
東 海 大 學 

工業工程與經營資訊研究所 

 

碩士論文 

 
以改良式利普希茨最佳化演算法求解 

運輸車隊維修排程問題 

 
 
 
 

研 究 生：葉政祐 

指導教授：曾宗瑤 副教授 

黃嘉彥 教授 
 
 
 
 
 

中 華 民 國 九 十 九 年 七 月 



 
 

An Improved Lipschitz optimization algorithm 
for solving transportation fleet maintenance 

scheduling problem 
 
 
 
 

By 
Cheng-Yu Yeh 

 
 

Advisor: Prof. Tsueng-Yao Tseng 
    Prof. Jia-Yen Huang 

 
 
 
 

A Thesis 
Submitted to the Institute of Industrial Engineering and Enterprise 

Information at Tunghai University  
in Partial Fulfillment of the Requirements 

for the Degree of Master of Science 
in 

Industrial Engineering and Enterprise Information 
 
 
 

July 2010 
 Taichung , Taiwan , Republic of China



I 
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transportation fleet maintenance scheduling problem 

 
Student: Cheng-Yu Yeh                Advisor: Prof. Tsueng-Yao Tseng 

Prof. Jia-Yen Huang  

 

Department of Industrial Engineering and Enterprise Information 

Tunghai University 

 

 

ABSTRACT 
In this study, we propose an improved Lipschitz optimization algorithm secure a 

near-optimal solution for the Transportation Fleet Maintenance Scheduling Problem 

(TFMSP). By employing the proposed algorithm and a fine-tune procedure based on 

slope-checking, step-size comparison mechanisms, the search steps can be significantly 

reduced and the solutions can be secured within a very short run time. We provide a 

numerical example to demonstrate the efficiency of the proposed algorithm. To compare the 

computational performance, we test these search algorithms by random experiments with 

different values of the major setup cost and different size of vehicle groups. Based on our 

numerical experiments, we conclude that the proposed search algorithm can significantly 

outperform the dynamic Lipschitz optimization algorithm presented by Yao and Huang (2007) 

in run time as well as the quality of solutions.  
 

Keywords: Lipschitz, optimization algorithm, maintenance scheduling 
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摘要摘要摘要摘要    

在本研究中，提出以 Evtushenko演算法為架構的一改良式利普希茨最佳化演算法，

並用以求解運輸車對維修排程問題。透過本研究所提出之演算法及能夠確保搜尋速度的

步距比較和斜率判斷機制，可使搜尋時間及次數大幅降低，提高搜尋的效率。而在不同

車隊大小以及維修的整備成本考量之下，本研究提出隨機數值實驗，並從中得到此改良

式利普希茨最佳化演算法不論是在搜尋速度或是求解品質皆比過去研究還要好之結論。 
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1. Introduction 

In the past decade, logistics service providers have generally experienced 

low profit margins due to the intensive competition that exists in the industry 

and prices skyrocketing of the crude oil. It is necessary to have a fleet 

maintenance scheduled economically. A well planned maintenance schedule can 

not only bring down the cost but also raise the utilization rate of a transportation 

fleet.  

In this study, we devote our efforts to investigate a mathematical model for 

determining the economic maintenance frequency of a transportation fleet. We 

name this problem as “the Transportation Fleet Maintenance Scheduling 

Problem”, which is abbreviated as the TFMSP. In the TFMSP, the decision 

maker needs to determine T (i.e., the basic period) and {kl,k2,…,km} ( i.e., the 

frequency of maintenance for vehicles in each group) so as to minimize the total 

costs incurred per unit time. 

The mathematical model for the TFMSP was first proposed by Goyal and 

Gunasekaran (1992) and refuted by Dekker and Wildeman (1995). Huang and 

Yao (2007) proposed a dynamic Lipschitz algorithm to secure an ε-optimal 

solution rapidly, but the search process can be meliorated for a better searching 

procedure. Therefore, in this study, we propose an improved Lipschitz 

optimization algorithm which can enhance the searching efficiency.  

This paper is structured as follows. First, we review the studies in the 

literature for the TFMSP in chapter 2. The mathematical model of TFMSP is 

presented in chapter 3. Then, in chapter 4, we present on the optimal cost curve 

of the problem. Based on Huang and Yao’s (2007) study, the lower and upper 

bounds can be defined. An improved Lipschitz optimization algorithm with 

slope-checking, step-size comparison mechanisms is proposed in chapter 5. In 

the first part of Section 6, a numerical example is given to demonstrate the 

implementation of the proposed algorithm. Then, in the second part of Section 6, 

randomly generated examples are presented to show that the proposed algorithm 

significantly outperforms the search procedure of the traditional Lipschitz 

algorithm. Finally, we address our concluding remarks in chapter 7. 
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2. Literature review 

In this chapter, we review the literature of the studies in the Transportation 

Fleet Maintenance Scheduling Problem.  

 

2.1  Transportation fleet maintenance scheduling problem 

In the past, Goyal and Gunasekaran (1992) mentioned some researches 

have been dealt with the determining of economic maintenance scheduling in 

management science/operations research/industrial engineering (see Luss and 

Kander 1974, Luss 1976, Christer and Doherty 1977, Sule and Harmon 1979, 

Goyal and Kusy 1985). Recently, many researchers have been addressing their 

efforts to the studies on the scheduling of production facilities or machines (see 

Wildeman and Dekker 1997, Dekker, et al. 1997, Anily, Glass and Hassin 1998, 

1999, Amotz, et al. 2002).  

However, these studies did not take the characteristics of maintenance for 

the vehicles in a transportation fleet into consideration. We note that the 

objective functions in these studies are significantly different in their theoretical 

properties from that for the TFMSP. On the other hand, researchers pay limited 

attention to the problem of determining the operating and maintenance 

schedules for a transportation fleet. 

Although some of the researches showed that the aircraft fleet maintenance 

scheduling problem has been raised to reduce the cost for many years, the 

constraints are completely different due to the special characteristics such as 

heterogeneous fleet of aircraft, the regulations of routine inspection given by 

Federal Aviation Administration, the consideration of flight hours and number 

of take-off and landing cycles (Sriram and Haghani, 2003). Besides, the aircraft 

maintenance scheduling is related to assignment (Moudani and Mora-Camino, 

2000), maintenance routing and crew scheduling as well (Papadakos, 2009), 

which is different from the TFMSP. 
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2.2  Goyal and Gunasekaran’s method  

Notation 

Z total cost per unit of time 

m  number of groups of vehicles 

T basic maintenance cycle time 

S fixed cost incurred in each maintenance cycle for the i th group of vehicles 

fi(t) operating cost per unit of time at t time units after the last maintenance 

ai fixed operating cost per unit of time 

bi increased in the operating cost per unit of time 

si fixed cost of maintenance for a vehicle 

ni number of vehicles in the group 

Xi time required for maintenance work on the vehicle  

ki an integer which when multiplied by the basic maintenance cycle time T 

gives the maintenance cycle time for the vehicles in the group 

Yi utilization factor of a vehicle on the road 

zi total cost per unit time for a vehicle 

Goyal and Gunasekaran (1992) proposed an approach for TFMSP based on 

two equations that are derived by setting the first derivative of Z(T,ki) with 

respect to the decision variables to zero: 

( )

0

1

( )
min ( , )

i i iY Tk X
m i i i

i i
i i

s a bt dtS
Z T k n

T Tk

−

=

+ +
= +

∫∑ , T>0 and {1,2,3, }ik ∈ ⋯  (1) 

1
1 2

2

1

( ( ( )) / )
( , , , ) 2

m

i i i i i i i i i
i

m m

i i i i
i

S n s X Y a b X Y k
T k k k

n b k Y

=

=

  + − −    =       

∑

∑
⋯  (2) 

1 2( ( 0.5 ))i i i i i i i
i

i i

s X Y a b X Y
k

TY b

− −
=

  (3) 

Step 1.For the first iteration, assume (0)
i ik k= = 1 for all i, and obtain the first 

estimate of (1)T T=  from (2). At (1)T T= , determine (1)
i ik k=  from 

(3) for all i. If (1)
ik  values are not integers, then select the nearest 
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non-zero integer. 

Step 2.Using (0)
i ik k=  from (3) for i=1,…,m, we obtain (2)T T=  from (2) and 

then (2)
i ik k=  from (3) using (2)T T= . Repeat the process until the rth 

iteration and stop when ( ) ( 1)r r
i ik k −=  for i=1,…,m. The economic policy 

is obtained at * ( )rT T=  and * ( )r
i ik k=  

Later, in van Egmond, Dekker and Wildeman’s (1995) paper, they have a 

full discussion on Goyal and Gunasekaran’s search procedure. They indicate 

that the objective function is not convex as Goyal and Gunasekaran (1992) 

assumed. And, since the values of ki need to be integers, the determination of 

the global optimization is not as easy as Goyal and Gunasekaran suggested. 

