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Abstract 

For the two-sample censored data problem, the weighted log-rank (WLR) tests 

and weighted Kaplan-Meier (WKM) test are commonly used for testing the equality 

of two survival distributions. Since each test has different advantages against various 

alternatives, it’s hard to decide in advance which of the tests can be used to gain more 

power when the alternative is unknown. Hence, in order to combine the advantages of 

these two classes of tests, a versatile test based on WLR test and WKM test is then 

proposed. We develop a cross-validation versatile test to select appropriate weights in 

combining WLR and WKM which differs from Chi and Tsai who suggested the equal 

weights. Some numerical experiments are performed for illustrating the superiority of 

the proposed method and then the proposed testing procedure is applied to two real 

data sets. 

 

Key Words: weighted log-rank tests; weighted Kaplan-Meier test; linear combination 

test; versatile test 

  



 
 

摘要 

針對雙樣本右設限資料，加權對數秩 (weighted log-rank) 檢定與加權

Kaplan-Meier (weighted Kaplan-Meier) 檢定是最常被使用來檢定兩個存活機率的

分配是否相等的問題。因為這兩個檢定在針對不同的情況下各有優點，故很難在

未知的情況下，先行挑選檢定，使其能夠擁有較大的檢定力。因此，為了要將此

兩種檢定的優點結合，本論文中將著重於同時使用此兩種檢定的機動檢定。 

我們延續 Chi 與 Tsai (2001) 的想法，針對加權對數秩和加權 Kaplan-Meier

此兩種檢定的線性組合，使用交叉驗證挑選此線性組合的權重，並與 Chi和 Tsai

提出的建立在相同權重的線性組合來做比較。透過模擬研究說明我們所提出方法

的優越性，並且將此檢定方法應用於實際資料。 

 

關鍵字：加權對數秩檢定，加權 Kaplan-Meier檢定，線性組合的檢定， 

機動檢定 
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1. Introduction 

In clinical trials, the primary objective is to evaluate the effect of an experiment 

agent by comparing the survival durations among some groups. Most situations are to 

test the equality of two survival distributions under randomly right censorship. The 

most commonly used test statistics for testing the equality of two survival 

distributions are the log-rank statistic (Mantel, 1966) and the Peto-Prentice-Wilcoxon 

(PPW) statistic (Gehan, 1965; Peto and Peto, 1972; Prentice, 1978), where the 

log-rank test is the locally most power test against proportional hazards alternatives, 

while the PPW test benefits the difference of hazards at early times. In addition, the 

WLR statistics is based on the integrated weighted differences between two estimated 

hazard functions and is often used to test the related issues. Unfortunately, the WLR 

statistics would be insensitive against the stochastic ordering alternatives particularly 

when the hazard functions of two groups are crossing. 

 Hence, Pepe and Fleming (1989) proposed a class of test statistics based on the 

integrated weighted differences in Kaplan-Meier (1958) estimates, and showed that 

these statistics is competitive with the log-rank test and PPW test under the 

proportional hazard and early hazard differences, respectively, and may perform better 

than WLR test under crossing hazards alternatives. 

Furthermore, the weighted log-rank tests have various advantages against 
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different types of alternatives with different weights. However, for a given data, it’s 

hard to know what type of alternatives to expect and hence the choice of weight 

function is unclear in practice. In order to maintaining better power across a wide 

range of alternatives, Lee (1996) proposed some compromise strategies based on a 

linear combination of or the maximum of selected members from the family of 

weighted log-rank tests. Also, Shen and Cai (2001) studied the versatile tests based on 

the maximum of selected members from the class of weighted Kaplan-Meier for 

randomized controlled screening trials. Recently, Lee (2007) suggested the tests based 

on a linear combination of or the maximum of the absolute value of selected members 

from the class of weighted log-rank tests to reduce the correlation among selected 

tests to gain power. 

