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ABSTRACT

In this study, we propose an improved Lipschitziro@ation algorithm secure a
near-optimal solution for the Transportation Flediaintenance Scheduling Problem
(TEMSP). By employing the proposed algorithm andire-tune procedure based on
slope-checking, step-size comparison mechanisnes,sdarch steps can be significantly
reduced and the solutions can be secured withirergg short run time. We provide a
numerical example to demonstrate the efficiencthefproposed algorithm. To compare the
computational performance, we test these searabritdms by random experiments with
different values of the major setup cost and dffiersize of vehicle groups. Based on our
numerical experiments, we conclude that the prapasarch algorithm can significantly
outperform the dynamic Lipschitz optimization algjom presented by Yao and Huang (2007)
in run time as well as the quality of solutions.
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1. Introduction

In the past decade, logistics service providerslgenerally experienced
low profit margins due to the intensive competitibiat exists in the industry
and prices skyrocketing of the crude oil. It is emsary to have a fleet
maintenance scheduled economically. A well plam€macdhtenance schedule can
not only bring down the cost but also raise thikzation rate of a transportation
fleet.

In this study, we devote our efforts to investigat@athematical model for
determining the economic maintenance frequency toarssportation fleet. We
name this problem as “the Transportation Fleet kaance Scheduling
Problem”, which is abbreviated as the TFMSP. In THMSP, the decision
maker needs to determifie(i.e., the basic period) andkk,,....k} (i.e., the
frequency of maintenance for vehicles in each gresopas to minimize the total
costs incurred per unit time.

The mathematical model for the TFMSP was first psmal by Goyal and
Gunasekaran (1992) and refuted by Dekker and Weahe(@995). Huang and
Yao (2007) proposed a dynamic Lipschitz algorithmsecure are-optimal
solution rapidly, but the search process can béonadéd for a better searching
procedure. Therefore, in this study, we propose improved Lipschitz
optimization algorithm which can enhance the saagcifficiency.

This paper is structured as follows. First, we ewvithe studies in the
literature for the TFMSP in chapter 2. The mathérahtmodel of TFMSP is
presented in chapter 3. Then, in chapter 4, weeptem the optimal cost curve
of the problemBased on Huang and Yao’'s (2007) study, the lower wgper
bounds can be definedn improved Lipschitz optimization algorithm with
slope-checking, step-size comparison mechanismsoposed in chapter 5. In
the first part of Section 6, a numerical examplayilgen to demonstrate the
implementation of the proposed algorithm. Therthmsecond part of Section 6,
randomly generated examples are presented to $tadvihe proposed algorithm
significantly outperforms the search procedure loé traditional Lipschitz

algorithm. Finally, we address our concluding rekean chapter 7.
1



2. Literature review

In this chapter, we review the literature of thed#s in the Transportation
Fleet Maintenance Scheduling Problem.

2.1 Transportation fleet maintenance scheduling problm

In the past, Goyal and Gunasekaran (1992) menticoate researches
have been dealt with the determining of economitnteaance scheduling in
management science/operations research/industrgaheering (see Luss and
Kander 1974, Luss 1976, Christer and Doherty 1%ife and Harmon 1979,
Goyal and Kusy 1985). Recently, many researchers baen addressing their
efforts to the studies on the scheduling of prodactacilities or machines (see
Wildeman and Dekker 1997, Dekket,al 1997, Anily, Glass and Hassin 1998,
1999, Amotzet al 2002).

However, these studies did not take the charattsrief maintenance for
the vehicles in a transportation fleet into consatlen. We note that the
objective functions in these studies are signifilyadifferent in their theoretical
properties from that for the TFMSP. On the otherdhaesearchers pay limited
attention to the problem of determining the opeagtiand maintenance
schedules for a transportation fleet.

Although some of the researches showed that theaétifleet maintenance
scheduling problem has been raised to reduce tbe foo many years, the
constraints are completely different due to thecspecharacteristics such as
heterogeneous fleet of aircraft, the regulationsoaftine inspection given by
Federal Aviation Administration, the consideratiminflight hours and number
of take-off and landing cycles (Sriram and Hagha6i)3). Besides, the aircraft
maintenance scheduling is related to assignmenudsioi and Mora-Camino,
2000), maintenance routing and crew scheduling el (Rapadakos, 2009),
which is differenfrom the TFMSP.



2.2 Goyal and Gunasekaran’s method
Notation

total cost per unit of time

number of groups of vehicles

basic maintenance cycle time

mw 4 3 N

fixed cost incurred in each maintenance cycletei't group of vehicles

—h

i(t) operating cost per unit of timetaime units after the last maintenance

a, fixed operating cost per unit of time

bi increased in the operating cost per unit of time

s fixed cost of maintenance for a vehicle

n, number of vehicles in the group

X; time required for maintenance work on the vehicle

ki an integer which when multiplied by the basic mamaince cycle timé&

gives the maintenance cycle time for the vehiatehe group
Y; utilization factor of a vehicle on the road
z, total cost per unit time for a vehicle

Goyal and Gunasekaran (1992) proposed an approadi-MSP based on
two equations that are derived by setting the fistivative of Z(T,k) with
respect to the decision variables to zero:

Y (Tk—X)
s+ [ (a+byd
n
! TK

NFE

minZ(T,K):$+ ,T>0and k €{1,2,3,---} (1)

Il
iR

S+ (n(s— XX a bX Y/, k
T(ko koo k)= [2— @)
> nhky

 — Tlv Jz(s - X Y(i— 0.5p X,Y))
! (3)

Step 1.For the first iteration, assunke= k®= 1 for alli, and obtain the first
estimate of T=T® from (2). At T=T®", determinek =k from
(3) for alli. If k™ values are not integers, then select the nearest

3



non-zero integer.

Step 2.Usingk = k(® from (3) fori=1,...,m, we obtainT =T® from (2) and
then k = k@ from (3) usingT = T®. Repeat the process until tH&
iteration and stop wherk " = k™ fori=1,...,m. The economic policy
is obtained atT" =T and k™ = k"

Later, in van Egmond, Dekker and Wildeman’s (198&per, they have a
full discussion on Goyal and Gunasekaran’s searocedure. They indicate
that the objective function is not convex as Gogatl Gunasekaran (1992)
assumed. And, since the valueskpheed to be integers, the determination of
the global optimization is not as easy as Goyal @uhasekaran suggested.
They also show that it is not necessarily kheinimizing Z when one rounds (3)
to the nearest non-zero integer. Finally, they datd that Goyal and
Gunasekaran’s search procedure often stops aftefirgt iteration without
obtaining an optimal solution since they assuiqed® = 1.

These three problems explain why Goyal and Gunaaeisasolution does
not always obtain an optimal solution. In factsibften stuck in a local optimal
solution. However, van Egmond, Dekker and Wildemar(1995) only
mentioned that one needs to try different startmagues to find the global
optimum, but without proposing a new solution aptoto solve the TFMSP.

2.3 Yao and Huang’s junction-point search algorithm

Yao and Huang (2006) conducted a full analysisttier TFMSP. By their
theoretical results, they proposed an efficientr@ealgorithm that finds the
optimal solution within a very short run time andt-performs Goyal and
Gunasekaran’s search procedure.

In their study, they indicated the objective fuantiis piece-wise convex
with respect tol, and they defined “junction point” as a particiwalue of T
where two consecutive convex curves concatenate. search algorithm is
based on locating all the junction points and datmg the local-minimum
T (K between each pair of junction points. Tf(k) exists and within two

4



consecutive junction points, then record the objedunction value ¥ (k,T) by
substituting T (K) into the objective function and compared with thaimal
value on hand.

