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Abstract

For the two-sample censored data problem, the weighted log-rank (WLR) tests

and weighted Kaplan-Meier (WKM) test are commonly used for testing the equality

of two survival distributions. Since each test has different advantages against various

alternatives, it’s hard to decide in advance which of the tests can be used to gain more

power when the alternative is unknown. Hence, in order to combine the advantages of

these two classes of tests, a versatile test based on WLR test and WKM test is then

proposed. We develop a cross-validation versatile test to select appropriate weights in

combining WLR and WKM which differs from Chi and Tsai who suggested the equal

weights. Some numerical experiments are performed for illustrating the superiority of

the proposed method and then the proposed testing procedure is applied to two real

data sets.

Key Words: weighted log-rank tests; weighted Kaplan-Meier test; linear combination

test; versatile test
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1. Introduction

In clinical trials, the primary objective is to evaluate the effect of an experiment

agent by comparing the survival durations among some groups. Most situations are to

test the equality of two survival distributions under randomly right censorship. The

most commonly used test statistics for testing the equality of two survival

distributions are the log-rank statistic (Mantel, 1966) and the Peto-Prentice-Wilcoxon

(PPW) statistic (Gehan, 1965; Peto and Peto, 1972; Prentice, 1978), where the

log-rank test is the locally most power test against proportional hazards alternatives,

while the PPW test benefits the difference of hazards at early times. In addition, the

WLR statistics is based on the integrated weighted differences between two estimated

hazard functions and is often used to test the related issues. Unfortunately, the WLR

statistics would be insensitive against the stochastic ordering alternatives particularly

when the hazard functions of two groups are crossing.

Hence, Pepe and Fleming (1989) proposed a class of test statistics based on the

integrated weighted differences in Kaplan-Meier (1958) estimates, and showed that

these statistics is competitive with the log-rank test and PPW test under the

proportional hazard and early hazard differences, respectively, and may perform better

than WLR test under crossing hazards alternatives.

Furthermore, the weighted log-rank tests have various advantages against
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different types of alternatives with different weights. However, for a given data, it’s

hard to know what type of alternatives to expect and hence the choice of weight

function is unclear in practice. In order to maintaining better power across a wide

range of alternatives, Lee (1996) proposed some compromise strategies based on a

linear combination of or the maximum of selected members from the family of

weighted log-rank tests. Also, Shen and Cai (2001) studied the versatile tests based on

the maximum of selected members from the class of weighted Kaplan-Meier for

randomized controlled screening trials. Recently, Lee (2007) suggested the tests based

on a linear combination of or the maximum of the absolute value of selected members

from the class of weighted log-rank tests to reduce the correlation among selected

tests to gain power.

Since weighted log-rank and weighted Kaplan-Meier tests have different

advantages against various alternatives, Chi and Tsai (2001) proposed a class of

versatile tests based on a linear combination of or the maximum of these two types of

tests for two independent samples of right-censored data. The result in Chi and Tsai

(2001) showed that these versatile tests were more robust in detecting different

alternatives than the linear combination tests which proposed by Lee (1996). However,

Chi and Tsai (2001) combined WLR and WKM statistics by using equal weights, say

0.5 and 0.5, resulting in the test that may not maintain the highest power across a



broad range of alternatives. In this paper, we will continued the idea of Chi and Tsai’s

linear combination test and propose a cross-validation based method to select the

appropriate weights for combining WLR and WKM statistics.

The rest of this paper is organized as follows: Section2 reviews the weighted

log-rank test and weighted Kaplan-Meier test, for testing the equality of two survival

distributions in the presence of independent right censorship. Section 3 introduces the

proposed data-driven versatile test based on a cross-validation approach. Some

comparative results in terms of the error rates and powers based on a simulation study

are shown in Section 4. The proposed method is illustrated two data sets in Section5.

Finally, concluding remarks are presented in the last section.



2. Weighted log-rank and weighted Kaplan-Meier tests

Let T;; and C;; denote the survival time and censoring time, respectively, for the
jt patient in the i*" group, i =1,2, j=1,--,n;. We assume T;; and C;; are
independent. When data are subject to random right censorship, we can only observe

the random variables X;; = min{T;;, C;;} and &;; = I{T;; < C;;}, where I{E} is an

Jj’ ij =
indicator function, taking value 1 if the event E occurs and O otherwise. Let
S;(t) = P(T;; > t) and G;(t) = P(C;; >t) be the survival functions of failure and
censoring times for the i*" population, respectively. Let N;(t) =Z}1;11{Xij <
t, §;j = 1} being the counting process of the number of failure before specified time

t and let Y;(t) = Z?Ll I{X;; > t} being the risk process for i = 1,2.

