier function.

(1,)i ik TΦ =

(2,)i ik TΦ =

(4,)i ik TΦ =

(3,)i ik TΦ =

()ig T δi(2) δi(3) δi(1)

12

By the rationale discussed above, we know that the)(Tgi function is a

piece-wise convex function since it is made up of several different (,)i ik TΦ

curves. In addition, the average cost of S/T is obviously a convex curve.

Therefore, we further define
1

() ()
m

i
i

S
T g T

T =

Γ = +∑ and rewrite the problem (P)

by

(P1)
0 0

1

inf () inf ()
m

i
T T

i

S
T g T

T> >
=

   Γ = +    
∑ (12)

where the function Γ (T) is the optimal objective function value curve with

piece-wise convex property of a univariate function with respect to T.

4.2 The upper and lower bounds

Based on Huang and Yao’s (2007) study, we employ a relaxation method to

set the search range. By relaxing the constraints ik +∈Ζ by 1ik ≥ , we obtain a

relaxation of (P) in (5), namely (R) as follows.

(R) 1 2 11, 1,..., ; 0 1, 1,..., ; 0
inf ({ , , , },) inf (,)

i i

m

m i iik i m T k i m T

S
k k k T k T

T =≥ = > ≥ = >

   Ψ = + Φ    
∑… (13)

Similarly, we also define gi
(R)(T) as a relaxation of gi(T) in (8) by replacing

ik +∈Ζ with 1ik ≥ , i.e., { }()

1
() : inf (,)

i

R
i i ik

g T k T
≥

= Φ , where 0T> and

1,...,i m= . If we define ()h T by ()

1

() : ()
m

R
i

i

h T S T g T
=

= +∑ , we may consider

()h T is a relaxation of the function Γ (T) defined right before (12). Then, it is

obvious that solving (R) is equivalent to obtain an optimal solution for the

problem (R1) as follows.

(R1)
()

0 0
1

inf () inf ()
m

R
i

T T
i

h T S T g T
> >

=

   = +    
∑ (14)

If we ignore the constraint 1ik ≥ , then ki becomes a continuous variable.

In such a case, for any given value of 0T> , we may easily obtain the optimal

value for 1
2(,) i i

i i i i i
i

n C
k T n C k T

k T
Φ = + by

13

*
1 2

1
()i i ik T C C

T
= (15)

Recall that *
1 2i i ix C C= , which is expressed in (6). When *

iT x≤ , we

have * () 1ik T ≥ , which satisfies the constraint 1ik ≥ . Therefore, gi
(R)(T) obtains

its optimal value as a constant by 1 22 i i in C C for *
iT x≤ .

On the other hand, when *
iT x> , we have * () 1ik T < , and we are forced to

take * () 1ik T = if we take the constraint 1ik ≥ into accounts. By summarizing

both cases, it follows that

*
() 1 2

*
1 2

2 , if .
()

(1,) , if .
R i i i i

i

i i i i i i

n C C T x
g T

T n C T n C T T x

 ≤=Φ = + >
 (16)

Also, we could easily obtain the first derivative of gi
(R)(T): when *

iT x≤ ,
() () 0
R

idg T
dT = , and when *

iT x> ,

() () (1,) 2
1 2

R
i idg T d T

i i i idT dT n C T n CΦ= =− + . (17)

Therefore, we conclude that the function gi
(R)(T) is convex, increasing, and

continuously differentiable on (0,)∞ .

Without loss generality, we assume that * * *
1 2 ... mx x x≤ ≤ ≤ , the strictly

increasing derivative h’(·) is given by

*
12

' 2 * *
2 1 1

1 1

2 *
2 1

1 1

if

() if ,1 1

if

l l

i i i i l l
i i

m m

i i i i m
i i

S
T x

T

h T n C S n C T x T x l m

n C S n C T T x

+
= =

= =

 − ≤   = − + ≤ ≤ ≤ ≤ −        − + ≥    

∑ ∑

∑ ∑

 (18)

By setting the derivative of h’(·) in (18) to zero, we have the following

lemma to locate the optimal solution T(R) for (R1).

Lemma 2. Assume without loss generality that * * *
1 2 ... mx x x≤ ≤ ≤ . If it holds that

* ' *: max{1 : () 0}ii i m h x= ≤ ≤ < , then the optimal solution T(R) of (R1) is given by

14

* *

()
1 2

1 1

i i
R

i i i i
i i

T S n C n C
= =

  = +   
∑ ∑ . (19)

Let v(R) be the optimal objective function value of (R1). Then, v(R) can be

obtained by plugging T(R) into the objective function of the problem (R1). We

note that v(R) serves as a lower bound on the optimal objective function value

of the problem (P).

Sometimes T(R) is the optimal solution for the problem (P), as we show it

by the following lemma.

Lemma 3. Assume without loss generality that * * *
1 2 ... mx x x≤ ≤ ≤ . If it holds that

() *R
mT x≥ , then ({1,…,1}, T(R)) is an optimal solution for the problem (P).

Proof. Since () *R
mT x≥ is an optimal solution of (R1), we have the

corresponding optimal * 1, for 1,...,ik i m= = , by (15). And, obviously, it is also

a feasible solution for the problem (P). Hence, it implies that ({1,…,1}, T(R)) is

an optimal solution for the problem (P). ■

When () *R
mT x< , T(R) may not be an optimal solution of the problem (P).

(This is due to the fact that the values of ki corresponding to T(R) are not

necessary integers. This implies that the optimal solution of (R1) is generally not

feasible for the problem (P).) In such a case, we propose to use Lipschitz

optimization algorithm to search for an optimal solution for (P). Define v(FP)

as the objective function value at a feasible solution of the problem (P). In this

section, we discuss how to use T(R) and v(FP) to determine the search range in

our improved Lipschitz optimization algorithm.

Though T(R) may not be an optimal solution of (P) for T(R) < *
mx , we could

easily obtain * (){ ()}R
ik T at T(R) by (11) in Lemma 1, and (* (){ ()}R

ik T ,T(R)) is a

feasible solution of (P).

