

I

私立東海大學

資訊工程研究所

碩士論文

指導教授：陳隆彬 博士

對共享資源服務元件尋找最低成本佈署策略

Finding Minimum Cost Deployment Strategy for

Service Components with Shared Resources

研究生：周財德

中 華 民 國 9 9 年 7 月

I

摘要

由於網際網路服務導向架構的計算模式，使用服務當建立的基本區塊

去快速且靈活地發展軟體。為了減少服務管理成本，它是值得的去整

合部署那些關係緊密的服務元件部署到相同的主機，基於一定應用具

體規則，如全球資源利用策略或接近。本文研究制定一個依據內部和

外部應用需求對多個服務應用程式整合部署問題，和一個有效率的演

算法發展解決整合部署問題。

關鍵詞：服務佈署, 服務導向架構, Web 服務

II

ABSTRACT

Service-oriented architecture (SOA) is a computing paradigm uses the

services as basic building blocks to enable rapid and flexible development

of software. In order to reduce the administration cost, it is desirable to

integrated deploy tightly related service components based on certain

application-specific rules such as global resource utilization policy or

proximity. In this paper, we formulate an integrated deployment problem

of multiple service applications in terms of intra-application and

inter-application requirements. An efficient algorithm is developed to

solve the integrated deployment problem.

Keywords: Service deployment, SOA, Web service.

III

CONTENTS

摘要 ... I

ABSTRACT ... II

CONTENTS.. III

LIST OF FIGURES ... IV

CHAPTER 1 INTRODUCTION ... 1

CHAPTER 2 SERVICE DEPLOYMENT PROBLEM 3

2.1 DEPLOYMENT STRATEGY ... 3

2.2 SINGLE APPLICATION DEPLOYMENT ... 4

CHAPTER 3 INTEGRATION OF DEPLOYMENTS OF

MULTIPLE APPLICATIONS ... 6

3.1 DEPLOYMENT MATRIX ... 6

3.2 INTEGRATED MULTIPLE APPLICATION DEPLOYMENT PROBLEM 8

CHAPTER 4 INTGRATED MULTIPLE APPLICATION

DEPLOYMENT ALGORITHM .. 11

4.1 UNIFIED GRAPH .. 11

4.2 MULTIPLE APPLICATION DEPLOYMENT ALGORITHM 13

CHAPTER 5 CONCLUSION REMARK .. 19

REFERENCE ... 20

IV

LIST OF FIGURES

FIGURE 1. AN SDG WITH 8 SERVICES AND A COLLECTION OF

DEPLOYMENT ITEMS (N0 ,C0) , (N1, C1) , (N2,C2). 3

FIGURE 2. DEPLOYMENT MATRIX OF SERVICES G = (G
(1)

, G
(2)

)

AND NETWORK S = (S0 , S1 , S2): (A) DEPLOYMENT MATRIX FOR

G
(1)

 AND G
(2)

, AND (B) DEPLOYMENT FOR
^

H 7

FIGURE 3. (A) R-GRAPHS H
(1)

 AND H
(2)

, AND (B) THE UNIFIED

GRAPH
^

H . .. 8

1

CHAPTER 1 INTRODUCTION

As the conversional application development suffering from flexible

software requirements, service-oriented architecture (SOA) adopts the

strategy to break monolithic applications into small and reusable

components, called services. Using services as basic building blocks,

SOA enables rapid and flexible development of applications in

heterogeneous environments. In the SOA system, a service provider is a

person or organization that maintains a pool of service instances reside

within computer hosts. A directory service (e.g. UDDI standard [12])

provides a publicly platform for service providers to register their service

descriptions (in the form of WSDL [14]) which describe the

functionalities of the services formally. By discovering the service

directory, an application can locate and bind to the service instances

dynamically regardless of their physical locations [15]. Consequently,

services can cooperate and interact in a loosely coupled manner and thus

enabling flexible composite applications that span organizations.

