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ABSTRACT

In statistical analysis, the data are not usually drew from the same population.
This paper is concerned with the problem of regression model selection criteriafor the
data with correlated data. There are several criteria being widely used in the analysis,
such as AIC, T, FPE, nS, and U. We try to conduct some regression model selection
simulations to see how the outliers impact on the outcomes. We use the concept of
robust methods to improve the performance of these model selection criteria when the
data contain outliers. The class of robust section criteria incorporate with the weight

functions proposed by Huber, Tukey.
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1. INTRODUCTION

This chapter is divided into three parts including motivation of research,

purposes of research, and the overview.

1.1 Motivation of Research

Unusual data are problematic in aleast squares regression because they can
unduly influence the results of the analysis. Their presence may be a signal that the

regression model failsto capture important characteristics of the data.

In the gatistical analysis, the data are often not drew from the same distribution.
The paper is concerned with the problem of regression model selection criteria for the
data with correlated errors. A class of regression model selection criteria has been
proposed by Wei (2009). There are severa criteria being widely used in the analysis,
such as GCV, AIC, T, FPE, nS, and U. We try to conduct some regression model
selection simulations to see how the outliers impact on the outcomes. For example,
shifting the intercept, or changing in the coefficients of explanatory valuables, or

changing the error terms, or adding other explanatory variables.

In robust statistics, robust regression is aform of regression analysis designed to
circumvent some limitations of traditional parametric and non-parametric methods. In
particular, least squares estimates for regression models are highly non-robust to

outliers. We use the robust methods when the data contain outliers. In the presence of
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outliers, the ordinary least squares estimation is inefficient and can be not unbiased. In
some cases, there is only one outlier. The outlier can be detected easily by Cook’s
Distance. In some complex cases, there might be multiple outliers in the data. These

outliers can not be detected by the residuals plot. It is called masking effect.

Discarding of outlying influential cases that are not clearly erroneous and that
cannot be accounted for by model improvements should be done only rarely, such as
when the model is not intended to cover the special circumstances related to the

outlying cases (see Kutner, Nachtsheim, and Neter 2008, p.437).

1.2 Purpose of Research

The purpose of this research is therefore twofold. The main purpose of the paper
is to develop methods that could reduce the influence of potential outliers during the
model selection in regression. Another purpose of this paper is to evaluate various

salection criteria

Detecting the outliers by residua plots and leverage values is important. We try
to downweight the leverage points. A number of research works have been done in
this filed to seek for afunction of M-Estimation. The class of robust methods includes
the methods of Huber, Tukey, Hampel, Andrew, and Ramsay. We use the methods of
Huber and Tukey. Outlying cases that have large residuals or high leverage values are
thereby given smaller weights.

Severa studies have suggested the benefit of robust regression. The readers are
referred to Wei (2007) for an introduction to the above approaches and their

applications.



1.3 Overview

In next section, we give the literature review including some extended researches
of them. The methods for both regresson models and nonparametric models are
presented in section 3. Also we discuss the ideas of robust regression and six kinds of
model selection criteria. In addition, we also propose our robust model selection
criteria. In section 4, we introduce the data sets for simulations and also show some
different outcomes. We write our own S-PLUS and R code to implement these
methods. Finally, a concluding discussion is given in section 5. We discuss some

problems of these methods and directions of further researches.



2. LITERATURE REVIEW

The related work reported in the literature can be classified into two major
categories. The first part is about the regression model selection criteria. Another part

is about the robust regression.

Nonparametric modeling and semi-parametric modeling have been broadly used
techniques in modern years as indicated by Hardle et a. (2004). Nonparametric
regression techniques are often sensitive to the presence of correlated errors. The
breakdown of severa popular data-driven smoothing parameter selection methods
was indicated by Opsomer et a. (2001) in nonparametric regression. The practical
consequences of this sensitivity are explained in this paper. It discussed that extension

to random design, higher dimensional models and adaptive estimation.

