
Abstract

In longitudinal studies, the additive hazard model is often used to analyze covariate effects

on the duration time, defined as the elapsed time between the first and second event. In

this article, we consider the situation when the first event suffers partly interval-censoring

and the second event suffers left-truncation and right-censoring. We proposed a two-step

estimation procedure for estimating the regression coefficients of the additive hazards model.

A simulation study is conducted to investigate the performance of the proposed estimator.

The asymptotic properties of the proposed estimators are discussed.
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Chapter 1

Introduction

In longitudinal studies, the interest often relies on the duration time, i.e. the elapsed time

between the first and second events. In many situations, the first event suffers interval-

censoring and the second event suffers right-censoring, the so-called doubly censored data

(see Gómez and Calle (1999)). In some cases, the second event also suffers left-truncation.

For example, in epidemiology, a prevalent cohort is defined as a group of diseased individuals

who are recruited for a prospective study. Suppose that the disease population in a certain

area is a representative sample from a large disease population. The target interest of a

research project is to study the natural history of the disease for individuals who developed

the disease during the calendar time period (τ0, τ), τ0 < τ . Let X denote the calendar time

of the initial time of the first event. Let S denote the calendar time of the second event. One

major interest is the estimation of the distribution function (denoted by F ) of the duration

time T = S − X, i.e. the elapsed time between the two events. Consider the sampling

under which all of the individuals in the area who have experienced a first event (such as the

origin of Alzheimer’s disease or human immunodeficiency (HIV) infection) between τ0 and τ

and have not experienced a second event (such as death or the acquired immune deficiency

syndrome (AIDS)) are recruited at the time τ for a prospective follow-up study. Hence, left
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truncation occurs since only subjects with S ≥ τ can become part of the sample. In other

words, only subjects with duration time S −X = T ≥ V = τ −X can become part of the

sample. Furthermore, suppose the follow-up study is terminated at τ ∗ (τ ∗ > τ). Then, the

second event S is rightly censored by C = min(C1, τ
∗), where C1 denotes the calendar time

of drop-out. Assume for each individual, data is available on a (p+1)×1 vector of covariates,

Z = [1, Z1, . . . , Zp]
T . It is important to investigate the association between Z and survival

function of T . Suppose that the left and right endpoints of T are independent of Z. Let aF

and bF denote the left and right endpoints of F , and similarly, define (aG, bG) and (aQ, bQ)

as the left and right endpoint of G, and Q, respectively. For identifiabilities of F , we need

the following condition (see Woodroofe (1985)):

aG ≤ min(aF , aQ) and bF ≤ bQ. (1.1)

Since V = τ−X and T = Y −X, we have 0 = aG ≤ aF . Furthermore, since P (C1 =∞) > 0,

we have bQ = τ ∗ − τ0. Hence, if follow-up is sufficiently long then bF < bQ, we may assume

that condition (1.1) holds. When X is always observable, the data is the so-called left-

truncated and right-censored (LTRC) data. Assume that given Z, T and V are independent

of each other but V and C are dependent with P (C ≥ V ) = 1. Cox’s proportional hazards

model (1972) has so far been the most popular model for the regression analysis of censored

survival data. However, sometimes the proportional hazards model may not fit failure time

data well. In contrast to the proportional hazard model, the additive risk model (Aalen

(1980)) specifies that the hazard function associated with Z is the sum of the baseline

hazard function and the regression function of Z, i.e. the effect of Z on T can be formulated

through the following additive hazards model:

λ(t; β|Z) = λ0(t) + ZTβ, (1.2)
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Figure 1. Schematic depiction of left-truncated and interval-censored data

where λ0(t) is an unknown baseline hazard function, β is a (p + 1) × 1 unknown vector of

parameters, and λ(·) is an unspecified hazard function. In many situations, we only know

that X belongs to an interval, say [E,R], i.e. X is interval-censored, e.g. the infection of

HIV (or the origin of Alzheimer’s disease) can only be determined retrospectively to lie in

some intervals. In this case, one can only observe ([E,R], δ, Y, Z) if S ≥ τ (i.e T ≥ V ), where

Y = min(C, S), and δ = I{Y = S} = 1 if Y = S and δ = 0 if Y = C. Figure 1 highlights all

the different times for left-truncated and interval-censored data described above.