2.1 Weighted Log-rank Test

For testing the equality of two survival distributions, the null hypothesis is set to
be the equality of two survival functions generally, that is H, : S;(t) = S,(¢t) for all
t, and the alternative hypothesis may be the omnibus alternatives H; : S;(t) # S,(t)
for some t or the stochastic ordering alternatives H; : S;(t) < S,(t) for all t with
S;(t) < S,(t) for some t. The commonly used test statistic, called weighted
log-rank (WLR) statistic, was proposed by Fleming and Harrington (1991) and can be

expressed as



ny + nzf Y1 ®Y, () {dN1 () B dN, (t)}
nn, Y1 (O+Y, () ( 11 (0) Y, (1)

where T = sup{t : ¥;(£)Y,(t) > 0}, W(t) is the predictable weight function of the
form {S(t )} {1 -8 —-)}" with t=0, y=0, and $(t) is the estimated
probability of not fail before time t based on Kaplan-Meier (1958) estimator for
combined samples. As suggested in Fleming and Harrington (1991), W (t) is referred
to the family of censored data rank tests {G® : ¢ > 0,y > 0}. Note that G%° and
G0 corresponds to the log-rank test statistic which benefits to the proportional
hazards model and the PPW test statistic which is appropriate for testing the early
difference of hazards, respectively. Since the null asymptotic distribution of K; is

normal with mean zero and variance o which can be consistently estimated by

1)

‘711

nn; Y1 (0)+Y,(6) Y1 (0)+Y,(6) — 1 Vi (0)+Y,(t)

ny +n2f w20 Y, ()Y, (t) < AN, (t) +A Ny (t) — 1) d(N,(t) + N, (D))

where A N;(t) = N;(t) — N;(t —), i = 1,2. Hence, a two-sample weighted log-rank
test rejects H, and concludes that the survival probability is better for group 2 if

Ky = K, /6%, = 74, Where 3, is the upper a'™ percentile of a standard normal

distribution.



2.2 Weighted Kaplan-Meier Test

Since weighted log-rank tests are based on ranks, they might not be sensitive to
the magnitude of the difference in survival times against a specific alternative.
Therefore, a weighted Kaplan-Meier statistic (Pepe and Fleming, 1989) based on the
integrated weighted difference in Kaplan-Meier (1958) estimators for censored data is
defined as

Tc
K, = |-an ] &) (8,6 — $,(D)dt
0

ny +n,

where T, = sup {t : min (G1(£), G,(£),5,(6),5,()) > 0} with $i(t) and Gy(t)
being Kaplan-Meier (1958) estimators of the true and censoring survival functions of

group i, respectively, and @(t) isarandom weight function given by

G1(t —)G,(t -)

o) = E D + Gyt~

where p; = n;/(n, + n,). Note that @(t) satisfies the stability condition in Pepe
and Fleming (1989), that downweights the difference S,(t) — $;(¢) in the integrand
over later time periods when there is heavy censoring. Similar to the WLR test
statistic, the asymptotic distribution of K, under the null hypothesis follows a normal

with mean zero and variance o, can be consistently estimated by

T, T, 2 A ~ A
~2 _ [V A e P1G1(t =) + poGo(t —) dS(t —)
022 = fo Ut “’(”)S(”)d“} G600 Sosay 2

where S(t —) is the estimated probability of not fail before time t based on
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Kaplan-Meier (1958) estimator for combined samples and dS(t —) = S(t) — S(t —).
Again, a two-sample weighted Kaplan-Meier test rejects H, and concludes that the
survival probability is better for group 2 if K; = KZ/\/g > 34, Where 3z, is the
upper a'™ percentile of a standard normal distribution. Pepe and Fleming (1989) also
showed that the resulting test statistic is a competitor to the log-rank test for the
proportional hazards alternative, and may perform better under early and crossing
hazards difference alternatives. Nevertheless, it is not sensitive to the late survival
difference since the weight function is chosen to put less weight over later time period
if censoring rate is heavy.