Besides, they defined the searching range by arlawe upper bound on
the T-axis that can make the searching algorithm mofieiefit. They used
Common Cycle approach proposed by Hanssmann (18&i2) the upper bound,
I.e., all the vehicle groups share a common maintenaycle, and they derived
the lower bound from the optimal objective functivalue ¥" and optimal
basic cycle timel . The iteratively searching procedure stops uhi# out of
the lower bound.

2.4 Huang and Yao’s dynamic Lipschitz optimization algrithm

Huang and Yao (2007) devoted their efforts to TFM8Padopting a
dynamic Lipschitz optimization algorithm that caecare are-optimal solution
in a very short run time and outperforms Goyal &whasekaran’s search
procedure.

In their study, they first conducted theoreticahlgsis on the mathematical
model of the TFMSP. Based on their theoretical Itesuthe important
foundation is then established to show that theailwe function of the TFMSP
Is Lipschitz. Next, they employed a relaxed probtensolve the TFMSP. If the
solution is not within an allowance ef the Evtushenko algorithm (see Horst
and Pardalos, 1995) is then applied as the Lipsabptimization tool after
locating the lower and upper bounds by some line search adstl{e.g.,
bisection; Bazara&t al, 1993).

According to their numerical experiments resultse anay discover that
the Lipschitz optimization algorithm is significantbetter than Goyal and
Gunasekaran’s method. However, due to the natufévafshenko algorithm,
the searching step-size will become very small evliie objective function
value on hand is better than the existing one, Wwiead to great number of
searching iterations, the searching proceduresoeigéndured as well.



2.5 A brief summary

To the best of the authors’ knowledge, there exestsresearches deal with
transportation fleet maintenance scheduling probkithough Huang and Yao
proposed a dynamic Lipschitz optimization algorittmmch can shorten the run
time compared to a traditional Lipschitz algorithim¢can be further improved
by considering some characteristics of the thexakproperties of the objective
function. In the rest of this study, we will dedieaour efforts to propose an
improved Lipschitz optimization algorithm based ldnang and Yao's (2007)
study.



3. The mathematical model for the TFMSP

In this chapter, before presenting the mathematioaldel, we first
introduce the assumptions made and the notatiah later.

3.1 The assumptions and notation

To discuss the transportation fleet maintenancedding problem, we
redefine the following notation for more clarity deal on Goyal and
Gunasekaran’s (1992) research.

Z total cost per unit of time
m number of groups of vehicles
T basic maintenance cycle time

S fixed cost incurred in each maintenance cycle

fi(t) operating cost per unit of time taime units after the last maintenance for a
vehicle of thé™ group

a, fixed operating cost per unit of time for a vehiofehei™ group

b increased in the operating cost per unit of tinteafeehicle of thé™ group
s fixed cost of maintenance for a vehicle of tAgroup

ni number of vehicles of th& group

X, time required for maintenance work on each vehitkei™ group

ki an integer variabléT gives the maintenance cycle time for the vehiofes
thei™ group
Y, utilization factor of a vehicle of th& group on the road

There arem groups of vehicles, and the number of vehicleteisoted as;
for the i" group. In the TFMSP, the decision maker plans tteedules of
maintenance for vehicle groups in some basic pededoted byl (e.g., in days,
weeks, or bi-weeks, etc.). The maintenance worksadficles in a group is
executed at a fixed, equal-time interval that idedathe maintenance cycle for
that group of vehicles. The vehicles in tiffegroup are sent for maintenance
once in k basic periods, where; is positive integer. ThereforekT is
maintenance cycle for vehicles in tifegroup. We note that the model for the

TFMSP is for preventive maintenance, and the mddek not take unplanned
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fleet vehicle failures into consideration. Therefothe maintenance capacity is
not limited resource since it requires less mangoand maintenance time for
routine maintenance schedule.

3.2 The mathematical model

With regard to costs of the TFMSP, we consider tategories: operating
cost and the maintenance cost. The operating ¢astvehicle depends on the
length of the maintenance cycle and it is assunoethdrease linearly with
respect to time since the maintenance work on #tacle. Specifically, the
operating cost at time after the last maintenance for a vehicle in group
given byfi(t) = a + bit, whereg; is the fixed cost ang; indicates the increase in
the operating cost per unit of time. In additioor, €ach vehicle in group we
assume that it takes, units of time for its maintenance work alfdas the
utilization factor of a vehicle in th&' group on the road, whed¢ andY; are
known constants (One may refer to Yanagi, 199Zddher discussions on the
utilization factor of a vehicle.). Accordingly, thectual time during which a

vehicle can operate is equal Yk 7—X;), and the total operating cost for a

(kT=X%) YOk
0

f(t)dt= f
=Yi(a —bi X Y;) kT + 0.5Y7 k*T>~ X Yi(a; — 0.9 X Y)

Notice that, the expression above is the integued@me for total operating cost,

vehicle in group is given byfoYi ?Q(ar + bt) dt

and we do not go deep into the meaning for each. ter

On the other hand, the average fixed cost of maamtee for a vehicle in
groupi is given bys /(kT). Besides, as maintenance work is carried out at
intervals ofT, a fixed cost, denoted & will be incurredfor all vehicle groups
scheduled for maintenance in each basic periodi&fiae the average total cost

20 b ) T=3 + D00 KT + L where @ (5, T) =2+ G, KT,



C,=5— XY(a-05pXY, C,=0.3Y*, andu=} nY(a—- pX\Y is a
i=1

constant since all the parameters are given irexfgwession. Therefore, the

mathematical model for the TFMSP can be expressgaablem Ry).

(P inf  Z({k k- kh T = inf m{%i@wn}@n

T>0keZt i=1;--m T>0,keZ" =L,

We note that since the fixed cost for the mainteeasf a group of vehicle
s is generally greater than the fixed operating epst practice, it is reasonable
to assume that; > 0 withs > g andY; < 1 (which is the utilization factor of a
vehicle). Also, it is obvious th&i, > 0.

We define ¥({k, Kk, -+, k }, 1)3:$+Z‘I’.( k 7 sinceu is a constant.
i=1

Then, solving the problenPg) is equivalent to obtain the optimal solution for
the problemP) as follows.

T>0,kez" i=1;--m T>0,keZ" =1,

P, inf 0k by k), T = inf m{;SJer:@(KT} ©)

In the TFMSP, we dedicated our efforts to minintize total costs incurred
per unit of time,i.e.,, to determine the basic periddandthe frequency of
maintenance for vehicles in each group for decisiaker.



4. Theoretical analysis

In this chapter, we conduct theoretical analysishenmathematical model
of the TFMSP based on Huang and Yao’s (2007) reke#&n section 4.1, we
discuss the maintenance frequency for each groyelutles, which can also
provide us more insight about the optimal objecfiugction curve. A relaxation
method of the TFMSP is introduced to set the seeadlge in section 4.2. A
brief summary is presented in section 4.3.

4.1 The closed form for finding maintenance frequency

As presented by Huang and Yao (2007), the rigte-efd5),i.e., ®,(k,T),
which has the following properties foF >0, i €{1,...,m} with given k €Z".
1. &.(k,T)is strictly convex

2. ®,(k,T)has a minimum forT = X / k with X given by

x =G /G (6)

3. The function®,(k,T) obtains its minimal objective function value by

2n{G G (7)

Moreover, Huang and Yao defined a new functigqr) by taking the
optimal value ok; at any valueT '>0 for the function®,(k,T) as follows.

g(T) = K'Q; {(I)i( K, T)} (8)

Therefore, the functiong,(T) is a curve that concatenaté@s(k (T'), T’

where k'(T") is the optimal value ok at a given value ofT =T'. By
graphically displaying theg (T) curve, one may observe thai(T) is actually
the lower envelop of all the functions df (k,T) with respect td.