We briefly review the existing related literatures. When there is no truncation and

covariate, De Gruttola and Lagakos (1989) proposed a method for analyzing discrete doubly

censored survival data (i.e. both X and T are discrete) in the context of the study of the

progression from HIV infection to AIDS. They estimated F by treating the data as a special

type of bivariate survival data. Gómez and Lagakos (1994) pointed out that some practical

problems with the De Gruttola and Lagakos (DGL) method related to the bivariate nature of

the data were observed, which range from problems of convergence and speed of convergence

to non-identifiability problems. To overcome these difficulties, they proposed an alternative

methodology based on maximizing two univariate likelihood functions. The Gómez-Lagakos

(GL) developed a two-step estimation procedure and provided an algorithm that is generally

more stable and converges faster than does the DGL algorithm. When there is truncation
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and both X and T are discrete, Sun (1997) proposed a two-step nonparametric estimation

procedure for the estimation of F . When there is no truncation, Gómez and Calle (1999)

proposed a generalization of the Gómez and Lagakos two-step method for the case where

both X and T are continuous. Zhao, Lim and Sun (2005) discussed statistical inference for

the proportional hazards model when there exists interval-censoring on both survival time

of interest and covariates.

In this article, we consider the situation when X suffers partly interval censoring, S

suffers left-truncation and right-censoring, and both X and T are continuous. The data

where X is partly interval censored arise often in follow-up studies. For example, for some

individuals, time of infection of HIV, can be recorded exactly (e.g. infection due to blood

transfusion) or Alzheimer’s disease or vascular dementia onset is provided by the caregivers

of those patients. But for others, time X is recorded only between two clinical examinations.

In Section 2, we propose a two-step estimation procedure for estimating β of the proportional

model (1.2) under partly interval-censored and truncated data. In Section 3, a simulation

study is conducted to investigate the performance of the proposed estimator.



Chapter 2

The Proposed Estimator

Supposed there are n independent truncated subjects in a follow-up study and both Y and X

are continuous. Let ([Ei, Ri], Yi, δi, Zi) (i = 1, . . . , n) denote the truncated sample. Suppose

that Ei = Ri = Xi, i.e. X is always observed. Then, we have LTRC data on the Ti = Yi−Xi

and Vi = τ − Xi. In this case, the estimate for β can be obtained by setting the following

estimating equation equal to zero (see Lin and Ying 1993):

U(β|X ′is, Z ′is) =
n∑
i=1

∫ τ∗

0

[{Zi − Z̄(x)]{dNi(x|Xi)−Ri(x|Xi)Z
T
i βdx}, (2.1)

where Z̄(x) =
∑n

i=1Ri(x|Xi)Zi/
∑n

i=1Ri(x|Xi), Ri(x|Xi) = I{Vi < x ≤ Ti} and Ni(x|Xi) =

I{Ti ≤ x, δi = 1}. Notice that Ni(x|Xi) and Ri(x|Xi) are written as function of Xi since

both Ti and Vi depend on Xi. The resulting estimator takes the explicit form

β̂ =

[ n∑
i=1

∫ τ∗

0

Ri(x|Xi){Zi − Z̄(x)}{Zi − Z̄(x)}Tdx
]−1[ n∑

i=1

∫ τ∗

0

{Zi − Z̄(x)}dNi(x|Xi)

]
.

For partly interval-censored and truncated data, for some individuals, we only observe

Xi ∈ [Ei, Ri], where Ei < Ri. Without loss of generality, let (Ei = Ri, Yi, δi, Zi), (i =
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1, . . . , n1) denote the observations with Ei = Ri and let (Ei < Ri, Yi, δi, Zi), (i = n1 +

1, . . . , n) denote the partly interval-censored observation. Let H(x) = P (X ≤ x) denote the

cumulative distribution functions of X.