Denote k(T’) as the set of optimal maintenance frequencies at a given

value of T’. Let v(FP) be the objective function value of the problem (P) at T(R),

i.e., () ()() ((),)R Rv FP T T=Ψ k . Obviously, v(FP) serves as an upper bound on

the optimal objective function value of the problem (P). If v(FP) is very close to

v(R) (say within an allowance of ε), we have found an acceptable and feasible

solution for (P). If it is not good enough, we shall apply a global-optimization

procedure to solve (P). To this end, we need to determine an interval that

15

contains an optimal solution of (P), denoted by T(P).

Denote Tlow and Tup as the lower and the upper bounds, respectively, of the

search range for Lipschitz optimization algorithm. In the following lemma, we

will show that a lower and an upper bound on T(P) are given by the two values of

T where the objective function of (R1) equals to v(FP).

Lemma 4. Let Tlow and Tup be the smallest and the largest T, respectively, for

which the objective function of (R1) is equal to v(FP). Then, the optimal value of

T for the problem (P) must lie between Tlow and Tup, i.e., *
low up[,]T T T∈ .

Proof. Since the objective function of (R1) is strictly convex, we clearly have

the results that ()
low up

RT T T≤ ≤ . Consequently, the objective function value is

larger than v(FP) for lowT T< . Since (R1) is a relaxation of (P), so that Tlow is a

lower bound on T(P).

Similarly, we may proof that ()
up

PT T≤ .■

We note that the bounds Tlow and Tup may easily located by some line

search methods (e.g., bisection; Bazaraa, et al., 1993). Therefore, if v(R) is not

good enough, we would apply a global-optimization technique to solve the

problem (P) on the interval low up[,]T T .

Figure 2. The lower and upper bounds are given by the two values of T where

the objective function of (R1) equals to v(FP).

v(FP)

v(R)

T(R) Tlow Tup

Objective function (R1)

Objective function (P)

16

4.3 A brief summary

In this chapter, Huang and Yao’s (2007) research provide us a clear

knowledge about the TFMSP. After having the search range, we then ready to

apply the Evtushenko algorithm as the Lipschitz optimization algorithm tool.

The improved Lipschitz optimization algorithm will be proposed in next

chapter.

17

5. The proposed improved Lipschitz optimization
algorithm

In this chapter, we first review the Evtushenko algorithm with the rationale

of Lipstchitz optimization. The procedure and detail situations for expediting

the search in Evtushenko algorithm is presented in section 5.2. In section 5.3, a

fine-tune searching procedure based on slope-checking and step-size

comparison is proposed to complete the improved Lipschitz optimization

algorithm. A brief summary of the improved searching algorithm is given in

section 5.4, and the steps of proposed algorithm are presented.

5.1 A review on the Evtushenko algorithm

Before presenting the Evtushenko algorithm, it is important to learn more

about Lipschitz optimization algorithm. It is a global-optimization approach

when the objective functions are univariate (Huang and Yao, 2007). More

formally, a real-valued function h defined on a compact set RnX ⊆ that is said

to be Lipschitz must satisfy the condition

, () ()x X y X h x h y L x y∀ ∈ ∀ ∈ − ≤ −

where L is a constant (called Lipschitz constant) and ||⋅|| denotes the Euclidean

norm (Horst and Pardalos, 1995). (1n= for univariate)

Figure 3. Lipschitz function

One can notice by Figure 3 that an univariate function f is Lipschitz when

the absolute difference of the objective function value for each pair of x and y is

x y

f(y)

f(x)
d

L

f

18

smaller than or equal to the Lipschitz constant. In other words, the optimal

solution is secured by d=L||x-y|| within range [y, x]. However, it is worth to

mention that often L is unknown beforehand, i.e., only an overestimate of L will

be available for bounding the Lipschitz function.

The Evtushenko algorithm is designed for maximization of multivariate

Lipschitz functions, but it solves repeatedly univariate maximization problems

obtained by fixing all variables but one. The idea of the algorithm is to make

use of the information on the current best known function value to determine

the largest valid step size ()2 () /opt kf f x Lεδ + −= for next iteration, while

securing an ε-optimal solution simultaneously. Besides, it is an ordered

sequential method, i.e., the evaluation points at successive iterations are

increasing values of x belonging to [a, b] (Horst and Pardalos, 1995). Its steps

are as follows:

Initialization

 k←1;

 x1 ←a+ε/L;

 xopt ← x1

 fopt ←f(xopt)

Evtushenko’s saw-tooth cover
While xk < b do

1

2 ()
;opt k

k k

f f x
x x

L

ε
+

+ −
← +

If 1() optkf x f+ > then 1 1(); opt optk kf f x x x+ +← ← endif;

 k←k+1

EndWhile.

In the worst case, the step size is equal to
2

L

ε
 (the incumbent evaluation

value is also the optimal value on hand) when the function is constant functions

or all monotonously increasing functions (Horst and Pardalos, 1995). Even if

part of the function value is increasing in some ranges, it takes considerable

length of searching runtime and great number of iterations which is very

19

time-consuming.

Later, Huang and Yao (2007) transferred the objective function of the

TFMSP into an univariate function with respect to T (eq. (5)) for a minimization

problem, and proved that it is Lipschitz on the interval [Tlow, Tup]. Recall that the

Lipschitz constant is often unknown, however, Huang and Yao showed that it

can be obtained on some interval by the maximum of its derivative in absolute

value, and it is given by

0
1

m

i
i

L L L
=

= +∑ (20)

where

0 2
low

S
L

T
= (21)

Noted that the derivative for
S

T
 is equal to

2

S

T
− , and

2

S

T
− is maximal on

low up[,]T T for Tlow. Similarly, the function gi(T) has maximum slope in absolute

value at the junction point δi(k) (see eq. (10)). Although gi(T) is not

differentiable at these junction points, the left and right-hand derivatives exist.

By (8) and (10), it follows that the left and right-hand derivatives of gi(T) are

given by '(1) (1, ())i ik k kδ+ Φ + and ' (, ())i ik k kδ− Φ , respectively. It is easy to

verify that

' '
2(1) (1, ()) (, ())i i i i i ik k k k k k n Cδ δ+ Φ + =− Φ = , (22)

and hence

2 , 1, ,i i iL n C i m= = … . (23)

By combining (20), (21) and (23), the Lipschitz constant for the objective

function of problem (P) on [Tlow, Tup] is given by

22
1low

m

i i
i

S
L n C

T =

= +∑ (24)

20

In addition, Huang and Yao apply the algorithm of Evtushenko as the

Lipschitz optimization tool with a dynamic Lipschitz constant which was first

proposed by Wildeman and Dekker (1997); after each function evaluation

(going from left to right), the Lipschitz constant is recomputed as we take the

current searching step to be the new Tlow, denoted by Lc. Therefore, a smaller

Lipschitz constant is generated due to a larger lower bound, and a larger

searching step can be taken, which will speed up the searching process.