Besides, one may notice that there is a particuddwe of T where two
consecutive convex curve®,(k,T) and ®,(k +1,T) concatenate. Huang
and Yao defined such points as “junction point” fg(T), and derived a
closed-form for the location of the junction pointhey defined the difference

10



function A, (k,T) by

AKT)=® (k+1,T)-® (kT)

__nG nG __hG (9)
—(k+1)T+nC2|(k+l)T T —nG K I<(k+1)T+ ng
and located the junction points by lettiny. (k, T)=0 as follows.
G 2(s = X Y(p=0.5p X;V)
ok) = \/Czl(k+1)k \/ b Y (k1) k (10)

Importantly, such a junction point provides us itf@rmation on at “what
value of T” where one should change the valu&kalo as to obtain the optimal
value for the g(T) function.

600

550

oo b I::'.L ' 1“. (I)i (K - 11T)
450 | I".L O (k =2,T)
ol ke
350 | g - (I)i(K :4,_[_‘/)’:,/
0}
250 | \\ \\ ~ - )
200 | 4 T .
. _________,__._________
150
L] \ \ A\
0 6 7 s\ s 10
a0 @) ai(2) 5i(1)

Figure 1. The function curve of tiggT) function
Also, Huang and Yao proved the following lemma aseasier way to
obtain the optimal multiplierk (T) € Z* for the g,(T) function for any given
T>0 (6 (k) <6 (k—1)by the closed-form aofi(k) in equation (10)).

Lemma 1.For any given T > 0, an optimal value &f (T) €Z* for the g,(T)
function is given by

___|_l' 1_|_ﬂ

KM= 2 2 C,T?

(11)

with [.] denoting the upper-entier function.
11



By the rationale discussed above, we know that dlte) function is a
piece-wise convex function since it is made up ®fesal different®, (k,T)
curves. In addition, the average cost 3T is obviously a convex curve.

Therefore, we further defin&'(T) :$+ z g.(T) and rewrite the problent)

by )
(Py) inf I(T) =ip>fo{$+i gm} (12)

where the functionr (T) is the optimal objective function value curve wit
piece-wise convex property of a univariate functiath respect td.

4.2 The upper and lower bounds

Based on Huang and Yao’s (2007) study, we empl@&jexation method to
set the search range. By relaxing the constraintsZ® by k >1, we obtain a
relaxation of P) in (5), namely R) as follows.

(R inf  U{kK,...k} T = inf 0{$S+ZL@HT} (13)

k>1i=1,.mT>0 k>1,i=1,.mT>

Similarly, we also defing®(T) as a relaxation aji(T) in (8) by replacing
k €Z* with k>1, ie, g®(T) ::ipjl{@i(lg,'lj} , where T>0 and

i=1,..m. If we define h(T) by h(T)=9 T+ ¢”( 7, we may consider

i=1
h(T) is a relaxation of the functiom (T) defined right before (12). Then, it is

obvious that solvingR) is equivalent to obtain an optimal solution ftwet
problem R,) as follows.

(R) inf h(T) :ipjo{S/ T+ ¢ 7} (14)

If we ignore the constraink >1, thenk; becomes a continuous variable.
In such a case, for any given value Df> 0, we may easily obtain the optimal

value for @, (K,T):l—c_:l_”Jr nG kT by

12



S 1

KM=-7JG/G (15)
Recall that X =,/C,/C, , which is expressed in (6). Wheh< x, we

have k (T) >1, which satisfies the constrairk > 1. Thereforeg®(T) obtains

its optimal value as a constant 8n,/C,C, for T<X.

On the other hand, whefi > X', we havek (T) <1, and we are forced to
take k' (T) =1 if we take the constraink >1 into accounts. By summarizing
both cases, it follows that

. /C. if T< X.
MNGG TT< X (16)

(IDi(l,T):r]q-/T—l— nG T, if T> X
Also, we could easily obtain the first derivative gf”(T): when T < X,

gi(R) (T) -

dg® (1) _ *
—+—==0, and whenT > x,

(17)

wm _wen_ e ng.

dT a7 =
Therefore, we conclude that the functigf?(T) is convex, increasing, and

continuously differentiable or{0,00).
Without loss generality, we assume thgt<x,<..< x , the strictly

increasing derivative’(-) is given by
= if T<X

N(T={>nG, ~| S+ n@/? it k< K xl< £ m1 (18)

NG, —|S+y) nq/? it T X

By setting the derivative dfi’'(-) in (18) to zero, we have the following
lemma to locate the optimal soluti@f? for (R,).

Lemma 2.Assume without loss generality tha} < x, <...< x_. If it holds that

i" = max{l<i <m:h (X )< 0}, then the optimal solution® of (Ry) is given by

13



T(R’=\/S+im9]/i nG. (19)

Let v(R) be the optimal objective function value ). Then,v(R) can be
obtained by plugging® into the objective function of the problem;). We
note thatv(R) serves as a lower bound on the optimal objedtinetion value
of the problemP).

SometimesT® is the optimal solution for the problem)( as we show it
by the following lemma.

Lemma 3.Assume without loss generality that < x, <...< X . If it holds that

T® > then({1,...,1}, T%) is an optimal solution for the proble(R).

Proof. Since T® >x is an optimal solution of R;), we have the
corresponding optimak™ =1, fori=1,...m, by (15). And, obviously, it is also

a feasible solution for the problem)( Hence, it implies that ({1,...,1JT®) is
an optimal solution for the problerR), Il

When T® < X | T® may not be an optimal solution of the proble). (

(This is due to the fact that the values kpfcorresponding tor® are not
necessary integers. This implies that the optiroait®n of (R,) is generally not
feasible for the problemP}.) In such a case, we propose to use Lipschitz
optimization algorithm to search for an optimalud@n for (). Define v(FP)

as the objective function value at a feasible smudf the problemR). In this
section, we discuss how to US® andv(FP) to determine the search range in
our improved Lipschitz optimization algorithm.

ThoughT® may not be an optimal solution d®)(for TR <x_, we could
easily obtain{k(T®)} atT® by (11) in Lemma 1, andK(T®)} ,T®) is a
feasible solution ofF).

Denotek(T’) as the set of optimal maintenance frequenciea gfiven
value ofT". Let V(FP) be the objective function value of the proble®h &t T,
i.e, V(FP)=W(k(T®), T®). Obviously,v(FP) serves as an upper bound on
the optimal objective function value of the probl@. If v(FP) is very close to
V(R) (say within an allowance @j, we have found an acceptable and feasible
solution for ). If it is not good enough, we shall apply a glebptimization
procedure to solveP). To this end, we need to determine an intervat th
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contains an optimal solution d?), denoted by .

DenoteT,,, andT,, as the lower and the upper bounds, respectivetireo
search range for Lipschitz optimization algoritimthe following lemma, we
will show that a lower and an upper boundT@n are given by the two values of
T where the objective function dR{) equals to/(FP).

Lemma 4. Let T,y and T, be the smallest and the largest T, respeltivier
which the objective function @®,) is equal tov(FP). Then, the optimal value of
T for the problen{P) must lie betweeff,,, and Ty, i.e, T [T, T.].

Proof. Since the objective function oR{) is strictly convex, we clearly have

the results thatr,, <T® <T,_. Consequently, the objective function value is

larger tharv(FP) for T<T,_, . Since Ry) is a relaxation ofF), so thatT,,, is a
lower bound orT®.