They also show that it is not necessarily the ki minimizing Z when one rounds (3) 

to the nearest non-zero integer. Finally, they indicate that Goyal and 

Gunasekaran’s search procedure often stops after its first iteration without 

obtaining an optimal solution since they assumed ki = ki
(0) = 1. 

These three problems explain why Goyal and Gunasekaran’s solution does 

not always obtain an optimal solution. In fact, it is often stuck in a local optimal 

solution. However, van Egmond, Dekker and Wildeman’s (1995) only 

mentioned that one needs to try different starting values to find the global 

optimum, but without proposing a new solution approach to solve the TFMSP. 

 

2.3  Yao and Huang’s junction-point search algorithm  

Yao and Huang (2006) conducted a full analysis for the TFMSP. By their 

theoretical results, they proposed an efficient search algorithm that finds the 

optimal solution within a very short run time and out-performs Goyal and 

Gunasekaran’s search procedure. 

In their study, they indicated the objective function is piece-wise convex 

with respect to T, and they defined “junction point” as a particular value of T 

where two consecutive convex curves concatenate. The search algorithm is 

based on locating all the junction points and calculating the local-minimum 

T
⌣

(k) between each pair of junction points. If T
⌣

(k) exists and within two 
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consecutive junction points, then record the objective function value Ψ (k,T) by 

substituting T
⌣

(k) into the objective function and compared with the optimal 

value on hand. 

Besides, they defined the searching range by a lower and upper bound on 

the T-axis that can make the searching algorithm more efficient. They used 

Common Cycle approach proposed by Hanssmann (1962) to be the upper bound, 

i.e., all the vehicle groups share a common maintenance cycle, and they derived 

the lower bound from the optimal objective function value *Ψ  and optimal 

basic cycle time T*. The iteratively searching procedure stops until T is out of 

the lower bound. 

 

2.4  Huang and Yao’s dynamic Lipschitz optimization algorithm 

Huang and Yao (2007) devoted their efforts to TFMSP by adopting a 

dynamic Lipschitz optimization algorithm that can secure an ε-optimal solution 

in a very short run time and outperforms Goyal and Gunasekaran’s search 

procedure. 

In their study, they first conducted theoretical analysis on the mathematical 

model of the TFMSP. Based on their theoretical results, the important 

foundation is then established to show that the objective function of the TFMSP 

is Lipschitz. Next, they employed a relaxed problem to solve the TFMSP. If the 

solution is not within an allowance of ε, the Evtushenko algorithm (see Horst 

and Pardalos, 1995) is then applied as the Lipschitz optimization tool after 

locating the lower and upper bounds by some line search methods (e.g., 

bisection; Bazaraa, et al., 1993). 

According to their numerical experiments results, one may discover that 

the Lipschitz optimization algorithm is significantly better than Goyal and 

Gunasekaran’s method. However, due to the nature of Evtushenko algorithm, 

the searching step-size will become very small while the objective function 

value on hand is better than the existing one, which lead to great number of 

searching iterations, the searching procedures will be endured as well. 
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2.5  A brief summary 

To the best of the authors’ knowledge, there exists few researches deal with 

transportation fleet maintenance scheduling problem. Although Huang and Yao 

proposed a dynamic Lipschitz optimization algorithm which can shorten the run 

time compared to a traditional Lipschitz algorithm, it can be further improved 

by considering some characteristics of the theoretical properties of the objective 

function. In the rest of this study, we will dedicate our efforts to propose an 

improved Lipschitz optimization algorithm based on Huang and Yao’s (2007) 

study.  
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3. The mathematical model for the TFMSP 

In this chapter, before presenting the mathematical model, we first 

introduce the assumptions made and the notation used later.  

 

3.1  The assumptions and notation 

To discuss the transportation fleet maintenance scheduling problem, we 

redefine the following notation for more clarity based on Goyal and 

Gunasekaran’s (1992) research. 

Z total cost per unit of time 

m  number of groups of vehicles 

T basic maintenance cycle time 

S fixed cost incurred in each maintenance cycle 

fi(t) operating cost per unit of time at t time units after the last maintenance for a 
vehicle of the ith group 

ai fixed operating cost per unit of time for a vehicle of the i th group 

bi increased in the operating cost per unit of time for a vehicle of the i th group 

si fixed cost of maintenance for a vehicle of the i th group 

ni number of vehicles of the i th group 

Xi time required for maintenance work on each vehicle of the i th group 

ki an integer variable; kiT gives the maintenance cycle time for the vehicles of 
the i th group 

Yi utilization factor of a vehicle of the ith group on the road 

There are m groups of vehicles, and the number of vehicles is denoted as ni 

for the i th group. In the TFMSP, the decision maker plans the schedules of 

maintenance for vehicle groups in some basic period, denoted by T (e.g., in days, 

weeks, or bi-weeks, etc.). The maintenance work of vehicles in a group is 

executed at a fixed, equal-time interval that is called the maintenance cycle for 

that group of vehicles. The vehicles in the i th group are sent for maintenance 

once in ki basic periods, where ki is positive integer. Therefore, kiT is 

maintenance cycle for vehicles in the i th group. We note that the model for the 

TFMSP is for preventive maintenance, and the model does not take unplanned 
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fleet vehicle failures into consideration. Therefore, the maintenance capacity is 

not limited resource since it requires less man-power and maintenance time for 

routine maintenance schedule. 

 

3.2  The mathematical model 

With regard to costs of the TFMSP, we consider two categories: operating 

cost and the maintenance cost. The operating cost of a vehicle depends on the 

length of the maintenance cycle and it is assumed to increase linearly with 

respect to time since the maintenance work on the vehicle. Specifically, the 

operating cost at time t after the last maintenance for a vehicle in group i is 

given by fi(t) = ai + bit, where ai is the fixed cost and bi indicates the increase in 

the operating cost per unit of time. In addition, for each vehicle in group i, we 

assume that it takes Xi units of time for its maintenance work and Yi as the 

utilization factor of a vehicle in the i th group on the road, where Xi and Yi are 

known constants (One may refer to Yanagi, 1992 for further discussions on the 

utilization factor of a vehicle.). Accordingly, the actual time during which a 

vehicle can operate is equal to Yi(kiT－Xi), and the total operating cost for a 

vehicle in group i is given by
( ) ( )

0 0
( ) ( )

i i i i i iY k T X Y k T X

i i if t dt a b t dt
− −

= +∫ ∫  

= Yi(ai – bi Xi Yi) kiT + 0.5 Yi
2 ki

2T2 – Xi Yi(ai – 0.5bi Xi Yi) 

Notice that, the expression above is the integral outcome for total operating cost, 

and we do not go deep into the meaning for each term. 

On the other hand, the average fixed cost of maintenance for a vehicle in 

group i is given by si /(kiT). Besides, as maintenance work is carried out at 

intervals of T, a fixed cost, denoted by S, will be incurred for all vehicle groups 

scheduled for maintenance in each basic period. We define the average total cost 

1 2 ,
1

({ , , , }, ) : ( )
m

m i i
i

S
Z k k k T k T u

T =

= + Φ +∑⋯ , where 1
2( , ) i i

i i i i i
i

n C
k T n C k T

k T
Φ = + , 
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1 ( 0.5 )i i i i i i i iC s X Y a b X Y= − − , 2
2 0.5i i iC bY= , and 

1

( )
m

i i i i i i
i

u nY a b X Y
=

= −∑  is a 

constant since all the parameters are given in its expression. Therefore, the 

mathematical model for the TFMSP can be expressed as problem (P0). 

(P0)  1 2
0, , 1, , 0, , 1, ,

1

inf ({ , , , }, ) inf ( , )
i i

m

m i i
T k i m T k i m

i

S
Z k k k T k T u

T+ +> ∈Ζ = > ∈Ζ = =

   = + Φ +    
∑

⋯ ⋯

⋯  (4) 

We note that since the fixed cost for the maintenance of a group of vehicle 

si is generally greater than the fixed operating cost ai in practice, it is reasonable 

to assume that C1i > 0 with si > ai and Yi < 1 (which is the utilization factor of a 

vehicle). Also, it is obvious that C2i > 0. 

We define 1 2
1

({ , , , }, ) : ( , )
m

m i i
i

S
k k k T k T

T =

Ψ = + Φ∑⋯  since u is a constant. 

Then, solving the problem (P0) is equivalent to obtain the optimal solution for 

the problem (P) as follows. 