Next, we are going to propose the procedure and detail situations that can

expedite the Evtushenko algorithm with dynamic Lipschitz constant for the

TFMSP.

5.2 A procedure for expediting the Evtushenko algorithm

In this section, we propose a procedure which can speed up the search in

the Evtushenko algorithm. The procedure can be separated into three parts: the

searching at starting point, the searching during finding a local minimum, and

the searching after a local minimum is located. By graphically displaying the

possible situations in these three parts, we have full discussion in subsection

later. The rationale to perform the procedure is as follows.

It is important to realize that with a given T, one could obtain a specific set

of k={kl,k2,…,km} (see eq.(11) for each ki), and each with a corresponding

objective function curve

1

(,) : (,)
m

i i
i

S
T k T

T
γ

=

= + Φ∑k . (25)

Namely, for a given T, we pick up a particular Φi(ki,T) from gi(T) of each group,

and these Φi(ki,T) can form a unique γ(k,T). One should notice that the optimal

objective function Γ (T) is exactly the lower bound of these γ(k,T) on T-axis.

Therefore, for each k set, its local minimum T
⌣

(k) could be calculated by

equating the derivative of the Γ (T) function to zero. The T
⌣

(k) is given by

21

1

1

2
1

()

m
i i

i i
m

i ii
i

n C
S

k
T

n C k

=

=

+
=

∑

∑

⌣

k . (26)

Since such a local minimum obtained from a specific k set could be a

candidate for the optimal solution, we are motivated to search T
⌣

(k)

consecutively, which can reduce the computational efforts of Evtushenko

algorithm between a given T and T
⌣

(k) of a particular k set.

Besides, it is easy to learn that for a given T and its corresponding set of

multipliers, say, k0, a particular T
⌣

(k0) can be obtained. Therefore, if k set

corresponding to T
⌣

(k0) has changed, say, k1, we know that T
⌣

(k0) is not a

candidate of optimal solution because the k set is unique for each local

minimum of Γ (T), and we set T=T
⌣

(k0), k1=ki (T
⌣

(k0)) for next iteration. On the

other hand, if k0 = k1, the T
⌣

(k0) must be a local minimum of Γ (T), and its

corresponding optimal objective function value, denoted by TCopt, will be

recorded and compared to the best-on-hand solution, denoted by TCbest.

Since such a procedure can locate the local minimum T
⌣

(k) of γ(k,T)

directly with a given T value and its specific k set, and the procedure can be

executed consecutively if we obtain a new set of k at T
⌣

(k), it is obvious that

the procedure can expedite the searching process compares to the Evtushenko

algorithm. Its process is as follows.

1. Start from a given T, calculate k0= { ki(T)} for each group i.

2. Calculate T
⌣

(k0) and k1 at T
⌣

(k0)

3. If k1=k0, calculate the TCopt at T
⌣

(k0) and record it if it is less than the

TCbest. If k
1≠k0, set T=T

⌣

(k0), repeat step 1.

Recall that Γ (T) is the optimal objective function curve with piece-wise

convex property, it is impossible for us to employ the proposed algorithm

through the whole search range without interruption except for a monotonously

decreasing curve (i.e., we will stuck in a local minimum of Γ (T)). Therefore,

during the search section with an ascending curve, we still have to use

Evtushenko algorithm since the proposed algorithm is designed for locating the

22

local minimum of Γ (T) and Evtushenko algorithm can search fast when the

curve is ascending. We will discuss the proposed algorithm in three parts: the

searching at starting point, the searching during finding a local minimum, and

the searching after a local minimum is located, and have full discussion in the

following subsection.

5.2.1 The proposed algorithm at the starting point

Apparently, we have to investigate the shape of the optimal objective

function Γ (T) at the lower bound since T
⌣

(k) may be out of the lower bound if

Γ (T) is in ascending trend at Tlow, as shown in Figure 4. An easy method to see

the curve trend could be done by checking function values at adjacent point Tlow

and Tlow
+. We use Evtushenko algorithm to obtain the searching iteration which

is denoted by X(m) (m=1 to n) and we take Tlow
+ as X(1), then calculate its TCopt.

If TCopt(Tlow
+) is larger than TCopt(Tlow), the curve Γ (T) is ascending. By the

usage of Evtushenko algorithm, we denote the following steps to be

X(m+1)=X(m)+δ . The increment step is defined as
2opt

c

f f

L

ε
δ

− +
= . The

searching speed would become faster when the step-size is getting larger while

Lipschitz constant become smaller, as well as the optimal value on hand fopt is

fixed and objective function value f is increasing.

Figure 4. An increasing curve trend leads T

⌣

(k) to be out of lower bound

On the other hand, if TCopt(Tlow
+) is smaller than TCopt(Tlow) or TCopt(X(m))

is smaller than TCopt(X(m-1)) after mth iterations, then it is suitable to adopt the

proposed algorithm. One may notice that the searching step will move to a local

γ(k,T)

23

minimum of Γ (T), and the determination of the steps during searching for a

local minimum are judged from the condition of one of the three possible

situations as we discuss in the following subsection.

5.2.2 Three possible situations when searching for a local minimum

When TCopt is decreasing, we can directly jump the searching step to T
⌣

(k)

of a particular k set, and replace the TCbest if the TCopt at T
⌣

(k) is better than the

existing one. Whether the jump could happen depends on three possible

situations when searching for a local minimum as we stated in the following.

1. Normal situation (Forward search)

Generally, we can apply the proposed algorithm consecutively without

missing local minimum if only one component of the k set has changed at

each jump step. This situation is mostly happened during the searching

process with a descending curve, and we therefore named it as the normal

situation. One demonstrative example is given in Figure 5, where the step

X(6) is the local minimum T
⌣

(k) corresponding to X(5) with k={ki(X(5))}.

As depicted in Figure 5, by checking the γ(k,T) (dashed curve) with the

lower envelop Γ (T) (the bold curve), we found that the optimal k set at

X(6) should be different from k={ki(X(5))}, so we forward the searching

step to the local minimum at X(7) corresponding to the new k={ki(X(6))}

at X(6).

