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ABSTRACT 

In statistical analysis, the data are not usually drew from the same population. 

This paper is concerned with the problem of regression model selection criteria for the 

data with correlated data. There are several criteria being widely used in the analysis, 

such as AIC, T, FPE, nS, and U. We try to conduct some regression model selection 

simulations to see how the outliers impact on the outcomes. We use the concept of 

robust methods to improve the performance of these model selection criteria when the 

data contain outliers. The class of robust section criteria incorporate with the weight 

functions proposed by Huber, Tukey.  

Keywords: Model selection, Robust regression, Generalized cross-validation, 

Leverage points, Sigma square 
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摘要 

在統計分析中，常常實際的資料並不會都從同一個母體蒐集而來。此篇論

文是在關注相關性資料下的迴歸模式選取的準則。有些準則是廣泛的被使用的，

例如AIC，T，FPE，nS，和U等。 

我們嘗試建造一些模擬，從模式選取中去了解異常點造成的影響。我們利

用穩健的方法去解決在模式選取中較差的表現結果。這一系列的穩健準則包含

Huber，Tukey的方法。在此篇研究中，我們參考Huber和Tukey的方法去降低sigma 

square和 leverage值的權重。經過模擬的研究中，我們發現模式選取有較好的表

現。 

關鍵字: 模式選取，穩健迴歸，廣義交叉驗證，影響點，標準平方差 
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1. INTRODUCTION 

This chapter is divided into three parts including motivation of research, 

purposes of research, and the overview. 

1.1 Motivation of Research 

Unusual data are problematic in a least squares regression because they can 

unduly influence the results of the analysis. Their presence may be a signal that the 

regression model fails to capture important characteristics of the data. 

 

In the statistical analysis, the data are often not drew from the same distribution. 

The paper is concerned with the problem of regression model selection criteria for the 

data with correlated errors. A class of regression model selection criteria has been 

proposed by Wei (2009). There are several criteria being widely used in the analysis, 

such as GCV, AIC, T, FPE, nS, and U. We try to conduct some regression model 

selection simulations to see how the outliers impact on the outcomes. For example, 

shifting the intercept, or changing in the coefficients of explanatory valuables, or 

changing the error terms, or adding other explanatory variables. 

 

In robust statistics, robust regression is a form of regression analysis designed to 

circumvent some limitations of traditional parametric and non-parametric methods. In 

particular, least squares estimates for regression models are highly non-robust to 

outliers. We use the robust methods when the data contain outliers. In the presence of 
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outliers, the ordinary least squares estimation is inefficient and can be not unbiased. In 

some cases, there is only one outlier. The outlier can be detected easily by Cook’s 

Distance. In some complex cases, there might be multiple outliers in the data. These 

outliers can not be detected by the residuals plot. It is called masking effect. 

 

Discarding of outlying influential cases that are not clearly erroneous and that 

cannot be accounted for by model improvements should be done only rarely, such as 

when the model is not intended to cover the special circumstances related to the 

outlying cases (see Kutner, Nachtsheim, and Neter 2008, p.437). 

1.2 Purpose of Research 

The purpose of this research is therefore twofold. The main purpose of the paper 

is to develop methods that could reduce the influence of potential outliers during the 

model selection in regression. Another purpose of this paper is to evaluate various 

selection criteria. 

 

Detecting the outliers by residual plots and leverage values is important. We try 

to downweight the leverage points. A number of research works have been done in 

this filed to seek for a function of M-Estimation. The class of robust methods includes 

the methods of Huber, Tukey, Hampel, Andrew, and Ramsay. We use the methods of 

Huber and Tukey. Outlying cases that have large residuals or high leverage values are 

thereby given smaller weights.  

Several studies have suggested the benefit of robust regression. The readers are 

referred to Wei (2007) for an introduction to the above approaches and their 

applications. 
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1.3 Overview 

In next section, we give the literature review including some extended researches 

of them. The methods for both regression models and nonparametric models are 

presented in section 3. Also we discuss the ideas of robust regression and six kinds of 

model selection criteria. In addition, we also propose our robust model selection 

criteria. In section 4, we introduce the data sets for simulations and also show some 

different outcomes. We write our own S-PLUS and R code to implement these 

methods. Finally, a concluding discussion is given in section 5. We discuss some 

problems of these methods and directions of further researches. 
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2. LITERATURE REVIEW 

The related work reported in the literature can be classified into two major 

categories. The first part is about the regression model selection criteria. Another part 

is about the robust regression. 

 

Nonparametric modeling and semi-parametric modeling have been broadly used 

techniques in modern years as indicated by Härdle et al. (2004). Nonparametric 

regression techniques are often sensitive to the presence of correlated errors. The 

breakdown of several popular data-driven smoothing parameter selection methods 

was indicated by Opsomer et al. (2001) in nonparametric regression. The practical 

consequences of this sensitivity are explained in this paper. It discussed that extension 

to random design, higher dimensional models and adaptive estimation. 

