
Abstract

Doubly truncated data appear in a number of applications, including astronomy and survival
analysis. For double-truncated data, the lifetime T is observable only when U ≤ T ≤
V , where U and V are the left-truncated and right-truncated time, respectively. In some
situation, the lifetime T also suffers interval censoring. Using EM algorithm of Turnbull
(1976), we propose a nonparametric estimate of the distribution function of T . We show
the consistency of the conditional nonparametric maximum likelihood estimate. Simulation
results indicate that the proposed estimator performs adequately when truncation is not
severe.

Key Words: double truncation; interval censoring; nonparametric maximum likelihood esti-
mation.
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Chapter 1

Introduction

Doubly truncated failure-time arises if an individual is potentially observed only if its failure-
time falls within a certain interval, unique to that individual. Doubly truncated data play
an important role in the statistical analysis of astronomical observations (see Lynden-Bell
(1971)) as well as in survival analysis. Consider the following applications:

Example 1: Cohort-of-cases Data on Anti-diabetic Treatment

For the period 1992-2003 the Odense Pharmaco-epidemiological Database (OPED) (see
Støvring et al. (2003)) contains subject specific information on all prescriptions for subsidized
medications redeemed at any pharmacy in the County of Fyn, as well as information on
births, deaths and migration into and out of the County of Fyn. The tracking of individuals
is based on the Civil Registration Number (CRN) which is assigned to all at birth or first
immigration into Denmark. For each individual we identified all prescriptions of anti-diabetic
agents in OPED. The anti-diabetic drugs are characterized by the first three characters of
the so-called ATC-code being A10. Assume that the minimal and maximal observable age
(in years) at diabetic onset before death is known and denoted by τ0 and τM , respectively.
Let τ1 = 1992 and τ2 = 2003. Define a population as the individuals who are born after
the calendar time (in years) τ1 − τM (i.e. 1992-maximum age=year of birth for the oldest
person), and before τ2 − τ0 (i.e. 2003-minimum age=year of birth for the youngest person)
and will be diagnosed with the diabetic before death. For the individuals of the population
defined above, let τB be the calendar time (in years) of the initiating events (birth), and τD
be the calendar time (in years) at diabetic onset. Let T = τD − τB be the age (in years) at
diabetic onset. For the population defined above, let U = τ1− τB and V = τ2− τB = U +d0,
where d0 = τ2 − τ1. Note that U and V denote the age (in years) at τ1 and τ2, respectively.
Figure 1 highlights all the different times for doubly truncated data.

In terms of the population defined above, a selection bias (double-truncated) results from
the exclusion of those individuals who develop diabetic before τ1 = 1992 (the age at onset
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Figure 1. Schematic depiction of doubly truncated data

is too early) or after τ2 = 2003 (the age at onset is too late). Hence, T is observable only
when U ≤ T ≤ V .

Example 2: CDC AIDS Blood Transfusion Data

The AIDS Blood Transfusion Data are collected by the Centers for Disease Control
(CDC), which is from a registry data base, a common source of medical data. The data were
retrospectively ascertained for all transfusion-associated AIDS cases in which the diagnosis
of AIDS occurred prior to the end of of the study, which was June 30, 1991 (τ2). The
data consist of the time in month and only cases having either one transfusion or multiple
transfusions in the same calendar month were used. Nevertheless, cases either diagnosed
or reported after June 30, 1989 (τ2), were not included (i.e. right truncated) to avoid bias
resulting from reporting delay. Also, cases having the AIDS prior to July 1, 1982 (τ1) were not
included because this is when adults started being infected by the virus from a contaminated
blood transfusion. Because HIV was unknown prior to 1982, and cases of transfusion-related
AIDS before τ1 would have been missed (i.e. left-truncated). Let τB be the calendar time
(in years) of the initiating events (HIV infection), and τD be the calendar time (in years)
at which AIDS is diagnosed. Let T = 12(τD − τB) (in month) be the incubation time from
HIV infection to AIDS. Let U = 12(τ1 − τB) (in month) and V = 12(τ2 − τB) = U + d0 (in
month), where d0 = 12(τ2− τ1) = 84. Hence, T is observable only when τ1 ≤ τD +T/12 ≤ τ2
(i.e. U ≤ T ≤ V ).