Craven and Wahba (1979) proposed the commonly used GCV (generalized cross
validation) criterion. It is nearly an unbiased estimator of the prediction risk in some
cases. O’ Sullivan (1986) has used the methodology adding to the battery of graphical
tools for model building and checking within the generalized linear model structure.
In the study, he proposed a more general multivariate smoothing spline-type estimator
and developed an explicit cross-validation score to assess the appropriately correct
degree of smoothing. It is particularly suited to the analysis of larger data set (which
n>50 data points). Shibata (1981) proposed the new method of asymptotically optimal
selections of regression variables. The method is called nS. It has been also shown

that Mallow’s Cp, Akaike's FPE (see Akaike 1970), and Akaike's AIC methods (see



Akalke 1974) are al asymptotically equivalent to this method. Rice (1984)
proposed the method which is called T. The paper in Rice (1984) was concerned with
the problem choosing a bandwidth parameter for nonparametric regression. It is
shown that the bandwidth thus chosen is asymptotically optimal. Wei (2009)
introduced a class of regression model selection criteria for the data with correlated
errors, including GCV (Craven and Wahba 1979), AIC (Akaike 1974), T (Rice 1984),
FPE (Akaike 1970), nS (Shibata 1981), and U (Hocking 1976). A simulation study
was conducted to illustrate that all the selection criteria given in those six methods
perform well. Furthermore, the numerical results based on the ssimulated data are quite
coherent with the theoretical ones, even in the case of medium-sample. The papers
also provided extensive discussions of the applications of weighted predictive mean

sguare error and properties of weighted selection criteria.



3. ROBUST MODEL SELECTION METHODS

3.1Linear Regression
3.1.1Linear Regression

Regression analysis is widely used technique for fitting the data. Linear
regression refers to any approach to modeling the relationship between one or more
variables denoted y and one or more variables denoted X, such that the model depends
linearly on the unknown parameters to be estimated from the data in statistics. Such a

model is caled alinear model.

Regresson model fitting has severa implicit assumptions, including the
following:
1. The uncorrelated model errors have zero mean and constant variance.
2. The model errors have a normal distribution and are independent.

3. The form of the model, including the specification of the regressors, is correct.

Thus the model takes the form

y=by+b,x, +b,x, +---+b x +e ,wherei=12,.,n,

iid
where e ~ Normal (0,s ?).
In matrix notation, the model is

y=Xb +e
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where y called the dependent variable is an n by 1 vector of observations, and X is an
n by p design matrix of the levels of the regressor variables, b isap by 1 vector of
the regression coefficients, and e isan n by 1 vector of random errors. An important
objective of regression analysis is to estimate the unknown parameters b in the

regression model.

Ordinary least squares (OLS) is a method for estimating the unknown
parameters in a linear regression model. It minimizes the sum of squared distances
between the observed responses in a set of data, and fitted responses from the
regression model. The linear least squares computational technique provides simple
expressions for the estimated parameters in an OLS analysis, and hence for associated

statistical values such as the standard errors of the parameters. The least-squares

0
normal equations are X X b = X'y. The value of b which minimizes the sum of

squared residuals S(b ) is called the least squares estimator for (3, and the estimator of

U

Ris b, where b =(x‘x)'1x‘y. The (X'X)™* matrix will aways exist if the rank
of X'X matrix are full rank. The diagonal elements of X X are the sums of
squares of the elements in the columns of X, and the off-diagonal elements are the
sums of cross products of the elements in the columns of X. In addition, note that the

elements of X'y are the sums of cross products of the columns of X and the

observations ;.

v
The vector of fitted values y corresponding to the observed values vy. is



;J/: X kL)J = X(X'X)*Xy=Hy,where H =X(X X)*X'. Herethe n by n matrix H is
caled the hat matrix. It is symmetric and idempotent. Consequently, the diagonal
elements of the hat matrix h =h., are caled hat-values. Large hat-values revea
observations that are potentially influential. It turns out that the average of a hat
diagona is p/n. We traditionally assume that any observation with associated values
of n exceeding the average 2p/n are considered as a leverage points. Observations
with large values of h and large residuals are likely to be influential. Beldey et al.
(1980) suggest that values of h exceeding about twice the average p/n are

noteworthy.