 

Craven and Wahba (1979) proposed the commonly used GCV (generalized cross 

validation) criterion. It is nearly an unbiased estimator of the prediction risk in some 

cases. O’Sullivan (1986) has used the methodology adding to the battery of graphical 

tools for model building and checking within the generalized linear model structure. 

In the study, he proposed a more general multivariate smoothing spline-type estimator 

and developed an explicit cross-validation score to assess the appropriately correct 

degree of smoothing. It is particularly suited to the analysis of larger data set (which 

n>50 data points). Shibata (1981) proposed the new method of asymptotically optimal 

selections of regression variables. The method is called nS. It has been also shown 

that Mallow’s Cp, Akaike's FPE (see Akaike 1970), and Akaike's AIC methods  (see 
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Akaike  1974) are all asymptotically equivalent to this method. Rice (1984) 

proposed the method which is called T. The paper in Rice (1984) was concerned with 

the problem choosing a bandwidth parameter for nonparametric regression. It is 

shown that the bandwidth thus chosen is asymptotically optimal. Wei (2009) 

introduced a class of regression model selection criteria for the data with correlated 

errors, including GCV (Craven and Wahba 1979), AIC (Akaike 1974), T (Rice 1984), 

FPE (Akaike 1970), nS (Shibata 1981), and U (Hocking 1976). A simulation study 

was conducted to illustrate that all the selection criteria given in those six methods 

perform well. Furthermore, the numerical results based on the simulated data are quite 

coherent with the theoretical ones, even in the case of medium-sample. The papers 

also provided extensive discussions of the applications of weighted predictive mean 

square error and properties of weighted selection criteria. 
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3. ROBUST MODEL SELECTION METHODS 

3.1 Linear Regression 

3.1.1 Linear Regression 

Regression analysis is widely used technique for fitting the data. Linear 

regression refers to any approach to modeling the relationship between one or more 

variables denoted y and one or more variables denoted X, such that the model depends 

linearly on the unknown parameters to be estimated from the data in statistics. Such a 

model is called a linear model. 

 

Regression model fitting has several implicit assumptions, including the 

following: 

1. The uncorrelated model errors have zero mean and constant variance.   

2. The model errors have a normal distribution and are independent. 

3. The form of the model, including the specification of the regressors, is correct. 

 

Thus the model takes the form 

0 1 1 2 2 , 1, 2,...,i i p ipy x x x where i nβ β β β ε= + + + + + =L , 

where 2~ (0, )
iid

Normalε σ . 

In matrix notation, the model is  

y X β ε= +  
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where 

'
11 11

11 1'
22 22

1'

, , ,
p

n np
pn nn

y x
x x

y x
y X

x x
y x

β ε
β ε

β ε

β ε

      
       
       = = = = =                       

K
M O M

MM MM
L

 , 

where y called the dependent variable is an n by 1 vector of observations, and X is an 

n by p design matrix of the levels of the regressor variables, β  is a p by 1 vector of 

the regression coefficients, and ε  is an n by 1 vector of random errors. An important 

objective of regression analysis is to estimate the unknown parameters iβ  in the 

regression model.  

 

Ordinary least squares (OLS) is a method for estimating the unknown 

parameters in a linear regression model. It minimizes the sum of squared distances 

between the observed responses in a set of data, and fitted responses from the 

regression model. The linear least squares computational technique provides simple 

expressions for the estimated parameters in an OLS analysis, and hence for associated 

statistical values such as the standard errors of the parameters. The least-squares 

normal equations are ' 'X X X yβ
∧

= . The value of β  which minimizes the sum of 

squared residuals S( β ) is called the least squares estimator for ß, and the estimator of 

ß is β
∧

, where ( ) 1' 'X X X yβ
∧ −

= . The ' 1( )X X −  matrix will always exist if the rank 

of 'X X  matrix are full rank. The diagonal elements of 'X X  are the sums of 

squares of the elements in the columns of X, and the off-diagonal elements are the 

sums of cross products of the elements in the columns of X. In addition, note that the 

elements of 'X y  are the sums of cross products of the columns of X and the 

observations iy . 

The vector of fitted values y
∧

 corresponding to the observed values iy  is 
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' 1( )y X X X X Xy Hyβ
∧ ∧

−= = = , where ' 1 '( )H X X X X−= . Here the n by n matrix H is 

called the hat matrix. It is symmetric and idempotent. Consequently, the diagonal 

elements of the hat matrix i iih h= , are called hat-values. Large hat-values reveal 

observations that are potentially influential. It turns out that the average of a hat 

diagonal is p/n. We traditionally assume that any observation with associated values 

of in exceeding the average 2p/n are considered as a leverage points. Observations 

with large values of ih  and large residuals are likely to be influential. Belsley et al. 

(1980) suggest that values of ih  exceeding about twice the average p/n are 

noteworthy.  