In Example 1, when the age of onset, τD, is recorded exactly, we observe a doubly trun-
cated sample (T1, U1, V1), . . . , (Tn, Un, Vn). Similarly, in Example 2, when the infection time
τB and the time of onset of AIDS are both recorded exactly, we also observe a doubly trun-
cated sample. Without loss of generality, suppose the observed data are ordered according
to Ti such that T1 < T2 < · · · < Tn. Let F (t) denote the distribution function of T , and
K(x, y) denote the bivariate distribution function of (U, V ). For any distribution function
W denote the left and right endpoints of its support by aW = inf{t : W (t) > 0} and
bW = inf{t : W (t) = 1}, respectively. Let G(u) = K(u,∞) and Q(v) = K(∞, v) be the
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marginal distribution function of U and V , respectively. Throughout this article we assume
that

aG ≤ aF ≤ aQ and bG ≤ bF ≤ bQ. (1.1)

Under this assumption, F and K are both identifiable (see Woodroofe (1985)). For the
special case, V = U + d0, the assumption (1.1) is reduced to

aG ≤ aF ≤ aG + d0 and bG ≤ bF ≤ bG + d0.

For doubly truncated data, the NPMLE of F was first studied by Efron and Petrosian
(1999)). The asymptotically properties were formally established by Shen (2008). The
NPMLE is a discrete distribution putting all of its probability on the observed responses
(U1, V1, T1), . . . , (Un, Vn, Tn). Let f = (f1, . . . , fn) be a distribution putting probability fj on
Tj (j = 1, . . . , n). Similarly, let k = (k1, . . . , kn) be a distribution putting joint probability
kj on (Uj, Vj) (j = 1, . . . , n). Under the assumption of independence of T and (U, V ), the
full nonparametric likelihood based on observed data can be written as

L(F ) =
n∏
j=1

fjkj∑n
i=1 Fiki

=
n∏
j=1

fj
Fj
×

n∏
j=1

Fjkj∑n
i=1 Fiki

= L1(f)× L2(f ,k),

where Fi =
∑n

m=1 fmJim, where Jim = I[Ui≤Tm≤Vi] = 1 if Ui ≤ Tm ≤ Vi and equal to zero
otherwise. According to L1(f), the NPMLE of f can be obtained (see Efron and Petrosian
(1999), Shen (2008)) by solving the following equation:

1

f̂j
=

n∑
i=1

Jij
1

F̂i
, (j = 1, . . . , n) (1.2)

where F̂i =
∑n

m=1 f̂mJim.

However, there are many applications, in which the age of onset τD suffers interval cen-
soring, e.g. the onset of diabetes (or AIDS) is recorded only between an interval. Hence,
the variable of interest T is only recorded between an interval, say [E,R]. When there is
no truncation, the first work on NPMLE of the F in the presence of interval-censored data
is attributed to Peto (1973). Turnbull (1976) characterized the NPMLE in the presence
of interval censoring and truncation. Frydman (1994) later corrected Turnbull’s character-
ization. Alioum and Commenges (1996) identified a further refinement of the set where
the NPMLE can put mass. For left-truncated and interval-censored data, using a graph
theoretical approach, Hudgens (2005) proposed a necessary and sufficient condition for the
existence of the NPMLE. In Section 2, we propose an NPMLE of F (denoted by F̂ ) under
interval-censoring and double truncation. Simulation results indicate that the estimator F̂
performs adequately when truncation is not severe. Furthermore, under certain assumptions
on support of T , (U, V ) and (E,R), we show the consistency of the conditional NPMLE.