Although weighted log-rank and weighted Kaplan-Meier tests have different
advantages against various alternatives, each of the tests cannot satisfactorily perform
under various situations. Hence, a data-driven based test will be illustrated in the next

section.



3. The proposed method

A natural idea is to combine the WLR and WKM tests. In this paper, we focus on
testing the equality of two survival distributions for right censorship data and perform
a linear combination between WLR and WKM tests. As suggested in Chi and Tsai
(2001), they used equal weights, say 0.5 and 0.5, for combining to detect the test.
However, it may not maintain the highest power across a broad range of alternatives
and is not data-adaptive. In order to combine the advantages of WLR and WKM tests
but mitigate their weaknesses for various alternatives, we are trying to propose a new
testing procedure by controlling the weight from data. Therefore, a cross-validation
based idea for selecting an appropriate weight between WLR and WKM tests is
introduced in the following.

We consider the following class of test statistics as suggested in Chi and Tsai
(2001):

{KB)=BK{+(1-P)K; : 0 < p <1}
Under the null hypothesis H, : S;(t) = S,(t), the asymptotic distribution of K(f)
for a given B follows a normal distribution with mean zero and variance can be
consistently estimated by
6 =B*+ (1= +p0A-pp,

where p = G,/+/61,65,,



Tc

Tc
6, =— | W { f w(u)S(u)du}
t

0

dS(t)
S@®°

and 62 and 6%, are given in (1) and (2). Thus, one can conclude that the survival

rate is better for group 2 at the a-level if K*(8) = K(8)/ |65 = z,. Then, the
procedure is to select an appropriate weight £ € [0,1] from data to use in the test
statistic K*(B) that is sensitive to detect the survival differences between the two
groups. The idea of cross-validation method, which can be reviewed, for example, in
Shao (1993) and Arlot and Celisse (2009), is usually used for model selection.
Therefore, based on a cross-validation approach, we proposed a criterion for selecting

weight which is data-adaptive:

ny np

f=arg min ZZ B K@)

where K*; ;(B) isa K*(B) calculated from the data with deleting the i*" and j*"
sample points of group 1 and 2, respectively. Then, the proposed data-driven versatile
statistic is obtained as follows:

K*(B) = pK; + (1 - B)K;. 3)
Hence, the proposed versatile test can be performed for testing the equality of two

survivals distributions regardless of various alternatives.



4. Simulations

To understand the error rates and powers of the proposed data-driven versatile test,

we conduct a simulation study to examine the performance under various situations. A

null case and four distinct alternative cases are considered in the simulation study. In

the error rate study, the common survival distribution for group 1 and 2 is generated

from exponential distribution with scale parameter 1. The alternatives investigated

include Weibull proportional hazard models, early, late, and crossing hazard

differences alternatives. Figure 1 presents the survival functions of these alternatives.

Note that configurations I, 111, and 1V are all generated from piecewise exponential

distributions with various hazard functions. Each of the cases is carried out under

moderate sample sizes (30 and 50 sample sizes per group) and uniform (0,2)

censorship. Note that the censoring proportion is 0.43 for both 30 and 50 sample sizes

under the null hypothesis. While in the configurations I to IV, the two groups suffer

different probabilities of censorship ranging from 0.24 to 0.50. Estimated error rates

and powers of these test statistics at the 0.05 level of significance are based on 3,000

replications. Thus, the standard error of the error rate estimator is about 0.004

(= /(0.05 x 0.95)/3000).

Table 1 and 2 present the results on the error rates and powers under 30 and 50

sample sizes for various test statistics, which include WKM, four individual member

10



in G™ class as suggested in Fleming and Harrington (1991), and four proposed
data-driven versatile statistics K;,(8). Let K;,(B) denote the combination of
WKM and G%Y. We also perform and compare the corresponding versatile statistics
with fixed weight 8 = 0.5 in (3) as suggested by Chi and Tsai (2001), and denoted
as K7,(0.5). The average of the estimated weight B in (3) based on 3000
replications for 30 and 50 sample sizes for each configuration are also reported in
Table 3 and 4, respectively.