Figure 5. Normal situation of the proposed algorithm

2. Backward search without missing local minimum

Sometimes more than one component in the k set has changed during

24

searching from current step (a given T) to its T
⌣

(k). In this case, a

backward search mechanism will be triggered to prevent the search from

missing the local minimum. As demonstrated in Figure 6, when the current

step X(5) jump to its T
⌣

(k), the corresponding new k={ki(X(6))} will in

term lead to a jump backward to X(7). Likewise, the new k={ki(X(7))} will

again jump backward to X(8). Therefore, no local minimum will be missed.

Note that, in this case, we will start next step directly from

X(9)=X(6)+(f-fopt+2ε)/Lc, which will save the effort for not to duplicate the

searching within X(8) to X(6).

Figure 6. Backward search without missing local minimum

3. Missing local minimum

However, there were times when more than one component in the k set has

changed during searching and the local minimum will be missed. As shown

in Figure 7, when the searching move from the current step X(5) to its T
⌣

(k)

(i.e., X(6)), more than one component in the k set has changed. However,

unlike the situation shown in Figure 6, the searching will forward to X(7)

since the Γ (T) is descending, the local minimum located between X(5)

and X(6) will not be detected.

25

Figure 7. Forward search missing local minimum

Figure 8. Backward search missing local minimum

Another possible situation of missing local minimum is shown in Figure 8,

which depicts that when the searching move from X(5) to X(6), it will only

move backward to X(7), and then move forward to

X(8)=X(6)+(f-fopt+2ε)/Lc. Hence, one local minimum will be missed.

5.2.3 Two possible situations when a local minimum is located

Obviously, the current step must be moved to a local minimum of Γ (T) if

it has the same k set compare to the previous step, and we will record the

current step and the k set if the TCopt is lower than the TCbest. Besides, due to the

characteristic of piece-wise convex property, the TCopt is fluctuating, it may

increase or decrease when the next step moves forward on T-axis after locating

a local minimum. If it is increasing, we will keep searching by Evtushenko

algorithm until it is smaller than previous step so as to make sure the Γ (T) is

26

descending and then adopt the proposed algorithm. If it is decreasing, the

proposed algorithm will be triggered for finding another local minimum again.

Note that the next step after locating a local minimum is moved forward for

2

cL

ε
 by Evtushenko algorithm since f=fopt.

Figure 9. Two possible situations when a local minimum is located

Basically, subsection 5.2.1, 5.2.2 and 5.2.3 contain the main concepts of

the proposed algorithm. It shows that the Evtushenko algorithm can be

improved within the decreasing sections of TCopt. We summarize the procedures

as follows.

1. Check the curve trend by comparing TCopt(Tlow) and TCopt(Tlow
+), if it is

increasing, use Evtushenko algorithm to search along the T-axis until the

function value is decreasing.

2. While TCopt is decreasing, the proposed algorithm is then adopted to find

T
⌣

(k) of different k sets consecutively, and it will move to a local minimum

of Γ (T).

3. While a local minimum is located, we use Evtushenko algorithm to restart

the search and proceed with step size
2

cL

ε
 to the next step. Comparing

TCopt(T
⌣

) with TCopt(
2

c

T
L

ε
+
⌣

) to check if the curve is ascending or

descending. If TCopt is increasing, adopt Evtushenko algorithm until TCopt

is decreasing. Otherwise, go to step 2.

However, the right side of Figure 9 shows that the k set may have changed

27

within a very tiny range, which implies the possibilities of infinitesimal jumping

distance of current step and its T
⌣

, and this lead to the discussion in section 5.3.

5.3 A fine-tune search procedure

As we mentioned above, the Evtushenko algorithm can be enhanced within

TCopt decreasing area since we can forward the searching step directly to its

local minimum T
⌣

(k) with specific k set. However, the function curves γ(k,T)

with different k sets sometimes make a over-frequent fluctuating behavior of the

Γ (T) within some tight sections. Such behavior will lead to numerous searching

iterations since the backward search mechanism would be performed to prevent

from missing the local minimum when the step propelled by Evtushenko

algorithm is across from descending curve to ascending part.

However, the backward search is unnecessary because the quality of the

solution could be secured by Evtushenko algorithm even if a local minimum is

missed. Moreover, for a given T, if the step propelled by Evtushenko algorithm

is larger than its T
⌣

(k), it is reasonable to choose Evtushenko algorithm in the

view of searching efficiency. Therefore, in order to meliorate the proposed

algorithm, we propose a fine-tune search procedure based on slope-checking for

current step and step-size comparison mechanisms that can eliminate

unnecessary steps and adopt an efficient next step while remain the quality of

solution simultaneously.

Here, we take the marching step-size into account by two methods: One is

the distance between current step and local minimum T
⌣

(k) corresponding to its

k set, we named it the “jumping step size” since the movement on T-axis is like

a long jump, and the other is the step size predicted by Evtushenko algorithm,

we named it the “Evtushenko step size”. The following are four situations we

may encounter:

1. Evtushenko step size larger than jumping step size with negative slope.

If the step size determined by Evtushenko algorithm is larger than the

jumping step size and the current step has negative slope, as shown in

28

Figure 10, we adopt Evtushenko step size as the next step. In this case, the

quality of the solution is still guaranteed, since the Evtushenko algorithm

can secure an ε-optimal solution.

2. Evtushenko step size smaller than jumping step size with negative

slope.

If the movement from current location to T
⌣

(k) is larger than the step size

determined by Evtushenko algorithm, as shown in Figure 11, then we take

jumping step size as the next marching step. Since the jumping step size is

generally larger than the Evtushenko step size, the searching during the

section with negative slope can normally be speed up. This is actually the

key mechanism for shortening the searching procedure by using our

proposed algorithm instead of the Evtushenko algorithm.

Figure 10. The step size determined by Evtushenko algorithm is larger than

the jumping step size

Figure 11. Evtushenko step size smaller than the jumping step size

29

3. Current step is propelled by the proposed algorithm with positive slope

If the slope of the objective function at the current searching step is

positive, and it is also the local minimum T
⌣

(k) corresponding to the

previous step, as shown in Figure 12, then it is unnecessary to compare the

step size since the jumping step size is always negative (moving backward).