Since weighted log-rank and weighted Kaplan-Meier tests have different 

advantages against various alternatives, Chi and Tsai (2001) proposed a class of 

versatile tests based on a linear combination of or the maximum of these two types of 

tests for two independent samples of right-censored data. The result in Chi and Tsai 

(2001) showed that these versatile tests were more robust in detecting different 

alternatives than the linear combination tests which proposed by Lee (1996). However, 

Chi and Tsai (2001) combined WLR and WKM statistics by using equal weights, say 

0.5 and 0.5, resulting in the test that may not maintain the highest power across a 
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broad range of alternatives. In this paper, we will continued the idea of Chi and Tsai’s 

linear combination test and propose a cross-validation based method to select the 

appropriate weights for combining WLR and WKM statistics. 

The rest of this paper is organized as follows: Section2 reviews the weighted 

log-rank test and weighted Kaplan-Meier test, for testing the equality of two survival 

distributions in the presence of independent right censorship. Section 3 introduces the 

proposed data-driven versatile test based on a cross-validation approach. Some 

comparative results in terms of the error rates and powers based on a simulation study 

are shown in Section 4. The proposed method is illustrated two data sets in Section5. 

Finally, concluding remarks are presented in the last section. 
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2. Weighted log-rank and weighted Kaplan-Meier tests 

Let 𝑇𝑖𝑗  and 𝐶𝑖𝑗 denote the survival time and censoring time, respectively, for the 

𝑗𝑡ℎ patient in the 𝑖𝑡ℎ  
group, 𝑖 = 1, 2, 𝑗 = 1, ⋯ , 𝑛𝑖 . We assume 𝑇𝑖𝑗  and 𝐶𝑖𝑗  are 

independent. When data are subject to random right censorship, we can only observe 

the random variables 𝑋𝑖𝑗 = 𝑚𝑖𝑛{𝑇𝑖𝑗 ,  𝐶𝑖𝑗} and 𝛿𝑖𝑗 = 𝐼{𝑇𝑖𝑗 ≤ 𝐶𝑖𝑗}, where 𝐼*𝐸+ is an 

indicator function, taking value 1 if the event 𝐸  occurs and 0 otherwise. Let 

𝑆𝑖(𝑡) = 𝑃(𝑇𝑖𝑗 > 𝑡) and 𝐺𝑖(𝑡) = 𝑃(𝐶𝑖𝑗 > 𝑡) be the survival functions of failure and 

censoring times for the 𝑖𝑡ℎ  population, respectively. Let 𝑁𝑖(𝑡) = ∑ 𝐼{𝑋𝑖𝑗 ≤
𝑛𝑖

𝑗=1

𝑡,  𝛿𝑖𝑗 = 1} being the counting process of the number of failure before specified time 

𝑡 and let 𝑌𝑖(𝑡) = ∑ 𝐼{𝑋𝑖𝑗 ≥ 𝑡}
𝑛𝑖

𝑗=1  being the risk process for 𝑖 = 1, 2. 

2.1 Weighted Log-rank Test 

For testing the equality of two survival distributions, the null hypothesis is set to 

be the equality of two survival functions generally, that is 𝐻0 ∶ 𝑆1(𝑡) = 𝑆2(𝑡)
 for all 

𝑡, and the alternative hypothesis may be the omnibus alternatives 𝐻1 ∶ 𝑆1(𝑡) ≠ 𝑆2(𝑡) 

for some 𝑡 or the stochastic ordering alternatives 𝐻1 ∶ 𝑆1(𝑡) ≤ 𝑆2(𝑡) for all 𝑡 with 

𝑆1(𝑡) < 𝑆2(𝑡)  for some 𝑡 . The commonly used test statistic, called weighted 

log-rank (WLR) statistic, was proposed by Fleming and Harrington (1991) and can be 

expressed as 
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𝐾1 = √
𝑛1 + 𝑛2

𝑛1𝑛2
∫ 𝑊̂(𝑡)

𝑇

0

𝑌1(𝑡)𝑌2(𝑡)