When building an application comprised of service components,

performance could be enhanced if the services are deployed to the

computer hosts based on certain rules. For example, two highly

interactive services are usually deployed to the hosts proximately. In [2,

17], the previous proposed algorithms solve the minimum cost

deployment problem for deploying the service components for a single

web application. This problem is referred to as the single application

deployment problem in this paper. Recently, the researchers [17] showed

that the service deployment problem can be solved by using the existing

network flow algorithms [1, 3-6, 8, 16, 17].

This paper investigates the problem of deploying N distinct applications

over a tree-structured network with (M + 1) hosts. With the previous

algorithms, these N applications are deployed individually since the

integration among deployment strategies of applications are not

considered. This paper proposes the notion of inter-application

integration which is regarding to deploying different service applications

in SOA system integrated. A collection of services (may be used by

different applications) but utilizes the same type of resources are

deployed in a bundle in order to reduce the administration cost. This

paper develops an efficient algorithm that finds the minimum cost

deployment strategy satisfying not only the single-application

2

requirements but also the inter-application integration requirements.

The rest of this paper is organized as follows. In Section II, we review

the basic service deployment problem with single application. Section III

discusses the integration of multiple application deployments. Section IV

discusses our service deployment algorithm based on the properties given

in Section III. Finally, conclusions are discussed in Section V.

3

CHAPTER 2 SERVICE DEPLOYMENT PROBLEM

2.1 Deployment Strategy

Figure 1. An SDG with 8 services and a collection of deployment

items (n0 ,c0) , (n1, c1) , (n2,c2).

A service application (or application) is composed of a set of service

components which interact based on certain application rules. An

application is modeled as directed graph G = (V , E) called SDG (service

dependency graph), where each node a  V refers to a service and each

link (a , b)E refers to the dependency relation from service a to b. Node

(i.e. service) a is called a predecessor of node b (and b is called a

successor of a) if edge (a , b)  E. The set of predecessors of node set X

(X  V) is given by pred(X , G) = {a | a  b , b  X , a  V }. Nodes

without predecessors (or successor) are called initial nodes (or target

nodes) and are referred to by I (or T). We assume that the dependency

relation induced by E is acyclic.

The transcoding [11, 17] is an important technique to reduce the cost of

deploying service components. A transcoding operation is a client-side

computation process to construct a service component from the

information of its predecessors. The cost of deploying a set of service

components can be reduced by taking the trade-off between direct

transmitting and client-side computing.

4

The SOA system consists of M + 1 hosts (s0 , s1 , . . . , sM) that provide

host environment for managing and executing the service components.

The hosts in SOA system are organized in a tree structure of which s0 is

the root and sl (l > 0) are client hosts.

In SOA system, deploying a service component is to deliver the

execution result of the service to a designated computer host. A tuple (nk ,

ck) is called deployment item if it is a pair of sets satisfying nk  V , ck 

V and nk  ck =  . A deployment item defines three possible ways for

deploying nodes:

 Nodes in nk are referred to as N-nodes and are deployed to sk via

direct network transmission from s0 to sk. That is, an N-node is

executed in s0 and the execution result is then sent to sk.

 Nodes in ck are referred to as C-nodes and are deployed to sk via

local computation in host sk. That is, a C-node is executed by

client host sk locally.

 Nodes in V＼(nk  ck) are referred to as O-nodes. They are not

involved in the application deployment.

An example of SDG and deployment item is shown in Figure 1.

For each node in SDG there are two costs defined on it: the cost of

transmitting the execution result of service a from host s0 to host sk,

denoted by net(a , s0 , sk), and the cost of computing a in host sk, denoted

by comp(a , sk). The cost of deployment item (nk , ck) is defined and

denoted by

 cost(nk , ck) = 
nk

a

net(a , s0 , sk) + 
ck

a

comp(a , sk)

2.2 Single Application Deployment

A deployment strategy consists of a collection of deployment items, one

for each host in the SOA system. For simplicity, deployment strategy is

also called deployment hereinafter. Not every collection of deployment

items is feasible. For example, client host sk can not compute node b

5

unless all the predecessors of b are available in sk. There are two ways to

make a node x available in client host sk. First, x is computed by the

server s0 and the execution result is then transmitted to sk. Alternatively, x

can be also computed by sk when the predecessors are available are sk.