Although the Evtushenko algorithm should be adopted to proceed in

ascending trend, we had the T
⌣

(k) of current step first priority to be the

next step since the proposed algorithm is still in progress, i.e., there is no

local minimum of Γ (T) has been confirmed. Note that, this is exactly the

backward search situation, and it will keep searching until detecting a local

minimum.

Figure 12. Use T
⌣

(k) to be the next step while the proposed algorithm is still

in progress (Backward search situation)

4. Current step is propelled by Evtushenko algorithm with positive slope

If the Evtushenko step size propels the step from negative to positive slope,

then there must exists at least one local minimum between previous step

and current step, as shown in Figure 13. In such a case, a backward search

is not needed since Evtushenko algorithm can obtain an ε-optimal solution,

and we proceed with Evtushenko steps.

30

Figure 13. Backward search for T
⌣

(k) is not needed while current step is

propelled by Evtushenko algorithm and across local minimum

In a word, if the current step has negative slope, a larger step size is

preferred to expedite the searching process. Otherwise, a checking procedure for

whether the current step is propelled by Evtushenko algorithm is required in

order to eliminate the excess backward search. Therefore, by checking the slope

at current step and the step size, the searching efficiency can be assured as well

as the quality of solution. We propose a flow chart to help us judging the next

step in Figure 14.

31

START

Is TCopt at current

step smaller than

previous step

Slope at

current step < 0

Check if the current

step is propelled by

Evtushenko algorithm

The solution can be

secured, proceed with

Evtushenko algorithm,

TE

Proceed with step size 2ε/L

to current step

YES

YES NO

YES NO

NO Use Evtushenko

algorithm to search in

ascending curve

END

Obtain the next step

Next iteration

Calculate the predicted

Evtushenko step size, TE

and the by improved

Lipschitz optimization

algorithm

T
⌣

The improved Lipschitz

optimization algorithm is

in progress, a backward

search is performed to

find the local minimum

 of optimal objective

function ()TΓ
T
⌣

YES NO

Choose TE Choose T
⌣

TE > T
⌣

Next iteration

Figure 14. A flow chart for determination of the next step

5.4 A summary of the improved Lipschitz optimization algorithm

According to the discussion above, we can assure that the improved

Lipschitz optimization algorithm is reasonable to have a better searching

efficiency in a function value decreasing condition. Besides, duplicating search

work can be avoided by identifying a backward search, and the searching

efficiency can be further proved since we eliminate excess backward searching

iterations caused by the steps propelled by Evtushenko algorithm from

descending curve to ascending section. Also, we take into account the step size

32

and slope of current iteration to decide the next best T place so as to expedite

the searching speed. Therefore, we are motivated to examine how significant

affect can the improved Lipschitz optimization algorithm reach. We hereby

propose an improved Lipschitz optimization algorithm as follows.

Relaxation Begin

Step 1. Obtain T(R) by eq.(19), set v(R) as the solution of (R1) at T(R).

Step 2. if () *R
mT x≥ , set []1,1, ,1= ⋯k and T(R) the optimal solution for the

problem (P).

Step 3. if () *R
mT x< , obtain k={ki(T

(R))} by eq.(11) and obtain a feasible

solution v(FP) for the problem (P) at T(R).

Step 4. if v(FP)-v(R) ≤ εv(R), then set v(FP), T(R), and k={ki(T
(R))} as an

ε-optimal solution. else v(FP)-v(R) > εv(R), use bisection search to

locate Tlow and Tup by finding two values of T where the objective

function of (R1) equals v(FP).

End

Improved Lipschitz optimization algorithm Begin
(Initiation setting and check the curve trend)
TCbest the best known solution on hand

TC current optimal objective function value

TCpre optimal objective function value of previous step

TC* the optimal objective function value

T* the optimal T

k* the optimal k set

X(m) searching step at m iteration

Tcur the current searching step

Lc dynamic Lipschitz constant

TE Evtushenko step

T
⌣

 the step of proposed algorithm

slope slope at current searching step

propelbyEv index of whether current step is propelled by Evtushenko

33

algorithm

Step 1. Initiation of the improved Lipschitz optimization algorithm:

Set TCbest= v(FP), TC*= v(FP), T*= T(R), k*={ki(T
(R))}, start the search

from the lower bound Tlow. Set Tcur=Tlow. Obtain k={ki(Tcur)}, get

TC=TC(k, Tcur), set TCpre=TC.

Step 2. Set m=1, compute Lc at Tcur, set X(1)= Tcur +ε/Lc, obtain k={ki(X(1))},

get TC=TC(k, X(1)).

(Use Evtushenko algorithm for function value increasing area)

Step 3. While TC > TCpre, set Tcur=X(m), Compute Lc at current search step Tcur,

set m=m+1, best
cur

2
X()

c

TC TC
m T

L

ε− +
= +

Step 4. if X(m) >Tup, break, else set Tcur=X(m), TCpre=TC, obtain k={ki(Tcur)},

get TC=TC(k, Tcur), go to Step 3.

(Initiation setting finished and having a decreased function value. Start to

adopt the proposed algorithm)

Step 5. While X(m)≤Tup, set Tcur= X(m), obtain k={ki(Tcur)}, get TC=

TC(k, Tcur)

Step 6. if TC < TC*, set TC*=TC, T*= Tcur, k
*={ki(Tcur)}

Step 7. compute slope at Tcur, obtain T
⌣

 by eq.(25), obtain Evtushenko step

best
E cur

2

c

TC TC
T T

L

ε− +
= +

(Confirm a local minimum)

Step 8. if Tcur=T
⌣

, get TC=TC(k, Tcur), do step 6. Initialize propelbyEv= -1.

(Confirm a forward search and use Evtushenko algorithm after locating a

local minimum)

Step 8-1. if Tcur=max(X(m)), set TCpre=TC, compute Lc, set m=m+1,

best
cur

2
X()

c

TC TC
m T

L

ε− +
= + . if X(m)> Tup, break, else set

Tcur=X(m), obtain k={ki(Tcur)}, get TC=TC(k,Tcur), set

34

propelbyEv=1, do step 3 and 4.