In Table 1, the type I error rate of K;,(f) and K;,(8) are much higher than
the pre-specified error rate 0.05, but when the observation raise to 50 in Table 2, the
type | error rate of these two tests is under controlled. The rest of the tests considered
here maintain their error rates well. On the other hand, the performance of the power
of the proposed data-driven versatile test is nearly as sensitive as the most powerful
individual statistic for detecting a specific alternative. Moreover, it performs better
than Chi and Tsai’s (2001) test for almost all cases. Table 3 and 4 showed that it’s not

appropriate to combine WKM and WLR tests with a fixed weight 0.5.

11



5. Examples

In this section, the data-driven versatile tests developed in Section 3 are illustrated
through two real examples. The first data set (data set 1) was conducted by Ichida et
al. (1993) to evaluate a protocol change in disinfectant practices in a large Midwestern
university medical center. Infection of a burn wound is a common complication
resulting in extended hospital stays and in the death of severely burned patients.
Control of infection remains a prominent component of burn management. The
purpose of the burn wound infections study is to compare a routine bathing care
method, which initial surface decontamination with 10% povidone-iodine followed
with regular bathing with Dial soap, with a body-cleansing method using 4%
chlorhexidine gluconate. In data set 1, 154 patient records and charts were reviewed,
including 70 patients in the body-cleansing method group with 44% (31 patients)
censored data and 84 patients in the routine bathing care method group with 29% (24
patients) censored data. The time to excision was recorded (in days). Figure 2 displays
the estimated survival function and log cumulative hazard function and shows a
difference between the two estimated survival functions over middle time period. The
relevant summary statistics obtained from various tests and the associated one-sided
p-values are shown in table 5. At the 0.05 significance level, the p-values for WKM

and WLR statistics are less than 0.05, except G>* Although the performance of

12



K;,(0.5) and K;,(B) better than G%' K;,(B) still gain more power by
selecting the appropriate weights.

Next, the second data set (data set 2) was obtained from Pantadosi (1997)
originally designed from a randomized clinical trial for evaluating the benefit of
cytoxan, doxorubicin, and platinum (CAP) as an adjuvant to radiotherapy (R) for
treatment of locally advanced non small-cell lung cancer patients. A total of 164
patients were randomized to receive either the R only or the combined treatment of R
and CAP group, denoted by R+CAP, between 1979 and 1985. In data set 2, there are
86 patients in the R only group with 18% (14 patients) censored data, while 78
patients in the R+CAP group produce 16% (14 patients) censored data. Figure 3
displays the estimated survival function and log cumulative hazard plot. However, it’s
hard to see which period reveals significant visual differences between the two
estimated survival functions, resulting in the selection of weight function for WLR
test is difficult. Therefore, our proposed data-driven versatile test seems usefully here.
The relevant summary statistics and the associated one-sided p-values are shown in
table 6. Obviously, the p-value of G'° is the only one smaller than 0.05. Therefore,

the corresponding versatile test Kf,o(ﬁ) can still chose an appropriate weight to
reject the null hypothesis. It indicates that the combined treatment R+CAP could
prolong the lifetime of the patients with lung cancer. On the contrary, we find that the

13



all of versatile tests K7, (0.5) are fail to detect the survival difference between the

two groups.

These examples denote the shortcomings of K7, (0.5) and confirm the behavior

of these tests as demonstrated in the simulation study.

14



6. Concluding remarks

In this paper, we develop data-driven versatile tests statistic based on linear
combination of WLR and WKM to preserve better power by using a cross-validation
approach for selecting an appropriate weight, results the weight that is data-adaptive,
across a broad range of alternatives for two independent right-censored data. The
performance of the proposed data-driven versatile tests in this paper is superior to Chi
and Tsai (2001) in terms of the power testing. As seen in two examples, before testing
the equality of survival distributions, investigators must choose a weighted function
according to their clinical knowledge or based on the survival plots, so that the used
test statistic would be sensitive to a certain alternative. However, when lacking in the
clinical knowledge or the visual difference is not obvious in the survival plots, our
proposed method provide a convenience way to detect the difference between survival
distributions. Because the proposed method can be performed for testing the equality
of two survival distributions regardless of various alternatives, it becomes an

attractive feature.
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Appendix

Table 1. Estimated error rates, powers and censoring rates for each case with
n, = n, = 30 and censoring distribution U(0,2).