Definition 2.1 defines the deployment strategy for a single application

formally.

Definition 2.1 (S-Deployment): For SDG G = (V , E) and

tree-structured network S =(s0 , s1 , . . . , sM), the vector of items ((n0 ,

c0) , (n1 , c1) , . . . , (nM , cM)) forms a deployment strategy if the

following properties hold:

 (Initialization) For root host s0, n0 = I.

 (Integrity) For client hosts, nl  (n0  c0) , l > 0.

 (Consistency) For each host sk, item (nk , ck) satisfies

condition pred(ck , G)  (nk  ck), k  0.

 (Fulfillment) All target nodes are required to be available in

client host, i.e. T  (nl  sl), l > 0.

The above deployment strategy is called a S-deployment for the

single SDG G.

In Figure 1 the deployment items form a valid deployment strategy

since all the properties in Definition 2.1 are satisfied. The minimum cost

S-deployment problem is to construct a deployment((n0 , c0) , (n1 ,

c1) , . . . , (nM , cM)) in terms of SDG G and tree network S such that the

total cost  

M

k 0
cost(nk , ck) is minimized.

Assume that an n-node-m-edge SDG G to be deployed over the

tree-structured network S with (M + 1) hosts. The minimum cost

S-deployment problem in terms of G and S can be solved in time O(nmM
2

log((nM)
2
/mM)) by reducing the problem to the well-known maximum

flow problem [2, 4, 6-10, 17].

6

CHAPTER 3 INTEGRATION OF DEPLOYMENTS OF

MULTIPLE APPLICATIONS

The SOA system usually accommodates and operates a large number of

applications. Deploying applications individually could cause irregularity

of resource distribution and access to the SOA system. In order to reduce

the administration cost, it is desirable to deploy a collection of services

accessing same resource into the same host. This section defines the

problem of integration of multiple application deployments.

3.1 Deployment Matrix

We use the following notations to refer to the SOA system with

multiple service applications:

 {G
(1)

 , G
(2)

 , . . . , G
(N)

} is the set of SDGs each represents an

application. For each 1  i  N, G
(i)

 = (V
(i)

 , E
(i)

). We use

^

V to refer to the set of nodes  Ni1
V

(i)
in all the SDGs.

 S = {s0 , s1 , . . . , sM} is the tree-structured network.

For N applications, there are correspondingly N deployment strategies

each consists of M + 1 deployment items. The collection of these items

forms a matrix as denoted as follows:

 (n
i

k

)(, c
i

k

)() is a deployment item in terms of application G
(i)

and host sk.

 D is an N  (M + 1) 2-dimensional deployment matrix of

deployment items (n
i

k

)(, c
i

k

)(), 1 i N and 0 k M.

 The target T
(i)

 is the set of target nodes in application G
(i)

.

 I
(i)

 denotes the initial nodes of application G
(i)

.

Figure 2 (a) illustrates a 2  3 deployment matrix D for the SOA

system with applications (G
(1)

 , G
(2)

) and tree-structured network S = (s0 ,

s1 , s2). In this figure, dashed-border areas stands for deployment items.

For example, ((n
)1(

0
 , c

)1(

0
) , (n

)1(

1
 , c

)1(

1
) , (n

)1(

2
 , c

)1(

2
)) form a

deployment for application G
(1)

. It can be seen that this deployment is

7

valid as both the consistency and integrity property hold. The integrity

property holds since the N-nodes required by client hosts s1 and s2 are all

available in root host s0 (i.e., n
)1(

1
  (n

)1(

0
 c

)1(

0
) and n

)1(

2
 

(n
)1(

0
 c

)1(

0
)).

Figure 2. Deployment matrix of services G = (G
(1)

, G
(2)

) and network S

= (s0 , s1 , s2): (a) Deployment matrix for G
(1)

 and G
(2)

, and (b)

Deployment for
^

H .