3.1.2 Regression Diagnostics 

Traditional way for regression diagnostics is to check each observation out of 

the data in turn. Cook’s Distance is a measure of how much the estimate changes as 

each observation is dropped. Cook’s Distance is used to measure influence , the extent 

to which an observation is affecting the location of the regression surface. Cook’s 

distance depends on both its distance and its leverage. Cook suggested that one check 

observations whose Cook’s distance is greater than the median value of F statistic 

with p and n-p degrees of freedom. Howell (2007, p. 518) suggested investigating any 

D > 1.00 may be influential point. Studentized residuals, DFBETAS, are other 

regression diagnostics. All of these diagnostics can be performed graphically using 

the function plot.  
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3.1.3 Robust Regression 

In the presence of outliers, the ordinary least squares estimation is inefficient 

and can be not unbiased. Robust regression methods are more insensitive to these 

outliers than the ordinary least squares method. Robust methods downweight the 

unusual observations. Essentially, observations that produce large residuals are 

down-weighted by a robust estimation method. 

 

Robust statistic are resistant to errors in the results, produced by deviations from 

assumptions (e.g. of normality). This means that if the assumptions are only 

approximately met, the robust estimator will still have a reasonable efficiency, and 

reasonably small bias, as well as being asymptotically unbiased, meaning having a 

bias tending towards 0 as the sample size tends towards infinity. Robust estimators 

and diagnostics for linear regression models have been widely discussed in the 

literature. The motivation for much of the work in robust regression was the Princeton 

robustness study (see Andrews et al. (1973)). There have been several types of robust 

estimators proposed. Some important basic references include Andrews (1974), 

Carroll and Rupert (1988), Hogg (1974), Huber (1972), Krasker and Welsch (1982), 

Rousseeuw (1984), and Rousseeuw and Leroy (1987). 

 

Swamping (inliers appear as outlying) and masking (outliers appear as inliers) 

effects due to multiple outliers can be revealed and avoided by robust diagnostics. 

Robust regression diagnostics is discussed for the case when the linear regression 

model contains outliers. Simulated data and real data analyses illustrate the 

performance of the resulting approaches. 
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M-estimators are “maximum likelihood type” estimators. Linear least-squares 

estimates can behave badly when the error distribution is not normal, particularly 

when the errors are heavy-tailed. One remedy is to remove influential observations 

from the least-squares fit. Another approach, termed robust regression, is to employ a 

fitting criterion that is not as vulnerable as least squares to unusual data. Suppose 

( )f µ  is a defined function of µ  , and suppose s is an estimate of σ and not 

necessarily the usual least squares estimate. The M-estimator for β , based on the 

function ( )f µ  and  where ( )ψ µ  is the partial derivative 
f
µ

∂
∂

. We define a robust 

estimator as one that minimizes 
'

1 1

( )
n n

i i i

i i

e Y x
f f

s s
β

= =

=
 −
 
 

∑ ∑ . Let the weights 

'

'

{( ) / }
( ) /

i
i

i

Y x s
w

Y x sβ
ψ β

β
−

=
−

. The least squares method gives the highest weight of 1. Some 

of the suggestions given in the literature for ( )f µ . The purpose of the various ( )f µ  

functions is to comparatively down-weight larger residuals in various ways. There are 

four criteria which we chose including Huber’s method Tukey’s method, and the least 

squares method. The criterion of ( )f µ  are as follows: 

(1) Huber’s with breakpoint 0a >  

1 2,
2

( )

| ,

a a

f

a a and a

µ µ

µ

µ µ µ

− ≤ ≤

=

≤ − ≤







 

 

It increases linearly at a given level | | cµ > . The 95% asymptotic efficiency on the 

standard normal distribution is obtained with the tuning constant c = 1.345.  

(2) Tukey’s biweight, with breakpoint 0a >  
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4

2

2

1 2 ,
2

( )

,

4

1
4

a a

f

a a and a

u
a

µ µ

µ

µ µ

− ≤ ≤

=

≤ − ≤


−






 

 

(3) Andrew’s wave, with breakpoint 0aπ >  

{1 cos( / )},
( )

2 ,

a a a a
f

a a and a

µ µ
µ

µ µ

− − ≤ ≤
=

≤ − ≤





 

(4) The least square method 

2( )
1

,
2

f µ µ µ= −∞ ≤ ≤ ∞  

 

3.2 Robust Model Selection 

3.2.1 Regression Model Selection 

The prediction risk can be used as a criterion for selecting a reasonable number 

of covariates. For example, the usually used GCV (generalized cross validation) 

criterion (Craven and Wahba 1979),  

2

2
1

( )
( )

[1 ( )]
GCV

σ λ
λ

µ λ

∧

=
−

 

is almost an unbiased estimator of the prediction risk, , where the parameter λ  could 

be the subset of the discrete index set { }p,,2,1 K , and where  

2
' '( ) [ ( )] [ ( )] /y I H I H y nσ λ λ λ

∧

= − −  , 



 