Chapter 2

The NPMLE

2.1 EM algorithm

When T is subject to interval censoring, we only observe [E,R] ⊂ [U, V ] when U ≤ T ≤ V .
Let (E1, R1, U1, V1), . . . , (En, Rn, Un, Vn) denote the doubly truncated and interval-censored
data. Without loss of generality, suppose the observed data are ordered according to Ei
such that E1 < E2 < · · · < En. Following Turnbull (1976), Frydman (1994) and Alioum
and Commenges (1996), we consider nonparametric estimation of F using the n independent
pairs {A1, B1}, . . . , {An, Bn}, where Ai = [Ei, Ri] and Bi = [Ui, Vi]. Given Bi, the conditional
likelihood of F is given by

Lc(F ) =
n∏
i=1

PF (Ai)

PF (Bi)
, (2.1)

where PF (R) denotes the probability that is assigned to the interval by F . We define an
NPMLE as F̂ = argmaxF∈F{Lc(F )}, where F denotes the class of distribution functions
such that PF (∪ni=1Bi) = 1 and Lc(F ) is defined, i.e. PF (Bi) > 0 for all i = 1, . . . , n. Using
the approach of Hudgens (2005), we define K = {K1, K2, . . . , K3n}, where K1 = Ai for
i = 1, . . . , n, Ki = (−∞, Ui] for i = n + 1, . . . , 2n and Ki = [Vi,∞) for i = 2n + 1, . . . , 3n.
An intersection graph for K is constructed as follows. For each element of K, we define
a corresponding vertex. Let i be the label of the vertex corresponding to Ki. Denote the
set of vertex by Sv. Two vertices in Sv are considered connected by an edge if and only if
the two corresponding regions in K intersect. A clique is defined as a subset M of Sv such
that every member of M is connected by an edge to every other member of M . A maximal
clique has the additional property that it is not a proper subset of any other clique. Let
M = {M1, . . . ,MJ} be the subset of maximal cliques of Sv such that for each Mj ∈M, there
is some i ∈ {1, . . . , n} such that i ∈ Mj. Let H = {H1, . . . , HJ} be the corresponding set
of real representations of elements of M where Hj = ∩i∈Mj

Ki for j = 1, . . . , J . By Lemma
1 of Hudgens (2005), any distribution function which increases outside ∪Jj=1Hj cannot be
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an NPMLE. By Lemma 2 of Hudgens (2005), for fixed value of PF (Hj), the likelihood is
independent of the values of F within the region Hj. These lemmas allow us to consider
maximizing a simpler likelihood than equation (2.1). For each Hj ∈ H, let sj = PF (Hj)
and let s be an m-dimension column vector with elements sj. We shall assume throughout
that H1, . . . , HJ are ordered such that Hj = [qj, pj] is to the left of Hj+1 = [qj+1, pj+1] for
j = 1, . . . , J − 1, i.e. [q1, p1], [q2, p2], . . . , [qJ , pJ ], where q1 ≤ p1 < q2 ≤ p2 < · · · < qJ ≤ pJ .
It follows that from lemmas 1 and 2 of Hudgens (2005) that maximizing likelihood (2.1) is
equivalent to maximizing

Lc(s) =
n∏
i=1

∑J
j=1 αijsj∑J
j=1 βijsj

, (2.2)

where αij = I[Hj ⊂ Ai], βij = I[Hj ⊂ Bi] and I[·] is the usual indicator function. The result-
ing reduced likelihood (2.2) is exactly as described in section 2 of Alioum and Commenges
(1996). The goal is to maximize likelihood (2.2) subject to the constraints

J∑
j=1

sj = 1, (2.3)

sj ≥ 0 (j = 1, . . . , J), (2.4)

and
J∑
j=1

αijsj > 0, (i = 1, . . . , n). (2.5)

Note that constraint (2.5) ensures that the likelihood is defined over the entire parameter
space and this could instead be accomplished by the constraint

J∑
j=1

βijsj > 0, (i = 1, . . . , n). (2.6)

However, any s which satisfies constraints (2.3), (2.4) and (2.6), but not (2.5), will not
maximize Lc(s). Thus, we can limit our search to the smaller space given by constraints
(2.3)-(2.5). We shall use Ω to denote the parameter space that is given by constraints
(2.3)-(2.5), i.e.

Ω = {s ∈ RJ :
J∑
j=1

sj = 1; sj ≥ 0 for j = 1, . . . , J ;
J∑
j=1

αijsj > 0 for i = 1, . . . n}.

To find the maximum likelihood estimate of the vector s, we use an EM algorithm as follows.