(a)

(b)

8

3.2 Integrated Multiple Application Deployment Problem

The SDG only represents intra-application dependency relation while

lack of correlations among different applications (e.g., views in data

warehouses [A27]). In the proposed new problem model, we assign each

service (i.e. node) in SDG a type attribute. A collection of service

instances (may be invoked by different applications) requiring a same

type attribute are deployed as a bundle in order to reduce the

administration cost. This paper assumes that each service is associated

with only one attribute. Practically, services accessing more than one type

of resources are common. This case can be solved by iteratively

decomposing the service until it becomes atomic, i.e. with only one type

attribute.

Among SDGs, a set of nodes with same type attribute are treated as one

complex node, called R-set, defined in Definition 3.1.

Figure 3. (a) R-graphs H
(1)

 and H
(2)

, and (b) the unified graph
^

H .

9

Definition 3.1 (R-set): A set of nodes in SDG group (G
(1)

 ,

G
(2)

 , . . . , G
(N)

) with same type attributes forms a R-set. The

collection of all R-sets is denoted by  . For a node set A (A 

^

V), the set of R-sets covering all elements in A is defined as RS(A)

= { | A     ,   }.

Precedence relationship between R-sets  and 
’

is defined based on

rule: Relation   
’
 holds if and only if for any pair of nodes a 

 and b  
’
 , (a , b)  E

(i)
 for some i. Furthermore, relation 

~ 
’

is a transitive relation defined by rule:  ~ 
’

if and only if

(1)   
’
 , or (2)    ” and  ”  

’
 for some  ”.

Figure 3 illustrates two SDGs and R-sets among nodes. In this figure,

different attributes of nodes are distinguished by different characters, and

R-sets are marked by using gray areas. As this figure illustrates, each

node with unique type attribute forms a singleton R-set. Therefore, the

collection  forms a mutually exclusive partition on
^

V since each

vertex in
^

V is mapped to one R-set and the mapping is onto.

Deployment of Multiple Applications: Now we are ready to give the

formal definition of deployments of multiple applications.

Definition 3.2 (M-deployment):

Given application group G = (G
(1)

 , G
(2)

, . . . , G
(N)

) , and

tree-structured network S = (s0 , s1 , s2) , and N  (M + 1)

deployment matrix D is an M-deployment in terms of G and S, if

the following integration properties hold:

 (Intra-application integration) Each row D
(i)

 is a valid

S-deployment in terms of application G
(i)

 and network S.

 (Inter-application integration) For each column Dk, the

10

following property holds for each pair of applications G
(i)

and G
(i’)

:

RS()(i

kn)  RS()'(i

kn) = 

In above definition, the intra-application integration states that each

row D
(i)

 in matrix D refers to a valid deployment for application G
(i)

,

while the inter-application integration states that the services among

different applications are deployed on an R-set basis. In other words, the

services with same type attribute must be deployed to the same host sk

with same deploying type (N-node or C-node).

An example of deployment matrix with 2 services and 3 hosts is

illustrated in Figure 2. It can seen that the strips D
(1)

 and D
(2)

 are valid

deployments for SDGs G
(1)

 and G
(2)

, respectively. The inter-application

integration property can be easily verified for each column strip D0 , D1 ,

and D2.

The cost of an M-deployment D is defined as the sum of costs of

deploying all the applications:

cost(D) = 
 Mk0

 
 Ni1

cost((n
i

k

)(
 , c

i

k

)()) (1)

The minimum cost M-deployment is a deployment matrix satisfying the

inter-application and intra-application integration properties such that the

deploying cost is minimized.

11

CHAPTER 4 INTGRATED MULTIPLE APPLICATION

DEPLOYMENT ALGORITHM

The multiple application deployment algorithm is comprised of two

main steps: unifying and projecting. The unifying step unifies the group of

SDGs based on their R-sets. The unified graph is then treated as normal

SDG where the optimal deployment strategy can be determined by

invoking the algorithm in Subsection II-C. In second step, this

deployment of the unified graph is projected to the original SDGs to

obtain the multiple-application deployment strategies.

4.1 Unified Graph

Suppose that (G
(1)

,G
(2)

, . . .,G
(N)

) is a SDG group and  is the set of

R-sets. R-graphs are directed acyclic graphs constructed based on R-sets,

described as flows. An R-set    if and only if node v is in

R-graph. In order to distinguish nodes in SDGs and in R-graph, such v

is called R-node. For each node b in (G
(1)

,G
(2)

, . . .,G
(N)

) the R-node

corresponding to b is referred to by rnode(b) = {v | b   ,    }.