𝑌1(𝑡)+𝑌2(𝑡)
{

𝑑𝑁1(𝑡)

𝑌1(𝑡)
−

𝑑𝑁2(𝑡)

𝑌2(𝑡)
}, 

where 𝑇 = 𝑠𝑢𝑝*𝑡 ∶ 𝑌1(𝑡)𝑌2(𝑡) > 0+, 𝑊̂(𝑡) is the predictable weight function of the 

form {𝑆̂(𝑡 −)}
𝜏
{1 − 𝑆̂(𝑡 −)}

𝛾
 with τ ≥ 0 , γ ≥ 0 , and 𝑆̂(𝑡)  is the estimated 

probability of not fail before time 𝑡 based on Kaplan-Meier (1958) estimator for 

combined samples. As suggested in Fleming and Harrington (1991), 𝑊̂(𝑡) is referred 

to the family of censored data rank tests *𝐺𝜏,𝛾 ∶ 𝜏 ≥ 0, 𝛾 ≥ 0+. Note that 𝐺0,0 and  

𝐺1,0 corresponds to the log-rank test statistic which benefits to the proportional 

hazards model and the PPW test statistic which is appropriate for testing the early 

difference of hazards, respectively. Since the null asymptotic distribution of 𝐾1 is 

normal with mean zero and variance 𝜎11
2  which can be consistently estimated by 

𝜎̂11
2 =

𝑛1 + 𝑛2

𝑛1𝑛2
∫ 𝑊̂2(𝑡)

𝑇

0

𝑌1(𝑡)𝑌2(𝑡)

𝑌1(𝑡)+𝑌2(𝑡)
(1 −

△ 𝑁1(𝑡) +△ 𝑁2(𝑡) − 1

𝑌1(𝑡)+𝑌2(𝑡) − 1
)

𝑑(𝑁1(𝑡) + 𝑁2(𝑡))

𝑌1(𝑡)+𝑌2(𝑡)
, (1) 

where △ 𝑁𝑖(𝑡) = 𝑁𝑖(𝑡) − 𝑁𝑖(𝑡 −), 𝑖 = 1, 2. Hence, a two-sample weighted log-rank 

test rejects 𝐻0 and concludes that the survival probability is better for group 2 if 

𝐾1
∗ = 𝐾1 √𝜎11

2⁄ ≥ 𝓏𝛼, where 𝓏𝛼 is the upper 𝛼𝑡ℎ percentile of a standard normal 

distribution. 
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2.2 Weighted Kaplan-Meier Test 

 Since weighted log-rank tests are based on ranks, they might not be sensitive to 

the magnitude of the difference in survival times against a specific alternative. 

Therefore, a weighted Kaplan-Meier statistic (Pepe and Fleming, 1989) based on the 

integrated weighted difference in Kaplan-Meier (1958) estimators for censored data is 

defined as 

𝐾2 = √
𝑛1𝑛2

𝑛1 + 𝑛2

∫ 𝜔̂(𝑡)
𝑇𝑐

0

{𝑆̂2(𝑡) − 𝑆̂1(𝑡)}𝑑𝑡 

where 𝑇𝑐 = 𝑠𝑢𝑝 {𝑡 ∶ 𝑚𝑖𝑛 .𝐺1(𝑡), 𝐺2(𝑡), 𝑆̂1(𝑡), 𝑆̂2(𝑡)/ > 0}  with 𝑆̂𝑖(𝑡)  and 𝐺𝑖(𝑡) 

being Kaplan-Meier (1958) estimators of the true and censoring survival functions of 

group 𝑖, respectively, and 𝜔̂(𝑡) is a random weight function given by 

𝜔̂(𝑡) =
𝐺1(𝑡 −)𝐺2(𝑡 −)