Next, we shall propose an iterative algorithm for simultaneously estimating F (t|Z) =

P (T ≤ t|Z) and H. The idea used in the following iterative algorithm is similar to that

used in Gómez and Calle (1999), who considered the case when there is no truncation and

covariates. In Step 0, using the observation with Ei = Ri, we first obtain an initial estimator

of F (t|Zi), denoted by F (0)(t|Zi). Based on F̂ (0), we obtain an estimated likelihood for H,

denoted by L(H, F̂ (0)). In Step 2, using the estimated likelihood L(H, F̂ (0)), we obtain a

first-step estimator of H(x), denoted by H(1)(x). Given H(1)(t), in Step 2, we obtain a

first-step estimator of F̂ (1) based on approximation of estimated equation. Iterate between

Step 1 and Step 2 until convergence.

Step 0: Obtain an initial estimator of β

Based on the data (Vi, Ti, δi, Zi) (i = 1, . . . , n1) and (2.1), we can obtain an initial esti-

mator of β, say β̂(0). Note that the counting process Ni(·) can be uniquely decomposed by

the relationship Ni(x|Xi) = Mi(x|Xi) +
∫ x

0
Ri(u|Xi)dΛ(u; β|Zi), where Mi(·|Xi) is a local

square integrable martingale and Λ(u; β|Zi) is the cumulative hazard function. In view this

relationship, using β̂(0), we estimate Λ0(x) =
∫ x

0
λ0(u)du by

Λ̂
(0)
0 (x) =

∫ x

0

n∑
i=1

{dNi(u|Xi)−Ri(u|Xi)Z
T
i β̂

(0)du}∑n
j=1Rj(u|Xj)

.

Based on Ŝ
(0)
0 (t) = e−Λ̂

(0)
0 (t), we have an initial estimator of the distribution function of T

given Zi as F (0)(t|Zi) = 1− [Ŝ
(0)
0 (t|Zi)e−

∫ t
0 Z

T
i β̂

(0)du].

Step 1: Obtain a first-step estimator of H
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Given F̂ (0) and [Ei, Ri], consider the following estimated conditional likelihood:

L(H, F̂ (0)) =
n∏
i=1

P (X ∈ [Ei, Ri])/P (X ∈ [τ − T,∞), τ − T ≤ Ei)

=
n∏
i=1

∑m
k=1 I{τ − uk ≤ Ei}[H(Ri)−H(Ei)]F̂

(0)(duk|Zi)∑m
k=1 I{τ − uk ≤ Ei}[1−H(τ − uk)]F̂ (0)(duk|Zi)

, (2.2)

where F̂ (0)(du|Zi) = F̂ (0)(u|Zi)− F̂ (0)(u− |Zi). We define the following two sets ES = {Ei :

i = 1, . . . , n} and RS = {Ri : i = 1, . . . , n} ∪ {τ − uk : k = 1, . . . ,m}. Examination of (2.2)

indicates that the estimated likelihood L(H, F̂ (0)) will be maximized when the values H(x)

are as large as possible for x ∈ RS and as small as possible for x ∈ ES. Accordingly, we

construct a set Q as a union of disjoint closed intervals whose left and right end points lie

in the set ES and RS, respectively, which contain no other members of ES and RS, and are

covered by at least one censoring set. Let these Turnbull intervals (see Turnbull (1976) and

Frydman (1994)) be written as [q1, p1], [q2, p2], . . . , [qJ , pJ ], where q1 ≤ p1 < q2 ≤ p2 < · · · <

qJ ≤ pJ(See Appendix 1.). By Lemma 1 of Alioum and Commenges (1996), the likelihood

function L(H; F̂ (0)) can be written as

L(H; F̂ (0)) =
n∏
i=1

∑m
k=1 I{τ − uk ≤ Ei}

∑J
j=1 sjI{[qj, pj] ⊂ [Ei, Ri]}F̂ (0)(duk|Zi)∑m

k=1 I{τ − uk ≤ Ei}
∑J

j=1 sjI{[qj, pj] ⊂ [τ − uk,∞)}F̂ (0)(duk|Zi)

=
n∏
i=1

∑J
j=1 α̂ijsj∑J
j=1 β̂ijsj

,

where sj = H(pj) − H(qj−), α̂ij =
∑m

k=1 I{[τ − uk ≤ Ei]}I{[qj, pj] ⊂ [Ei, Ri]}F̂ (0)(duk|Zi)

and β̂ij =
∑m

k=1 I{[τ − uk ≤ Ei]}I{[qj, pj] ⊂ [τ − uk,∞)}F̂ (0)(duk|Zi).