(P) 1 2
0, , 1, , 0, , 1, ,

1

inf ({ , , , }, ) inf ( , )
i i

m

m i i
T k i m T k i m

i

S
k k k T k T

T+ +> ∈Ζ = > ∈Ζ = =

   Ψ = + Φ    
∑

⋯ ⋯

⋯  (5) 

In the TFMSP, we dedicated our efforts to minimize the total costs incurred 

per unit of time, i.e., to determine the basic period T and the frequency of 

maintenance for vehicles in each group for decision maker.  
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4. Theoretical analysis 

In this chapter, we conduct theoretical analysis on the mathematical model 

of the TFMSP based on Huang and Yao’s (2007) research. In section 4.1, we 

discuss the maintenance frequency for each group of vehicles, which can also 

provide us more insight about the optimal objective function curve. A relaxation 

method of the TFMSP is introduced to set the search range in section 4.2. A 

brief summary is presented in section 4.3. 

 

4.1  The closed form for finding maintenance frequency 

As presented by Huang and Yao (2007), the right-side of (5), i.e., ( , )i ik TΦ , 

which has the following properties for 0,  {1, , }T i m> ∈ …  with given ik +∈Ζ . 

1. ( , )i ik TΦ is strictly convex; 

2. ( , )i ik TΦ has a minimum for * /i iT x k=  with *
ix  given by: 

*
1 2i i ix C C=  (6) 

3. The function ( , )i ik TΦ  obtains its minimal objective function value by  

1 22 i i in C C   (7) 

Moreover, Huang and Yao defined a new function )(Tgi  by taking the 

optimal value of ki at any value 'T >0 for the function ( , )i ik TΦ  as follows.  

{ }( ) : inf ( , )
i

i i i
k

g T k T
+∈Ζ

= Φ   (8) 

Therefore, the function )(Tgi  is a curve that concatenates *( ( '), ')i ik T TΦ  

where * ( ')ik T  is the optimal value of ki at a given value of 'T T= . By 

graphically displaying the )(Tgi  curve, one may observe that )(Tgi  is actually 

the lower envelop of all the functions of ( , )i ik TΦ  with respect to T. 

Besides, one may notice that there is a particular value of T where two 

consecutive convex curves ( , )i ik TΦ  and ( 1, )i ik TΦ +  concatenate. Huang 

and Yao defined such points as “junction point” for )(Tgi , and derived a 

closed-form for the location of the junction points. They defined the difference 
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function ( , )i k T∆  by 

1 1 1
2 2 2

( , ) ( 1, ) ( , )

( 1)
( 1) ( 1)

i i i

i i i i i i
i i i i i i

k T k T k T

n C n C n C
n C k T n C kT n C T

k T kT k k T

∆ =Φ + −Φ

= + + − − =− +
+ +

 (9) 

and located the junction points by letting ( , ) 0i k T∆ =  as follows. 

1
2

2

2( ( 0.5 ))
( )

( 1) ( 1)
i i i i i i i i

i
i i i

C s X Y a b X Y
k

C k k b Y k k
δ

− −
= =

+ +
 (10) 

Importantly, such a junction point provides us the information on at “what 

value of T” where one should change the value of k so as to obtain the optimal 

value for the )(Tgi  function. 

 

 

Figure 1. The function curve of the gi(T) function 

Also, Huang and Yao proved the following lemma as an easier way to 

obtain the optimal multiplier * ( )ik T +∈Ζ  for the )(Tgi  function for any given 

0T>  ( ( ) ( 1)i ik kδ δ< − by the closed-form of δi(k) in equation (10)). 

Lemma 1. For any given T > 0, an optimal value of * ( )ik T +∈Ζ  for the )(Tgi  

function is given by  

* 1
2

2

1 1 4
( ) 1

2 2
i

i
i

C
k T

C T

 
 = − + +   

  (11) 

with .    denoting the upper-entier function. 

( 1, )i ik TΦ =  

( 2, )i ik TΦ =  

( 4, )i ik TΦ =  

( 3, )i ik TΦ =  

( )ig T   δi(2) δi(3) δi(1) 
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By the rationale discussed above, we know that the )(Tgi  function is a 

piece-wise convex function since it is made up of several different ( , )i ik TΦ  

curves. In addition, the average cost of S/T is obviously a convex curve. 

Therefore, we further define 
1

( ) ( )
m

i
i

S
T g T

T =

Γ = +∑  and rewrite the problem (P) 

by  

(P1) 
0 0

1

inf ( ) inf ( )
m

i
T T

i

S
T g T

T> >
=

   Γ = +    
∑             (12) 

where the function Γ (T) is the optimal objective function value curve with 

piece-wise convex property of a univariate function with respect to T.  

 

4.2  The upper and lower bounds 

Based on Huang and Yao’s (2007) study, we employ a relaxation method to 

set the search range. By relaxing the constraints ik +∈Ζ  by 1ik ≥ , we obtain a 

relaxation of (P) in (5), namely (R) as follows. 

(R) 1 2 11, 1,..., ; 0 1, 1,..., ; 0
inf ({ , , , }, ) inf ( , )

i i

m

m i iik i m T k i m T

S
k k k T k T

T =≥ = > ≥ = >

   Ψ = + Φ    
∑…     (13) 

Similarly, we also define gi
(R)(T) as a relaxation of gi(T) in (8) by replacing 

ik +∈Ζ  with 1ik ≥ , i.e., { }( )

1
( ) : inf ( , )

i

R
i i ik

g T k T
≥

= Φ , where 0T>  and 

1,...,i m= . If we define ( )h T  by ( )

1

( ) : ( )
m

R
i

i

h T S T g T
=

= +∑ , we may consider 

( )h T  is a relaxation of the function Γ (T) defined right before (12). Then, it is 

obvious that solving (R) is equivalent to obtain an optimal solution for the 

problem (R1) as follows. 

(R1)  
( )

0 0
1

inf ( ) inf ( )
m

R
i

T T
i

h T S T g T
> >

=

   = +    
∑            (14) 

If we ignore the constraint 1ik ≥ , then ki becomes a continuous variable. 

In such a case, for any given value of 0T> , we may easily obtain the optimal 

value for 1
2( , ) i i

i i i i i
i

n C
k T n C k T

k T
Φ = +  by           
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*
1 2

1
( )i i ik T C C

T
=   (15) 

Recall that *
1 2i i ix C C= , which is expressed in (6). When *

iT x≤ , we 

have * ( ) 1ik T ≥ , which satisfies the constraint 1ik ≥ . Therefore, gi
(R)(T) obtains 

its optimal value as a constant by 1 22 i i in C C  for *
iT x≤ .  

On the other hand, when *
iT x> , we have * ( ) 1ik T < , and we are forced to 

take * ( ) 1ik T =  if we take the constraint 1ik ≥  into accounts. By summarizing 

both cases, it follows that 

*
( ) 1 2

*
1 2

2 , if .
( )

(1, ) , if .
R i i i i

i

i i i i i i

n C C T x
g T

T n C T n C T T x

 ≤=Φ = + >
 (16) 

Also, we could easily obtain the first derivative of gi
(R)(T): when *

iT x≤ , 
( ) ( ) 0
R

idg T
dT = , and when *

iT x> ,  

( ) ( ) (1, ) 2
1 2

R
i idg T d T

i i i idT dT n C T n CΦ= =− + .  (17) 

Therefore, we conclude that the function gi
(R)(T) is convex, increasing, and 

continuously differentiable on (0, )∞ .  

Without loss generality, we assume that * * *
1 2 ... mx x x≤ ≤ ≤ , the strictly 

increasing derivative h’(·) is given by 

*
12

' 2 * *
2 1 1

1 1

2 *
2 1

1 1

if

( ) if ,1 1

if

l l

i i i i l l
i i

m m

i i i i m
i i

S
T x

T

h T n C S n C T x T x l m

n C S n C T T x

+
= =

= =

 − ≤   = − + ≤ ≤ ≤ ≤ −        − + ≥    

∑ ∑

∑ ∑

 (18) 

By setting the derivative of h’(·) in (18) to zero, we have the following 

lemma to locate the optimal solution T(R) for (R1). 

Lemma 2. Assume without loss generality that * * *
1 2 ... mx x x≤ ≤ ≤ . If it holds that 

* ' *: max{1 : ( ) 0}ii i m h x= ≤ ≤ < , then the optimal solution T(R) of (R1) is given by  
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* *

( )
1 2

1 1

i i
R

i i i i
i i

T S n C n C
= =

  = +   
∑ ∑ .  (19) 

Let v(R) be the optimal objective function value of (R1). Then, v(R) can be 

obtained by plugging T(R) into the objective function of the problem (R1). We 

note that v(R) serves as a lower bound on the optimal objective function value 

of the problem (P).  