𝑝1𝐺1(𝑡 −) + 𝑝2𝐺2(𝑡 −)
, 

where 𝑝𝑖 = 𝑛𝑖 (𝑛1 + 𝑛2)⁄ . Note that 𝜔̂(𝑡) satisfies the stability condition in Pepe 

and Fleming (1989), that downweights the difference 𝑆̂2(𝑡) − 𝑆̂1(𝑡) in the integrand 

over later time periods when there is heavy censoring. Similar to the WLR test 

statistic, the asymptotic distribution of 𝐾2 under the null hypothesis follows a normal 

with mean zero and variance 𝜎22
2  can be consistently estimated by 

𝜎22
2 = − ∫ {∫ 𝜔̂(𝑢)𝑆̂(𝑢)𝑑𝑢

𝑇𝑐

𝑡

}

2
𝑝1𝐺1(𝑡 −) + 𝑝2𝐺2(𝑡 −)

𝐺1(𝑡 −)𝐺̂2(𝑡 −)

𝑇𝑐

0

𝑑𝑆̂(𝑡 −)

𝑆̂(𝑡)𝑆̂(𝑡 −)
, (2) 

where 𝑆̂(𝑡 −) is the estimated probability of not fail before time 𝑡  based on 
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Kaplan-Meier (1958) estimator for combined samples and 𝑑𝑆̂(𝑡 −) = 𝑆̂(𝑡) − 𝑆̂(𝑡 −). 

Again, a two-sample weighted Kaplan-Meier test rejects 𝐻0 and concludes that the 

survival probability is better for group 2 if 𝐾2
∗ = 𝐾2 √𝜎22

2⁄ ≥ 𝓏𝛼, where 𝓏𝛼 is the 

upper 𝛼𝑡ℎ percentile of a standard normal distribution. Pepe and Fleming (1989) also 

showed that the resulting test statistic is a competitor to the log-rank test for the 

proportional hazards alternative, and may perform better under early and crossing 

hazards difference alternatives. Nevertheless, it is not sensitive to the late survival 

difference since the weight function is chosen to put less weight over later time period 

if censoring rate is heavy. 

 Although weighted log-rank and weighted Kaplan-Meier tests have different 

advantages against various alternatives, each of the tests cannot satisfactorily perform 

under various situations. Hence, a data-driven based test will be illustrated in the next 

section. 
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3. The proposed method 

A natural idea is to combine the WLR and WKM tests. In this paper, we focus on 

testing the equality of two survival distributions for right censorship data and perform 

a linear combination between WLR and WKM tests. As suggested in Chi and Tsai 

(2001), they used equal weights, say 0.5 and 0.5, for combining to detect the test. 

However, it may not maintain the highest power across a broad range of alternatives 

and is not data-adaptive. In order to combine the advantages of WLR and WKM tests 

but mitigate their weaknesses for various alternatives, we are trying to propose a new 

testing procedure by controlling the weight from data. Therefore, a cross-validation 

based idea for selecting an appropriate weight between WLR and WKM tests is 

introduced in the following. 

We consider the following class of test statistics as suggested in Chi and Tsai 

(2001): 

*𝐾(𝛽) = 𝛽𝐾1
∗ + (1 − 𝛽)𝐾2

∗ ∶ 0 ≤ 𝛽 ≤ 1+. 

Under the null hypothesis 𝐻0 ∶ 𝑆1(𝑡) = 𝑆2(𝑡), the asymptotic distribution of 𝐾(𝛽) 

for a given 𝛽 follows a normal distribution with mean zero and variance can be 

consistently estimated by 

𝜎𝛽
2 = 𝛽2 + (1 − 𝛽)2 + 𝛽(1 − 𝛽)𝜌, 

where 𝜌 = 𝜎12 √𝜎11
2 𝜎22

2⁄ ,  
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𝜎12 = − ∫ 𝑊̂2(𝑡) {∫ 𝜔̂(𝑢)𝑆̂(𝑢)𝑑𝑢
𝑇𝑐

𝑡

}
𝑇𝑐

0

𝑑𝑆̂(𝑡)

𝑆̂(𝑡)
, 

and 𝜎11
2  and 𝜎22

2  are given in (1) and (2). Thus, one can conclude that the survival 

rate is better for group 2 at the α-level if 𝐾∗(𝛽) = 𝐾(𝛽) √𝜎𝛽
2⁄ ≥ 𝓏𝛼 . Then, the 

procedure is to select an appropriate weight 𝛽̂ ∈ ,0, 1- from data to use in the test 

statistic 𝐾∗(𝛽) that is sensitive to detect the survival differences between the two 

groups. The idea of cross-validation method, which can be reviewed, for example, in 

Shao (1993) and Arlot and Celisse (2009), is usually used for model selection. 