 12 

[ ]2
11 ( )µ λ− is a penalty function, 1( ) [ ( )] /Tr H nµ λ λ= , and [ ( )]Tr H λ  is the trace of 

the hat matrix ( )H λ  and { }( )pH ,,2,1 K  is the hat matrix H of the Section 3.1. In 

addition to GCV, the other one criteria have the form
[ ]

2

1

( )
( )

σ λ
φ µ λ

∧

 , where ( )φ ⋅  is a 

penalty function. We usually used selection criteria can be obtained by different 

choices of φ , including 

1. GCV (Craven and Wahba 1979): 2
1 1( ) (1 )φ µ µ= − , 

2. AIC (Akaike 1974): 1 1( ) exp( 2 )φ µ µ= − , 

3. T (Rice 1984): 1 1( ) 1 2φ µ µ= − , 

4. FPE (Akaike 1970): 1
1

1

1
( )

1
µ

φ µ
µ

−
=

+
, 

5. nS( β ) (Shibata 1981): 1
1

1
( )

1 2
φ µ

µ
=

+ −
, 

6. U( β ) (Hocking 1976): 1 1
1

(1 )( 1 )
( )

( 1)
n n
n

µ µ
φ µ

− − −
=

−
, 

(see Eubank 1988, pp. 38–40). 

 

As 2 1( ) ( )Var Vε σ α−= , the vector of fitted values is ( )yhHf vv =ˆ , where 

1 2( , , , )mα α α α= K  is a set of correlation parameters and. ( )λα ,=h .  

 

3.2.2 Robust Regression Model Selection 

The class of weighted selection criteria is 
( )
( )[ ]h
h

v

v

1

2ˆ
µφ

σ , where 1
[ ( )]

( )
[ ( )]v

Tr H h
h

V
µ

ψ α
=  

is a bounded function and  

2 ( ) ( ) ( )
( )

[ ( )]

t
t

v v

v

y I H h V I H h y
h

V

α
σ

ψ α

∧

   − −      = . 
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We define that 
1 1

*2 2( ) ( ) ( ) ( ) ( )vV I H h y V y y h e hα α
∧    − = − =      

 

* * * 2

1

( ) ( ) ( ( ))
nt

i
i

e h e h e h
=

   ⇒ =    ∑  

* 2
2

1

( ( ))
( )

[ ( )]

n

i
i

v

e h
h

V
σ

ψ α

∧
=⇒ =

∑
 

 

First we downweight the criterion of * 2

1

( ( ))
n

i
i

e h
=
∑ .There are three downweight 

criteria: 

(1) Downweight Huber’s with breakpoint  

* 2 *

* 2 * *

( ( )) ,
* 2

1
( ) ,

2

( ( ))
i i

i i i

e h c e c

i

c e h c e c and c e

e h
− ≤ ≤

− ≤− ≤


= 


 , where 2c = , for i=1,2,3...,n 

(2) Downweight Huber’s with breakpoint  

* 2 *

* 2 * *

( ( )) ,
* 2

1
( ) ,

2

( ( ))
i i

i i i

e h c e c

i

c e h c e c and c e

e h
− ≤ ≤

− ≤− ≤


= 


 , where 3c = , for i=1,2,3...,n 

 (3) Downweight Tukey’s with breakpoint  

4
* 2 *

2

2 * *

1( ( )) ,
2 4

* 2

1 ,
4

( ( ))
i i

i i

ce h c e c
c

i
c e c and c e

e h
− − ≤ ≤

≤− ≤







=   , where 2c = , for i=1,2,3...,n 

 

Secondly we downweight the criterion of leverage points. 
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*

2
, *

*

2 2
,

p
hi hi

n

p p
hi

n n

hi
≤

≤


= 



, for i=1,2,3...,n. Where p is columns number of X matrix, n is row 

number of  X matrix. If the leverage points over than 2p/n, we can downweight the 

leverage points. Let the new leverage points be 2p/n. 
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4. SIMULATIONS 

4.1 Weighted Model Selection  

In this simulation, the values of four variables, 1 2 3 4, , ,X X X X  were in [0,1]U  

and 110 observations were generated from the model 

i i1 i3 iy  = 1 + 2x  + 4x  +  , i = 1, . . . ,110,ε  

where i  ε are zero mean random errors. The errors were generated from Gaussian 

AR(1) processes with the standard deviations of uncorrelated Gaussian errors, g  σ , 

equal to 2. The AR(1) model is i i-1 iy  =  + py  +e  υ ,where  υ is a constant, ie  is a 

white noise process with zero mean and variance 2
gσ . The autocorrelation values at 

lag 1, for the Gaussian AR(1) processes were p=0.8. Assume that ( )V Vα =  is 

known. We choose the sample size and retained number of principal components of 

the matrix V by including enough components to explain 90% amount of the variance 

for ( )Vψ . We generated the random errors 1000 replicates. These selection criteria 

produce very similar results. 