Similarly, we may proof thaff®® <T .l

We note that the boundg,, and T,, may easily located by some line
search methods(g, bisection; Bazaraat al, 1993). Therefore, ¥(R) is not
good enough, we wouldpply a global-optimization technique to solve the
problem ) on the intervallT,,,, T,.] .

Objective function )

V(FP) L

: bjective 'unction
WR) [ Sl

Figure 2. The lower and upper bounds are giveméywo values of where
the objective function of}) equals to/(FP).
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4.3 A brief summary

In this chapter, Huang and Yao’'s (2007) researabvige us a clear
knowledge about the TFMSRfter having the search range, we then ready to
apply the Evtushenko algorithm as the Lipschitzimiziation algorithm tool.
The improved Lipschitz optimization algorithm wibe proposed in next
chapter.

16



5. The proposed improved Lipschitz optimization
algorithm

In this chapter, we first review the Evtushenkaoalfpm with the rationale
of Lipstchitz optimization. The procedure and desdtuations for expediting
the search in Evtushenko algorithm is presentegkation 5.2. In section 5.3, a
fine-tune searching procedure based on slope-amgckand step-size
comparison is proposed to complete the improvedsdhifiz optimization
algorithm. A brief summary of the improved searchedgorithm is given in
section 5.4, and the steps of proposed algoritenpersented.

5.1 Areview on the Evtushenko algorithm

Before presenting the Evtushenko algorithm, itmpartant to learn more
about Lipschitz optimization algorithm. It is a phd-optimization approach
when the objective functionare univariate (Huang and Yao, 2007). More
formally, a real-valued functioh defined on a compact sex CR" that is said
to beLipschitzmust satisfy the condition

vxe X, Vye X |h()- h(< I x

wherelL is a constant (calledipschitzconstan) and |||| denotes the Euclidean
norm (Horst and Pardalos, 1995).€1 for univariate)

f(y)
! () f
d
| P N L

Figure 3. Lipschitz function

One can notice by Figure 3 that an univariate fondtis Lipschitz when
the absolute difference of the objective functiafue for each pair of andy is

17



smaller than or equal to thapschitz constantin other words the optimal
solution is secured bg=L|x-y|]| within range Y, X]. However, it is worth to
mention that ofteth is unknown beforehande., only an overestimate &f will
be available for bounding the Lipschitz function.

The Evtushenko algorithnis designed for maximization of multivariate
Lipschitz functions, but it solves repeatedly umiae maximization problems
obtained by fixing all variables but one. The iddahe algorithm is to make
use of the information on the current best knowmcfion value to determine

the largest valid step sizé:(25+ fopt—f(xk))/L for next iteration, while

securing ane-optimal solution simultaneously. Besides, it is ardered
sequential methodi.e., the evaluation points at successive iterations a
increasing values of belonging to &, b] (Horst and Pardalos, 1995). Its steps
are as follows:

Initialization
ke—1;
X, «—atell;
Xopt<— X1

fopt‘_f(xopt)
Evtushenko’s saw-tooth cover
While xx< b do

fopt 26— T (%)
L 7

X < X+

If f(xk+l) > fopt then fopt - f(Xk+1); Xopt<_ X<+1 endif;

ke—k+1
EndWhile.

: 2 : :
In the worst case, the step sigeequal to Tg (the incumbent evaluation

value is also the optimal value on hand) when timetion is constant functions
or all monotonously increasing functions (Horst @hatdalos, 1995). Even if
part of the function value is increasing in someges, it takes considerable

length of searching runtime and great number afaiiens which is very
18



time-consuming.

Later, Huang and Yao (2007) transferred the objecfunction of the
TFMSP into an univariate function with respectt(eq. (5)) for a minimization
problem, and proved that it is Lipschdr the interval Tiow, Typ]. Recall that the
Lipschitz constants often unknown, however, Huang and Yao showedl ith
can be obtained on some interval by the maximumsaderivative in absolute
value, and it is given by

L=1L,+ zm: L (20)
where

S
L, = = (21)

low

Noted that the derivative fog is equal to—T—Sz, and ‘—i Is maximal on

T2

[Tiows Tl fOr Tiow. Similarly, the functiongi(T) has maximum slope in absolute

ow?

value at the junction pointi(k) (see eq. (10)). Althoughg(T) is not
differentiable at these junction points, the lefdaight-hand derivatives exist.
By (8) and (10), it follows that the left and rigiind derivatives of;(T) are

given by (k+1)®, (k+1,8 (k)) and —k® (k6 (K)), respectively. It is easy to

verify that
(k+D)®, (k+14 (K))=—kb; (kd (K)= nG, (22)
and hence
L =nC,, i=1...,m. (23)

By combining (20), (21) and (23), thapschitz constantor the objective
function of problem®) on [Tiow, Tyl IS given by

S m
L=T—2+ZniC2i (24)
i=1

low
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In addition, Huang and Yao apply the algorithm oftushenko as the
Lipschitz optimization tool with @ynamic Lipschitz constamthich was first
proposed by Wildeman and Dekker (1997); after efsiction evaluation
(going from left to right), theLipschitz constanis recomputed as we take the
current searching step to be the nBy,, denoted byL.. Therefore, a smaller
Lipschitz constanis generated due to a larger lower bound, andrgera
searching step can be taken, which will speed epd#arching process.

Next, we are going to propose the procedure araild#tuations that can
expedite the Evtushenko algorithm wittynamic Lipschitz constarfor the
TFMSP.

5.2 A procedure for expediting the Evtushenko algoritm

In this section, we propose a procedure which qeed up the search in
the Evtushenko algorithm. The procedure can berasghinto three parts: the
searching at starting point, the searching durindirig a local minimum, and
the searching after a local minimum is located. g8gphically displaying the
possible situations in these three parts, we hallediscussion in subsection
later. The rationale to perform the procedure iRHhsws.

It is important to realize that with a giv@inone could obtain a specific set
of k={k;k,,....ky} (see eq.(11) for eack;), and each with a corresponding
objective function curve

) =24+ 30 (K. T), 25)

Namely, for a giverT, we pick up a particulabi(k;, T) from g;(T) of each group,
and thesed;(k,,T) can form a unique(k,T). One should notice that the optimal
objective functionI'(T) is exactly the lower bound of thegg,T) on T-axis.
Therefore, for eackk set, its local minimumT (k) could be calculated by
equating the derivative of th& (T) function to zero. TheT (k) is given by
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Z;niCZiK

Since such a local minimum obtained from a spedifiset could be a

T(k)= (26)

candidate for the optimal solution, we are motidat® searchT (k)
consecutively, which can reduce the computatiorfdrte of Evtushenko
algorithm between a givehand T (k) of a particulak set.

Besides, it is easy to learn that for a giveand itscorresponding set of
multipliers, say,k®, a particularT (k%) can be obtained. Therefore, kf set
corresponding toT (k% has changed, sai', we know thatT (k° is not a
candidate of optimal solution because theset is unique for each local
minimum of T'(T), and we set=T (k°), k'=k (T (k%) for next iteration. On the
other hand, ik® = k*, the T (k% must be a local minimum of (T), and its
corresponding optimal objective function valudenoted byTGC,,, will be
recorded and compared to the best-on-hand solutermgted byl Gyes;

Since such a procedure can locate the local mininuik) of y(k,T)
directly with a givenT value and its specifik set, and the procedure can be
executed consecutively if we obtain a new sek att T (k), it is obvious that
the procedure can expedite the searching procespates to the Evtushenko
algorithm. Its process is as follows.

1. Start from a giverT, calculatek’= { k(T)} for each group.
2. Calculate T (k% andk® at T (k%
3. If k'=k° calculate theTGC,y at T (k%) and record it if it is less than the

TChest If k'=K?, setT=T (k°), repeat step 1.