3.1.2 Regression Diagnostics

Traditional way for regression diagnostics is to check each observation out of
the data in turn. Cook’s Distance is a measure of how much the estimate changes as
each observation is dropped. Cook’s Distance is used to measure influence , the extent
to which an observation is affecting the location of the regression surface. Cook’s
distance depends on both its distance and its leverage. Cook suggested that one check
observations whose Cook’s distance is greater than the median value of F statistic
with p and n-p degrees of freedom. Howell (2007, p. 518) suggested investigating any
D > 1.00 may be influential point. Studentized residuals, DFBETAS, are other
regression diagnostics. All of these diagnostics can be performed graphically using

the function plot.



3.1.3 Robust Regression
In the presence of outliers, the ordinary least squares estimation is inefficient
and can be not unbiased. Robust regression methods are more insensitive to these
outliers than the ordinary least squares method. Robust methods downweight the
unusual observations. Essentialy, observations that produce large residuals are

down-weighted by arobust estimation method.

Robust statistic are resistant to errors in the results, produced by deviations from
assumptions (e.g. of normality). This means that if the assumptions are only
approximately met, the robust estimator will still have a reasonable efficiency, and
reasonably small bias, as well as being asymptotically unbiased, meaning having a
bias tending towards O as the sample size tends towards infinity. Robust estimators
and diagnostics for linear regression models have been widely discussed in the
literature. The motivation for much of the work in robust regression was the Princeton
robustness study (see Andrews et a. (1973)). There have been severa types of robust
estimators proposed. Some important basic references include Andrews (1974),
Carroll and Rupert (1988), Hogg (1974), Huber (1972), Krasker and Welsch (1982),

Rousseeuw (1984), and Rousseeuw and Leroy (1987).

Swamping (inliers appear as outlying) and masking (outliers appear as inliers)
effects due to multiple outliers can be revealed and avoided by robust diagnostics.
Robust regression diagnostics is discussed for the case when the linear regression
model contains outliers. Simulated data and real data anayses illustrate the

performance of the resulting approaches.



M-estimators are “maximum likelihood type” estimators. Linear least-squares
estimates can behave badly when the error distribution is not normal, particularly
when the errors are heavy-tailed. One remedy is to remove influential observations
from the least-squares fit. Another approach, termed robust regression, is to employ a
fitting criterion that is not as vulnerable as least squares to unusual data. Suppose
f(m is a defined function of m , and suppose s is an estimate of s and not

necessarily the usual least squares estimate. The M-estimator for b, based on the

function f(m and where y (m) isthe partia derivative :TT—f.We define a robust
m
estimator as one that minimizes § f(3)=Q f%Y‘_ Kbg. Let the weights
=t S =2 T S

_y{(Y-xb)/g

W, . . The least squares method gives the highest weight of 1. Some
(Y- xb)/s

of the suggestions given in the literature for f (m) . The purpose of the various f(m)
functions is to comparatively down-weight larger residuals in various ways. There are

four criteria which we chose including Huber’s method Tukey’s method, and the least

sguares method. The criterion of f(m) areasfollows:

(1) Huber’'s with breakpoint a>0

i 1mz,-aEmEa
f(m=|

¥a|n1 ,mE£-a and aEm

It increases linearly at a given level |mj>c. The 95% asymptotic efficiency on the

standard normal distribution is obtained with the tuning constant ¢ = 1.345.

(2) Tukey’s biweight, with breakpoint a>0

10
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(3) Andrew’ s wave, with breakpoint ap >0

ta{l- cog(m/a)}, -aE£ mEa
f(m =1
T 2a, mEf-aand af€m

(4) The least square method

f(m)=%mz, -¥ £mEY¥

3.2 Robust Model Selection
3.2.1 Regression M odel Selection

The prediction risk can be used as a criterion for selecting a reasonable number
of covariates. For example, the usually used GCV (generalized cross validation)

criterion (Craven and Wahba 1979),

sov(y =S )
[1- m(1)]

isamost an unbiased estimator of the prediction risk, , where the parameter | could

be the subset of the discrete index set {1,2...., p}, and where

s (1)=yll- H( )T - H( Yy/n .