 

There were 8 models including model for generating the normal data and model 

1 to model 7 for generating the data with 10 discordant observations. 

(0) True model 

The true model is i i1 i3 iy  = 1 + 2x  + 4x  +  , i = 1, . . . ,110,ε   

where i  ε are zero mean random errors. 

(1)   

i i1 i3 iy  = 1 + 2x  + 4x  +  , i = 1, . . . ,100,ε  

 i i1 i3 iy  = 5 + 2x  + 4x  +  , i = 101, . . . ,110,ε  
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where i  ε are zero mean random errors. 

(2)   

i i1 i3 iy  = 1 + 2x  + 4x  +  , i = 1, . . . ,100,ε g  σ equal to 2 

i i1 i3 iy  = 1 + 2x  + 4x  +  , i = 101, . . . ,110,ε g  σ equal to 0.2 

where i  ε are zero mean random errors. 

(3)  

i i1 i3 iy  = 1 + 2x  + 4x  +  , i = 1, . . . ,100,ε  

   i i1 i3 iy  = 1 + 3x  + 5x  +  , i = 101, . . . ,110,ε  

where i  ε are zero mean random errors. 

(4)  

i i1 i3 iy  = 1 + 2x  + 4x  +  , i = 1, . . . ,100,ε  p=0.8 

i i1 i3 iy  = 1 + 2x  + 4x  +  , i = 101, . . . ,110,ε  p=-0.8 

where i  ε are zero mean random errors. 

(5)  

i i1 i3 iy  = 1 + 2x  + 4x  +  , i = 1, . . . ,100,ε   

  i i1 i2 i3 iy  = 1 + 2x  +3x + 4x  +  , i = 101, . . . ,110,ε   

where i  ε are zero mean random errors. 

(6)  

i i1 i3 iy  = 1 + 2x  + 4x  +  , i = 1, . . . ,100,ε   

  i i1 i3 i4 iy  = 1 + 2x  + 4x  +5x +  , i = 101, . . . ,110,ε  

where i  ε are zero mean random errors. 

(7)  

i i1 i3 iy  = 1 + 2x  + 4x  +  , i = 1, . . . ,100,ε  

  i i1 i2 i3 i4 iy  = 1 + 2x  + 3x + 4x  +5x +  , i = 101, . . . ,110,ε  

where i  ε are zero mean random errors. 
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In the models, we choose the minimum of values in the same criteria and count the 

numbers in 1000 replication. 

Table 4.1 Model selection numbers of true model in 1000 replication 

Model selection numbers of true model in 1000 replication 

criteria\model 

  Correct  model 

 (including variables) 

 (X0,X1,X3) 

(including variables) 

(X0,X1,X2,X3) 
(including variables) 

(X0,X1,X3,X4) 

 (including 

variables) 

(X0,X1,X2,X3,X4) 

GCV 860 71 67 2 

AIC 845 75 77 3 
Rice’s T 878 60 61 1 

FPE 848 75 75 2 
nS 813 90 89 8 

U 861 70 67 2 

Table 4.2 Model selection numbers of model 1 in 1000 replication 

Model selection numbers of model 1 in 1000 replication  

criteria\model 

  Correct  model 

 (including variables) 

 (X0,X1,X3) 

(including variables) 

(X0,X1,X2,X3) 
(including variables) 

(X0,X1,X3,X4) 

 (including 

variables) 

(X0,X1,X2,X3,X4) 

GCV 948 22 29 1 

AIC 937 25 37 1 
Rice’s T 954 20 26 0 

FPE 938 24 37 1 
nS 919 33 45 3 

U 949 22 28 1 

Table 4.3 Model selection numbers of model 2 in 1000 replication 

Model selection numbers of model 2 in 1000 replication  

criteria\model 

  Correct  model 

 (including variables) 

 (X0,X1,X3) 

(including variables) 

(X0,X1,X2,X3) 
(including variables) 

(X0,X1,X3,X4) 

 (including 

variables) 

(X0,X1,X2,X3,X4) 

GCV 872 64 61 3 

AIC 849 73 74 4 
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Rice’s T 891 58 50 1 
FPE 850 73 73 4 
nS 814 86 93 7 

U 874 62 61 3 

Table 4.4 Model selection numbers of model 3 in 1000 replication 

Model selection numbers of model 3 in 1000 replication  

criteria\model 

  Correct  model 

 (including variables) 

 (X0,X1,X3) 

(including variables) 

(X0,X1,X2,X3) 
(including variables) 

(X0,X1,X3,X4) 

 (including 

variables) 

(X0,X1,X2,X3,X4) 

GCV 841 70 76 13 
AIC 830 75 80 15 

Rice’s T 858 63 70 9 
FPE 830 75 80 15 

nS 789 93 101 17 
U 843 69 75 13 

Table 4.5 Model selection numbers of model 4 in 1000 replication 

Model selection numbers of model 4 in 1000 replication  

criteria\model 

  Correct  model 

 (including variables) 