Recall thatI'(T) is the optimal objective function curve with peewise
convex property, it is impossible for us to empline proposed algorithm
through the whole search range without interrupgaoept for a monotonously
decreasing curvea.€., we will stuck in a local minimum ofi"(T)). Therefore,
during the search section with an ascending cuwe, still have to use
Evtushenko algorithm since the proposed algorithmieisigned for locating the
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local minimum of I'(T) and Evtushenko algorithm can search fast when the
curve is ascending. Wsill discuss the proposed algorithm in three pattte:
searching at starting point, the searching durindirig a local minimum, and
the searching after a local minimum is located, hade full discussion in the
following subsection.

5.2.1 The proposed algorithm at the starting point

Apparently, we have to investigate the shape of dpemal objective
function I'(T) at the lower bound sinc& (k) may be out of the lower bound if
['(T) is in ascending trendt Ty, as shown in Figure 4. An easy method to see
the curve trend could be done by checking functi@ines at adjacent poifif,,
and T . We use Evtushenko algorithm to obtain the seagcheration which
is denoted by ¥m) (m=1 ton) and we takd,," asX(1), then calculate it§Cyp.

If TCopl(Tiow') IS larger thanTCyp(Tiow), the curveI'(T) is ascending. By the
usage of Evtushenko algorithm, we denote the fofligwsteps to be
f—f, +2

opt

L

C

X(m+1)=X(m)+6&. The increment step is defined as= . The

searching speed would become faster when the &tepssgetting larger while
Lipschitzconstantbecome smaller, as well as the optimal value o lfig;is
fixed and objective function valudas increasing.

T(K) Tiow Tiow™ Tp:
Figure 4. An increasing curve trend leatgk) to be out of lower bound
On the other hand, n‘Copt(T.ovf) is smaller tha CypfTiow) Or TCopd X(mM))
is smaller thai Cyp{X(m-1)) afterm"iterations, then it is suitable to adopt the
proposed algorithm. One may notice that the seagciep will move to a local
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minimum of I'(T), and the determination of the steps during séagcfor a
local minimum are judged from the condition of ook the three possible
situations as we discuss in the following subsectio

5.2.2 Three possible situations when searching for a loteninimum

WhenTC, is decreasing, we can directly jump the searchtagto T (k)
of a particulak set, and replace tHeC,cqif the TGy at T (k) is better than the
existing one. Whether the jump could happen depeamusthree possible
situations when searching for a local minimum assta¢ed in the following.

1. Normal situation (Forward search)

Generally, we can apply the proposed algorithm eousvely without
missing local minimum if only one component of theet has changed at
each jump step. This situation is mostly happenadng the searching
process with a descending curve, and we therefameed it as the normal
situation. One demonstrative example is given guké 5, where the step
X(6) is the local minimumT (k) corresponding to X(5) witk={k(X(5))}.
As depicted in Figure 5, by checking thg,T) (dashed curve) with the
lower envelopI'(T) (the bold curve), we found that the optinkaket at
X(6) should be different fronk={k(X(5))}, so we forward the searching
step to the local minimum at X(7) correspondinghte newk={k;(X(6))}
at X(6).

s -
' .
-
' .
.
\ -
\
] /\
)
\
Y
\
)

1
Tiow  X(3). X(6)X(7). Ty
Figure 5. Normal situation of the proposed alganith

2. Backward search without missing local minimum

Sometimes more than one component in kheet haschanged during
23



searching from current step (a gival to its T (k). In this case, a
backward search mechanism will be triggered to gmevhe search from
missing the local minimum. As demonstrated in Fegéy when the current
step X(5) jump to itsT (k), the corresponding nek={k(X(6))} will in
term lead to a jJump backward to X(7). Likewise, tiesvk={k;(X(7))} will
again jump backward to X(8). Therefore, no locatimum will be missed.
Note that, in this case, we will start next steprecly from
X(9)=X(6)+(f-fopit2¢)/Lc, which will save the effort for not to duplicateet
searching within X(8) to X(6).

.
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Tow X(5). X(@®) X(7). X(6). X(9). T
Figure 6. Backward search without missing localimum

Missing local minimum

However, there were times when more than one coemian thek set has
changed during searching and the local minimumhalimissed. As shown
in Figure 7, when the searching move from the cutiséep X(5) to itsT (k)
(i.e,, X(6)), more than one component in theet has changed. However,
unlike the situation shown in Figure 6, the searghwill forward to X(7)
since theI'(T) is descending, the local minimum located betwXéh)
and X(6) will not be detected.
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!
Tow  X(3)- X(6)- X(7)- Top

Figure 7. Forward search missing local minimum
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Tow XG)  X(7).X(6). X@®) Top
Figure 8. Backward search missing local minimum

Another possible situation of missing local minimigyshown in Figure 8,
which depicts that when the searching move from) Xg¢5X(6), it will only
move backward to X(7), and then move forward to
X(8)=X(6)+(f-fopt+2¢)/Lc. Hence, one local minimum will be missed.

5.2.3 Two possible situations when a local minimum is tated

Obviously, the current step must be moved to al lssaimum of I'(T) if
it has the sam& set compare to the previous step, and we will rcecbe
current step and theset if theTC, is lower than thd G, Besides, due to the
characteristic of piece-wise convex property, &, is fluctuating, it may
increase or decrease when the next step movesrtbomdl-axis after locating
a local minimum. If it is increasing, we will keegearching by Evtushenko
algorithm until it is smaller than previous stepaoto make sure th&'(T) is
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descending and then adopt the proposed algorithrt. is decreasing, the
proposed algorithm will be triggered for findingadiner local minimum again.
Note that the next step after locating a local mum is moved forward for

2
fg by Evtushenko algorithm sinéef,:.

C

he objective value o
! The objective value

1S mereasing. i decreasing

| | | |
7, T+= T T+

Cc c

2¢e

Figure 9. Two possible situations when a local munn is located

Basically, subsection 5.2.1, 5.2.2 and 5.2.3 cantlaeé main concepts of
the proposed algorithm. It shows that the Evtusbemkgorithm can be
improved within the decreasing sectionsl'@f,,. We summarize the procedures
as follows.

1. Check the curve trend by comparifi@op(Tiow) and TCopt(T.ovf), if it is
increasing, use Evtushenko algorithm to searchgatbe T-axis until the
function value is decreasing.

2. While TG, is decreasing, the proposed algorithm is then tedo find
T (k) of differentk sets consecutively, and it will move to a locahimium

of T(T).

3.  While a local minimum is located, we use Evtushealgorithm to restart

the search and proceed with step s%:e to the next step. Comparing

C

TCopt(f) with TCopt(f+%) to check if the curve is ascendirgy

descending. IfTCy is increasing, adopt Evtushenko algorithm uiitd,,
is decreasing. Otherwise, go to step 2.

However, the right side of Figure 9 shows thatkls®=t may have changed
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within a very tiny range, which implies the poskilgs of infinitesimal jumping
distance of current step and its, and this lead to the discussion in section 5.3.

5.3 Afine-tune search procedure

As we mentioned above, the Evtushenko algorithmbsaaenhanced within
TGt decreasing area since we can forward the searchep directly to its
local minimum T (k) with specifick set. However, the function curveg,T)
with differentk sets sometimes make a over-frequent fluctuatiigaer of the
['(T) within some tight sections. Such behavior wildeo numerous searching
iterations since the backward search mechanismdameilperformed to prevent
from missing the local minimum when the step prigokelby Evtushenko
algorithm is across from descending curve to asogrnuhrt.