Therefore, based on a cross-validation approach, we proposed a criterion for selecting 

weight which is data-adaptive: 

𝛽̂ ≡ 𝑎𝑟𝑔 𝑚𝑖𝑛
𝛽∈,0,1-

∑ ∑ .𝐾−𝑖,−𝑗
∗ (𝛽) − 𝐾∗(𝛽)/

2
𝑛2

𝑗

𝑛1

𝑖

, 

where 𝐾−𝑖,−𝑗
∗ (𝛽) is a 𝐾∗(𝛽) calculated from the data with deleting the 𝑖𝑡ℎ and 𝑗𝑡ℎ 

sample points of group 1 and 2, respectively. Then, the proposed data-driven versatile 

statistic is obtained as follows: 

𝐾∗(𝛽̂) = 𝛽̂𝐾1
∗ + (1 − 𝛽̂)𝐾2

∗. (3) 

Hence, the proposed versatile test can be performed for testing the equality of two 

survivals distributions regardless of various alternatives. 
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4. Simulations 

To understand the error rates and powers of the proposed data-driven versatile test, 

we conduct a simulation study to examine the performance under various situations. A 

null case and four distinct alternative cases are considered in the simulation study. In 

the error rate study, the common survival distribution for group 1 and 2 is generated 

from exponential distribution with scale parameter 1. The alternatives investigated 

include Weibull proportional hazard models, early, late, and crossing hazard 

differences alternatives. Figure 1 presents the survival functions of these alternatives. 

Note that configurations II, III, and IV are all generated from piecewise exponential 

distributions with various hazard functions. Each of the cases is carried out under 

moderate sample sizes (30 and 50 sample sizes per group) and uniform (0,2) 

censorship. Note that the censoring proportion is 0.43 for both 30 and 50 sample sizes 

under the null hypothesis. While in the configurations I to IV, the two groups suffer 

different probabilities of censorship ranging from 0.24 to 0.50. Estimated error rates 

and powers of these test statistics at the 0.05 level of significance are based on 3,000 

replications. Thus, the standard error of the error rate estimator is about 0.004 

(≈ √(0.05 × 0.95) 3000⁄ ). 

Table 1 and 2 present the results on the error rates and powers under 30 and 50 

sample sizes for various test statistics, which include WKM, four individual member 
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in 𝐺𝜏,𝛾 class as suggested in Fleming and Harrington (1991), and four proposed 

data-driven versatile statistics 𝐾𝜏,𝛾
∗ (𝛽̂) . Let 𝐾𝜏,𝛾

∗ (𝛽̂)  denote the combination of 

WKM and 𝐺𝜏,𝛾. We also perform and compare the corresponding versatile statistics 

with fixed weight 𝛽̂ ≡ 0.5 in (3) as suggested by Chi and Tsai (2001), and denoted 

as 𝐾𝜏,𝛾
∗ (0.5) . The average of the estimated weight 𝛽̂  in (3) based on 3000 

replications for 30 and 50 sample sizes for each configuration are also reported in 

Table 3 and 4, respectively.  