 (X0,X1,X3) 

(including variables) 

(X0,X1,X2,X3) 
(including variables) 

(X0,X1,X3,X4) 

 (including 

variables) 

(X0,X1,X2,X3,X4) 

GCV 795 97 98 10 

AIC 782 101 106 11 
Rice’s T 808 90 94 8 

FPE 782 101 106 11 
nS 743 123 120 14 

U 796 97 98 9 

Table 4.6 Model selection numbers of model 5 in 1000 replicatio 

Model selection numbers of model 5 in 1000 replication  

criteria\model 

  Correct  model 

 (including variables) 

 (X0,X1,X3) 

(including variables) 

(X0,X1,X2,X3) 
(including variables) 

(X0,X1,X3,X4) 

 (including 

variables) 

(X0,X1,X2,X3,X4) 

GCV 269 634 22 75 
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AIC 257 636 24 83 
Rice’s T 285 634 21 60 

FPE 257 636 24 83 

nS 228 646 26 100 
U 273 631 22 74 

Table 4.7 Model selection numbers of model 6 in 1000 replication 

Model selection numbers of model 6 in 1000 replication  

criteria\model 

  Correct  model 

 (including variables) 

 (X0,X1,X3) 

(including variables) 

(X0,X1,X2,X3) 
(including variables) 

(X0,X1,X3,X4) 

 (including 

variables) 

(X0,X1,X2,X3,X4) 

GCV 185 13 727 75 

AIC 173 14 729 83 
Rice’s T 193 13 736 58 

FPE 175 14 728 83 
nS 154 13 733 100 

U 185 13 728 74 

Table 4.8 Model selection numbers of model 7 in 1000 replication 

Model selection numbers of model 7 in 1000 replication  

criteria\model 

  True  model 

 (including variables) 

 (X0,X1,X3) 

(including variables) 

(X0,X1,X2,X3) 
(including variables) 

(X0,X1,X3,X4) 

 (including 

variables) 

(X0,X1,X2,X3,X4) 

GCV 309 109 433 149 
AIC 286 109 439 166 

Rice’s T 339 106 425 130 
FPE 287 109 438 166 

nS 246 105 436 213 
U 313 106 433 148 

In these simulation, we select the 10 percent data from different populations. In 

the Table 4.1, all criteria attain 80 percent of selecting the correct model. Not only are 

there also above 90 percent of selecting the correct model in the Table 4.2, but also 

are there also above 80 percent of selecting the correct model in the Table 4.3. 
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Changing the intercept in model 1, the proportions of selecting the correct model 

increase 10 percent. Various standard deviations of uncorrelated Gaussian errors in 

model 2, it is a little decrease in selecting the correct model. We can realize that 

changing the intercept and various standard deviations of uncorrelated Gaussian errors 

are not lead to selecting the wrong model in model selections. In the Table 4.4, 

changing the slopes results in the decreased proportions of selecting the correct model. 

It is similar to the Table 4.1. In the Table 4.5, we can see that decreased proportions of 

selecting the correct model occur as the discordant data were generated by different 

Gaussian processes. However, the decreases are not significant. There are also above 

80 percent proportion of selecting the correct model.  

 

We may selecte the wrong model frequently by adding a variable 2X . In the 

Table 4.6, the wrong model which includes 0 1 2 3, , ,X X X X  variables is selected more 

often than the other models. It is surprising that we selecte the wrong models over 63 

percent. The proportions of selecting the correct models are very small. In the Table 

4.7, the wrong model which includes 0 1 3 4, , ,X X X X  variables is selected more often 

than the other models. It is surprising that the proportion of selecting the wrong model 

is over 70 percent. The proportion of selecting the correct model is less than 20 

percent. In the Table 4.8, the wrong model which includes 0 1 3 4, , ,X X X X  variables 

is selected more often than the other models. The proportion of selecting the wrong 

models is 43 percent 
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4.2 Robust Model Selection 

Table 4.9 Model selection in model 4 using Huber’s method with c=2 
Model selection numbers of model 4 using Huber’s method with c=2 in 1000 
replication 

criteria\model 

  Correct  model 

 (including variables) 

 (X0,X1,X3) 

(including variables) 

(X0,X1,X2,X3) 
(including variables) 

(X0,X1,X3,X4) 

 (including 

variables) 

(X0,X1,X2,X3,X4) 

GCV 802 86 107 5 

AIC 789 92 113 9 
Rice’s T 821 82 82 3 

FPE 786 93 113 8 

nS 745 103 135 17 
U 803 86 106 5 

Table 4.10 Model selection in model 4 using Huber’s method with c=3 

Model selection numbers of model 4 using Huber’s method with c=3 in 1000 
replication 

criteria\model 

  Correct  model 

 (including variables) 

 (X0,X1,X3) 

(including variables) 

(X0,X1,X2,X3) 
(including variables) 

(X0,X1,X3,X4) 