However, the backward search is unnecessary bethesguality of the
solution could be secured by Evtushenko algoritrenaf a local minimum is
missed. Moreover, for a given if the step propelled by Evtushenko algorithm
is larger than itsT (k), it is reasonable to choose Evtushenko algorithine
view of searching efficiency. Therefore, in order meliorate the proposed
algorithm, we propose a fine-tune search procebdased on slope-checking for
current step and step-size comparison mechanisms ¢hn eliminate
unnecessary steps and adopt an efficient nextvatdp remain the quality of
solution simultaneously.

Here, we take the marching step-size into accoyritvb methods: One is
the distance between current step and local mininfuk) corresponding to its
k set, we named it the “jumping step size” sincerfovement od-axis is like
a long jump, and the other is the step size predibly Evtushenko algorithm,
we named it the “Evtushenko step size”. The follmyvare four situations we
may encounter:

1. Evtushenko step size larger than jumping step sizgith negative slope.
If the step size determined by Evtushenko algoriismiarger than the

jumping step size and the current step has negatoee, as shown in
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Figure 10, we adopt Evtushenko step size as thestep. In this case, the
quality of the solution is still guaranteed, sinthe Evtushenko algorithm
can secure astoptimal solution.

Evtushenko step size smaller than jumping step sizeith negative
slope.

If the movement from current location (k) is larger than the step size
determined by Evtushenko algorithm, as shown iufédL1, then we take
jumping step size as the next marching step. Simegumping step size is
generally larger than the Evtushenko step size,s#aching during the
section with negative slope can normally be speedrtis is actually the
key mechanism for shortening the searching proeedy using our
proposed algorithm instead of the Evtushenko dlgari
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Current step. T (k). Evtushenko step.

Figure 10. The step size determined by Evtushelgarithm is larger than
the jumping step size

Current step. T (k).
Evtushenko step.

Figure 11. Evtushenko step size smaller than tmping step size
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Current step is propelled by the proposed algorithmwith positive slope

If the slope of the objective function at the cutresearching step is
positive, and it is also the local minimum(k) corresponding to the
previous step, as shown in Figure 12, then it isegBessary to compare the
step size since the jumping step size is alwayatheg(moving backward).
Although the Evtushenko algorithm should be adopiedproceed in
ascending trend, we had thie(k) of current step first priority to be the
next step since the proposed algorithm is stilbriagress, i.e., there is no
local minimum of I'(T) has been confirmed. Note that, this is exaitttty

backward search situation, and it will keep seaghintil detecting a local
minimum.
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Tlow“ Previous T (kg Current Evtushenko. Tup»-
step: step.  step.

Figure 12. UseT (k) to be the next step while the proposed algorighstill
in progress (Backward search situation)

Current step is propelled by Evtushenko algorithm wvith positive slope

If the Evtushenko step size propels the step fregative to positive slope,
then there must exists at least one local minimefavéen previous step
and current step, as shown in Figure 13. In suchsa, a backward search
Is not needed since Evtushenko algorithm can olatiairoptimal solution,
and we proceed with Evtushenko steps.
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)

T Previous. | Current . e
step. T (k). step.

Figure 13. Backward search fair (k) is not needed while current step is
propelled by Evtushenko algorithm and across logalmum

In a word, if the current step has negative slapdarger step size is
preferred to expedite the searching process. Otbera checking procedure for
whether the current step is propelled by Evtusheslgorithm is required in
order to eliminate the excess backward search.efdrey, by checking the slope
at current step and the step size, the searchimmgeaty can be assured as well
as the quality of solution. We propose a flow charhelp us judging the next
step in Figure 14.
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START
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to current step
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Copt at curre
step smaller than
revious ste;

Slope at

v

Calculate the predicted
Evtushenko step size, Tg
and the T by improved
Lipschitz optimization
algorithm

A A 4

current step <0

YES

Next iteration

*

Use Evtushenko
algorithm to search in
ascending curve

heck if the curren
step is propelled by
tushenko algorith

T

Choose T

The solution can be
secured, proceed with
Evtushenko algorithm,

NO

The improved Lipschitz
optimization algorithm is
in progress, a backward
search is performed to
find the local minimum
T of optimal objective

function T'(T)

A 4

Obtain the next step

v

Next iteration

END

Figure 14. Aflow chart for determination of the next step

5.4 A summary of the improved Lipschitz optimization dgorithm

According to the discussion above, we can assua¢ tte improved
Lipschitz optimization algorithm is reasonable tavé a better searching
efficiency in a function value decreasing conditi@esides, duplicating search
work can be avoided by identifying a backward seam@nd the searching
efficiency can be further proved since we eliminaxeess backward searching

iterations caused by the steps propelled by Evhighealgorithm from

descending curve to ascending section. Also, we itatio account the step size
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and slope of current iteration to decide the ne2gth place so as to expedite
the searching speed. Therefore, we are motivatezkamine how significant
affect can the improved Lipschitz optimization aigom reach. We hereby
propose an improved Lipschitz optimization alganths follows.

Relaxation Begin

Sep 1. ObtainT® by eq.(19), sei(R) as the solution ofRy) at T.

Step 2. if T®>x, setk=[11-,1 and T® the optimalsolution for the
problem(P).

Step 3. if T® <X, obtain k={k(T®)} by eq.(11) and obtain a feasible
solutionv(FP) for the problemR) at T®.

Step 4. if V(FP)-v(R) < &v(R), then set (FP), T®, and k={k(T®)} as an
g-optimal solution.else v(FP)-v(R) > ¢v(R), use bisection search to

locate T, and Ty, by finding two values ofl where the objective

function of R,) equalsv(FP).
End

I mproved Lipschitz optimization algorithm Begin
(Initiation setting and check the curve trend)
TGt the best known solution on hand

TC current optimal objective function value
TCye optimal objective function value of previous step
TC the optimal objective function value

T the optimall

K the optimal k set

X(m) searching step atiteration

Teur the current searching step

Lc dynamicLipschitz constant

Te Evtushenko step

T the step of proposed algorithm

slope slope at current searching step

propelbyEv index of whether current step is propelled by Evaurdko
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algorithm

Step 1. Initiation of the improved Lipschitz optaation algorithm:
SetTCes= (FP), TC'= V(FP), T= T®, k'={k(T®)}, start the search
from the lower boundT,,. Set T, =Tow. Obtain k={ki(T.,)}, get
TC=TC(K, Tew), setTC,e~TC.

Step 2. SetrF1, compute.. at Ty, set X(1)=Tg, te/Le, obtaink={k(X(1))},
getTC=TC(k, X(1)).

(Use Evtushenko algorithm for function value increasing area)

Step 3.While TC> TG, setT,~=X(m), Computel; at current search stdp,,

TC—-TGC + 2¢
L

C

setmFm+1, X(m) =T, +

Step 4. if X(m) >T,,, break, elsesetT.,=X(m), TC,~TC, obtaink={ki(Tcu)},
getTC=TC(k, T.u), go toStep 3

(Initiation setting finished and having a decreased function value. Sart to
adopt the proposed algorithm)

Step 5. While X(m) <Ty,, setTe,= X(m), obtaink={ki(Tc,)}, get TC=
TC(K, Teur)
Step 6. IfTC<TC, setTC=TC, T = Teur, K ={ki(Tcu)}
Step 7. computslope at T, obtain T by eq.(25), obtain Evtushenko step

Tt 4 TC- TfoestJr 2¢

C

(Confirm alocal minimum)
Step 8. if Teu=T, getTC=TC(K, T..), do step 6 Initialize propelbyEw -1.