Clearly, rnode(b) = v if and only if RS(b) =  . Definition 4.1 defines

R-graph formally.

Definition 4.1 (R-graph): For SDGs (G
(1)

,G
(2)

, . . .,G
(N)

), and their

R-sets  . For each i, 1 i N, H
(i)

 = (U
(i)

, F
(i)

) is the R-graph

corresponding to G
(i)

 with U
(i)

 = {rnode(a) | a  V
(i)

} and F
(i)

=

{(rnode(a) , rnode(b)) | (a , b)  E
(i)

}.

Furthermore, the unified graph is a combination of vertices and edges of

the collection of R-graphs, as defined as follows.

12

Definition 4.2 (Unified graph): For a set of R-graphs

(H
(0)

,H
(1)

, . . . ,H
(N)

), H
(i)

 = (U
(i)

 , F
(i)

), the unified graph
^

H =(
^

U ,

^

F) is defined as
^

U = Ni1
U

i)(

 and
^

F = Ni1
F

i)(

.

In unified graph
^

H , the costs of nodes from different R-graphs are

summed up if they are combined in
^

H . Formally,  x
^

U , net(x , s0 , sk)

=   Ni1   xrnode(a),
)(

U
i

a net(a , s0 , sk) and net(x , s0 , sk) =

  Ni1   xrnode(a),
)(

U
i

a
net(a, s0, sk). Figure 3 illustrates a group of

SDGs and their unified graph.

Combining graphs could be vague if the graphs come with inconsistent

structures. For simplicity, limitations to the unified graph are assumed in

this paper:

R1 No cycle is formed in an unified graph
^

H when unifying

the R-graphs.

Lemma 4.1 shows that G
(i)

 and H
(i)

 are isomorphic.

Lemma 4.1 (Isomorphism between G
(i)

 and H
(i)

): An SDG G
(i)

 is

isomorphic to its corresponding R-graph H
(i)

.

Proof: The R-graph is constructed based on R-nodes. From the

definition of R-node, node a is in G
(i)

 if and only if rnode(a) is in H
(i)

,

and the mapping rnode is one-to-one. Moreover, edge (a, b) is in G
(i)

if and only if edge (rnode(a) , rnode(b)) is in G
(i)

. From above, SDG

G
(i)

 is isomorphic to R-graph H
(i)

.

Lemma 4.2 shows that unifying multiple SDGs leads to a valid SDG.

Lemma 4.2: The unified graph
^

H is a valid SDG.

13

Proof: This property holds as the unified graph
^

H is acyclic (se

Property R1) and induces a partial ordered relation on the set of nodes

in
^

H .

4.2 Multiple Application Deployment Algorithm

This subsection discusses the new algorithm for deploying multiple

applications in the SOA environment that confirms inter-application and

intra-application integration simultaneously. Instead of solving the

problem over SDGs (G
(1)

,G
(2)

, . . .,G
(N)

), we solve the problem over the

corresponding R-graphs (H
(0)

,H
(1)

, . . . ,H
(N)

). Due to the isomorphic,

solutions for the original SDGs can be obtained based on the one-to-one

mapping between each pair of G
(i)

 and H
(i)

.

For clarity, deployment strategy for difference groups of SDGs are

distinguished via different notations:

 (n
i

k

)(,c
i

k

)() denote the deployment item of SDG G
(i)

 and host

sk, 1 i N and 0 k M.

 (p
i

k

)(
,q

i

k

)(
)denote the item for SDG H

(i)
 (the R-graph of G

(i)
)

and host sk , 1 i N and 0 k M.

 (Pk , Qk) denote the item for the unified SDG
^

H and host

sk , 0 k M.

For a set of nodes
^

X of
^

H = (
^

U ,
^

F) , define the operation
^

X [i] =

^

X  U
(i)

, where U
(i)

 is the set of nodes in R-graph H
(i)

. For a

deployment item (Pk , Qk) of SDG
^

H , we can obtain the deployment item

(Pk[i] , Qk[i]) for R-graph H
(i)

based on the intersection operation.