1



[1- m(l )]Zisapenalty function, m(l )=Tr[H(I )]/n,and Tr[H(l )] isthetrace of

the hat matrix H(1) and H({{12,...,p}) is the hat matrix H of the Section 3.1. In

U2

s ()
f [m()]

penalty function. We usually used selection criteria can be obtained by different

addition to GCV, the other one criteria have the form , where f (¥ isa

choicesof f ,including

1. GCV (Craven and Wahba 1979):f (m) = (1- m)?,

2. AIC (Akaike 1974):f (m) = exp(- 2m),
3. T (Rice 1984):f (m) =1- 2m,

4. FPE (Akaike 1970): f(m) = L nnll

5.nS(b ) (Shibata 1981): f (m) =_— 21 =

6. U(b ) (Hocking 1976): f (m) = (- nl)((nn-li- nm) :

(see Eubank 1988, pp. 38-40).

A

As Var(e)=s %V"*(a), the vector of fitted valuesis f, = H,(h)y, where

\

a=(,a,...,a,) isasetof correlation parametersand. h=(a,l ).

3.2.2 Robust Regression M odel Selection

TriH(h)]
ylvV@)l

~2
The class of weighted selection criteria is SV(h)) , where m, (h) =

f [m,(h
is a bounded function and

, N , N
- H,MY V@) - H Yy

iy 8 i e f
“ y V@)

12



la \ 1€ o U
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e u

e u
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First we downweight the criterion of é (& (h))* .There are three downweight
i=1

criteria
(1) Downweight Huber’ s with breakpoint

o i (&" ()2, - c£q" £c
(e ()" =i ,Wwhere c¢=2, fori=1,2,3...,n

1 c|e,*(h)| -%cz, e £-c and cfe’

(2) Downweight Huber’ s with breakpoint

i (" ()2, - cEe’ £c
=

(q*(h))z , where ¢=3, fori=1,23...,n

} c|e,*(h)| -%cz, e £-c and cfe’
(3) Downweight Tukey’s with breakpoint

il
..2

(q*(h))z-%. -c£q'£c

4
C

— —

(e"(h))? = . where ¢=2, fori=1,2,3...n

%cz, e £-cand cfg”

—_——

Secondly we downweight the criterion of leverage points.

13



I hi hisg2P

n

Q ’Qghi*
n n

, fori=1,2,3...,n. Where p is columns number of X matrix, nisrow

number of X matrix. If the leverage points over than 2p/n, we can downweight the

leverage points. Let the new |leverage points be 2p/n.
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4. SSIMULATIONS

4.1 Weighted M odel Selection

In this simulation, the values of four variables, X,, X,, X;, X, werein U[0,1]
and 110 observations were generated from the model
y, =1+2x, +4x,+e ,i=1,...,110,

where e, are zero mean random errors. The errors were generated from Gaussian

AR(1) processes with the standard deviations of uncorrelated Gaussian errors,s

equal to 2. The AR(1) model is y, =u +py., +& ,where u is a constant, ¢ is a

white noise process with zero mean and variance s gz. The autocorrelation values at

lag 1, for the Gaussan AR(1) processes were p=0.8. Assume that V(a)=V is
known. We choose the sample size and retained number of principal components of
the matrix V by including enough components to explain 90% amount of the variance
for y (V). We generated the random errors 1000 replicates. These selection criteria

produce very similar results.

There were 8 models including model for generating the normal data and model

1 to model 7 for generating the data with 10 discordant observations.
(0) True model