Sometimes T(R) is the optimal solution for the problem (P), as we show it 

by the following lemma. 

Lemma 3. Assume without loss generality that * * *
1 2 ... mx x x≤ ≤ ≤ . If it holds that 

( ) *R
mT x≥ , then ({1,…,1}, T(R)) is an optimal solution for the problem (P).  

Proof. Since ( ) *R
mT x≥  is an optimal solution of (R1), we have the 

corresponding optimal * 1,  for 1,...,ik i m= = , by (15). And, obviously, it is also 

a feasible solution for the problem (P). Hence, it implies that ({1,…,1}, T(R)) is 

an optimal solution for the problem (P). ■ 

When ( ) *R
mT x< , T(R) may not be an optimal solution of the problem (P). 

(This is due to the fact that the values of ki corresponding to T(R) are not 

necessary integers. This implies that the optimal solution of (R1) is generally not 

feasible for the problem (P).) In such a case, we propose to use Lipschitz 

optimization algorithm to search for an optimal solution for (P). Define v(FP) 

as the objective function value at a feasible solution of the problem (P). In this 

section, we discuss how to use T(R) and v(FP) to determine the search range in 

our improved Lipschitz optimization algorithm. 

Though T(R) may not be an optimal solution of (P) for T(R) < *
mx , we could 

easily obtain * ( ){ ( )}R
ik T  at T(R) by (11) in Lemma 1, and (* ( ){ ( )}R

ik T ,T(R)) is a 

feasible solution of (P).  

Denote k(T’) as the set of optimal maintenance frequencies at a given 

value of T’. Let v(FP) be the objective function value of the problem (P) at T(R), 

i.e., ( ) ( )( ) ( ( ), )R Rv FP T T=Ψ k . Obviously, v(FP) serves as an upper bound on 

the optimal objective function value of the problem (P). If v(FP) is very close to 

v(R) (say within an allowance of ε), we have found an acceptable and feasible 

solution for (P). If it is not good enough, we shall apply a global-optimization 

procedure to solve (P). To this end, we need to determine an interval that 
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contains an optimal solution of (P), denoted by T(P).  

Denote Tlow and Tup as the lower and the upper bounds, respectively, of the 

search range for Lipschitz optimization algorithm. In the following lemma, we 

will show that a lower and an upper bound on T(P) are given by the two values of 

T where the objective function of (R1) equals to v(FP). 

Lemma 4. Let Tlow and Tup be the smallest and the largest T, respectively, for 

which the objective function of (R1) is equal to v(FP). Then, the optimal value of 

T for the problem (P) must lie between Tlow and Tup, i.e., *
low up[ , ]T T T∈ . 

Proof. Since the objective function of (R1) is strictly convex, we clearly have 

the results that ( )
low up

RT T T≤ ≤ . Consequently, the objective function value is 

larger than v(FP) for lowT T< . Since (R1) is a relaxation of (P), so that Tlow is a 

lower bound on T(P).  

Similarly, we may proof that ( )
up

PT T≤ .■ 

We note that the bounds Tlow and Tup may easily located by some line 

search methods (e.g., bisection; Bazaraa, et al., 1993). Therefore, if v(R) is not 

good enough, we would apply a global-optimization technique to solve the 

problem (P) on the interval low up[ , ]T T . 

 

 

Figure 2. The lower and upper bounds are given by the two values of T where 

the objective function of (R1) equals to v(FP). 

 

v(FP) 

v(R) 

T(R) Tlow Tup 

Objective function (R1) 

Objective function (P) 
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4.3  A brief summary 

In this chapter, Huang and Yao’s (2007) research provide us a clear 

knowledge about the TFMSP. After having the search range, we then ready to 

apply the Evtushenko algorithm as the Lipschitz optimization algorithm tool. 

The improved Lipschitz optimization algorithm will be proposed in next 

chapter. 
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5. The proposed improved Lipschitz optimization 
algorithm  

 

In this chapter, we first review the Evtushenko algorithm with the rationale 

of Lipstchitz optimization. The procedure and detail situations for expediting 

the search in Evtushenko algorithm is presented in section 5.2. In section 5.3, a 

fine-tune searching procedure based on slope-checking and step-size 

comparison is proposed to complete the improved Lipschitz optimization 

algorithm. A brief summary of the improved searching algorithm is given in 

section 5.4, and the steps of proposed algorithm are presented. 

 

5.1  A review on the Evtushenko algorithm 

Before presenting the Evtushenko algorithm, it is important to learn more 

about Lipschitz optimization algorithm. It is a global-optimization approach 

when the objective functions are univariate (Huang and Yao, 2007). More 

formally, a real-valued function h defined on a compact set RnX ⊆  that is said 

to be Lipschitz must satisfy the condition 

,           ( ) ( )x X y X h x h y L x y∀ ∈ ∀ ∈ − ≤ −  

where L is a constant (called Lipschitz constant) and ||⋅|| denotes the Euclidean 

norm (Horst and Pardalos, 1995). ( 1n=  for univariate) 

 
Figure 3. Lipschitz function 

One can notice by Figure 3 that an univariate function f is Lipschitz when 

the absolute difference of the objective function value for each pair of x and y is 

x y 

f(y) 

f(x) 
d 

L 

f 



18 

smaller than or equal to the Lipschitz constant. In other words, the optimal 

solution is secured by d=L||x-y|| within range [y, x]. However, it is worth to 

mention that often L is unknown beforehand, i.e., only an overestimate of L will 

be available for bounding the Lipschitz function. 

The Evtushenko algorithm is designed for maximization of multivariate 

Lipschitz functions, but it solves repeatedly univariate maximization problems 

obtained by fixing all variables but one. The idea of the algorithm is to make 

use of the information on the current best known function value to determine 

the largest valid step size ( )2 ( ) /opt kf f x Lεδ + −=  for next iteration, while 

securing an ε-optimal solution simultaneously. Besides, it is an ordered 

sequential method, i.e., the evaluation points at successive iterations are 

increasing values of x belonging to [a, b] (Horst and Pardalos, 1995). Its steps 

are as follows:  

Initialization  

 k←1; 

 x1 ←a+ε/L; 

 xopt ← x1 

 fopt ←f(xopt) 

Evtushenko’s saw-tooth cover 
While xk < b do 

1

2 ( )
;opt k

k k

f f x
x x

L

ε
+

+ −
← +  

If  1( ) optkf x f+ >  then 1 1( );  opt optk kf f x x x+ +← ←  endif; 

 k←k+1 

EndWhile. 

In the worst case, the step size is equal to 
2

L

ε
 (the incumbent evaluation 

value is also the optimal value on hand) when the function is constant functions 

or all monotonously increasing functions (Horst and Pardalos, 1995). Even if 

part of the function value is increasing in some ranges, it takes considerable 

length of searching runtime and great number of iterations which is very 
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time-consuming. 

Later, Huang and Yao (2007) transferred the objective function of the 

TFMSP into an univariate function with respect to T (eq. (5)) for a minimization 

problem, and proved that it is Lipschitz on the interval [Tlow, Tup]. Recall that the 

Lipschitz constant is often unknown, however, Huang and Yao showed that it 

can be obtained on some interval by the maximum of its derivative in absolute 

value, and it is given by  

0
1

m

i
i

L L L
=

= +∑   (20) 

where 

0 2
low

S
L

T
=   (21) 

Noted that the derivative for 
S

T
 is equal to 

2

S

T
− , and 

2

S

T
−  is maximal on 

low up[ , ]T T for Tlow. Similarly, the function gi(T) has maximum slope in absolute 

value at the junction point δi(k) (see eq. (10)). Although gi(T) is not 

differentiable at these junction points, the left and right-hand derivatives exist. 

By (8) and (10), it follows that the left and right-hand derivatives of gi(T) are 

given by '( 1) ( 1, ( ))i ik k kδ+ Φ +  and ' ( , ( ))i ik k kδ− Φ , respectively. It is easy to 

verify that  

' '
2( 1) ( 1, ( )) ( , ( ))i i i i i ik k k k k k n Cδ δ+ Φ + =− Φ = , (22) 

and hence  

2 ,  1, ,i i iL n C i m= = … .  (23) 

By combining (20), (21) and (23), the Lipschitz constant for the objective 

function of problem (P) on [Tlow, Tup] is given by 

22
1low

m

i i
i

S
L n C

T =

= +∑   (24) 
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In addition, Huang and Yao apply the algorithm of Evtushenko as the 

Lipschitz optimization tool with a dynamic Lipschitz constant which was first 

proposed by Wildeman and Dekker (1997); after each function evaluation 

(going from left to right), the Lipschitz constant is recomputed as we take the 

current searching step to be the new Tlow, denoted by Lc. Therefore, a smaller 

Lipschitz constant is generated due to a larger lower bound, and a larger 

searching step can be taken, which will speed up the searching process.  