Using (2.2), the logarithm of the likelihood can be expressed as

log{L(H)} =
n∑
i=1

{
log

( J∑
j=1

α̂ijsj

)
− log

( J∑
j=1

β̂ijsij

)}
. (2.3)
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By Lemmas 1 and 2 of Alioum and Commenges (1996), given F̂ (0)(duk|Zi), the problem of

maximizing (2.2) is then equivalent to that of maximizing (2.3) subject to the constraints∑J
j=1 sj = 1 and sj ≥ 0 (1 ≤ j ≤ J). To find the maximum likelihood estimate of the vector

s = (s1, . . . , sJ)T , one can use the self-consistency algorithm of Turnbull (1976) as follows:

s
(b)
j =

{
1 +

dj(s
(b−1))

M(s(b−1))

}
s

(b−1)
j (1 ≤ j ≤ J), (2.4)

where

dj(s
(b−1)) =

n∑
i=1

{(
α̂ij

/ J∑
k=1

α̂iks
(b−1)
k

)
−
(
β̂ij

/ J∑
k=1

β̂iks
(b−1)
k

)}
,

and

M(s(b−1)) =
n∑
i=1

1∑J
j=1 β̂ijs

(b−1)
j

.

Let ŝj (j = 1, . . . , J) denote the first-step estimators obtained from (2.4). Based on ŝj, we

have Ĥ(1)(x) = 0 if x < q1; Ĥ(1)(x) = ŝ1 + · · · + ŝj if pj < x < qj+1; Ĥ(1)(x) = 1 if x > pJ ,

and undefined for x ∈ [qj, pj], for 1 ≤ j ≤ J .

Step 2: Obtain an improved estimator of F

Given the first-step estimators Ĥ(1)(t) and [Ei, Ri], similar to the approach of Zhao et al.

(2005), we propose the following simple Monte Carlo method:

Assume that Ĥ(1) puts mass uniformly on [qj, pj] (j = 1, . . . , J). For each b = 1, . . . , B

and i = 1, . . . , n, randomly sampleX
(b)
i from Ĥ(1)(x) conditional on observed interval [Ei, Ri].

Let X(b) = (X
(b)
1 , . . . , X

(b)
n )(See Appendix 2.). Solve the equation

B−1

B∑
b=1

U(β|Z ′is,X
(b)
i

′
s) = 0. (2.5)

If B is large, we should expect that the left-hand side of equation (2.5) will give good
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approximation to

U(β, Ĥ(1)) =

( n∏
i=1

1∫ Ri

Ei
Ĥ(1)(dx)

)∫ R1

E1

. . .

∫ Rn

En

U(β|Z ′is,X ′is)
n∏
i=1

Ĥ(1)(dXi), (2.6)

where Xi denote a random sample from Ĥ(1)(x). Let β̂(1) denote the solution of equation

(2.5). Based on β̂(1), we obtain the following estimator of the cumulative baseline hazard

function:

Λ̂
(1)
0 (t) = B−1

B∑
b=1

∫ t

0

∑n
i=1 dNi(x|X(b)

i )∑n
j=1Rj(x|X(b)

j )eβ̂
(1)Zj

.

When B is large, we should expect that Λ̂
(1)
0 (t) will give good approximation to

( n∏
i=1

1∫ Ri

Ei
Ĥ(1)(dx)

)∫ R1

E1

. . .

∫ Rn

En

∫ t

0

∑n
i=1 dNi(x|Xi)∑n

j=1Rj(x|Xj))eβ̂
(1)Zj

n∏
i=1

Ĥ(1)(dXi).