E-Step: Let the expected value of αij be denoted by µij(s). Then under s,

µij(s) =
αijsj∑J
k=1 αiksk

. (2.7)
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Because of double truncation, the ith observation can be thought of as representing a group
of unknown size where all observations in that group are unobserved because their failure
time lies outside of Bi. We can refer to these observations as doubly truncated individuals.
Let Gij be the number in that group corresponding to the ith observation having failure in
Hj = [qj, pj]. Note that the expected number of truncated individuals for the ith observation
is P (Bc

i )/P (Bi) and the probability of one of these truncated individuals falling in Hj is
(1− βij)sj/P (Bc

i ) = (1− βij)sj/[1−
∑n

k=1 βiksk]. Let the expected value of Gij be denoted
by ηij(s). Then

ηij(s) = [P (Bc
i )/P (Bi)]× (1− βij)sj/P (Bc

i ) =
(1− βij)sj∑J

k=1 βiksk
. (2.8)

M-Step: In the maximization step, we treat expected values as observed. The overall
proportion of failures in the interval Hj is

πj(s) =

∑n
i=1[µij + ηij]∑n

i=1

∑J
k=1[µik + ηik]

. (2.9)

The EM algorithm iterates between equations (2.7), (2.8) and (2.9) after selecting initial

estimates s
(0)
j > 0 such that

∑J
j=1 s

(0)
j = 1, i.e., computes µij(s

(0)) and ηij(s
(0)), updates s by

µij(s
(1)) and ηij(s

(1)), and repeats until convergence. The resulting self-consistent estimate
of s, which is a solution of simultaneous equation sj = πj(s) (j = 1, . . . , J), is exactly the
Turnbull’s (1976) self-consistency algorithm as follows:

s
(b)
j =

{
1 +

dj(s
(b−1))

M(s(b−1))

}
s
(b−1)
j (1 ≤ j ≤ J), (2.10)

where

dj(s
(b−1)) =

n∑
i=1

{(
αij

/ J∑
k=1

αiks
(b−1)
k

)
−
(
βij

/ J∑
k=1

βiks
(b−1)
k

)}
,

and

M(s(b−1)) =
n∑
i=1

1∑J
j=1 βijs

(b−1)
j

.

Let ŝj (j = 1, . . . , J) denote the estimators obtained from (2.10). As pointed out by Hudgens
(2005), in general, a maximizer of Lc(s) subject to s ∈ Ω need not exist since Ω is not closed.
For left-truncated and interval-censored data, Hudgens (2005) (see Theorem 1, page 578)
proposed a sufficient and necessary condition for the existence of the NMPLE as follows:

“ There is a maximizer of Lc(s) subject to s ∈ Ω if and only if for each non-empty proper
subset S of {1, . . . , n} there is an i /∈ S such that Ai ⊂ DS, Ai = ∪j∈A∗iHj, DS = ∪k∈SBk,
Bk = ∪j∈B∗kHj, where A∗i = {j : αij = 1} and B∗k = {j : βkj = 1}”.
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For doubly truncated interval censored data (see Example 5 of Hudgens (2005)), the
existence condition remains sufficient and is no longer necessary. In practice, when n is
large, it is difficult computationally to check the sufficient condition.

Alternatively, we can first determine that we have attained a local maximum by checking
the necessary Kuhn-Tucker conditions (see Gentleman and Geyer (1994)) as follows: If Lc(s)
attains a local maximum then there exists Lagrange multiplies λj (j = 0, . . . , J) such that∑

j=1 sj = 1, sj ≥ 0 and (2.11)-(2.13) hold, with

λjsj = 0 (j = 1, . . . , J), (2.11)

sj ≥ 0 (j = 1, . . . , J), (2.12)

∂

∂sj

{
logLc(s) +

J∑
j=1

sj(λj − λ0)
}

= dj − tj + λj − λ0 = 0 (j = 1, . . . , J), (2.13)

where

dj =
n∑
i=1

αij∑J
k=1 αiksk

and tj =
n∑
i=1

βij∑J
k=1 βiksk

.