Definition 4.3: For unified graph
^

H and tree-structed network S,

the collection of deployment items (Pk[i] , Qk[i]) , for all 0 k

M and 1 i N, forms a N  (M + 1) deployment matrix.

14

Figure 2 (a) illustrates the deployment matrix that are projected from the

deployment of the unified graph
^

H shown in Figure 2 (b).

Based on above discussion, the new M-deployment algorithm with

input equals to SDGs (H
(0)

,H
(1)

, . . . ,H
(N)

) is described as follows.

Algorithm MINIMUM_M_DEPLOYMENT():

1) Construct the unified graph
^

H from the input SDGs

(H
(0)

,H
(1)

, . . . ,H
(N)

).

2) Find the minimum cost deployment ((P0,Q0), (P1,Q1), . . . ,(PM,QM))

of
^

H by using the algorithm discussed in Section II-C.

3) Construct a N  (M + 1) matrix
^

D with items (p
i

k

)(
, q

i

k

)(
), where

p
i

k

)(
=Pk[i] and q

i

k

)(

= Qk[i] for all 0 k M and 1 i N.

4) return
^

D

Since R-graphs H
(i)

 are isomorphic to SDG G
(i)

, the returned

deployment matrix
^

D (in Step 4) in above algorithm can be mapped to

the SDGs based on the one-to-one mapping. The correctness of the above

M-deployment algorithm is discussed in next parts.

Correctness and Analysis of the M-Deployment Algorithm: Lemma 4.3

discusses some useful properties between unified graph and the R-graphs

comprising the unified graph.

Lemma 4.3: Suppose (H
(0)

,H
(1)

, . . . ,H
(N)

) are SDGs, and
^

H is the

unified graph unifying them. For two sets of nodes X , Y in
^

H , the

following conditions hold:

1) (X  Y)[i] = X[i]  Y[i] ,

2) pred(X[i] , H
(i)

)  pred(X ,
^

H)  U[i], and

3) i
{pred(X[i] , H

(i)
)} = pred(X ,

^

H).

15

Proof:

(1): (X  Y)[i]= (X  Y)  U[i] and X[i]  Y[i] = (X  U[i])  (Y

U[i]), obviously, these two formulas are equal based on the

distributive law of sets.

(2): Recall that
^

H = (
^

U ,
^

E) and H[i] = (V[i]E[i]). By definition (in

Subsection II-A), the predecessors of set X in
^

H is given by

pred(X ,
^

H)= {y | y x , x  X , y 
^

U }, We derive that

pred(X ,
^

H)  U
(i)

 (2)

= {y | y  x , x  X , y 
^

U }  U
(i)

= {y | y  x , x  X , y  (
^

U  U
(i)

)} (3)

The predecessors of set X[i] in i-th R-graph H
(i)

 is given by pred(X[i] ,

H
(i)

) = {y | y  x , x  X[i] , y  U
(i)

}. Since X[i] = (X  U
(i)

) and

(U
(i)

 
^

U) = U
(i)

, this formula pred(X[i] , H
(i)

) can be rewritten as

pred(X[i],H
(i)

) ={y | y x , x(XU
(i)

) , y(
^

U U
(i)

)} (4)

Clearly, the set in Equation 3 is a subset of the set in Equation 4. This

confirms that pred(X  U
(i)

, H
(i)

)  pred(X 
^

H)  U
(i)

 i.e. the

second condition holds.

(3): Decompose the items in the third condition by


i

[pred(X[i],H
(i)

)] =


i

{y | y x , xX[i] , yU
(i)

}

and

 pred(X,
^

H)={y | y x , xX , y
^

U }

Since i
U

(i)
=

^

U and i
X[i] = X, the above two items are equal

and thus implies the third condition.