Based on Ŝ
(1)
0 (t) = e−Λ̂

(1)
0 (t), we have a improved estimator of the distribution function of T

given Zi as F (1)(t|Z) = 1 − [Ŝ
(1)
0 (t|Z)]eβ̂

(1)Z . Replacing F̂ (0) in Step 1 with the improved

estimator F̂ (1), we can obtain an improved estimator of H, say Ĥ(2). Replacing Ĥ(1) in Step

2 with Ĥ(2), we can obtain an improved estimator F̂ (2). After Step 2, go back to Step 1 and

repeat this cycle until convergence. Let β̂ and Λ̂0(t) denote the converged solutions.

Next, we briefly discuss the asymptotic properties of β̂. To obtain the asymptotic normal-

ity of β̂, we need to show the consistency of the first-step estimator Ĥ(1), i.e. the consistency

of the maximum likelihood estimate of equation (2.2). Hudgens (2005) (see Theorem 1, page

578) proposed a sufficient and necessary condition for the existence of maximum likelihood

estimate of equation (2.3). However, large sample properties of the maximum likelihood

estimate remain unknown. Although asymptotic properties of maximum likelihood estimate

for interval-censored data have been derived (see Groeneboom and Wellner (1992), Shick

and Yu (1998), Yu et al. (1998a,b)), much less is known about the large sample properties

of the maximum likelihood estimate if both interval censoring and truncation are present.
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Notice that (2.6) can be written as

n−1/2U(β, Ĥ(1)) =

∫ R1

E1

. . .

∫ Rn

En

{
n−1/2

n∑
i=1

∫ τ∗

0

[Zi − Z̄(x)]dMi(x|Xi)

} n∏
i=1

Ĥ(1)(dXi)

ĥi
, (2.7)

where ĥi =
∫ Ri

Ei
Ĥ(1)(dx) (i = 1, . . . , n). If the consistency of Ĥ(1) holds, it follows that (2.7)

converges in distribution to a (p + 1)-variate normal with mean zero and with a covariance

matrix which can be consistently estimated by

Σ̂ =

∫ R1

E1

. . .

∫ Rn

En

{
n−1

n∑
i=1

∫ τ∗

0

[Zi − Z̄(x)][Zi − Z̄(x)]TdNi(x|Xi)

} n∏
i=1

Ĥ(1)(dXi)

ĥi
.

Furthermore, the random vector n1/2(β̂ − β) converges in distribution to a (p + 1)-variate

normal with mean zero and with a covariance matrix which can be consistently estimated

by A(β̂)Σ̂AT (β̂), where A(β) = {−n−1∂U(β, Ĥ(1))/∂β}−1.



Chapter 3

A Simulation Study

A simulation study is conducted to investigate the performance of the proposed estimator.

Suppose the target interest of a research project is to study the natural history of the disease

for individuals who developed a certain disease before the Taiwan’s Republican calendar

(TRC) time 93 (i.e. calendar time 2004, TRC time =calendar time - 1911). Consider

the sampling under which all of the individuals who were diagnosed with a certain disease

and are still alive are recruited at the TRC time τ = 93 for a prospective follow-up study.

Furthermore, suppose the follow-up study is terminated at TRC time τ ∗ = 103. The variable

V = 93 − X is exponential distribution: G(x; βg) = 1 − e−x/βg , which implies that the

incidence rate of the disease grows due to some reasons (e.g. eating habit change). The

values of βg are set at βg = 5, 10. Given V , let X = 93− V be the TRC time of having the

disease. To make X partly interval-censored, we generate two independent uniform random

variables U1 and U2. If U1 > IC then X = E = R. If U1 ≤ IC and U2 ≤ 0.5 then E = X − c

and R = X + c + 2. If U1 ≤ IC and U2 > 0.5 then E = X − (c + 2) and R = X + c. The

values of IC are set at IC = 0.4, 0.6 and the values of c are set at c = 0.5, 1.0. Next, we

consider a two-sample additive hazards model. The covariate Z = 0 represents sample 1, and

Z = 1 represents sample 2. For each sample, the sample size is chosen as n1 = n2 = 50; 100.