Next, we are going to propose the procedure and detail situations that can 

expedite the Evtushenko algorithm with dynamic Lipschitz constant for the 

TFMSP. 

 

5.2  A procedure for expediting the Evtushenko algorithm 

In this section, we propose a procedure which can speed up the search in 

the Evtushenko algorithm. The procedure can be separated into three parts: the 

searching at starting point, the searching during finding a local minimum, and 

the searching after a local minimum is located. By graphically displaying the 

possible situations in these three parts, we have full discussion in subsection 

later. The rationale to perform the procedure is as follows.  

It is important to realize that with a given T, one could obtain a specific set 

of k={kl,k2,…,km} (see eq.(11) for each ki), and each with a corresponding 

objective function curve  

1

( , ) : ( , )
m

i i
i

S
T k T

T
γ

=

= + Φ∑k .                                    (25) 

Namely, for a given T, we pick up a particular Φi(ki,T) from gi(T) of each group, 

and these Φi(ki,T) can form a unique γ(k,T). One should notice that the optimal 

objective function Γ (T) is exactly the lower bound of these γ(k,T) on T-axis. 

Therefore, for each k set, its local minimum T
⌣

(k) could be calculated by 

equating the derivative of the Γ (T) function to zero. The T
⌣

(k) is given by 



21 

1

1

2
1

( )

m
i i

i i
m

i ii
i

n C
S

k
T

n C k

=

=

+
=

∑

∑

⌣

k .  (26) 

Since such a local minimum obtained from a specific k set could be a 

candidate for the optimal solution, we are motivated to search T
⌣

(k) 

consecutively, which can reduce the computational efforts of Evtushenko 

algorithm between a given T and T
⌣

(k) of a particular k set.  

Besides, it is easy to learn that for a given T and its corresponding set of 

multipliers, say, k0, a particular T
⌣

(k0) can be obtained. Therefore, if k set 

corresponding to T
⌣

(k0) has changed, say, k1, we know that T
⌣

(k0) is not a 

candidate of optimal solution because the k set is unique for each local 

minimum of Γ (T), and we set T=T
⌣

(k0), k1=ki (T
⌣

(k0)) for next iteration. On the 

other hand, if k0 = k1, the T
⌣

(k0) must be a local minimum of Γ (T), and its 

corresponding optimal objective function value, denoted by TCopt, will be 

recorded and compared to the best-on-hand solution, denoted by TCbest.  

Since such a procedure can locate the local minimum T
⌣

(k) of γ(k,T) 

directly with a given T value and its specific k set, and the procedure can be 

executed consecutively if we obtain a new set of k at T
⌣

(k), it is obvious that 

the procedure can expedite the searching process compares to the Evtushenko 

algorithm. Its process is as follows. 

1. Start from a given T, calculate k0= { ki(T)} for each group i. 

2. Calculate T
⌣

(k0) and k1 at T
⌣

(k0) 

3. If k1=k0, calculate the TCopt at T
⌣

(k0) and record it if it is less than the 

TCbest. If k
1≠k0, set T=T

⌣

(k0), repeat step 1. 

Recall that Γ (T) is the optimal objective function curve with piece-wise 

convex property, it is impossible for us to employ the proposed algorithm 

through the whole search range without interruption except for a monotonously 

decreasing curve (i.e., we will stuck in a local minimum of Γ (T)). Therefore, 

during the search section with an ascending curve, we still have to use 

Evtushenko algorithm since the proposed algorithm is designed for locating the 
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local minimum of Γ (T) and Evtushenko algorithm can search fast when the 

curve is ascending. We will discuss the proposed algorithm in three parts: the 

searching at starting point, the searching during finding a local minimum, and 

the searching after a local minimum is located, and have full discussion in the 

following subsection. 

 

5.2.1  The proposed algorithm at the starting point 

Apparently, we have to investigate the shape of the optimal objective 

function Γ (T) at the lower bound since T
⌣

(k) may be out of the lower bound if 

Γ (T) is in ascending trend at Tlow, as shown in Figure 4. An easy method to see 

the curve trend could be done by checking function values at adjacent point Tlow 

and Tlow
+. We use Evtushenko algorithm to obtain the searching iteration which 

is denoted by X(m) (m=1 to n) and we take Tlow
+ as X(1), then calculate its TCopt. 

If TCopt(Tlow
+) is larger than TCopt(Tlow), the curve Γ (T) is ascending. By the 

usage of Evtushenko algorithm, we denote the following steps to be 

X(m+1)=X(m)+δ . The increment step is defined as 
2opt

c

f f

L

ε
δ

− +
= . The 

searching speed would become faster when the step-size is getting larger while 

Lipschitz constant become smaller, as well as the optimal value on hand fopt is 

fixed and objective function value f is increasing.  

 
Figure 4. An increasing curve trend leads T

⌣

(k) to be out of lower bound  

On the other hand, if TCopt(Tlow
+) is smaller than TCopt(Tlow) or TCopt(X(m)) 

is smaller than TCopt(X(m-1)) after mth iterations, then it is suitable to adopt the 

proposed algorithm. One may notice that the searching step will move to a local 

γ(k,T) 
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minimum of Γ (T), and the determination of the steps during searching for a 

local minimum are judged from the condition of one of the three possible 

situations as we discuss in the following subsection. 

 

5.2.2  Three possible situations when searching for a local minimum 

When TCopt is decreasing, we can directly jump the searching step to T
⌣

(k) 

of a particular k set, and replace the TCbest if the TCopt at T
⌣

(k) is better than the 

existing one. Whether the jump could happen depends on three possible 

situations when searching for a local minimum as we stated in the following. 

1. Normal situation (Forward search) 

Generally, we can apply the proposed algorithm consecutively without 

missing local minimum if only one component of the k set has changed at 

each jump step. This situation is mostly happened during the searching 

process with a descending curve, and we therefore named it as the normal 

situation. One demonstrative example is given in Figure 5, where the step 

X(6) is the local minimum T
⌣

(k) corresponding to X(5) with k={ki(X(5))}. 

As depicted in Figure 5, by checking the γ(k,T) (dashed curve) with the 

lower envelop Γ (T) (the bold curve), we found that the optimal k set at 

X(6) should be different from k={ki(X(5))}, so we forward the searching 

step to the local minimum at X(7) corresponding to the new k={ki(X(6))} 

at X(6). 

 
Figure 5. Normal situation of the proposed algorithm 

2. Backward search without missing local minimum 

Sometimes more than one component in the k set has changed during 
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searching from current step (a given T) to its T
⌣

(k). In this case, a 

backward search mechanism will be triggered to prevent the search from 

missing the local minimum. As demonstrated in Figure 6, when the current 

step X(5) jump to its T
⌣

(k), the corresponding new k={ki(X(6))} will in 

term lead to a jump backward to X(7). Likewise, the new k={ki(X(7))} will 

again jump backward to X(8). Therefore, no local minimum will be missed. 

Note that, in this case, we will start next step directly from 

X(9)=X(6)+(f-fopt+2ε)/Lc, which will save the effort for not to duplicate the 

searching within X(8) to X(6). 

 

Figure 6. Backward search without missing local minimum  

3. Missing local minimum 

However, there were times when more than one component in the k set has 

changed during searching and the local minimum will be missed. As shown 

in Figure 7, when the searching move from the current step X(5) to its T
⌣

(k) 

(i.e., X(6)), more than one component in the k set has changed. However, 

unlike the situation shown in Figure 6, the searching will forward to X(7) 

since the Γ (T) is descending, the local minimum located between X(5) 

and X(6) will not be detected. 
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Figure 7. Forward search missing local minimum 

 
Figure 8. Backward search missing local minimum 

Another possible situation of missing local minimum is shown in Figure 8, 

which depicts that when the searching move from X(5) to X(6), it will only 

move backward to X(7), and then move forward to 

X(8)=X(6)+(f-fopt+2ε)/Lc. Hence, one local minimum will be missed. 

 

5.2.3  Two possible situations when a local minimum is located 

Obviously, the current step must be moved to a local minimum of Γ (T) if 

it has the same k set compare to the previous step, and we will record the 

current step and the k set if the TCopt is lower than the TCbest. Besides, due to the 

characteristic of piece-wise convex property, the TCopt is fluctuating, it may 

increase or decrease when the next step moves forward on T-axis after locating 

a local minimum. If it is increasing, we will keep searching by Evtushenko 

algorithm until it is smaller than previous step so as to make sure the Γ (T) is 
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descending and then adopt the proposed algorithm. If it is decreasing, the 

proposed algorithm will be triggered for finding another local minimum again. 