Thetruemodel is y, =1+2x,, +4x,, +e ,i=1,...,110,

where e, are zero mean random errors.
1

y, =1+2x, +4x,+e ,i=1,...,100,

y, =5+2x, +4x,; +¢e ,i=101,...,110,

15



where e, are zero mean random errors.
(2

y; =1+2x;, +4x,+¢€ ,i=1,...,100,s, equa to2

y; =1+2x;, +4x,+¢€ ,i=101,...,110,s, equa t0 0.2

where e are zero mean random errors.
3
y, =1+2x, +4x,+e ,i=1,...,100,
y, =1+3x, +5x,; +¢ ,i=101,...,110,
where e are zero mean random errors.
(4)
y, =1+2x, +4x,+e ,i=1,...,100, p=0.8
y, =1+2x, +4x, +e ,i=101,...,110, p=-0.8
where e are zero mean random errors.
%)
y, =1+2x, +4x,+e ,i=1,...,100,
y, =1+2x, +3x,+4x, +e ,i=101,...,110,
where e are zero mean random errors.
(6)
y, =1+2x, +4x,+e ,i=1,...,100,
y, =1+ 2x, +4x, +5x,+e ,i=101,...,110,
where e are zero mean random errors.
(7)
y, =1+2x, +4x,+e ,i=1,...,100,
y, =1+ 2x, +3%,+4x,, +5x,+¢e, ,i=101,...,110,

where e are zero mean random errors.
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In the models, we choose the minimum of values in the same criteria and count the

numbersin 1000 replication.

Table 4.1 Model selection numbers of true model in 1000 replication

Model selection numbers of true model in 1000 replication

Correct model (including
(including variables) | (including variables)
criteriaimodel (including variables) variables)
(X0,X1,X2,X3) (X0,X1,X3,X4)
(X0,X1,X3) (X0,X1,X2,X3,X4)
GCV 860 71 67 2
AlC 845 75 77 3
Rice'sT 878 60 61 1
FPE 848 75 75 2
nS 813 90 89 8
U 861 70 67 2
Table 4.2 Model selection numbers of model 1 in 1000 replication
Model selection numbers of model 1 in 1000 replication
Correct model (including
(including variables) | (including variables)
criteriaimodel (including variables) variables)
(X0,X1,X2,X3) (X0,X1,X3,X4)
(X0,X1,X3) (X0,X1,X2,X3,X4)
GCV 948 22 29 1
AlC 937 25 37 1
Rice'sT 954 20 26 0
FPE 938 24 37 1
nS 919 33 45 3
U 949 22 28 1
Table 4.3 Model selection numbers of model 2 in 1000 replication
Model selection numbers of model 2 in 1000 replication
Correct model (including
(including variables) | (including variables)
criteriaimodel (including variables) variables)
(X0,X1,X2,X3) (X0,X1,X3,X4)
(X0,X1,X3) (X0,X1,X2,X3,X4)
GCV 872 64 61 3
AIC 849 73 74 4
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Rice'sT 891 58 50 1
FPE 850 73 73 4
nsS 814 86 93 7
U 874 62 61 3
Table 4.4 Model selection numbers of model 3 in 1000 replication
Model selection numbers of model 3 in 1000 replication
Correct model (including
(including variables) | (including variables)
criteriaimodel (including variables) variables)
(X0,X1,X2,X3) (X0,X1,X3,X4)
(X0,X1,X3) (X0,X1,X2,X3,X4)
GCV 841 70 76 13
AlIC 830 75 80 15
Rice'sT 858 63 70 9
FPE 830 75 80 15
nsS 789 93 101 17
U 843 69 75 13
Table 4.5 Model selection numbers of model 4 in 1000 replication
Model selection numbers of model 4 in 1000 replication
Correct model (including
(including variables) | (including variables)
criteriaimodel (including variables) variables)
(X0,X1,X2,X3) (X0,X1,X3,X4)
(X0,X1,X3) (X0,X1,X2,X3,X4)
GCV 795 97 98 10
AlIC 782 101 106 11
Rice'sT 808 90 94 8
FPE 782 101 106 11
nsS 743 123 120 14
U 796 97 98 9
Table 4.6 Model selection numbers of model 5 in 1000 replicatio
Model selection numbers of model 5in 1000 replication
Correct model (including
(including variables) | (including variables)
criteriaimode (including variables) variables)
(X0,X1,X2,X3) (X0,X1,X3,X4)
(X0,X1,X3) (X0,X1,X2,X3,X4)
GCV 269 634 22 75