(Confirm a Backward search and use Evtushenko algorithm after

locating a local minimum)

Step 8-2. else set Xmax=max(X(m)), Tcur=Xmax, compute Lc, get

TC=TC(k,Tcur), set TCpre=TC, set m=m+1,

best
cur

2
X()

c

TC TC
m T

L

ε− +
= + , if X(m)> Tup, break, else set

Tcur=X(m), obtain k={ki(Tcur)}, get TC=TC(k,Tcur), set

propelbyEv=1, do step 3 and 4.

(Check Evtushenko step size and slope of current step, and use propelbyEv as

index to help judging the next step)

Step 9. elseif TE <T
⌣

and slope < 0, set m=m+1, X(m)=T
⌣

, set propelbyEv=0

 elseif TE T≥
⌣

 and slope < 0, set m=m+1, X(m)= ET , set propelbyEv=1

 elseif TE T≥
⌣

 and slope > 0 and propelbyEv=1, set m=m+1, X(m)= ET

 else set m=m+1, X(m)=T
⌣

.

Step10. go to Step 5.

End of the Improved Lipschitz optimization algorithm

35

6. Numerical experiments

In the first part of this chapter, we employ a numerical example to

demonstrate the implementation of the improved Lipschitz optimization

algorithm. Then, we use randomly generated instances to show that the

improved Lipschitz optimization algorithm outperforms Huang and Yao’s (2007)

search procedure.

6.1 A demonstrative example

In this subsection, we hereby use a five-group example presented in Goyal

and Gunasekaran’s (1992) paper to demonstrate the implementation of the

improved Lipschitz optimization algorithm. The data set of this five-group

example is shown in Table 1.

In this example, we set the error allowance as 0.01%ε= for the

improved Lipschitz optimization algorithm.

Table 1. The data set of the five-group example

m=5 S=800
ni Xi Yi ai bi si
10 0.8 0.90 80 3 198
24 0.6 0.95 50 2 192
30 0.4 0.85 90 1 193
16 0.6 0.95 85 1.5 205
12 0.5 0.94 95 2.5 204

First, we locate the optimal T(R) of the problem (R1) by T(R)=12.5349, and

the v(R) is given by $2,020.66. Since T(R) *
mx< =21.20637, we use eq.(11) to get

the set of optimal maintenance frequencies k(T(R))={1,1,2,1,1} to obtain a

feasible solution for the problem (P) at T(R). Therefore, we have

v(FP)=Ψ (k(T(R)), T(R))=$2,034.87. Since the error of the feasible solution is

(v(FP)-v(R))/ v(R)=0.7028%>ε=0.01%, it is not ε-optimal.

Next, we locate the bounds Tlow and Tup by bisection search method to find

two values of T where the objective function of (R1) equals v(FP). The search

36

range is obtained by Tlow =9.8418 and Tup =14.9888. We note that the Tup is

exactly the same value of TCC by common cycle approach in this example.

Besides, we set Ψ (k(T(R)), T(R))=$2,034.87 as the initial TCbest in order to

enhance the searching speed, which is different to Huang and Yao’s (2007)

initial optimal solution fopt=Ψ (k(Tlow), Tlow).

Then, we apply the algorithm of Evtushenko as the improved Lipschitz

optimization tool. The search start from X(1)=Tlow+ε/Lc=9.8444, and we have

the cost value Ψ (k(X(1)),X(1))=$2,083.52 (without considering the constant u).

Therefore, by examining the total cost at Tlow and X(1), it has decreased from

Ψ (k(Tlow), Tlow)=$2,083.61 to Ψ (k(X(1)),X(1))=$2,083.52. Obviously, it is

suitable to apply the proposed algorithm.

Figure 15. Optimal function value curve of demonstrative example

It is worth to note that the improved Lipschitz optimization algorithm take

total 74 steps to complete the search, and only 3 steps (9.8444, 11.4009, and

12.7843) to locate the optimal solution at T*=12.7843 with k*={1,1,2,1,1}.

Therefore, we obtain the optimal average total cost by

Z=TCbest+u=$2,034.47+$6,438.25=$8,472.72. On the other hand, Huang and

Yao’s (2007) procedure locates T*=12.7818 after 85 iterations and terminates

after 157 steps, it is obvious to see that the improved Lipschitz optimization

algorithm has significant reduction of searching iterations in cost decreasing

37

condition.

In fact, the proposed algorithm can obtain the real optimal solution if we

did not miss the global minimum, whereas the traditional dynamic Lipschitz

optimization algorithm can only secure an ε -optimal solution. Hence, we are

motivated to generate random instances for showing that the improved Lipschitz

optimization outperforms Yao and Haung’s (2007) research.

6.2 Numerical results from random instances

In this subsection, we present a summary of our random experiments. We

design our experimental settings by referring to the settings in Table 1 brought

by Goyal and Gunasekaran’s (1992) paper. We select six different values for the

number of groups of vehicles (m = 3, 5, 7, 10, 25, 50), and seven different

values for the fixed cost in each basic period T (S = 10, 50, 100, 200, 500, 750,

1000). This yields 42 combinations from these parameter settings. Then, for

each combination, we randomly generate 1,000 instances by randomly choosing

the values for Xi, Yi, ai, bi and si by using uniform distribution functions. Table 2

indicates the ranges of these uniform-distributed random variables.

After randomly generating totally 42,000 instances, we solve each one of

them by the proposed improved Lipschitz optimization algorithm as well as

Huang and Yao’s (2007) search procedure on a Core 2 Duo processor P8600

with 4GB RAM. We set the error allowance in each algorithm by ε=0.01%. We

summarize our experimental results for the smaller-size (with m = 3, 5, 7) and

larger-size (with m = 10, 25, 50) in Tables 3 and 4, respectively.

Table 2. The settings of the parameters in our random experiments

m 3, 5, 7, 10, 25, 50
S 10, 50, 100, 200, 500, 750, 1000
ni U[10-30]
Xi U [0.4-0.8]
Yi U [0.9-0.95]
ai U [5-10]
bi U [1-3]
si U [25-40]

38

In the view of searching efficiency, we calculate the average run time for

each instance by repeating the search of 25 times. One may observe that the run

time of Huang and Yao’s (2007) search procedure is very fast. On the other hand,

the proposed improved Lipschitz optimization algorithm solves the TFMSP

with extremely short run time, and an average 71.79% run time improving rate

to each problem. However, for the same value of S, with the increasing size of m,

the run time improving rate is decreasing and become negative while m=50 and

S=10, whereas the solution on average is better than traditional dynamic

Lipschitz optimization algorithm.