 (including 

variables) 

(X0,X1,X2,X3,X4) 

GCV 817 88 90 5 
AIC 805 91 99 5 

Rice’s T 831 81 84 4 
FPE 805 91 99 5 
nS 778 103 108 11 

U 817 88 90 5 

Table 4.11 Model selection in model 4 using Tukey’s method with c=3 

Model selection numbers of model 4 using Tukey’s method with c=3 in 1000 
replication 

criteria\model 

  Correct  model 

 (including variables) 

 (X0,X1,X3) 

(including variables) 

(X0,X1,X2,X3) 
(including variables) 

(X0,X1,X3,X4) 

 (including 

variables) 

(X0,X1,X2,X3,X4) 

GCV 926 33 40 1 

AIC 915 38 46 1 
Rice’s T 934 27 38 1 
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FPE 915 38 46 1 
nS 897 47 53 3 
U 927 32 40 1 

Table 4.12 Model selection in model 5 using Huber’s method with c=2 

Model selection numbers of model 5 using Huber’s method with c=2 in 1000 
replication  

criteria\model 

  Correct  model 

 (including variables) 

 (X0,X1,X3) 

(including variables) 

(X0,X1,X2,X3) 
(including variables) 

(X0,X1,X3,X4) 

 (including 

variables) 

(X0,X1,X2,X3,X4) 

GCV 913 39 46 2 
AIC 899 46 52 3 

Rice’s T 925 32 41 2 

FPE 899 46 52 3 

nS 881 54 59 6 

U 915 39 44 2 

Table 4.13 Model selection in model 5 using Huber’s method with c=3 

Model selection numbers of model 5 using Huber’s method with c=3 in 1000 
replication 

criteria\model 

  Correct  model 

 (including variables) 

 (X0,X1,X3) 

(including variables) 

(X0,X1,X2,X3) 
(including variables) 

(X0,X1,X3,X4) 

 (including 

variables) 

(X0,X1,X2,X3,X4) 

GCV 951 22 27 0 

AIC 939 26 33 2 

Rice’s T 955 20 25 0 
FPE 940 26 32 2 

nS 924 34 40 2 
U 951 22 27 0 

Table 4.14 Model selection in model 5 using Tukey’s method with c=3 

Model selection numbers of model 5 using Tukey’s method with c=3 in 1000 
replication 

criteria\model 

  Correct  model 

 (including variables) 

 (X0,X1,X3) 

(including variables) 

(X0,X1,X2,X3) 
(including variables) 

(X0,X1,X3,X4) 

 (including 

variables) 

(X0,X1,X2,X3,X4) 



 

 23 

GCV 983 2 15 0 
AIC 981 2 17 0 

Rice’s T 989 2 9 0 

FPE 982 2 16 0 
nS 977 2 21 0 
U 983 2 15 0 

Table 4.15 Model selection in model 6 using Huber’s method with c=2 

Model selection numbers of model 6 using Huber’s method with c=2 in 1000 
replication 

criteria\model 

  Correct  model 

 (including variables) 

 (X0,X1,X3) 

(including variables) 

(X0,X1,X2,X3) 
(including variables) 

(X0,X1,X3,X4) 

 (including 

variables) 

(X0,X1,X2,X3,X4) 

GCV 972 18 10 0 

AIC 972 18 10 0 

Rice’s T 975 15 10 0 
FPE 972 18 10 0 

nS 962 25 13 0 

U 973 17 10 0 

Table 4.16 Model selection in model 6 using Huber’s method with c=3 

Model selection numbers of model 6 using Huber’s method with c=3 in 1000 
replication 

criteria\model 

  Correct  model 

 (including variables) 

 (X0,X1,X3) 

(including variables) 

(X0,X1,X2,X3) 
(including variables) 

(X0,X1,X3,X4) 

 (including 

variables) 

(X0,X1,X2,X3,X4) 

GCV 988 9 3 0 

AIC 984 12 4 0 
Rice’s T 994 4 2 0 

FPE 984 12 4 0 
nS 978 15 6 1 
U 988 9 3 0 

Table 4.17 Model selection in model 6 using Tukey’s method with c=3 

Model selection numbers of model 6 using Tukey’s method with c=3 in 1000 
replication  
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criteria\model 

  Correct  model 

 (including variables) 

 (X0,X1,X3) 

(including variables) 

(X0,X1,X2,X3) 
(including variables) 

(X0,X1,X3,X4) 

 (including 

variables) 

(X0,X1,X2,X3,X4) 

GCV 995 5 0 0 
AIC 994 6 0 0 

Rice’s T 996 4 0 0 
FPE 994 6 0 0 
nS 989 11 0 0 

U 995 5 0 0 

Table 4.18 Model selection in model 7 using Huber’s method with c=2 

Model selection numbers of model 7 using Huber’s method with c=2 in 1000 
replication  

criteria\model 

  Correct  model 

 (including variables) 