18




AIC 257 636 24 83
Rice'sT 285 634 21 60
FPE 257 636 24 83
nS 228 646 26 100
U 273 631 22 74
Table 4.7 Model selection numbers of model 6 in 1000 replication
Model selection numbers of model 6 in 1000 replication
Correct model (including
(including variables) | (including variables)
criteriaimodel (including variables) variables)
(X0,X1,X2,X3) (X0,X1,X3,X4)
(X0,X1,X3) (X0,X1,X2,X3,X4)
GCV 185 13 727 75
AIC 173 14 729 83
Rice'sT 193 13 736 58
FPE 175 14 728 83
nS 154 13 733 100
U 185 13 728 74
Table 4.8 Model selection numbers of model 7 in 1000 replication
Model selection numbers of model 7 in 1000 replication
True model (including
(including variables) | (including variables)
criteriaimodel (including variables) variables)
(X0,X1,X2,X3) (X0,X1,X3,X4)
(X0,X1,X3) (X0,X1,X2,X3,X4)
GCV 309 109 433 149
AIC 286 109 439 166
Rice'sT 339 106 425 130
FPE 287 109 438 166
nS 246 105 436 213
U 313 106 433 148

In these smulation, we select the 10 percent data from different populations. In
the Table 4.1, al criteria attain 80 percent of selecting the correct model. Not only are
there also above 90 percent of selecting the correct model in the Table 4.2, but aso

are there also above 80 percent of selecting the correct model in the Table 4.3.

19




Changing the intercept in model 1, the proportions of selecting the correct model
increase 10 percent. Various standard deviations of uncorrelated Gaussian errors in
model 2, it is a little decrease in selecting the correct model. We can redlize that
changing the intercept and various standard deviations of uncorrelated Gaussian errors
are not lead to selecting the wrong model in model selections. In the Table 4.4,
changing the slopes results in the decreased proportions of selecting the correct model.
It issimilar tothe Table 4.1. In the Table 4.5, we can see that decreased proportions of
selecting the correct model occur as the discordant data were generated by different
Gaussian processes. However, the decreases are not significant. There are also above

80 percent proportion of selecting the correct model.

We may selecte the wrong model frequently by adding a variable X,. In the
Table 4.6, the wrong mode! which includes X, X,, X,, X, variablesis selected more
often than the other models. It is surprising that we selecte the wrong models over 63
percent. The proportions of selecting the correct models are very small. In the Table
4.7, the wrong model which includes X, X,, X,, X, variablesis selected more often
than the other models. It is surprising that the proportion of selecting the wrong model
is over 70 percent. The proportion of selecting the correct model is less than 20
percent. In the Table 4.8, the wrong model which includes X, X,, X, X, variables
is selected more often than the other models. The proportion of selecting the wrong

models is 43 percent
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Table 4.9 Model selection in model 4 using Huber’s method with c=2

4.2 Robust M odel Selection

Model selection numbers of model 4 using Huber’s method with c=2 in 1000

replication
Correct model (including
(including variables) | (including variables)
criteriaimode (including variables) variables)
(X0,X1,X2,X3) (X0,X1,X3,X4)
(X0,X1,X3) (X0,X1,X2,X3,X4)
GCV 802 86 107 5
AIC 789 92 113 9
Rice'sT 821 82 82 3
FPE 786 93 113 8
nS 745 103 135 17
u 803 86 106 5

Table 4.10 Model selection in model 4 using Huber’s method with c=3

Model selection numbers of model 4 using Huber’s method with ¢c=3in 1000

replication
Correct model (including
(including variables) | (including variables)
criteriaimode (including variables) variables)
(X0,X1,X2,X3) (X0,X1,X3,X4)
(X0,X1,X3) (X0,X1,X2,X3,X4)
GCV 817 88 90 5
AIC 805 91 99 5
Rice'sT 831 81 84 4
FPE 805 91 99 5
nS 778 103 108 11
u 817 88 90 5

Table 4.11 Model selection in model 4 using Tukey's method with c=3

Model selection numbers of model 4 using Tukey’s method with c=3 in 1000

replication
Correct model (including
(including variables) | (including variables)
criteria\mode (including variables) variables)
(X0,X1,X2,X3) (X0,X1,X3,X4)
(X0,X1,X3) (X0,X1,X2,X3,X4)

GCV 926 33 40 1

AIC 915 38 46 1

Rice'sT 934 27 38 1
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FPE 915 38 46 1
nS 897 47 53 3
u 927 32 40 1