Multiplying (2.13) by sj and summing yields λ0 = n − n = 0. If sj > 0 then (2.11) implies
that λj = 0, and (2.13) implies that dj = tj. Conversely, if sj = 0 then (2.13) implies that
dj = tj − λj. Hence, when sj = 0, dj can be larger or smaller than tj. In practice, using the
values of sj, dj and tj, we may first check if a local maximum estimator ŝ = [ŝ1, . . . , ŝJ ]T of
s is obtained. However, if the estimate is not unique, it may be that some of the masses are
not identifiable. For example, it is possible that some j ∈ {1, . . . , J} and j

′ ∈ {1, . . . , J}, the
term sj and sj′ appear in likelihood only in sum. This occurs if αij = αij′ and βij = βij′ for
all i, in which case, only sj + sj′ is identifiable. Hence, inspection of

∑n
i=1 αij and

∑n
i=1 βij

for different j is helpful in determining possible unidentifiable parameters. Another method
for finding unidentifiable parameters is to look for estimates ŝ that vary for different initial
starting values of the EM.

Based on the the estimator ŝ = [ŝ1, . . . , sJ ]T , an estimator F̂ (t) of F (t) can be uniquely
defined for t ∈ [pj, qj+1) by F̂ (pj) = F̂ (qj+1−) = ŝ1 + · · ·+ ŝj, but is not uniquely defined for

t being in an open innermost interval. To avoid ambiguity we define F̂ (t) = ŝ1 + · · ·+ ŝj−1 +

ŝj
t−qj
pj−qj if t ∈ (qj, pj], qj > 0 and pj 6= ∞; F̂ (t) = ŝ1 if 0 = q1 ≤ t ∈ [0, p1]; F̂ (t) = 1 − ŝJ if

t ≥ qJ and qJ < pJ =∞.

The following proposition shows that when all the widths of Ri − Ei (i = 1, . . . , n) are
small such that αij = 1 for i = j and αij = 0 for i 6= j, equation (2.10) reduces to equation
(1.2).

Proposition 1.

Suppose αij = 1 for i = j and αij = 0 for i 6= j. Then equation (2.10) reduces to equation
(1.2).
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Proof:

Since αij = 1 for i = j and αij = 0 for i 6= j, we have µij(s) = 1 for i = j and µij(s) = 0
for i 6= j and

dj(s
(b−1)) =

1

s
(b−1)
j

−
n∑
i=1

βij∑n
k=1 βiks

(b−1)
k

.

Hence, (2.10) reduces to

s
(b)
j =

1∑n
i=1

1∑n
k=1 βiks

(b−1)
k

+ s
(b−1)
j

(∑n
i=1(1− βij)/(

∑n
k=1 βiks

(b−1)
k )∑n

i=1
1∑n

k=1 βiks
(b−1)
k

)
,

and

s
(b)
j − s

(b−1)
j =

1∑n
i=1

1∑n
k=1 βiks

(b−1)
k

− s(b−1)j

(∑n
i=1 βij/(

∑n
k=1 βiks

(b−1)
k )∑n

i=1
1∑n

k=1 βiks
(b−1)
k

)
. (2.14)

By (2.14), it follows that ŝj (j = 1, . . . , J) satisfies the following equation:

1

ŝj
=

n∑
i=1

βij∑n
k=1 βikŝk

. (2.15)

Denote βij as Jij. Then equation (2.15) reduces to equation (1.2). The proof is completed.

Notice that when Ei = Ri (i = 1, . . . , n) (i.e. doubly truncated data), by Proposition 1,
we have ŝj = f̂j (j = 1, . . . , n).