Note that the next step after locating a local minimum is moved forward for 

2

cL

ε
 by Evtushenko algorithm since f=fopt. 

 

Figure 9. Two possible situations when a local minimum is located 

Basically, subsection 5.2.1, 5.2.2 and 5.2.3 contain the main concepts of 

the proposed algorithm. It shows that the Evtushenko algorithm can be 

improved within the decreasing sections of TCopt. We summarize the procedures 

as follows. 

1. Check the curve trend by comparing TCopt(Tlow) and TCopt(Tlow
+), if it is 

increasing, use Evtushenko algorithm to search along the T-axis until the 

function value is decreasing. 

2. While TCopt is decreasing, the proposed algorithm is then adopted to find 

T
⌣

(k) of different k sets consecutively, and it will move to a local minimum 

of Γ (T). 

3. While a local minimum is located, we use Evtushenko algorithm to restart 

the search and proceed with step size 
2

cL

ε
 to the next step. Comparing 

TCopt( T
⌣

) with TCopt(
2

c

T
L

ε
+
⌣

) to check if the curve is ascending or 

descending. If TCopt is increasing, adopt Evtushenko algorithm until TCopt 

is decreasing. Otherwise, go to step 2. 

However, the right side of Figure 9 shows that the k set may have changed 
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within a very tiny range, which implies the possibilities of infinitesimal jumping 

distance of current step and its T
⌣

, and this lead to the discussion in section 5.3. 

 

5.3  A fine-tune search procedure 

As we mentioned above, the Evtushenko algorithm can be enhanced within 

TCopt decreasing area since we can forward the searching step directly to its 

local minimum T
⌣

(k) with specific k set. However, the function curves γ(k,T) 

with different k sets sometimes make a over-frequent fluctuating behavior of the 

Γ (T) within some tight sections. Such behavior will lead to numerous searching 

iterations since the backward search mechanism would be performed to prevent 

from missing the local minimum when the step propelled by Evtushenko 

algorithm is across from descending curve to ascending part. 

However, the backward search is unnecessary because the quality of the 

solution could be secured by Evtushenko algorithm even if a local minimum is 

missed. Moreover, for a given T, if the step propelled by Evtushenko algorithm 

is larger than its T
⌣

(k), it is reasonable to choose Evtushenko algorithm in the 

view of searching efficiency. Therefore, in order to meliorate the proposed 

algorithm, we propose a fine-tune search procedure based on slope-checking for 

current step and step-size comparison mechanisms that can eliminate 

unnecessary steps and adopt an efficient next step while remain the quality of 

solution simultaneously.  

Here, we take the marching step-size into account by two methods: One is 

the distance between current step and local minimum T
⌣

(k) corresponding to its 

k set, we named it the “jumping step size” since the movement on T-axis is like 

a long jump, and the other is the step size predicted by Evtushenko algorithm, 

we named it the “Evtushenko step size”. The following are four situations we 

may encounter: 

1. Evtushenko step size larger than jumping step size with negative slope. 

If the step size determined by Evtushenko algorithm is larger than the 

jumping step size and the current step has negative slope, as shown in 
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Figure 10, we adopt Evtushenko step size as the next step. In this case, the 

quality of the solution is still guaranteed, since the Evtushenko algorithm 

can secure an ε-optimal solution. 

2. Evtushenko step size smaller than jumping step size with negative 

slope. 

If the movement from current location to T
⌣

(k) is larger than the step size 

determined by Evtushenko algorithm, as shown in Figure 11, then we take 

jumping step size as the next marching step. Since the jumping step size is 

generally larger than the Evtushenko step size, the searching during the 

section with negative slope can normally be speed up. This is actually the 

key mechanism for shortening the searching procedure by using our 

proposed algorithm instead of the Evtushenko algorithm. 

 
Figure 10. The step size determined by Evtushenko algorithm is larger than 

the jumping step size 

 
Figure 11. Evtushenko step size smaller than the jumping step size 
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3. Current step is propelled by the proposed algorithm with positive slope 

If the slope of the objective function at the current searching step is 

positive, and it is also the local minimum T
⌣

(k) corresponding to the 

previous step, as shown in Figure 12, then it is unnecessary to compare the 

step size since the jumping step size is always negative (moving backward). 

Although the Evtushenko algorithm should be adopted to proceed in 

ascending trend, we had the T
⌣

(k) of current step first priority to be the 

next step since the proposed algorithm is still in progress, i.e., there is no 

local minimum of Γ (T) has been confirmed. Note that, this is exactly the 

backward search situation, and it will keep searching until detecting a local 

minimum. 

 

Figure 12. Use T
⌣

(k) to be the next step while the proposed algorithm is still 

in progress (Backward search situation) 

4. Current step is propelled by Evtushenko algorithm with positive slope 

If the Evtushenko step size propels the step from negative to positive slope, 

then there must exists at least one local minimum between previous step 

and current step, as shown in Figure 13. In such a case, a backward search 

is not needed since Evtushenko algorithm can obtain an ε-optimal solution, 

and we proceed with Evtushenko steps. 
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Figure 13. Backward search for T
⌣

(k) is not needed while current step is 

propelled by Evtushenko algorithm and across local minimum 

In a word, if the current step has negative slope, a larger step size is 

preferred to expedite the searching process. Otherwise, a checking procedure for 

whether the current step is propelled by Evtushenko algorithm is required in 

order to eliminate the excess backward search. Therefore, by checking the slope 

at current step and the step size, the searching efficiency can be assured as well 

as the quality of solution. We propose a flow chart to help us judging the next 

step in Figure 14. 
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T
⌣

The improved Lipschitz 
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   of optimal objective 
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T
⌣

YES NO

Choose TE Choose T
⌣

TE > T
⌣

Next iteration

 

Figure 14. A flow chart for determination of the next step  

5.4  A summary of the improved Lipschitz optimization algorithm 

According to the discussion above, we can assure that the improved 

Lipschitz optimization algorithm is reasonable to have a better searching 

efficiency in a function value decreasing condition. Besides, duplicating search 

work can be avoided by identifying a backward search, and the searching 

efficiency can be further proved since we eliminate excess backward searching 

iterations caused by the steps propelled by Evtushenko algorithm from 

descending curve to ascending section. Also, we take into account the step size 
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and slope of current iteration to decide the next best T place so as to expedite 

the searching speed. Therefore, we are motivated to examine how significant 

affect can the improved Lipschitz optimization algorithm reach. We hereby 

propose an improved Lipschitz optimization algorithm as follows. 

 

Relaxation Begin 

Step 1. Obtain T(R) by eq.(19), set v(R) as the solution of (R1) at T(R). 

Step 2. if  ( ) *R
mT x≥ , set [ ]1,1, ,1= ⋯k  and T(R) the optimal solution for the 

problem (P). 

Step 3. if ( ) *R
mT x< , obtain k={ki(T

(R))} by eq.(11) and obtain a feasible 

solution v(FP) for the problem (P) at T(R). 

Step 4. if v(FP)-v(R) ≤ εv(R), then set v(FP), T(R), and k={ki(T
(R))} as an 

ε-optimal solution. else v(FP)-v(R) > εv(R), use bisection search to 

locate Tlow and Tup by finding two values of T where the objective 

function of (R1) equals v(FP). 

End 
 
Improved Lipschitz optimization algorithm Begin 
(Initiation setting and check the curve trend) 
TCbest the best known solution on hand 

TC  current optimal objective function value 

TCpre optimal objective function value of previous step 

TC*  the optimal objective function value 

T*  the optimal T  

k*   the optimal k set  

X(m) searching step at m iteration 

Tcur  the current searching step 

Lc  dynamic Lipschitz constant  

TE  Evtushenko step 

T
⌣

  the step of proposed algorithm 

slope slope at current searching step 

propelbyEv index of whether current step is propelled by Evtushenko 
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algorithm 

Step 1. Initiation of the improved Lipschitz optimization algorithm:   

Set TCbest= v(FP), TC*= v(FP), T*= T(R), k*={ki(T
(R))}, start the search 

from the lower bound Tlow. Set Tcur=Tlow. Obtain k={ki(Tcur)}, get 

TC=TC(k, Tcur), set TCpre=TC. 

Step 2. Set m=1, compute Lc at Tcur, set X(1)= Tcur +ε/Lc, obtain k={ki(X(1))}, 

get TC=TC(k, X(1)). 