Table 4.12 Model selection in model 5 using Huber’s method with c=2

Model selection numbers of model 5 using Huber’s method with ¢c=2 in 1000

replication
Correct model (including
(including variables) | (including variables)
criteriaimode (including variables) variables)
(X0,X1,X2,X3) (X0,X1,X3,X4)
(X0,X1,X3) (X0,X1,X2,X3,X4)
GCV 913 39 46 2
AIC 899 46 52 3
RicesT 925 32 41 2
FPE 899 46 52 3
nS 881 54 59 6
U 915 39 44 2

Table 4.13 Model selection in model 5 using Huber’s method with c=3

Model selection numbers of model 5 using Huber’s method with ¢c=3in 1000

replication
Correct model (including
(including variables) | (including variables)
criteria\mode (including variables) variables)
(X0,X1,X2,X3) (X0,X1,X3,X4)
(X0,X1,X3) (X0,X1,X2,X3,X4)
GCV 951 22 27 0
AIC 939 26 33 2
Rice'sT 955 20 25 0
FPE 940 26 32 2
nS 924 34 40 2
U 951 22 27 0

Table 4.14 Model selection in model 5 using Tukey’'s method with c=3

Model selection numbers of model 5 using Tukey’s method with c=3 in 1000

replication

criteria\mode

Correct model
(including variables)

(X0,X1,X3)

(including variables)

(X0,X1,X2,X3)

(including variables)

(X0,X1,X3,X4)

(including
variables)

(X0,X1,X2,X3,X4)
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GCV 983 2 15 0
AlIC 981 2 17 0
Rice'sT 989 2 9 0
FPE 982 2 16 0
nS 977 2 21 0

u 983 2 15 0

Table 4.15 Model selection in model 6 using Huber’s method with c=2

Model selection numbers of model 6 using Huber’s method with c=2 in 1000

replication
Correct model (including
(including variables) | (including variables)
criteriaimode (including variables) variables)
(X0,X1,X2,X3) (X0,X1,X3,X4)
(X0,X1,X3) (X0,X1,X2,X3,X4)
GCV 972 18 10 0
AIC 972 18 10 0
Rice'sT 975 15 10 0
FPE 972 18 10 0
nS 962 25 13 0
U 973 17 10 0

Table 4.16 Model selection in model 6 using Huber’s method with c=3

Model selection numbers of model 6 using Huber’s method with c=3 in 1000

replication
Correct model (including
(including variables) | (including variables)
criteria\mode (including variables) variables)
(X0,X1,X2,X3) (X0,X1,X3,X4)
(X0,X1,X3) (X0,X1,X2,X3,X4)
GCV 988 9 3 0
AIC 984 12 4 0
Rice'sT 994 4 2 0
FPE 984 12 4 0
nS 978 15 6 1
u 988 9 3 0

Table 4.17 Model selection in model 6 using Tukey’'s method with c=3

Model selection numbers of model 6 using Tukey’s method with c=3 in 1000

replication
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Correct model (including
(including variables) | (including variables)
criteriaimodel (including variables) variables)
(X0,X1,X2,X3) (X0,X1,X3,X4)
(X0,X1,X3) (X0,X1,X2,X3,X4)

GCV 995 5 0 0
AIC 994 6 0 0
Rice'sT 996 4 0 0
FPE 994 6 0 0
nS 989 11 0 0
u 995 5 0 0

Table 4.18 Moddl selection in model 7 using Huber’s method with c=2

Model selection numbers of model 7 using Huber’s method with c=2 in 1000

replication

Correct model (including
(including variables) | (including variables)
criteriaimodel (including variables) variables)
(X0,X1,X2,X3) (X0,X1,X3,X4)
(X0,X1,X3) (X0,X1,X2,X3,X4)

GCV 987 6 7 0
AIC 984 7 9 0
Rice'sT 990 5 5 0
FPE 984 7 9 0
nS 978 12 10 0
u 987 6 7 0