12



13

Hence, the total sample size is set at n = 100; 200. For sample 1, T is generated with is

generated with population hazard density λ1(t) = λ0(t) = αt for t > 0, and for sample 2, T

is generated with hazard density λ2(t) = λ0(t) + β for t > 0. The values of parameter α and

β are set at 0.004 and 0.04, respectively. Given T , let S = T +X be the TRC time of death

and C = τ ∗ = 103 be the TRC time of censoring. Let Y = min(C, S) and δ = I{Y = S} as

defined in Section 1. Only subjects with duration time T ≥ V (or S ≥ 93) can become part

of the sample. The replication is 100 times. Table 1 shows the biases, standard deviations

(std.) and root mean squared errors (rmse) of the estimator β̂. For purpose of comparison,

we also include the biases, std. and rmse of the estimator (denoted by β̃) based solely on

uncensored data. Tables 2 through 4 show the biases, standard deviations (std.) and root

mean squared errors (rmse) of the estimators Λ̂0(tp) with p = 0.2, 0.5, 0.8, where tp denotes

the pth quantile of T . The values of Λ0(tp) are equal to 0.22, 0.69 and 1.61 for p = 0.2, 0.5 and

0.8, respectively. For purpose of comparison, we also include the biases, std. and rmse of the

estimator (denoted by Λ̃0(tp)) based solely on uncensored data. Tables 1 through 4 also list

the proportion of truncation P (T < V ) = P (S < 93) (denoted by qT ), the proportion of right

censoring P (δi = 0) (denoted by pC) and the proportion of interval censoring P (Ei < Ri)

(denoted by pI). Based on the results of Tables 1 through 4, we conclude that:

1. For the estimation of β:

(i) In terms of rmse, the estimator β̂ outperforms the estimator β̃ for all the cases considered.

(ii) Given pT and c, the rmse of both estimators β̂ and β̃ increase as the proportion of interval

censoring (i.e. pI) increases.

(iii) Given IC and c, the rmse of both estimators increase as the proportion of truncation

(i.e. pT ) increases.

2. For the estimation of Λ0(tp):
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(i) In terms of rmse, the estimator Λ̂0(tp) outperforms the estimator Λ̃0(tp) for all the cases

considered.

(ii) Given pT and c, the rmse of both estimators Λ̂0(tp) and Λ̃0(tp) increase as the proportion

of interval censoring (i.e. pI) increases.

(iii) Given IC and c, the rmse of both estimators increase as the proportion of truncation

(i.e. pT ) increases.

Table 1. Simulation results for bias, standard deviation and
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root mean squared error of β̃ and β̂

β̃ β̂

βg IC c n pT pC pI bias std rmse bias std rmse

5 0.4 0.5 100 0.40 0.53 0.40 -0.001 0.016 0.016 -0.002 0.011 0.011

5 0.4 0.5 200 0.40 0.53 0.40 -0.002 0.011 0.011 -0.001 0.008 0.008

5 0.4 1.0 100 0.40 0.53 0.40 -0.002 0.018 0.018 -0.002 0.012 0.012

5 0.4 1.0 200 0.40 0.53 0.40 -0.005 0.012 0.013 -0.003 0.008 0.009

5 0.6 0.5 100 0.40 0.53 0.60 -0.002 0.019 0.019 -0.002 0.012 0.012

5 0.6 0.5 200 0.40 0.53 0.60 -0.003 0.014 0.014 -0.001 0.008 0.008

5 0.6 1.0 100 0.40 0.53 0.60 -0.005 0.019 0.019 -0.003 0.012 0.013

5 0.6 1.0 200 0.40 0.53 0.60 -0.004 0.014 0.014 -0.003 0.010 0.010

10 0.4 0.5 100 0.66 0.53 0.40 -0.006 0.017 0.018 -0.003 0.012 0.012

10 0.4 0.5 200 0.66 0.53 0.40 -0.001 0.012 0.012 -0.000 0.009 0.009

10 0.4 1.0 100 0.66 0.53 0.40 -0.002 0.021 0.021 -0.002 0.015 0.015

10 0.4 1.0 200 0.66 0.53 0.40 -0.001 0.017 0.017 -0.001 0.009 0.009

10 0.6 0.5 100 0.66 0.53 0.60 -0.004 0.022 0.023 -0.003 0.014 0.014

10 0.6 0.5 200 0.66 0.53 0.60 -0.001 0.013 0.013 -0.002 0.009 0.009

10 0.6 1.0 100 0.66 0.53 0.60 0.000 0.022 0.022 -0.001 0.016 0.016

10 0.6 1.0 200 0.66 0.53 0.60 -0.003 0.016 0.016 -0.002 0.010 0.010
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Table 2. Simulation results for bias, standard deviation and