(Use Evtushenko algorithm for function value increasing area) 

Step 3. While TC > TCpre, set Tcur=X(m), Compute Lc at current search step Tcur, 

set m=m+1, best
cur

2
X( )

c

TC TC
m T

L

ε− +
= +  

Step 4. if  X(m) >Tup, break, else set Tcur=X(m), TCpre=TC, obtain k={ki(Tcur)}, 

get TC=TC(k, Tcur), go to Step 3. 

(Initiation setting finished and having a decreased function value. Start to 

adopt the proposed algorithm) 

Step 5. While X(m)≤Tup, set Tcur= X(m), obtain k={ki(Tcur)}, get TC= 

TC(k, Tcur)
 

Step 6. if TC < TC*, set TC*=TC, T*= Tcur, k
*={ki(Tcur)} 

Step 7. compute slope at Tcur, obtain T
⌣

 by eq.(25), obtain Evtushenko step 

best
E cur

2

c

TC TC
T T

L

ε− +
= +   

(Confirm a local minimum) 

Step 8. if  Tcur=T
⌣

, get TC=TC(k, Tcur), do step 6. Initialize propelbyEv= -1.  

(Confirm a forward search and use Evtushenko algorithm after locating a 

local minimum)  

Step 8-1. if  Tcur=max(X(m)), set TCpre=TC, compute Lc, set m=m+1, 

best
cur

2
X( )

c

TC TC
m T

L

ε− +
= + . if  X(m)> Tup, break, else set 

Tcur=X(m), obtain k={ki(Tcur)}, get TC=TC(k,Tcur), set 
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propelbyEv=1, do step 3 and 4. 

(Confirm a Backward search and use Evtushenko algorithm after 

locating a local minimum) 

Step 8-2. else set Xmax=max(X(m)), Tcur=Xmax, compute Lc, get 

TC=TC(k,Tcur), set TCpre=TC, set m=m+1, 

best
cur

2
X( )

c

TC TC
m T

L

ε− +
= + , if  X(m)> Tup, break, else set 

Tcur=X(m), obtain k={ki(Tcur)}, get TC=TC(k,Tcur), set 

propelbyEv=1, do step 3 and 4. 

(Check Evtushenko step size and slope of current step, and use propelbyEv as 

index to help judging the next step) 

Step 9. elseif TE <T
⌣

and slope < 0, set m=m+1, X(m)=T
⌣

, set propelbyEv=0 

  elseif TE T≥
⌣

 and slope < 0, set m=m+1, X(m)= ET , set propelbyEv=1 

  elseif TE T≥
⌣

 and slope > 0 and propelbyEv=1, set m=m+1, X(m)= ET  

  else set m=m+1, X(m)=T
⌣

. 

Step10. go to Step 5. 

End of the Improved Lipschitz optimization algorithm 
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6. Numerical experiments  

In the first part of this chapter, we employ a numerical example to 

demonstrate the implementation of the improved Lipschitz optimization 

algorithm. Then, we use randomly generated instances to show that the 

improved Lipschitz optimization algorithm outperforms Huang and Yao’s (2007) 

search procedure. 

 

6.1  A demonstrative example 

In this subsection, we hereby use a five-group example presented in Goyal 

and Gunasekaran’s (1992) paper to demonstrate the implementation of the 

improved Lipschitz optimization algorithm. The data set of this five-group 

example is shown in Table 1. 

In this example, we set the error allowance as 0.01%ε=  for the 

improved Lipschitz optimization algorithm. 

Table 1. The data set of the five-group example 

m=5  S=800 
ni Xi Yi ai bi si 
10 0.8 0.90 80 3 198 
24 0.6 0.95 50 2 192 
30 0.4 0.85 90 1 193 
16 0.6 0.95 85 1.5 205 
12 0.5 0.94 95 2.5 204 

First, we locate the optimal T(R) of the problem (R1) by T(R)=12.5349, and 

the v(R) is given by $2,020.66. Since T(R) *
mx< =21.20637, we use eq.(11) to get 

the set of optimal maintenance frequencies k(T(R))={1,1,2,1,1} to obtain a 

feasible solution for the problem (P) at T(R). Therefore, we have 

v(FP)=Ψ (k(T(R)), T(R))=$2,034.87. Since the error of the feasible solution is 

(v(FP)-v(R))/ v(R)=0.7028%>ε=0.01%, it is not ε-optimal. 

Next, we locate the bounds Tlow and Tup by bisection search method to find 

two values of T where the objective function of (R1) equals v(FP). The search 
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range is obtained by Tlow =9.8418 and Tup =14.9888. We note that the Tup is 

exactly the same value of TCC by common cycle approach in this example. 

Besides, we set Ψ (k(T(R)), T(R))=$2,034.87 as the initial TCbest in order to 

enhance the searching speed, which is different to Huang and Yao’s (2007) 

initial optimal solution fopt=Ψ (k(Tlow), Tlow). 

Then, we apply the algorithm of Evtushenko as the improved Lipschitz 

optimization tool. The search start from X(1)=Tlow+ε/Lc=9.8444, and we have 

the cost value Ψ (k(X(1)),X(1))=$2,083.52 (without considering the constant u). 

Therefore, by examining the total cost at Tlow and X(1), it has decreased from 

Ψ (k(Tlow), Tlow)=$2,083.61 to Ψ (k(X(1)),X(1))=$2,083.52. Obviously, it is 

suitable to apply the proposed algorithm.  

 
Figure 15. Optimal function value curve of demonstrative example 

It is worth to note that the improved Lipschitz optimization algorithm take 

total 74 steps to complete the search, and only 3 steps (9.8444, 11.4009, and  

12.7843) to locate the optimal solution at T*=12.7843 with k*={1,1,2,1,1}. 

Therefore, we obtain the optimal average total cost by 

Z=TCbest+u=$2,034.47+$6,438.25=$8,472.72. On the other hand, Huang and 

Yao’s (2007) procedure locates T*=12.7818 after 85 iterations and terminates 

after 157 steps, it is obvious to see that the improved Lipschitz optimization 

algorithm has significant reduction of searching iterations in cost decreasing 
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condition. 

In fact, the proposed algorithm can obtain the real optimal solution if we 

did not miss the global minimum, whereas the traditional dynamic Lipschitz 

optimization algorithm can only secure an ε -optimal solution. Hence, we are 

motivated to generate random instances for showing that the improved Lipschitz 

optimization outperforms Yao and Haung’s (2007) research. 

 

6.2  Numerical results from random instances 

In this subsection, we present a summary of our random experiments. We 

design our experimental settings by referring to the settings in Table 1 brought 

by Goyal and Gunasekaran’s (1992) paper. We select six different values for the 

number of groups of vehicles (m = 3, 5, 7, 10, 25, 50), and seven different 

values for the fixed cost in each basic period T (S = 10, 50, 100, 200, 500, 750, 

1000). This yields 42 combinations from these parameter settings. Then, for 

each combination, we randomly generate 1,000 instances by randomly choosing 

the values for Xi, Yi, ai, bi and si by using uniform distribution functions. Table 2 

indicates the ranges of these uniform-distributed random variables.  

After randomly generating totally 42,000 instances, we solve each one of 

them by the proposed improved Lipschitz optimization algorithm as well as 

Huang and Yao’s (2007) search procedure on a Core 2 Duo processor P8600 

with 4GB RAM. We set the error allowance in each algorithm by ε=0.01%. We 

summarize our experimental results for the smaller-size (with m = 3, 5, 7) and 

larger-size (with m = 10, 25, 50) in Tables 3 and 4, respectively. 

Table 2. The settings of the parameters in our random experiments 

 

 

 

 

 

m 3, 5, 7, 10, 25, 50 
S 10, 50, 100, 200, 500, 750, 1000 
ni U[10-30] 
Xi U [0.4-0.8] 
Yi U [0.9-0.95] 
ai U [5-10] 
bi U [1-3] 
si U [25-40] 
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In the view of searching efficiency, we calculate the average run time for 

each instance by repeating the search of 25 times. One may observe that the run 

time of Huang and Yao’s (2007) search procedure is very fast. On the other hand, 

the proposed improved Lipschitz optimization algorithm solves the TFMSP 

with extremely short run time, and an average 71.79% run time improving rate 

to each problem. However, for the same value of S, with the increasing size of m, 

the run time improving rate is decreasing and become negative while m=50 and 

S=10, whereas the solution on average is better than traditional dynamic 

Lipschitz optimization algorithm. 