On the aspect of solution quality, one should realize that we set the error

allowance equal to 0.01% for both searching algorithms. However, the

improved Lipschitz optimization algorithm sometimes miss the local minimum,

so we compare the outcome and indicate the number of instances out of the

1,000 instances for each m and S combination that the difference greater than

0.01% in the last 3rd column. The record shows that the differences of solutions

obtained by two algorithms are all within 0.01%.

Besides, in the last two columns of Tables 3 and 4, we present the

maximum error and average error of the improved Lipschitz optimization

algorithm in percentages. Surprisingly, we observe that 37 out of 42

combinations have negative maximum error value, which means the proposed

algorithm in these problems can always obtain better solutions than the

traditional dynamic Lipschitz optimization algorithm. Although there are 5

combinations (when m=25 and 50) have positive maximum error, the largest

one is only 0.000129% and all of these 5 problems have negative average error

value, it is obvious that the proposed algorithm is better than the traditional

one.

In addition, one may notice that, the fine-tune procedure can help us

choosing the largest step in each iteration, which means the number of

iterations of the proposed algorithm is equal to the Evtushenko algorithm’s in

the worst case. However, although the number of iterations is smaller than

Evtushenko algorithm’s when m=50 and S=10, the runtime is larger since we

39

apply step-size comparison and slope-checking mechanisms, and we consider

it is the reason that the searching efficiency become negative. On the other

hand, we observe that when m is increasing, the time improving rate is

decreasing with different S values in different group, this is due to the fact that

the larger group it is, the more step-size comparison and slope-checking are

needed.

Table 3. Experimental results for the smaller-size (m = 3, 5 and 7) problems

 dynamic
Lipschitz
optimization
algorithm

Improved Lipschitz optimization algorithm

Objective function value m S Avg.
iterations

Avg.
Run
time
(1)

Avg.
iterations

Avg.
Run
time
(2)

Rum time
Improving
Rate (%)
((1)-(2))/(1)

Error
more
than
0.01%

Max
Error
(%)

Avg.
Error (%)

10 302 0.0269 89 0.0090 66.40% 0/1000 -2.30E-05 -3.10E-06
50 243 0.0206 33 0.0043 79.13% 0/1000 -7.50E-06 -2.20E-06

100 219 0.0230 21 0.0044 81.04% 0/1000 -7.10E-06 -2.20E-06
200 221 0.0225 14 0.0038 83.04% 0/1000 -6.80E-06 -2.10E-06
500 267 0.0248 7 0.0028 88.57% 0/1000 -5.90E-06 -1.80E-06
750 326 0.0286 5 0.0025 91.36% 0/1000 -5.20E-06 -1.70E-06

3

1000 385 0.0344 4 0.0025 92.72% 0/1000 -4.70E-06 -1.50E-06
10 446 0.0374 172 0.0157 58.15% 0/1000 -2.70E-05 -4.50E-06
50 330 0.0317 68 0.0080 74.74% 0/1000 -9.90E-06 -2.40E-06

100 293 0.0256 41 0.0051 79.93% 0/1000 -7.50E-06 -2.10E-06
200 261 0.0230 26 0.0041 82.21% 0/1000 -7.10E-06 -2.10E-06
500 263 0.0232 13 0.0031 86.65% 0/1000 -6.50E-06 -1.80E-06
750 283 0.0235 8 0.0025 89.36% 0/1000 -5.70E-06 -1.70E-06

5

1000 305 0.0288 5 0.0027 90.59% 0/1000 -5.30E-06 -1.70E-06
10 514 0.0492 225 0.0237 51.90% 0/1000 -3.80E-05 -6.30E-06
50 413 0.0363 105 0.0102 71.96% 0/1000 -1.30E-05 -2.60E-06

100 359 0.0320 63 0.0070 78.13% 0/1000 -8.10E-06 -2.10E-06
200 313 0.0281 36 0.0050 82.37% 0/1000 -7.20E-06 -2.00E-06
500 286 0.0256 19 0.0037 85.48% 0/1000 -6.70E-06 -2.00E-06
750 285 0.0260 11 0.0031 88.08% 0/1000 -6.10E-06 -1.90E-06

7

1000 293 0.0270 7 0.0029 89.26% 0/1000 -5.90E-06 -1.80E-06

40

Table 4. Experimental results for the larger-size (m = 10, 25 and 50) problems

 dynamic
Lipschitz
optimization
algorithm

Improved Lipschitz optimization algorithm

Objective function value m S Avg.
iterations

Avg.
Run
time
(1)

Avg.
iterations

Avg.
Run
time
(2)

Rum time
Improving
Rate (%)
((1)-(2))/(1)

Error
more
than
0.01%

Max
Error
(%)

Avg.
Error (%)

10 549 0.0503 275 0.0288 42.77% 0/1000 -4.40E-05 -8.60E-06
50 511 0.0469 156 0.0151 67.78% 0/1000 -1.80E-05 -2.90E-06

100 442 0.0414 100 0.0105 74.67% 0/1000 -9.30E-05 -2.10E-06
200 373 0.0341 53 0.0064 81.37% 0/1000 -7.50E-06 -2.00E-06
500 320 0.0294 27 0.0042 85.53% 0/1000 -6.80E-06 -2.00E-06
750 308 0.0280 17 0.0035 87.44% 0/1000 -6.60E-06 -2.10E-06

10

1000 301 0.0283 12 0.0032 88.71% 0/1000 -6.20E-06 -1.90E-06
10 566 0.0548 416 0.0515 5.97% 0/1000 6.00E-05 -1.80E-05
50 642 0.0640 266 0.0311 51.43% 0/1000 2.70E-07 -5.90E-06

100 646 0.0684 217 0.0253 62.99% 0/1000 -1.70E-05 -3.00E-06
200 580 0.0586 154 0.0168 71.33% 0/1000 -1.00E-05 -1.90E-06
500 413 0.0428 58 0.0078 81.86% 0/1000 -7.40E-06 -1.40E-06
750 380 0.0371 41 0.0058 84.27% 0/1000 -7.20E-06 -1.60E-06

25

1000 361 0.0352 33 0.0052 85.19% 0/1000 -7.00E-06 -1.60E-06
10 555 0.0615 494 0.0759 -23.40% 0/1000 0.000129 -1.10E-05
50 653 0.0676 358 0.0481 28.85% 0/1000 4.45E-05 -1.00E-05

100 688 0.0721 291 0.0374 48.06% 0/1000 1.49E-05 -6.40E-06
200 711 0.0763 237 0.0289 62.06% 0/1000 -1.30E-05 -3.10E-06
500 615 0.0657 143 0.0166 74.77% 0/1000 -8.40E-06 -1.20E-06
750 504 0.0552 89 0.0113 79.46% 0/1000 -7.40E-06 -1.20E-06

50

1000 435 0.0478 58 0.0081 82.98% 0/1000 -7.30E-06 -1.10E-06

According to numerical experiments results shown in Table 3 and 4 above,

we conclude that the improved Lipschitz optimization algorithm outperforms

Huang and Yao’s (2007) research is evident.