 In Table 1, the type I error rate of 𝐾0,1
∗ (𝛽̂) and 𝐾1,1

∗ (𝛽̂) are much higher than 

the pre-specified error rate 0.05, but when the observation raise to 50 in Table 2, the 

type I error rate of these two tests is under controlled. The rest of the tests considered 

here maintain their error rates well. On the other hand, the performance of the power 

of the proposed data-driven versatile test is nearly as sensitive as the most powerful 

individual statistic for detecting a specific alternative. Moreover, it performs better 

than Chi and Tsai’s (2001) test for almost all cases. Table 3 and 4 showed that it’s not 

appropriate to combine WKM and WLR tests with a fixed weight 0.5. 
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5. Examples 

In this section, the data-driven versatile tests developed in Section 3 are illustrated 

through two real examples. The first data set (data set 1) was conducted by Ichida et 

al. (1993) to evaluate a protocol change in disinfectant practices in a large Midwestern 

university medical center. Infection of a burn wound is a common complication 

resulting in extended hospital stays and in the death of severely burned patients. 

Control of infection remains a prominent component of burn management. The 

purpose of the burn wound infections study is to compare a routine bathing care 

method, which initial surface decontamination with 10% povidone-iodine followed 

with regular bathing with Dial soap, with a body-cleansing method using 4% 

chlorhexidine gluconate. In data set 1, 154 patient records and charts were reviewed, 

including 70 patients in the body-cleansing method group with 44% (31 patients) 

censored data and 84 patients in the routine bathing care method group with 29% (24 

patients) censored data. The time to excision was recorded (in days). Figure 2 displays 

the estimated survival function and log cumulative hazard function and shows a 

difference between the two estimated survival functions over middle time period. The 

relevant summary statistics obtained from various tests and the associated one-sided 

p-values are shown in table 5. At the 0.05 significance level, the p-values for WKM 

and WLR statistics are less than 0.05, except 𝐺0,1
. Although the performance of 
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𝐾𝜏,𝛾
∗ (0.5)  and 𝐾𝜏,𝛾

∗ (𝛽̂)  better than 𝐺0,1
, 𝐾𝜏,𝛾

∗ (𝛽̂)  still gain more power by 

selecting the appropriate weights. 

Next, the second data set (data set 2) was obtained from Pantadosi (1997) 

originally designed from a randomized clinical trial for evaluating the benefit of 

cytoxan, doxorubicin, and platinum (CAP) as an adjuvant to radiotherapy (R) for 

treatment of locally advanced non small-cell lung cancer patients. A total of 164 

patients were randomized to receive either the R only or the combined treatment of R 

and CAP group, denoted by R+CAP, between 1979 and 1985. In data set 2, there are 

86 patients in the R only group with 18% (14 patients) censored data, while 78 

patients in the R+CAP group produce 16% (14 patients) censored data. Figure 3 

displays the estimated survival function and log cumulative hazard plot. However, it’s 

hard to see which period reveals significant visual differences between the two 

estimated survival functions, resulting in the selection of weight function for WLR 

test is difficult. Therefore, our proposed data-driven versatile test seems usefully here. 

The relevant summary statistics and the associated one-sided p-values are shown in 

table 6. Obviously, the p-value of 𝐺1,0
 is the only one smaller than 0.05. Therefore, 

the corresponding versatile test 𝐾1,0
∗ (𝛽̂) can still chose an appropriate weight to 

reject the null hypothesis. It indicates that the combined treatment R+CAP could 

prolong the lifetime of the patients with lung cancer. On the contrary, we find that the 
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all of versatile tests 𝐾𝜏,𝛾
∗ (0.5) are fail to detect the survival difference between the 

two groups.  

These examples denote the shortcomings of 𝐾𝜏,𝛾
∗ (0.5) and confirm the behavior 

of these tests as demonstrated in the simulation study. 
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6. Concluding remarks 