On the aspect of solution quality, one should realize that we set the error 

allowance equal to 0.01% for both searching algorithms. However, the 

improved Lipschitz optimization algorithm sometimes miss the local minimum, 

so we compare the outcome and indicate the number of instances out of the 

1,000 instances for each m and S combination that the difference greater than 

0.01% in the last 3rd column. The record shows that the differences of solutions 

obtained by two algorithms are all within 0.01%. 

Besides, in the last two columns of Tables 3 and 4, we present the 

maximum error and average error of the improved Lipschitz optimization 

algorithm in percentages. Surprisingly, we observe that 37 out of 42 

combinations have negative maximum error value, which means the proposed 

algorithm in these problems can always obtain better solutions than the 

traditional dynamic Lipschitz optimization algorithm. Although there are 5 

combinations (when m=25 and 50) have positive maximum error, the largest 

one is only 0.000129% and all of these 5 problems have negative average error 

value, it is obvious that the proposed algorithm is better than the traditional 

one. 

In addition, one may notice that, the fine-tune procedure can help us 

choosing the largest step in each iteration, which means the number of 

iterations of the proposed algorithm is equal to the Evtushenko algorithm’s in 

the worst case. However, although the number of iterations is smaller than 

Evtushenko algorithm’s when m=50 and S=10, the runtime is larger since we 



39 

apply step-size comparison and slope-checking mechanisms, and we consider 

it is the reason that the searching efficiency become negative. On the other 

hand, we observe that when m is increasing, the time improving rate is 

decreasing with different S values in different group, this is due to the fact that 

the larger group it is, the more step-size comparison and slope-checking are 

needed. 

Table 3. Experimental results for the smaller-size (m = 3, 5 and 7) problems 

  dynamic 
Lipschitz 
optimization 
algorithm 

Improved Lipschitz optimization algorithm 

Objective function value m S Avg.  
iterations 

Avg.  
Run 
time 
(1) 

Avg.  
iterations 

Avg.  
Run 
time 
(2) 

Rum time 
Improving 
Rate (%) 
((1)-(2))/(1) 

Error 
more 
than 
0.01% 

Max 
Error 
(%) 

Avg. 
Error (%) 

10 302 0.0269 89 0.0090 66.40% 0/1000 -2.30E-05 -3.10E-06 
50 243 0.0206 33 0.0043 79.13% 0/1000 -7.50E-06 -2.20E-06 

100 219 0.0230 21 0.0044 81.04% 0/1000 -7.10E-06 -2.20E-06 
200 221 0.0225 14 0.0038 83.04% 0/1000 -6.80E-06 -2.10E-06 
500 267 0.0248 7 0.0028 88.57% 0/1000 -5.90E-06 -1.80E-06 
750 326 0.0286 5 0.0025 91.36% 0/1000 -5.20E-06 -1.70E-06 

3 

1000 385 0.0344 4 0.0025 92.72% 0/1000 -4.70E-06 -1.50E-06 
10 446 0.0374 172 0.0157 58.15% 0/1000 -2.70E-05 -4.50E-06 
50 330 0.0317 68 0.0080 74.74% 0/1000 -9.90E-06 -2.40E-06 

100 293 0.0256 41 0.0051 79.93% 0/1000 -7.50E-06 -2.10E-06 
200 261 0.0230 26 0.0041 82.21% 0/1000 -7.10E-06 -2.10E-06 
500 263 0.0232 13 0.0031 86.65% 0/1000 -6.50E-06 -1.80E-06 
750 283 0.0235 8 0.0025 89.36% 0/1000 -5.70E-06 -1.70E-06 

5 

1000 305 0.0288 5 0.0027 90.59% 0/1000 -5.30E-06 -1.70E-06 
10 514 0.0492 225 0.0237 51.90% 0/1000 -3.80E-05 -6.30E-06 
50 413 0.0363 105 0.0102 71.96% 0/1000 -1.30E-05 -2.60E-06 

100 359 0.0320 63 0.0070 78.13% 0/1000 -8.10E-06 -2.10E-06 
200 313 0.0281 36 0.0050 82.37% 0/1000 -7.20E-06 -2.00E-06 
500 286 0.0256 19 0.0037 85.48% 0/1000 -6.70E-06 -2.00E-06 
750 285 0.0260 11 0.0031 88.08% 0/1000 -6.10E-06 -1.90E-06 

7 

1000 293 0.0270 7 0.0029 89.26% 0/1000 -5.90E-06 -1.80E-06 
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Table 4. Experimental results for the larger-size (m = 10, 25 and 50) problems 

  dynamic 
Lipschitz 
optimization 
algorithm 

Improved Lipschitz optimization algorithm 

Objective function value m S Avg.  
iterations 

Avg.  
Run 
time 
(1) 

Avg.  
iterations 

Avg.  
Run 
time 
(2) 

Rum time 
Improving 
Rate (%) 
((1)-(2))/(1) 

Error 
more 
than 
0.01% 

Max 
Error 
(%) 

Avg. 
Error (%) 

10 549 0.0503 275 0.0288 42.77% 0/1000 -4.40E-05 -8.60E-06 
50 511 0.0469 156 0.0151 67.78% 0/1000 -1.80E-05 -2.90E-06 

100 442 0.0414 100 0.0105 74.67% 0/1000 -9.30E-05 -2.10E-06 
200 373 0.0341 53 0.0064 81.37% 0/1000 -7.50E-06 -2.00E-06 
500 320 0.0294 27 0.0042 85.53% 0/1000 -6.80E-06 -2.00E-06 
750 308 0.0280 17 0.0035 87.44% 0/1000 -6.60E-06 -2.10E-06 

10 

1000 301 0.0283 12 0.0032 88.71% 0/1000 -6.20E-06 -1.90E-06 
10 566 0.0548 416 0.0515 5.97% 0/1000 6.00E-05 -1.80E-05 
50 642 0.0640 266 0.0311 51.43% 0/1000 2.70E-07 -5.90E-06 

100 646 0.0684 217 0.0253 62.99% 0/1000 -1.70E-05 -3.00E-06 
200 580 0.0586 154 0.0168 71.33% 0/1000 -1.00E-05 -1.90E-06 
500 413 0.0428 58 0.0078 81.86% 0/1000 -7.40E-06 -1.40E-06 
750 380 0.0371 41 0.0058 84.27% 0/1000 -7.20E-06 -1.60E-06 

25 

1000 361 0.0352 33 0.0052 85.19% 0/1000 -7.00E-06 -1.60E-06 
10 555 0.0615 494 0.0759 -23.40% 0/1000 0.000129 -1.10E-05 
50 653 0.0676 358 0.0481 28.85% 0/1000 4.45E-05 -1.00E-05 

100 688 0.0721 291 0.0374 48.06% 0/1000 1.49E-05 -6.40E-06 
200 711 0.0763 237 0.0289 62.06% 0/1000 -1.30E-05 -3.10E-06 
500 615 0.0657 143 0.0166 74.77% 0/1000 -8.40E-06 -1.20E-06 
750 504 0.0552 89 0.0113 79.46% 0/1000 -7.40E-06 -1.20E-06 

50 

1000 435 0.0478 58 0.0081 82.98% 0/1000 -7.30E-06 -1.10E-06 

According to numerical experiments results shown in Table 3 and 4 above, 

we conclude that the improved Lipschitz optimization algorithm outperforms 

Huang and Yao’s (2007) research is evident.
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7. Conclusion and future research 

In this study, based on Huang and Yao’s (2007) theoretical analysis on the 

mathematical model for the Transportation Fleet Maintenance Scheduling 

Problem (TFMSP), we propose an improved Lipschitz optimization algorithm 

with slope-checking and step-size comparison mechanisms to enhance the 

searching efficiency. As we start the searching from the starting point, the 

searching step can be speed up during the section with a descending objective 

function. The searching iterations as well as the runtime can be therefore 

reduced significantly. 

Although the improved Lipschitz optimization algorithm sometimes may 

miss the local minimum, we enunciate that the quality of the solution is even 

better referring to our numerical experiments results. In addition, we considered 

it is pretty fair that the searching efficiency become negative while m=50 and 

S=10 since the group is large and the applied checking mechanisms, whereas the 

S is possibly much significant in real world. Therefore, we give a conclusion 

that the improved Lipschitz optimization algorithm is better than Huang and 

Yao’s (2007) searching algorithm. 

Since we are motivated to modify the traditional dynamic Lipschitz 

optimization algorithm, we did not take Yao and Huang’s (2006) junction-point 

search algorithm into account. Besides, similar to most of other research works, 

the capacity of the maintenance team (or, the maintenance facility) is not a 

limited resource in this study. In order to make the research perfect resolved, 

one should compare with the junction-point search algorithm and take the 

capacity constraint of maintenance in the future research. 
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