case I I i v Null
WKM 0.653 0.642 0.247 0.228 0.057
GO0 0.700 0.535 0.356 0.231 0.054
GO 0.654 0.577 0.251 0.197 0.052
GO 0.602 0.291 0.457 0.269 0.057
Gt 0.635 0.335 0.441 0.300 0.057
K§0(0.5) 0.682 0.609 0.299 0.227 0.054
K7 4(0.5) 0.654 0.620 0.250 0.211 0.055
K§1(0.5) 0.683 0.522 0.378 0.273 0.055
K7 1(0.5) 0.672 0.537 0.360 0.281 0.056
K3o(B) 0.693 0.652 0.309 0.244 0.058
K;o(B) 0.653 0.650 0.249 0.215 0.054
K;.(B) 0.707 0.661 0.382 0.309 0.075
K 1(B) 0.687 0.669 0.361 0.316 0.073

Censoring rate for
group 1
Censoring rate for
group 2

0.244 0.241 0.307 0.402
0.431
0.433 0.380 0.431 0.496

18



Table 2. Estimated error rates, powers and censoring rates for each case with
n, = n, = 50 and censoring distribution U(0,2).

case I I i v Null
WKM 0.857 0.830 0.387 0.930 0.045
GO0 0.882 0.736 0.507 0.821 0.045
G0 0.848 0.776 0.360 0.143 0.046
GOt 0.786 0.401 0.641 0.449 0.052
G 0.831 0.484 0.634 0.588 0.051
K;0(0.5) 0.871 0.801 0.454 0.892 0.046
K;0(0.5) 0.855 0.815 0.375 0.907 0.046
K;,(0.5) 0.866 0.713 0.533 0.800 0.048
K;,(0.5) 0.867 0.730 0.529 0.832 0.045
K§o(B) 0.873 0.826 0.455 0.916 0.047
K;o(B) 0.853 0.828 0.372 0.918 0.046
K;1(B) 0.879 0.828 0.578 0.919 0.066
K 1(B) 0.871 0.832 0.541 0.921 0.059
Censoring rate for
0.244 0.242 0.307 0.403

group 1

. 0.431
Censoring rate for
0.432 0.381 0.433 0.497

group 2

19



Table 3. The averages of estimated weight B for each case with n; = n, = 30 and
censoring distribution U(0, 2).

case I I i v Null
Kio(B) 0.330 0.399 0.616 0.645 0.738
K{o(B) 0.395 0.424 0.633 0.674 0.780
K3 1(B) 0.264 0.289 0.576 0.506 0.634
K;1(B) 0.288 0.291 0.524 0.521 0.625

Table 4. The averages of estimated weight B for each case with n; = n, = 50 and
censoring distribution U(0,2).

case I I i v Null
K3o(B) 0.192 0.238 0.511 0.146 0.752
K;o(B) 0.240 0.263 0.517 0.184 0.774
K;.1(B) 0.189 0.167 0.644 0.090 0.655

K 1(B) 0.206 0.160 0.581 0.090 0.639

20



Table 5. The test statistics of various tests and the associated one-sided p-values
for data set 1.

z-value p-value z-value p-value z-value p-value

WKM  3.028  0.001 B B=05

G0 2.691 0.004  Kg, () 036 2907 0.002 2.860  0.002
G0 3254 0001 Ki, () 080 3.209 0.001 3.141  0.001
G1 0.936 0.175 Kg'l([?) 0.08 2931 0.002 2.164  0.015

GY1 2000 0023 K;,(f) 022 2875 0002 2611  0.005

Table 6. The test statistics of various tests and the associated one-sided p-values
for data set 2.

Statistic p-value Statistic p-value Statistic p-value

WKM 1.063 0.144 B =05

=)

G®° 1136 0128 K;o(f) 040 1.094 0137 1101 0.135
G 1792 0037 K;,(f) 100 1792 0037 1460  0.072
G®'  -0.007 0503 K;,(f) 000 1.063 0.144 0546  0.292

GY* 0588 0278 K;,(B) 028 0937 0174 0833  0.202
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Figure 1. Survival functions for various alternative configurations.
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Figure 2. The estimated survival function and log cumulative hazard function for data
set 1.
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Figure 3. The estimated survival function and log cumulative hazard function for data
set 2.

23