In this paper, we develop data-driven versatile tests statistic based on linear 

combination of WLR and WKM to preserve better power by using a cross-validation 

approach for selecting an appropriate weight, results the weight that is data-adaptive, 

across a broad range of alternatives for two independent right-censored data. The 

performance of the proposed data-driven versatile tests in this paper is superior to Chi 

and Tsai (2001) in terms of the power testing. As seen in two examples, before testing 

the equality of survival distributions, investigators must choose a weighted function 

according to their clinical knowledge or based on the survival plots, so that the used 

test statistic would be sensitive to a certain alternative. However, when lacking in the 

clinical knowledge or the visual difference is not obvious in the survival plots, our 

proposed method provide a convenience way to detect the difference between survival 

distributions. Because the proposed method can be performed for testing the equality 

of two survival distributions regardless of various alternatives, it becomes an 

attractive feature. 
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Appendix 

Table 1. Estimated error rates, powers and censoring rates for each case with 

 𝑛1 = 𝑛2 = 30 and censoring distribution 𝑈(0, 2). 

case I II III IV Null 

WKM 0.653 0.642 0.247 0.228 0.057 

𝐺0,0 0.700 0.535 0.356 0.231 0.054 

𝐺1,0 0.654 0.577 0.251 0.197 0.052 

𝐺0,1 0.602 0.291 0.457 0.269 0.057 

𝐺1,1 0.635 0.335 0.441 0.300 0.057 

𝐾0,0
∗ (0.5) 0.682 0.609 0.299 0.227 0.054 

𝐾1,0
∗ (0.5) 0.654 0.620 0.250 0.211 0.055 

𝐾0,1
∗ (0.5) 0.683 0.522 0.378 0.273 0.055 

𝐾1,1
∗ (0.5) 0.672 0.537 0.360 0.281 0.056 

𝐾0,0
∗ (𝛽̂) 0.693 0.652 0.309 0.244 0.058 

𝐾1,0
∗ (𝛽̂) 0.653 0.650 0.249 0.215 0.054 

𝐾0,1
∗ (𝛽̂) 0.707 0.661 0.382 0.309 0.075 

𝐾1,1
∗ (𝛽̂) 0.687 0.669 0.361 0.316 0.073 

Censoring rate for 

group 1 
0.244 0.241 0.307 0.402 

0.431 
Censoring rate for 

group 2 
0.433 0.380 0.431 0.496 
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Table 2. Estimated error rates, powers and censoring rates for each case with 

 𝑛1 = 𝑛2 = 50 and censoring distribution 𝑈(0, 2). 

case I II III IV Null 

WKM 0.857 0.830 0.387 0.930 0.045 

𝐺0,0 0.882 0.736 0.507 0.821 0.045 

𝐺1,0 0.848 0.776 0.360 0.143 0.046 

𝐺0,1 0.786 0.401 0.641 0.449 0.052 

𝐺1,1 0.831 0.484 0.634 0.588 0.051 

𝐾0,0
∗ (0.5) 0.871 0.801 0.454 0.892 0.046 

𝐾1,0
∗ (0.5) 0.855 0.815 0.375 0.907 0.046 

𝐾0,1
∗ (0.5) 0.866 0.713 0.533 0.800 0.048 

𝐾1,1
∗ (0.5) 0.867 0.730 0.529 0.832 0.045 

𝐾0,0
∗ (𝛽̂) 0.873 0.826 0.455 0.916 0.047 

𝐾1,0
∗ (𝛽̂) 0.853 0.828 0.372 0.918 0.046 

𝐾0,1
∗ (𝛽̂) 0.879 0.828 0.578 0.919 0.066 

𝐾1,1
∗ (𝛽̂) 0.871 0.832 0.541 0.921 0.059 

Censoring rate for 

group 1 
0.244 0.242 0.307 0.403 

0.431 
Censoring rate for 

group 2 
0.432 0.381 0.433 0.497 
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Table 3. The averages of estimated weight 𝜷̂ for each case with 𝑛1 = 𝑛2 = 30 and 

 censoring distribution 𝑈(0, 2). 

case I II III IV Null 

𝐾0,0
∗ (𝛽̂) 0.330 0.399 0.616 0.645 0.738 

𝐾1,0
∗ (𝛽̂) 0.395 0.424 0.633 0.674 0.780 

𝐾0,1
∗ (𝛽̂) 0.264 0.289 0.576 0.506 0.634 

𝐾1,1
∗ (𝛽̂) 0.288 0.291 0.524 0.521 0.625 

 