For convenient, let

16

^

P =((P0,Q0), (P1,Q1), . . . ,(PM,QM))

and
^

D be the matrix of items (Pk[i] , Qk[i]) projected from
^

P for all 0

k M and 1 i N. Also,
^

P [i]={Pk[i] , Qk[i] | 0 k M } refers to

row i of matrix
^

D . Theorem 4.1 and Lemma 4.4 prove the correctness of

the above M-deployment algorithm.

Theorem 4.1: For a tree-structured network S, deployment
^

P exists for

^

H if and only if the M-deployment
^

D exists for SDGs

(H
(0)

,H
(1)

, . . . ,H
(N)

).

Proof: The matrix
^

D represents an M-deployment of SDGs

(H
(0)

,H
(1)

, . . . ,H
(N)

) which satisfies both the inter-application and

intra-application properties, as proved as follows.

Intra-Application Integration: Given that the deployment
^

P satisfies

the properties consistency, integrity, initialization, and fulfillment for
^

H ,

we prove that each i-th row of matrix
^

D satisfies these four properties

for application H
(i)

.

(Consistency) By assumption,
^

P satisfies the consistency property, i.e.

pred(Qk,
^

H)  (Pk  Qk). Taking intersection on both sides obtains

pred(Qk ,
^

H)  U
(i)

 (Pk  Qk)  U
(i)

(5)

By Lemma 4.3 (the second condition, letting
^

X = Qk), we derive that

pred(Qk[i] , H
(i)

)  pred(Qk ,
^

H)  U
(i)

 (6)

17

Combining Equation 5 and 6 obtains pred(Qk[i] , H
(i)

)

 (Pk  Qk)

 U
(i)

= Pk[i]  Qk[i]. Thus,
^

P [i] satisfies the consistency property for

SDG H
(i)

.

(Integrity) The integrity property is satisfied for
^

P , thus, Pl  (P0 

Q0). Taking intersection on both sides we derive that

Pl  (P0  Q0)

 Pl  U
(i)

 (P0  Q0)  U
(i)

 (7)

 Pl[i]

 (P0[i]  Q0 [i]) (8)

which implies that
^

P [i] satisfies the integrity property.

The proof of initialization and fulfillment properties are ignored in this

paper. From above,
^

P [i] satisfies the consistency, integrity, initialization,

and fulfillment properties and thus is a valid deployment for SDG H
(i)

.

Inter-Application Integration: Since
^

P is a deployment strategy, each

item (Pk , Qk) in
^

P must satisfy the condition (Pk  Qk) =  (see

Subsection II-A). This can be extended to item (Pk[i]  Qk[i]) =  for

all i and k by

(Pk  Qk) = 

 [i
(Pk  U

(i)
)]  [ 'i

(Qk  U
(i’)

)] = 

 (Pk  U
(i)

)  (Qk  U
(i’)

) =  (9)

From Equation 9, for each host sk and each pair of SDG G
(i)

 and G
(i’)

, we

have

Pk[i]  Qk[i
’
] = 

18

which implies that the matrix
^

D satisfies the inter-application

integration property.

Lemma 4.4: In the SOA environment with tree-structured network, if
^

P

is a minimum cost S-deployment for unified graph
^

H and
^

D is a

minimum cost M-deployment for the SDGs (H
(0)

,H
(1)

, . . . ,H
(N)

), then,

cost(
^

P) = cost(
^

D).

Proof: According to Theorem (4.1),
^

P is an S-deployment of
^

H if

and only if
^

D is an M-deployments of (H
(0)

,H
(1)

, . . . ,H
(N)

). Consider the

cost of
^

P which is equal to cost(
^

P) = k
cost((Pk , Qk)). Since the net

(or comp) cost of node x in
^

H is the sum of the net (or comp) costs of

the node x in all R-graphs (H
(0)

,H
(1)

, . . . ,H
(N)

) that comprise the graph
^

H

Thus, cost((Pk , Qk)) =   Ni1
cost((Pk[i] , Qk[i])). Finally, since

^

D

={ Pk[i] , Qk[i] | 1 i N, 0 k M }, thus, cost(
^

P) = cost(
^

D) and the

lemma follows.

Based on Theorem (4.1) and Lemma (4.4), Algorithm

MINIMUM_M_DEPLOYMENT finds the minimum cost M-deployment

in terms of application group and tree-structured network.