2.2 Consistency of the NPMLE

When there is no truncation, asymptotic properties of the NPMLE have been derived for
interval-censored data. Groeneboom and Wellner (1992) proposed an iterative convex mino-
rant algorithm to calculate the NPMLE and proved the uniform consistency of the NPMLE
when F is continuous and the joint distribution function of (E,R) is absolutely continu-
ous. If (E,R) is assumed discrete, the NPMLE has the usual

√
n convergence rate and a

normal limiting distribution (Yu et al. (1998a, b)). However, if (E,R) is continuous, the
NPMLE converges slower than

√
n to a non-Gaussian limiting distribution (see Groeneboom

and Wellner (1992), Shick and Yu (2000), van der Vaart and Wellner (2000), Song (2004)).
Although asymptotic properties of the NPMLE have been derived for the interval-censored
data without truncation much less is known about the large sample properties of the NPMLE
if both interval censoring and truncation are present. Pan and Chappell (1999) showed that
the NPMLE is inconsistent when data is subject to case 1 interval censoring and left trun-
cation. Under the assumption of monotonic hazard function, Pan et al. (1998) showed the
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consistency of the NPMLE when data is subject to left truncation and interval censoring.
The following Theorem establishes the consistency of the conditional NPMLE.

Theorem 1.

Assume that the joint distribution function of (E,R) (denoted by FI) has a density fI
satisfying fI(e, r) > 0 for any (e, r) ⊂ (aF , bF ). Under assumption (1.1), with probability
one for each vaguely convergent subsequence of the NPMLEs {F̂}, its limit F∗ satisfies

F (r)− F (e)

F (v)− F (u)
=
F∗(r)− F∗(e)
F∗(v)− F∗(u)

L− a.s.

where L is the joint distribution function of (E,R,U, V ).

Proof:

The likelihood for the ith the observation yi = (ui, vi, ei, ri) is

p(yi;F ) =
F (ri)− F (ei)

F (vi)− F (ui)
.

Since the NPMLE F̂ maximizes the likelihood function
∏n

i=1 p(yi;F ), we have

n∑
i=1

log p(yi; F̂ ) ≥
n∑
i=1

log p(yi;F ),

and then
n∑
i=1

log
p(yi; F̂ )

p(yi;F )
≥ 0.

By the concavity of the function log(x) and by Jensen’s inequality, for any 0 < α < 1 and
x > 0, we have

log(1− α + αx) ≥ (1− α) log 1 + α log x = α log x,

hence ∫
log

(
1− α + α

p(y; F̂ )

p(y;F )

)
dPn(y) = n−1

n∑
i=1

log

(
1− α + α

p(yi; F̂ )

p(yi;F )

)

≥ n−1
n∑
i=1

α log
p(yi; F̂ )

p(yi;F )
≥ 0, (2.16)

where Pn is the empirical measure of (Ui, Vi, Ei, Ri) i = 1, . . . , n.

Let P be the probability measure of (Ui, Vi, Ei, Ri). The left hand side of (2.16) is∫
log

(
1− α + α

p(y; F̂ )

p(y;F )

)
d(Pn − P )(y) +

∫
log

(
1− α + α

p(y; F̂ )

p(y;F )

)
dP (y). (2.17)
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Now we take our sample space Ωs to be the space of all infinite sequences

(U1, V1, E1, R1),(U2, V2, E2, R2),· · · ,endowed with the Borel σ-algebra generated by the prod-
uct topology on

∏∞
1 R4

+ and the product measure P. By corollary 8.1 of Huang and Wellner
(1995) and the generalized Glivenko-Cantelli theorem, there is a B ∈ Ωs with P(B) = 1 such
that for each ω ∈ B the first term in (2.17) converges to 0. Fix an ω ∈ B. By Helly’s selection
theorem, for any subsequence of F̂ (ω), there exists a further subsequence F̂nk

(w) converging
vaguely to some nondecreasing function F∗ taking values in [0, 1]. Under assumption (1.1),
p(y; F̂nk

)/p(y;F ) is bounded. By the bounded convergence theorem,

lim
nk→∞

∫
log

(
1− α + α

p(y; F̂nk
)

p(y;F )

)
dP (y) =

∫
log

(
1− α + α

p(y;F∗)

p(y;F )

)
dP (y).

By (2.16), the above expression must be nonnegative. However, by Jensen’s inequality it
must be non-positive. Therefore, it must be zero, which leads to

p(y;F∗) = p(y;F ) P − a.s.

and it implies that
F (r)− F (e)

F (v)− F (u)
=
F∗(r)− F∗(e)
F∗(v)− F∗(u)

L− a.s.