41

7. Conclusion and future research

In this study, based on Huang and Yao’s (2007) theoretical analysis on the

mathematical model for the Transportation Fleet Maintenance Scheduling

Problem (TFMSP), we propose an improved Lipschitz optimization algorithm

with slope-checking and step-size comparison mechanisms to enhance the

searching efficiency. As we start the searching from the starting point, the

searching step can be speed up during the section with a descending objective

function. The searching iterations as well as the runtime can be therefore

reduced significantly.

Although the improved Lipschitz optimization algorithm sometimes may

miss the local minimum, we enunciate that the quality of the solution is even

better referring to our numerical experiments results. In addition, we considered

it is pretty fair that the searching efficiency become negative while m=50 and

S=10 since the group is large and the applied checking mechanisms, whereas the

S is possibly much significant in real world. Therefore, we give a conclusion

that the improved Lipschitz optimization algorithm is better than Huang and

Yao’s (2007) searching algorithm.

Since we are motivated to modify the traditional dynamic Lipschitz

optimization algorithm, we did not take Yao and Huang’s (2006) junction-point

search algorithm into account. Besides, similar to most of other research works,

the capacity of the maintenance team (or, the maintenance facility) is not a

limited resource in this study. In order to make the research perfect resolved,

one should compare with the junction-point search algorithm and take the

capacity constraint of maintenance in the future research.

42

Reference

1. Amotz, B.N., Bhatia, R., Naor, J. and Schieber, B., “Minimizing Service and
Operation Costs of Periodic Scheduling”, Mathematics of Operations
Research, 27, 518-544, 2002.

2. Anily, S., Glass, C.A. and Hassin, R., “The Scheduling of Maintenance
Service”, Discrete Applied Mathematics, 82, 27-42, 1998.

3. Anily, S., Glass, C.A. and Hassin, R., “Scheduling of Maintenance Services
to Three Machines”, Annals of Operations Research, 86, 375-391, 1999.

4. Bazaraa, M.S., Sherali, H.D., Shetty, C.M., Nonlinear Programming: Theory
and Algorithms. 2nd Ed. John Wiley & Sons, New York, 1993.

5. Christer, A.H., Doherty, T., “Scheduling Overhauls of Soaking Pits”,
Operational Research Quarterly, 28, 4, 915-926, 1977.

6. Dekker, R., Wildeman, R., van der Duyn Schouten, F., “A review of
multi-component maintenance models with economic dependence”,
Mathematical methods of Operations Research, 45, 411-435,1997.

7. Goyal, S.K., Gunasekaran, A. “Determining Economic Maintenance
Frequency of a Transportation Fleet”, International Journal of Systems
Science, 23, 4, 655-659, 1992.

8. Goyal, S.K., Kusy, M.I., “Determining Economic Maintenance Frequency for
a Family of Machines”, Journal of the Operational Research Society, 36, 12,
1125-1128, 1985.

9. Hanssmann, F., “Operations research in production and inventory control”,
John Wiley & Sons, New York, 1962.

10. Horst, R., Pardalos, P.M., Handbook of Global Optimization, Kluwer
Academic Publishers, Dordrecht, 1995.

11. Huang, J.Y., Yao, M.J., “A Dynamic Lipschitz Algorithm for Determining
Economic Maintenance Frequency of a Transport Fleet”, Journal of
Information and Optimization Sciences, 28, 3, 357-376, 2007.

12. Luss, H., “Maintenance Policies When Deterioration can Be Observed by
Inspections”, Operations Research, 24, 2, 359-366, 1976.

13. Luss, H., Kander, Z., “Preparedness Model Dealing With N Systems
Operating Simultaneously”, Operations Research, 22, 1, 117-128, 1974.

14. Moudani W.E., Mora-Camino F., “A Dynamic Approach for Aircraft
Assignment and Maintenance Scheduling by Airlines”, Journal of Air
Transport Management, 6, 4, 233-237, 2000.

15. Papadakos, N., “Integrated airline scheduling”, Computers & Operations
Research, 36, 1, 176-195, 2009.

43

16. Sriram, C., Haghani, A., “An Optimization Model for Aircraft Maintenance
Scheduling and Re-assignment”, Transportation Research Part A: Policy and
Practice, 37, 1, 29-48, 2003.

17. Sule, D.R., Harmon, B., “Determination of Coordinated Maintenance
Scheduling Frequencies for a Group of Machines”, AIIE Transactions, 11, 1,
48-53, 1979.

18. van Egmond, R., Dekker, R. Wildeman, R.E., “Correspondence:
Determining Economic Maintenance of a Transportation Fleet”, International
Journal of Systems Science, 26, 9, 1755-1757, 1995.

19. Wildeman, R. E., Dekker, R., “Dynamic Influence in Multi-Component
Maintenance”, Quality and Reliability Engineering International, 13,
199-207, 1997.

20. Wildeman, R.E., Frenk, J.B.G., Dekker, R. “An Efficient Optimal Solution
Method for the Joint Replenishment Problem”, European Journal of
Operational Research, 99, 2, 433-444, 1997.

21. Yanagi, S., “Iteration method for Reliability Evaluation for a Fleet System”,
Journal of the Operational Research Society, 43, 9, 885-896, 1992.

22. Yao, M.J., Huang, J.Y., “A New Optimal Search Algorithm for the
Transportation Fleet Maintenance Scheduling Problem”, Journal of the
Operations Research of Japan, 49, 1, 33-48, 2006.