Time Complexity: The unified graph
^

H has no more than
^

n =

i
|U

(i)
| nodes and

^

m = i
|F

(i)
| edges. Thus, finding the minimum

S-deployment for SDG
^

H takes O(
^

n
^

m log(
^

n
2
/

^

m) time as mentioned in

Subsection II-C. This cost is also the total time for finding the minimum

M-deployment since this cost dominates the costs of other steps, such as

unifying and projecting the nodes of SDGs.

19

CHAPTER 5 CONCLUSION REMARK

This paper investigates the problem of deploying N distinct applications

over a tree-structured network. In previous research results, every

application instance is deployed individually. The main contribution of

this paper is to enhance the deployments of service components invoked

by multiple applications. The collection of services in different

applications but utilizes the same type of resources are deployed in a

bundle in order to reduce the administration cost. This paper develops an

efficient algorithm for finding the optimal deployment strategy that

satisfies both the intra-application and inter-application integration

properties.

20

REFERENCE

[1] L.B. Chen and I.C. Wu. “Detection of summative global

predicates,” IEICE Transactions on Information and Systems, vol.

E86-D, no. 5, pp. 976-980, May 2003.

[2] W. Chu J.Y. Hong L.P. Chen, I.C. Wu and M.Y. Ho. “Incremental

digital content object delivering in distributed systems,” IEICE

Transactions on Information and Systems, vol. E93-D, no. 6, June

2010.

[3] L.R. Ford and D.R. Fulkerson. “Flows in Networks,” Princeton

Univ. Press, Princeton, NJ, 1962.

[4] L.R. Ford and D.R. Fulkerson. “Maximal flow through a network,”

Can. J. Math, vol. 8, no. 4, pp.399-404, 1956.

[5] A.V. Goldberg. “Recent Developments in Maximum Flow

Problems,” Technical report 98-045, NEC Research Institute, Inc.,

1998.

[6] A.V. Goldberg and R.E. Tarjan. “A new approach to the

maximum-Flow problem,” Journal of the ACM s, vol. 35, no. 4, pp.

921-940, Oct. 1998.

[7] K.Watanabe H.Tamura K.Nakano and M.Sengoku. “The

p-collection problem in a flow network with lower bounds,” IEICE

transactions on fundamentals of electronics, communications and

computer sciences, vol. E80-A, no. 4, pp. 651-657, Apr. 1997.

[8] R.K. Ahuja T.L. Magnanti and J.B. Orlin. “Network Flows: Theory,

Algorithms, and Applications,” Prentice-Hall, 1993.

[9] A.Ehuchi S.Fujishige and T.Takabatake. “A polynomial-time

algorithm for the generalized independent-flow problem,” J Oper

Res Soc Jpn, vol. 47, pp. 1-17, 2004.

[10] C.E. Leiserson T.H. Cormen and R.L. Rivest. Introduction to

Algorithms. The MIT press, 1989.

[11] K.Li H.S.Francis Y.L.Chin and W.Zhang. “Multimedia object

placement for transparent data replication,” IEEE Trans. Parallel

and Distributed Systems, s, vol. 18, no. 2, pp. 212-224, 2007.

[12] OASIS Standards. Universal Description Discovery and

Integration. http://www.oasisopen.org/specs/index.php, 2009.

[13] N. Roussopoulos, “Materialized Views and Data Warehouses,”

ACM SIGMOD Record, vol. 27, no. 1, pp. 21-26, Mar. 1998.

21

[14] W3C. Web Services Description Language.

http://www.w3.org/TR/wsdl, 2008.

[15] Wikipedia. Service-oriented architecture.

http://en.wikipedia.org/wiki/Serviceoriented_architecture, 2009.

[16] I.C. Wu and L.B. Chen. “On detection of bounded global

predicates,” The Computer Journal, vol. 41, no. 4, May 1998.

[17] X.Tang and S.T.Chanson. “Minimal cost replication of dynamic

web contents under flat update delivery,” IEEE Transactions on

Parallel and Distributed Systems, vol. 15, no. 5, pp. 431-441 May

2004.