So it is shown that with probability one, for each vaguely convergent subsequence of F̂ (ω),
its limit F∗ satisfies

F (r)− F (e)

F (v)− F (u)
=
F∗(r)− F∗(e)
F∗(v)− F∗(u)

.

The proof is completed.

Although we only establish consistency of the conditional NPMEL. Simulation results in
the following section indicate that the NPMLE performs adequately when truncation is not
severe.



Chapter 3

Simulation Results

A simulation study is conducted to investigate the performance of the proposed estimator
F̂ (t). The T ’s are i.i.d. exponential distributed with mean equal to 1. The U ’s are i.i.d.
exponential distributed with scale parameters θ = 2, 4 and 8, i.e. G(x; θ) = 1 − exp(−θx)
for x > 0. The V is set as V = U + 2.0. The T and (U, V ) are independent to each other.
The goal is to estimate F (tp) = p, with p = 0.2, 0.5 and 0.8. To make T interval-censored,
we generate a uniform random variable X. If X ≤ 0.5 then E = T − c and R = T + c+ 0.1.
If X > 0.5 then E = T − (c+ 0.1) and R = T + c. The values of c are set at c = 0.15, 0.25.
The sample sizes are chosen as 200 and 400. The replication is 1000 times. Tables 1 through
3 show the empirical biases, standard deviations (std.) and mean squared errors (mse) of F̂ .
Tables 1 through 3 also list the proportion of truncation 1−P (U < T < V ) (denoted by qT ).
Furthermore, we also consider the estimation of FC(tp) = [F (tp)−F (t0.1)]/[F (t0.9)−F (t0.1)].
Tables 1 through 3 show the empirical biases, standard deviations (std.) and mean squared
errors (mse) of F̂C(tp) = [F̂ (tp)− F̂ (t0.1)]/[F̂ (t0.9)− F̂ (t0.1)] with p = 0.2, 0.5 and 0.8. Based
on the results of Tables 1 through 3, we conclude that:

(i) Given qT , the mse of both estimators F̂ and F̂C increase as the length of censoring (i.e.
c) increases.

(ii) Given c, the mse of both estimators F̂ and F̂C increase as proportion of truncation qT
increases.

(iii) Given c and qT , the mse of both estimators F̂ and F̂C decrease as sample size n increases.
(iv) When truncation is severe (i.e. qT = 0.43), the biases of the estimator F̂C are much
smaller than that of F̂ .
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Table 1. Simulation results for bias, standard deviation and
root mean squared error of F̂ (t0.2) and F̂C(t0.2)

F̂ (t0.2) F̂C(t0.2)
θ c n qT bias std mse bias std mse

2.0 0.15 200 0.43 -0.123 0.023 0.503 -0.065 0.021 0.399
2.0 0.15 400 0.43 -0.124 0.017 0.482 -0.066 0.014 0.376
2.0 0.25 200 0.43 -0.137 0.026 0.533 -0.077 0.023 0.429
2.0 0.25 400 0.43 -0.129 0.015 0.484 -0.072 0.013 0.381
4.0 0.15 200 0.31 -0.101 0.032 0.496 -0.054 0.023 0.385
4.0 0.15 400 0.31 -0.096 0.017 0.439 -0.048 0.015 0.340
4.0 0.25 200 0.31 -0.129 0.037 0.550 -0.076 0.025 0.434
4.0 0.25 400 0.31 -0.107 0.015 0.448 -0.059 0.012 0.350
8.0 0.15 200 0.23 -0.098 0.035 0.499 -0.052 0.023 0.380
8.0 0.15 400 0.23 -0.074 0.022 0.421 -0.040 0.015 0.323
8.0 0.25 200 0.23 -0.137 0.040 0.570 -0.086 0.026 0.455
8.0 0.25 400 0.23 -0.098 0.026 0.474 -0.061 0.017 0.376
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Table 2. Simulation results for bias, standard deviation and
root mean squared error of F̂ (t0.5) and F̂C(t0.5)