(Confirm a forward search and use Evtushenko algorithm after locating a
local minimum)

Step 8-1. if Tg,=max(X(m)), set TCy~TC, computel., setmem+1,
TC—-TC + 2¢

X(m) =T, + . if X(m)> T,p, break, elseset

C

Too=X(m), obtain k={ki(T..)}, get TC=TC(K,T.), set
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propelbyEw1, do step 3 and 4.

(Confirm a Backward search and use Evtushenko algorithm after
locating a local minimum)

Step 8-2. else set Xpae=max(XM)), Te=Xmaw cCOMpute L., get
TC=TC(k,Tew), set TG, ~TC, set m=m+1,

TC—-TC + 2¢

X(m) =T, + , If X(m)> T,p, break, elseset

C

Tew=X(m), obtain k={k(Tcu)}, get TC=TC(k,Tc), set
propelbyEw1, do step 3 and 4

(Check Evtushenko step size and slope of current step, and use propelbyEvas

index to help judging the next step)

Step 9. elseif Te<T andslope< 0, setr=n+1, X(M)=T , setpropelbyEw0

elseifTe >T andslope< 0, selmem+1, X(M)=T,, setpropelbyEw1

elseifTe >T andslope> 0 andpropelbyEw1, setmem+1, X(m)=T.

elsesetm=m+1, X(M)=T .

Stepl0. go tétep 5

End of the Improved Lipschitz optimization algorithm
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6. Numerical experiments

In the first part of this chapter, we employ a nucs example to
demonstrate the implementation of the improved ¢hgg optimization
algorithm. Then, we use randomly generated instartce show that the
improved Lipschitz optimization algorithm outpenfes Huang and Yao'’s (2007)
search procedure.

6.1 A demonstrative example

In this subsection, we hereby use a five-group gkamresented in Goyal
and Gunasekaran’s (1992) paper to demonstrate niipbementation of the
improved Lipschitz optimization algorithm. The datat of this five-group
example is shown in Table 1.

In this example, we set the error allowance @&s0.01% for the
improved Lipschitz optimization algorithm.

Table 1. The data set of the five-group example
m=5 S=800

n, X Yi 3 bi S
10 0.8 |0.90 | 80 3 198
24 0.6 |0.95 | 50 2 192
30 04 |0.85 | 90 1 193
16 0.6 |0.95 | 85 1.5 | 205
12 0.5 094 | 95 2.5 | 204

First, we locate the optimal® of the problemR,) by T®=12.5349, and

the v(R) is given by $2,020.66. Sind” < X =21.20637, we use eq.(11) to get

the set of optimal maintenance frequenci&3®™)={1,1,2,1,1} to obtain a
feasible solution for the problemP) at T®. Therefore, we have
v(FP)=1 (k(T®), T®)=$2,034.87. Since the error of the feasible sotutis
(V(FP)-v(R))/ V(R)=0.7028%=2=0.01%, it is not-optimal.

Next, we locate the bounds,, andT,, by bisection search method to find
two values ofT where the objective function oR{) equalsv(FP). The search
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range is obtained by, =9.8418 andl,, =14.9888. We note that thg,, is
exactly the same value dicc by common cycle approach in this example.
Besides, we setl (k(T®), T®)=$2,034.87 as the initialC,es in order to
enhance the searching speed, which is differerfiuang and Yao’s (2007)
initial optimal solutionfop= U (K(Tiow), Tiow)-

Then, we apply the algorithm of Evtushenko as thproved Lipschitz
optimization tool. The search start from X(I)z+e/L:=9.8444, and we have
the cost valueW (k(X(1)),X(1))=%$2,083.52 (without considering the stemtu).
Therefore, by examining the total costTat, and X(1), it has decreased from
U (K(Tiow), Tiow)=$2,083.61 toW (k(X(1)),X(1))=$2,083.52. Obviously, it is
suitable to apply the proposed algorithm.

2100 —

2090

2080

2070 +

2060

2050 +

2040

2030+

Figure 15. Optimal function value curve of demoatste example

It is worth to note that the improved Lipschitz iopkzation algorithm take
total 74 steps to complete the search, and onle@ss(9.8444, 11.4009, and
12.7843) to locate the optimal solution BE12.7843 withk ={1,1,2,1,1}.
Therefore, we obtain the optimal average total codty
Z=TCyesitU=%$2,034.47+$6,438.25=$8,472.72. On the other h&hding and
Yao’s (2007) procedure locatd5=12.7818 after 85 iterations and terminates
after 157 steps, it is obvious to see that the avgad Lipschitz optimization
algorithm has significant reduction of searchingrations in cost decreasing
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condition.

In fact, the proposed algorithm can obtain tbal optimal solution if we
did not miss the global minimum, whereas the tradél dynamic Lipschitz
optimization algorithm can only secure anoptimal solution. Hence, we are
motivated to generate random instances for shothiagthe improved Lipschitz
optimization outperforms Yao and Haung’s (2007 ¢&ssh.

6.2 Numerical results from random instances

In this subsection, we present a summary of oudaamexperiments. We
design our experimental settings by referring ® sbttings in Table 1 brought
by Goyal and Gunasekaran’s (1992) paper. We sgibedlifferent values for the
number of groups of vehiclesn(= 3, 5, 7, 10, 25, 50), and seven different
values for the fixed cost in each basic pefio@b = 10, 50, 100, 200, 500, 750,
1000). This yields 42 combinations from these patamsettings. Then, for
each combination, we randomly generate 1,000 inst&ahy randomly choosing
the values foiX;, Y;, &, b ands by using uniform distribution functions. Table 2
indicates the ranges of these uniform-distributedtiom variables.

After randomly generating totally 42,000 instanoss, solve each one of
them by the proposed improved Lipschitz optimizatelgorithm as well as
Huang and Yao’s (2007) search procedure on a Cddei@® processor P8600
with 4GB RAM. We set the error allowance in eadpathm bye=0.01%. We
summarize our experimental results for the smaitez-(with m = 3, 5, 7) and
larger-size (with m = 10, 25, 50) in Tables 3 andedpectively.

Table 2. The settings of the parameters in ouraamelxperiments

m 3, 5,7, 10, 25, 50

S 10, 50, 100, 200, 500, 750, 1000
n U[10-30]

X; U [0.4-0.8]

Y, U [0.9-0.95]

a U [5-10]

b U[1-3]

5 U [25-40]
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In the view of searching efficiency, we calculate taverage run time for
each instance by repeating the search of 25 ties.may observe that the run
time of Huang and Yao's (2007) search proceduveryg fast. On the other hand,
the proposed improved Lipschitz optimization algon solves the TFMSP
with extremely short run time, and an average ®b.7An time improving rate
to each problem. However, for the same valug @fith the increasing size of,
the run time improving rate is decreasing and be&cosgative whilen=50 and
S=10, whereas the solution on average is better thaditional dynamic
Lipschitz optimization algorithm.

On the aspect of solution quality, one should eeathat we set the error
allowance equal to 0.01% for both searching algor#. However, the
improved Lipschitz optimization algorithm sometinmasgss the local minimum,
so we compare the outcome and indicate the numbarstances out of the
1,000 instances for each and S combination that the difference greater than
0.01% in the last"8column. The record shows that the differences bftisms
obtained by two algorithms are all within 0.01%.

Besides, in the last two columns of Tables 3 andvd, present the
maximum error and average error of the improvedsthitz optimization
algorithm in percentages. Surprisingly, we obsethiat 37 out of 42
combinations have negative maximum error valueckvinneans the proposed
algorithm in these problems can always obtain bettutions than the
traditional dynamic Lipschitz optimization algomth Although there are 5
combinations (whem=25 and 50) have positive maximum error, the ldrges
one is only 0.000129% and all of these 5 probleav&emegative average error
value, it is obvious that the proposed algorithnbester than the traditional
one.