Table 4. The averages of estimated weight 𝜷̂ for each case with 𝑛1 = 𝑛2 = 50 and 

 censoring distribution 𝑈(0, 2). 

case I II III IV Null 

𝐾0,0
∗ (𝛽̂) 0.192 0.238 0.511 0.146 0.752 

𝐾1,0
∗ (𝛽̂) 0.240 0.263 0.517 0.184 0.774 

𝐾0,1
∗ (𝛽̂) 0.189 0.167 0.644 0.090 0.655 

𝐾1,1
∗ (𝛽̂) 0.206 0.160 0.581 0.090 0.639 
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Table 6. The test statistics of various tests and the associated one-sided p-values 

for data set 2. 

 Statistic p-value   Statistic p-value Statistic p-value 

WKM 1.063 0.144  𝜷̂   𝜷̂ = 0.5 

𝐺0,0 1.136 0.128 𝐾0,0
∗ (𝛽̂) 0.40 1.094 0.137 1.101 0.135 

𝐺1,0 1.792 0.037 𝐾1,0
∗ (𝛽̂) 1.00 1.792 0.037 1.460 0.072 

𝐺0,1 -0.007 0.503 𝐾0,1
∗ (𝛽̂) 0.00 1.063 0.144 0.546 0.292 

𝐺1,1 0.588 0.278 𝐾1,1
∗ (𝛽̂) 0.28 0.937 0.174 0.833 0.202 

 

 

Table 5. The test statistics of various tests and the associated one-sided p-values 

 for data set 1. 

 z-value p-value   z-value p-value z-value p-value 

WKM 3.028 0.001  𝜷̂   𝜷̂ = 0.5 

𝐺0,0 2.691 0.004 𝐾0,0
∗ (𝛽̂) 0.36 2.907 0.002 2.860 0.002 

𝐺1,0 3.254 0.001 𝐾1,0
∗ (𝛽̂) 0.80 3.209 0.001 3.141 0.001 

𝐺0,1 0.936 0.175 𝐾0,1
∗ (𝛽̂) 0.08 2.931 0.002 2.164 0.015 

𝐺1,1 2.000 0.023 𝐾1,1
∗ (𝛽̂) 0.22 2.875 0.002 2.611 0.005 
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𝜆2(𝑡) = 1 

I. 𝜆1(𝑡) = 2 

 

𝜆2(𝑡) = 0.25 𝐼*𝑡 < 0.8+ + 0.5 𝐼*𝑡 ≥ 0.8+ 

II. 𝜆1(𝑡) = 0.75 𝐼*𝑡 < 0.8+ + 0.5 𝐼*𝑡 ≥ 0.8+ 

 

  

𝜆2(𝑡) = 1 

III. 𝜆1(𝑡) = 1 𝐼*𝑡 < 0.3+ + 2 𝐼*𝑡 ≥ 0.3+ 

 

 

 

IV. 𝜆1(𝑡) = 1 𝐼*𝑡 < 0.4+ + 1.5 𝐼*0.4 ≤ 𝑡 ≤ 1+ 

 +0.5 𝐼*1 ≤ 𝑡 ≤ 1.8+ + 1.5 𝐼*𝑡 ≥ 1.8+ 

 𝜆2(𝑡) = 1 𝐼*𝑡 < 0.4+ + 0.4 𝐼*0.4 ≤ 𝑡 ≤ 1+ 

 +1.2 𝐼*1 ≤ 𝑡 ≤ 1.8+ + 1.5 𝐼*𝑡 ≥ 1.8+ 

 

Figure 1. Survival functions for various alternative configurations. 
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Figure 2. The estimated survival function and log cumulative hazard function for data 

set 1. 

 

  

Figure 3. The estimated survival function and log cumulative hazard function for data 

set 2. 

 

 