 (X0,X1,X3) 

(including variables) 

(X0,X1,X2,X3) 
(including variables) 

(X0,X1,X3,X4) 

 (including 

variables) 

(X0,X1,X2,X3,X4) 

GCV 987 6 7 0 

AIC 984 7 9 0 
Rice’s T 990 5 5 0 

FPE 984 7 9 0 

nS 978 12 10 0 
U 987 6 7 0 

Table 4.19 Model selection in model 7 using Huber’s method with c=3 

Model selection numbers of model 7 using Huber’s method with c=3 in 1000 
replication  

criteria\model 

  Correct  model 

 (including variables) 

 (X0,X1,X3) 

(including variables) 

(X0,X1,X2,X3) 
(including variables) 

(X0,X1,X3,X4) 

 (including 

variables) 

(X0,X1,X2,X3,X4) 

GCV 993 3 4 0 
AIC 991 4 5 0 

Rice’s T 997 2 1 0 
FPE 991 4 5 0 
nS 989 6 5 0 
U 993 3 4 0 
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Table 4.20 Model selection in model 7 using Tukey’s method with c=3 

Model selection numbers of model 7 using Tukey’s method with c=3 in 1000 
replication  

criteria\model 

  Correct  model 

 (including variables) 

 (X0,X1,X3) 

(including variables) 

(X0,X1,X2,X3) 
(including variables) 

(X0,X1,X3,X4) 

 (including 

variables) 

(X0,X1,X2,X3,X4) 

GCV 996 3 1 0 

AIC 996 3 1 0 
Rice’s T 997 3 0 0 

FPE 996 3 1 0 

nS 995 3 2 0 
U 996 3 1 0 

In the Table 4.9, we use Huber’s method with c=2 in model 4 and the proportions 

of selecting the correct model is about 79 percent. In the Table 4.10, we use Huber’s 

method with c=3 and the proportions of selecting the correct model is about 81 

percent. In Table 4.11, the proportions of selecting the correct model is about 92 

percent as using Tukey’s method.  

 

In the Table 4.12, we use Huber’s method with c=2 in model 5 and the 

proportions of selecting the correct model is about 91 percent. In Table 4.13, we use 

Huber’s method with c=3 and the proportions of selecting the correct model is about 

94 percent. In Table 4.14, the proportions of selecting the correct model is about 98 

percent as using Tukey’s method.  

 

In the Table 4.15, we use Huber’s method with c=2 in model 6 and the 

proportions of selecting the correct model is about 97 percent. In the Table 4.16, we 

use Huber’s method with c=3 and the proportions of selecting the correct model is 

about 98 percent. In Table 4.17, the proportions of selecting the correct model is about 
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99 percent as using Tukey’s method. 

 

In the Table 4.18, we use Huber’s method with c=2 in model 7 and the 

proportions of selecting the correct model is about 98.6 percent. In the Table 4.19, we 

use Huber’s method with c=3 and the proportions of selecting the correct model is 

about 99.2 percent. In Table 4.11, the proportions of selecting the correct model is 

about 99.6 percent as using Tukey’s method.  

 

Overall, even we down-weight in model 4, model 5, model 6, and model 7, 

robust model selection has all good performance. Using Huber’s method with c=2 has 

large proportions of selecting the correct model than using Huber’s method with c=3.  

 

In addition, we can see that using Tukey’s method to downweight is better than 

Huber’s method to down-weight. Even we down-weight in using Huber’s method or  

in Tukey’s method , the model selection has all good performance. 
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5. CONCLUDING DISCUSSION 

All criteria, including GCV, AIC, Rice’s T, FPE, nS, and U, have similar optimal 

properties. Four of these findings are worth summarizing. The first one is that we may 

choose the wrong model by the data draw from different populations. The second one 

is that these model selection criteria might select the wrong model as the data are 

from different populations. The proportions of selecting wrong models are high as the 

discordant observations are generated from the models with additional variables or 

less variables. The third one is that the proportions of selection correct models are 

increasing as these discordant observations are downweighted. The last one is that the 

Huber’s and Tukey’s methods are both effective.  

 

In my simulation, the larger c in Huber’s method, the bigger proportion in 

choosing correct models. We down-weight in model 4, model 5, model 6, and model 7, 

robust model selection has all good performance. Using Huber’s method with c=2 has 

large proportions of selecting the correct model than using Huber’s method with c=3. 

Not only Huber’s method with c=2 but also Huber’s method with c=3, the proportions 

of selecting the correct model is over 90 pencent. 

The proportions of selecting correct models by Tukey’s method are about 99 

percent.  

 

There is still space for future research in regression model selection with 

correlated errors. The proposed criteria have different sensitivities to the changes of 

the selection parameters or correlation parameters. Sensitivity analysis and a complete 



 

 28 

robust for different selection criteria could be helpful. The study does suggest that the 

detailed study of using robust in nonparametric regression in correlated errors is a 

promising line of inquiry. 
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