F̂ (t0.5) F̂C(t0.5)
θ c n qT bias std mse bias std mse

2.0 0.15 200 0.43 -0.101 0.037 0.510 -0.090 0.038 0.494
2.0 0.15 400 0.43 -0.107 0.028 0.493 -0.095 0.028 0.475
2.0 0.25 200 0.43 -0.165 0.045 0.618 -0.153 0.046 0.606
2.0 0.25 400 0.43 -0.156 0.028 0.562 -0.149 0.028 0.553
4.0 0.15 200 0.31 -0.048 0.032 0.397 -0.053 0.035 0.416
4.0 0.15 400 0.31 -0.044 0.026 0.372 -0.052 0.026 0.389
4.0 0.25 200 0.31 -0.115 0.048 0.559 -0.120 0.044 0.556
4.0 0.25 400 0.31 -0.104 0.030 0.496 -0.115 0.030 0.512
8.0 0.15 200 0.23 -0.021 0.043 0.352 -0.030 0.043 0.381
8.0 0.15 400 0.23 -0.007 0.028 0.253 -0.028 0.028 0.335
8.0 0.25 200 0.23 -0.073 0.047 0.487 -0.071 0.049 0.488
8.0 0.25 400 0.23 -0.069 0.028 0.430 -0.090 0.027 0.465

Table 3. Simulation results for bias, standard deviation and
root mean squared error of F̂ (t0.8) and F̂C(t0.8)

F̂ (t0.8) F̂C(t0.8)
θ c n qT bias std mse bias std mse

2.0 0.15 200 0.43 0.087 0.025 0.454 -0.027 0.030 0.337
2.0 0.15 400 0.43 0.094 0.017 0.438 -0.026 0.019 0.300
2.0 0.25 200 0.43 0.109 0.033 0.518 -0.034 0.032 0.363
2.0 0.25 400 0.43 0.100 0.023 0.480 -0.036 0.024 0.345
4.0 0.15 200 0.31 0.053 0.026 0.391 -0.000 0.029 0.183
4.0 0.15 400 0.31 0.054 0.020 0.375 -0.008 0.020 0.231
4.0 0.25 200 0.31 0.061 0.037 0.440 0.007 0.037 0.278
4.0 0.25 400 0.31 0.061 0.021 0.393 -0.000 0.020 0.154
8.0 0.15 200 0.23 0.003 0.033 0.239 0.024 0.027 0.317
8.0 0.15 400 0.23 0.000 0.021 0.160 0.022 0.018 0.280
8.0 0.25 200 0.23 -0.016 0.035 0.313 0.070 0.049 0.486
8.0 0.25 400 0.23 -0.009 0.028 0.262 0.038 0.025 0.352



Chapter 4

Applications

For purpose of illustration, we apply the proposed method the CDC AIDS Blood Transfusion
Data described in Example 2. To introduce interval censoring, we generate a uniform random
variable X. If X ≤ 0.5 then E = τD−3.5 and R = τD+5.5. If X > 0.5 then E = τD−5.5 and
R = τD+3.5. The results of the estimators F̂ (t) and F̂C(t) = [F̂ (t)− F̂ (t0.1)]/[F̂ (t)− F̂ (t0.1)]
are calculated using the constructed interval censored data. For purpose of comparison we
also obtain the estimators of F (t) and FC(t) using the exact observations, denoted by F̂E and
F̂EC , respectively. Figures 2 and 3 show the results of the estimators (F̂ , F̂E) and (F̂C , F̂EC),
respectively. Figures 2 and 3 indicate that except for the early times, both F̂ and F̂C are
consistently smaller than F̂E and F̂CE, respectively. The difference between F̂C and F̂EC is
smaller than that between F̂ and F̂E.
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Figure 2. Schematic depiction of doubly truncated data



Chapter 5

Concluding Remarks

In this article, we have proposed a nonparametric estimate of the distribution function of
T when data is subject to double truncation and interval censoring. Simulation results
indicate that the proposed estimator performs adequately when truncation is not severe.
Furthermore, under certain assumptions on support of T , (U, V ) and (E,R), we show the
consistency of the conditional NPMLE. Further research is required to obtain the asymptotic
results of the unconditional NPMLE.
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Figure 3. Plot of the results of the estimator F̂ (t) and F̂E(t)
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Figure 4. Plot of the results of the estimator F̂C(t) and F̂EC(t)
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