Table 4.19 Model selection in model 7 using Huber’s method with c=3

Model selection numbers of model 7 using Huber’s method with c=3in 1000

replication
Correct model (including
(including variables) | (including variables)
criteriaimodel (including variables) variables)
(X0,X1,X2,X3) (X0,X1,X3,X4)
(X0,X1,X3) (X0,X1,X2,X3,X4)
GCV 993 3 4 0
AIC 991 4 5 0
Rice'sT 997 2 1 0
FPE 991 4 5 0
nS 989 6 5 0
u 993 3 4 0
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Table 4.20 Model selection in model 7 using Tukey’'s method with c=3

Model selection numbers of model 7 using Tukey’'s method with ¢=3 in 1000
replication
Correct model (including
(including variables) | (including variables)
criteriaimodel (including variables) variables)
(X0,X1,X2,X3) (X0,X1,X3,X4)
(X0,X1,X3) (X0,X1,X2,X3,X4)
GCV 996 3 1 0
AIC 996 3 1 0
Rice'sT 997 3 0 0
FPE 996 3 1 0
nS 995 3 2 0
U 996 3 1 0

In the Table 4.9, we use Huber’'s method with c=2 in model 4 and the proportions
of selecting the correct model is about 79 percent. In the Table 4.10, we use Huber’'s
method with ¢=3 and the proportions of selecting the correct model is about 81
percent. In Table 4.11, the proportions of selecting the correct model is about 92

percent as using Tukey’s method.

In the Table 4.12, we use Huber's method with c=2 in model 5 and the
proportions of selecting the correct model is about 91 percent. In Table 4.13, we use
Huber’s method with c=3 and the proportions of selecting the correct model is about
94 percent. In Table 4.14, the proportions of selecting the correct model is about 98

percent as using Tukey’s method.

In the Table 4.15, we use Huber's method with c=2 in model 6 and the
proportions of selecting the correct model is about 97 percent. In the Table 4.16, we
use Huber's method with c=3 and the proportions of selecting the correct model is

about 98 percent. In Table 4.17, the proportions of selecting the correct model is about
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99 percent as using Tukey’s method.

In the Table 4.18, we use Huber's method with c=2 in model 7 and the
proportions of selecting the correct model is about 98.6 percent. In the Table 4.19, we
use Huber's method with ¢=3 and the proportions of selecting the correct model is
about 99.2 percent. In Table 4.11, the proportions of selecting the correct modd is

about 99.6 percent as using Tukey’s method.

Overdl, even we down-weight in model 4, model 5, model 6, and model 7,
robust model selection has al good performance. Using Huber’s method with c=2 has

large proportions of selecting the correct model than using Huber’s method with c=3.

In addition, we can see that using Tukey’s method to downweight is better than

Huber’s method to down-weight. Even we down-weight in using Huber’'s method or

in Tukey’s method , the model selection has all good performance.
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5. CONCLUDING DISCUSSION

All criteriag, including GCV, AIC, Rice's T, FPE, nS, and U, have similar optimal
properties. Four of these findings are worth summarizing. The first one is that we may
choose the wrong model by the data draw from different populations. The second one
is that these model selection criteria might select the wrong model as the data are
from different populations. The proportions of selecting wrong models are high as the
discordant observations are generated from the models with additional variables or
less variables. The third one is that the proportions of selection correct models are
increasing as these discordant observations are downweighted. The last one is that the

Huber’s and Tukey’s methods are both effective.

In my simulation, the larger ¢ in Huber's method, the bigger proportion in
choosing correct models. We down-weight in model 4, model 5, model 6, and model 7,
robust model selection has all good performance. Using Huber’s method with c=2 has
large proportions of selecting the correct model than using Huber’s method with c=3.
Not only Huber’s method with c=2 but also Huber’s method with c=3, the proportions
of selecting the correct model is over 90 pencent.

The proportions of selecting correct models by Tukey’s method are about 99

percent.

There is till space for future research in regresson model selection with
correlated errors. The proposed criteria have different sensitivities to the changes of

the selection parameters or correlation parameters. Sensitivity analysis and a complete
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robust for different selection criteria could be helpful. The study does suggest that the
detailed study of using robust in nonparametric regression in correlated errors is a

promising line of inquiry.
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