In addition, one may notice that, the fine-tunecedure can help us
choosing the largest step in each iteration, whedans the number of
iterations of the proposed algorithm is equal ® Bvtushenko algorithm’s in
the worst case. However, although the number obtittns is smaller than
Evtushenko algorithm’s whem=50 andS=10, the runtime is larger since we
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apply step-size comparison and slope-checking nmesimg, and we consider
it is the reason that the searching efficiency bexmegative. On the other
hand, we observe that when is increasing, the time improving rate is
decreasing with differer$ values in different group, this is due to the fieit
the larger group it is, the more step-size compariand slope-checking are
needed.

Table 3. Experimental results for the smaller-¢me= 3, 5 and 7) problems

dynamic Improved Lipschitz optimization algorithm
Lipschitz
optimization
algorithm
S |Avg. Avg. |Avg. Avg. |Rumtime | Objective function value
iterationsRun |iterationsRun |Improving [Error |Max Avg.
time time |Rate (%) |more |[Error  [Error (%)
1) 2)  [((D-@)(A)than  |(%)
0.01%

10 302 0.026¢ 890.009¢ 66.40%0/1000-2.30E-0%3.10E-06

50 243 0.020¢ 330.0043  79.13%0/1000-7.50E-06-2.20E-0¢

100 219 0.023( 210.0044  81.049%0/1000-7.10E-06-2.20E-0¢

200 221 0.0221 140.003§ 83.04%0/1000-6.80E-06-2.10E-0¢
500 267 0.0248§ 7/0.002§  88.57%0/1000-5.90E-06-1.80E-0¢
750 326 0.028¢ 5/0.0025 91.36%0/1000-5.20E-06-1.70E-0¢
100C 385 0.0344 4/0.0025 92.72%0/1000-4.70E-06-1.50E-0¢
10 446 0.0374 1720.0157 58.15%0/1000-2.70E-0%4.50E-0¢
50 330 0.0317 680.008¢ 74.74%0/1000-9.90E-06-2.40E-0¢

100 293 0.025¢ 41/0.005] 79.93%0/1000-7.50E-06-2.10E-0¢

200 261 0.023( 26/0.0041 82.21%0/1000-7.10E-06-2.10E-0¢

500 263 0.0237 130.0031 86.65%0/1000-6.50E-06-1.80E-0¢
750 283 0.0235 8/0.0025  89.36%0/1000-5.70E-06-1.70E-0¢
1000 305 0.028¢ 5/0.0027 90.59%0/1000-5.30E-06-1.70E-0¢

10 514 0.0497 2250.0237 51.90%0/1000-3.80E-0%-6.30E-0¢

50 413 0.0363 1050.0104 71.96%0/1000-1.30E-0%2.60E-0¢

100 359 0.032( 630.007¢  78.13%0/1000-8.10E-06-2.10E-0¢
200 313 0.081 36/0.005( 82.37%0/1000-7.20E-06-2.00E-0¢
500 286 0.0256 190.0037  85.48%0/1000-6.70E-06-2.00E-0¢
750 285 0.026( 11/0.003] 88.08%0/1000-6.10E-06-1.90E-0¢

J7 J7 J7 J7 J7 J7 J7 J7 J7 J7 J7 J7 J7 J7 J7 J7 J7 J7 J7 J7 7

1000 293 0.027( 7/0.0029  89.26%0/1000-5.90E-06-1.80E-0¢
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Table 4. Experimental results for the larger-sine=(10, 25 and 50) problems

dynamic Improved Lipschitz optimization algorithm
Lipschitz
optimization
algorithm
m| S |Avg. Avg. |Avg. Avg. |[Rumtime | Objective function value
iterationsRun |iterationsRun |Improving |Error |Max Avg.
time time |Rate (%) |more |Error  |Error (%)
(1) 2)  [((D-2)/(A)than |(%)
0.01%
10| 10 5490.0503 2750.028§  42.77%0/1000-4.40E-0%-8.60E-06
50 5110.0464 1560.015] 67.78%0/1000—1.80E-0£’>2.90E-O€
100 4420.0414 1000.0105 74.67%0/1000—9.30E-0£‘>2.10E-O€
200 3730.0341 53/0.0064 81.370/40/10007.50E-O(‘>2.OOE—OE
500 3200.0294 27)0.00442 85.530/40/10006.80E-O(‘>2.OOE—OE
750 3080.028( 17/0.0034 87.440/40/10006.6OE-O(‘>2.1OE—OE
1000 3010.0287 120.0032 88.710/40/10006.20E-061.90E—O€
25| 10 5660.054¢ 4160.0515 5.97%0/1000 6.00E-0%1.80E-01
50 6420.064( 2660.0311 51.430/40/1000 2.70E-07-5.90E-0¢
100 6460.0684 2170.0253 62.99%0/1000—1.7OE-OE'>3.00E-O€
200 5800.058¢ 1540.016§ 71.33%0/1000—1.00E-OE'>1.90E-O€
500 4130.042¢ 580.007¢ 81.86%0/1000—7.4OE-0(‘>1.40E-O€
750 3800.0371 41/0.005¢ 84.27%0/1000—7.20E-0(‘>1.60E-O€
1000 3610.0357 330.0052 85.19%0/1000—7.00E-0(‘>1.60E-O€
50| 10 5550.061¢ 4940.075¢ -23.40%0/10000.0001291.10E-OE
50 6530.067€ 3580.0481 28.850/40/1000 4.45E-05%1.00E-0"
100 6880.0721 2910.0374 48.060/40/1000 1.49E-0%6.40E-0¢
200 7110.0763 2370.028¢ 62.060/40/10001.30E-OE‘>3.10E—OE
500 6150.0657 1430.0166¢ 74.770/40/10008.4OE-O(‘>1.20E—OE
750 5040.0557 890.0114 79.460/40/10007.4OE-O(‘>1.20E—OE
1000 4350.047§ 58/0.008] 82.980/40/10007.3OE-O(‘>1.1OE—OE

7 7 7 7 7 Al Al J7 J7 J7 J7 J7 7 7T 7 7 7 7 J7 J7 A4

According to numerical experiments results showifiahle 3 and 4 above,

we conclude that the improved Lipschitz optimizatiagorithm outperforms

Huang and Yao’s (2007) research is evident.
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7. Conclusion and future research

In this study, based on Huang and Yao’s (2007)reétexal analysis on the
mathematical model for the Transportation Fleet M#mance Scheduling
Problem (TFMSP), we propose an improved Lipschitinaization algorithm
with slope-checking and step-size comparison meshento enhance the
searching efficiency. As we start the searchingnfrthe starting point,the
searching step can be speed up during the secttbnawdescending objective
function. The searching iterations as well as thetime can be therefore
reduced significantly.

Although the improved Lipschitz optimization alghm sometimes may
miss the local minimum, we enunciate that the qualf the solution is even
better referring to our numerical experiments rssuih addition, we considered
it is pretty fair that the searching efficiency bee negative whilen=50 and
S=10 since the group is large and the applied chgaokiechanisms, whereas the
Sis possibly much significant in real world. Thered, we give a conclusion
that the improved Lipschitz optimization algorithen better than Huang and
Yao's (2007) searching algorithm.

Since we are motivated to modify the traditionalnayic Lipschitz
optimization algorithm, we did not take Yao and Hg'a (2006) junction-point
search algorithm into account. Besides, similamtst of other research works,
the capacity of the maintenance team (or, the maamce facility) is not a
limited resource in this study. In order to make tlesearch perfect resolved,
one should compare with the junction-point seartgordhm and take the
capacity constraint of maintenance in the futuseagch.
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