root mean squared error of Λ̃0(t0.2) and Λ̂0(t0.2)

Λ̃0(t0.2) Λ̂0(t0.2)

βg IC c n pT pC pI bias std rmse bias std rmse

5 0.4 0.5 100 0.40 0.53 0.40 0.037 0.114 0.120 0.017 0.076 0.077

5 0.4 0.5 200 0.40 0.53 0.40 0.016 0.074 0.076 0.012 0.063 0.064

5 0.4 1.0 100 0.40 0.53 0.40 -0.023 0.097 0.100 0.009 0.078 0.078

5 0.4 1.0 200 0.40 0.53 0.40 0.016 0.069 0.072 0.008 0.047 0.048

5 0.6 0.5 100 0.40 0.53 0.60 0.022 0.120 0.121 0.026 0.077 0.081

5 0.6 0.5 200 0.40 0.53 0.60 0.017 0.091 0.092 0.012 0.055 0.056

5 0.6 1.0 100 0.40 0.53 0.60 0.006 0.113 0.113 0.024 0.077 0.080

5 0.6 1.0 200 0.40 0.53 0.60 0.018 0.079 0.080 0.018 0.058 0.061

10 0.4 0.5 100 0.66 0.53 0.40 0.018 0.140 0.142 0.011 0.095 0.095

10 0.4 0.5 200 0.66 0.53 0.40 0.015 0.106 0.107 0.010 0.073 0.074

10 0.4 1.0 100 0.66 0.53 0.40 0.024 0.162 0.164 0.020 0.106 0.108

10 0.4 1.0 200 0.66 0.53 0.40 -0.014 0.097 0.098 -0.005 0.073 0.073

10 0.6 0.5 100 0.66 0.53 0.60 0.028 0.155 0.158 0.018 0.118 0.119

10 0.6 0.5 200 0.66 0.53 0.60 0.010 0.138 0.138 0.016 0.119 0.120

10 0.6 1.0 100 0.66 0.53 0.60 0.031 0.165 0.168 0.031 0.147 0.150

10 0.6 1.0 200 0.66 0.53 0.60 0.017 0.107 0.109 0.013 0.075 0.076
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Table 3. Simulation results for bias, standard deviation and

root mean squared error of Λ̃0(t0.5) and Λ̂0(t0.5)

Λ̃0(t0.5) Λ̂0(t0.5)

βg IC c n pT pC pI bias std rmse bias std rmse

5 0.4 0.5 100 0.40 0.53 0.40 0.074 0.203 0.216 0.029 0.144 0.147

5 0.4 0.5 200 0.40 0.53 0.40 0.013 0.144 0.144 0.020 0.104 0.104

5 0.4 1.0 100 0.40 0.53 0.40 0.037 0.191 0.194 0.027 0.148 0.151

5 0.4 1.0 200 0.40 0.53 0.40 0.050 0.142 0.151 0.022 0.108 0.110

5 0.6 0.5 100 0.40 0.53 0.60 0.077 0.274 0.285 0.056 0.178 0.186

5 0.6 0.5 200 0.40 0.53 0.60 0.038 0.202 0.207 -0.025 0.117 0.119

5 0.6 1.0 100 0.40 0.53 0.60 0.041 0.254 0.258 0.040 0.168 0.173

5 0.6 1.0 200 0.40 0.53 0.60 0.060 0.181 0.190 0.032 0.112 0.117

10 0.4 0.5 100 0.66 0.53 0.40 0.060 0.256 0.263 0.045 0.178 0.184

10 0.4 0.5 200 0.66 0.53 0.40 0.024 0.173 0.175 0.008 0.115 0.115

10 0.4 1.0 100 0.66 0.53 0.40 0.030 0.250 0.251 0.037 0.158 0.162

10 0.4 1.0 200 0.66 0.53 0.40 0.029 0.135 0.138 0.018 0.112 0.113

10 0.6 0.5 100 0.66 0.53 0.60 0.087 0.293 0.306 0.044 0.205 0.209

10 0.6 0.5 200 0.66 0.53 0.60 0.031 0.175 0.178 0.026 0.140 0.142

10 0.6 1.0 100 0.66 0.53 0.60 0.055 0.258 0.264 0.028 0.199 0.201

10 0.6 1.0 200 0.66 0.53 0.60 0.003 0.192 0.192 0.015 0.123 0.124
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Table 4. Simulation results for bias, standard deviation and

root mean squared error of Λ̃0(t0.8) and Λ̂0(t0.8)

Λ̃0(t0.8) Λ̂0(t0.8)

βg IC c n pT pC pI bias std rmse bias std rmse

5 0.4 0.5 100 0.40 0.53 0.40 -0.054 0.946 0.947 0.022 0.723 0.723

5 0.4 0.5 200 0.40 0.53 0.40 0.115 0.603 0.614 0.072 0.409 0.415

5 0.4 1.0 100 0.40 0.53 0.40 -0.129 0.793 0.804 0.220 0.660 0.695

5 0.4 1.0 200 0.40 0.53 0.40 0.167 0.592 0.615 0.157 0.450 0.476

5 0.6 0.5 100 0.40 0.53 0.60 -0.185 1.115 1.131 0.139 0.779 0.791

5 0.6 0.5 200 0.40 0.53 0.60 0.328 0.783 0.849 -0.153 0.495 0.518

5 0.6 1.0 100 0.40 0.53 0.60 0.115 1.034 1.040 0.110 0.713 0.722

5 0.6 1.0 200 0.40 0.53 0.60 0.231 0.759 0.794 0.122 0.502 0.516

10 0.4 0.5 100 0.66 0.53 0.40 0.151 0.534 0.555 0.061 0.331 0.337

10 0.4 0.5 200 0.66 0.53 0.40 0.054 0.318 0.323 0.008 0.210 0.210

10 0.4 1.0 100 0.66 0.53 0.40 0.148 0.398 0.414 0.108 0.316 0.334

10 0.4 1.0 200 0.66 0.53 0.40 0.080 0.265 0.277 0.036 0.216 0.219

10 0.6 0.5 100 0.66 0.53 0.60 0.137 0.558 0.574 0.089 0.378 0.389

10 0.6 0.5 200 0.66 0.53 0.60 0.057 0.356 0.360 0.040 0.265 0.268

10 0.6 1.0 100 0.66 0.53 0.60 0.111 0.608 0.626 0.096 0.341 0.354

10 0.6 1.0 200 0.66 0.53 0.60 0.114 0.342 0.360 0.045 0.213 0.218



Chapter 4

Concluding Remarks

This article discusses the estimation of the regression coefficients of the additive hazards

model when the first event suffers partly interval-censoring and the second event suffers

left-truncation and right-censoring. Simulation results indicate that the proposed estimator

performs well. No formal discussion of asymptotic properties of the proposed estimator is

undertaken here. A topic for future research is the rigorous investigation of the asymptotic

properties of the estimators we presented. This would require the establishment of the

consistency of Ĥ(1).
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Appendix

• 1. Example for Turnbull intervals:

-��������� ���������� ������������������
E R R E E R R R E R
q1 p1 q2 p2 q3 p3

• 2. To get X(b)

If [Ei, Ri] contains k [qj, pj] intervals(j = m, . . . ,m + k − 1), then we sample one of

these intervals with each probability

sj∑m+k−1
j=m sj

-
������������� �������������� �����������

Ei q3 p3 q4 p4 q5 p5 Ri

After sampling, we generate a uniform random variable between the chosen interval,

denoted by X
(b)
i
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