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ABSTRACT

In this work, we establish some new discrete Gronwall-Bellman-Ou-lang-type inequal-
ities with explicit bounds, which on one hand generalize some existing results and on the
other hand furnish a convenient tool in the study of qualitative as well as quantitative
properties of solutions of certain classes of difference equations. We illustrate this by
applying these new inequalities to study the boundedness, uniqueness, and continuous

dependence of the solutions of some boundary value problems for difference equations.



1. INTRODUCTION

It is well known that the inequalities have always been of great importance for the
development of many branches of mathmatics. The inequalities of various types have
been widely studied in most subjects involving mathmatical analysis. They are par-
ticulary useful for approximation theory and numerical analysis in which estimates of
approximation errors are involved. In the past years, the application of inequalities has
greatly expanded and they are now used not only in mathematics but also in other
areas.

The theory of finite difference equations has been rapidly developed in recent years
and has proved to be of fundamental importance in its applications to many different
disciplines. In the meantime, finite difference inequalities which exhibit explicit bounds
on unknown functions in general provide a very useful and important tool in the devel-
opment of the theory of finite difference equations. During the past years, motivated
and inspired by their applications in various branches of finite difference equations,
many such inequalities have been established.

Among varies types of inequalities, the so-called Gronwall-Bellman-Ou-lang-type in-
equalities is particularly useful which over the years has proven to be extremely useful
in the study of the existence, uniqueness, stability, boundedness, and many other prop-
erties of the solutions of a wide range of differential equations. (see |2, 4, 5, 12, 14, 15]).

This work consists of 4 Section and references. Section 1 presents some important in-
tegral and discrete inequalities involving functions of one and two independent variables
over the years, respectively. Section 2 deals with some new discrete Gronwall-Bellman-
Ou-lang type inequalities involving functions of two independent variables. Section 3
contains some applications in the study of some finite difference equations. Section 4

we make some conclusion and conjecture about our results.



Throughout, we shall use the following notations and defintions: I := [mg, M) NZ
and J := [ng, N) NZ are two fixed lattices of integral points in R, where mg,ng € Z,
M,N € ZU {oo}. Let Q:=1xJ C Z* Ry := (0,0), Ry := [0,00), R; := [1,00)
and for any (s,t) € €, the sub-lattice [my, 5| x [ng,t] N of Q will be denoted as Q).
I := [x0,X) and I, := [yo,Y) are two given intervals of R, where zg,yo € R, and
x =1 x I.

If U is a lattice in Z (respectively, Z?), the collections of all R-valued, R, -valued,
and Ry-valued function on U are denoted by F (U), Fy (U), and Fy (U) respectively.
For convenience, we extend the domain of each function in F (U), F, (U), and F; (U)
trivially to the ambient space Z (respectively, Z?). So for example, a function in F (U)
is regarded as a function defined on Z (respectively, Z?) with support in U. As usual,
the collection of all continuous functions of a topological space X into a topological
space Y will be denoted by C' (X,Y).

If U is a lattice in Z, the difference operator A on f € F (Z) or F, (Z) is defined as

Af(n):=fn+1)—f(n),nel,

and if V' is a lattice in Z?, the partial difference operators A; and A, on u € F (Z?) or
Fy (Z?) are defined as

Nu(myn) = u(m+1,n)—u(m,n),(mn) €V,

Nou(m,n) = u(m,n+1)—u(m,n),(m,n)eV.



2. RETARTED INTEGRAL AND DISCRETE INEQUALITIES

Among various branches of Gronwall-Bellman-type inequalities, a very useful one
is orginated from Ou-Tang. In his study of the boundedness of certain second order
differential equations, he established the following results which is generally known as

Ou-lang’s inequality:

Theorem 2.1. (Ou — Iang(8)) If u and f are non-negative functions on [0, 00) satisfying

u2(x)§k2+2/omf(s)u(s)ds

for all x € [0,00), where k > 0 is a constant, then

u(x)gk—i-/xf(s)ds
0
for all x € [0, 00).

Recently, Pachpatte established the following further generalizations of Ou-lang in-

equality:

Theorem 2.2. (Pachpatte[10]) Suppose u, f, g are continuous non-negative functions
on [0,00) and w a continuous non-decreasing function on [0,00) with w(r) > 0 for

r>0. If
u? () §k2+2/0 (f (s)u(s) +g(s)uls)w(u(s)))ds

for all x € [0,00), where k > 0 is a constant, then

u(z) < Q! [Q (k+/0xf(s)ds> +/ng(s)ds}

for all x € [0, 00), where
Q(r) ::/ ﬂ,r > 0.
1

w (s)
Q1 is the inverse of Q, and x1 € [0,00) is chosen in such a way that Q (k+ [; f (s)ds)+
Jy 9(s)ds € Dom (Q7) for all z € [0, z].



On the other hand, Lipovan oberved the following Gronwall-Bellman-Ou-lang-type
inequality which a handy tool in the study of the global existence of solutions to certain

integral equations and functional differential equations.

Theorem 2.3. (Lipovan[6]) Suppose u, f are continuous non-negative functions on
[0, X), w a continuous non-decreasing function on [0,00) with w(r) > 0 for r > 0,
and « : [zg, X) — [x9,X) a continuous non-decreasing function with o (zr) < x on
[zo, X). If

w <k [ 6w i) s

a(zo)
for all x € [xy, X), where k > 0 is a constant, then

u(xr) < Q7!

for all x € [0, 00), where

Q(r) :z/j%,r>0.

Q! s the inverse of Q, and x, € [xg,X) is chosen in such a way that Q (k) +
f;(f;)) f(s)ds € Dom (Q7!) for all z € [zg, 7).

In the recently, some new nonlinear retarded inequalities of Gronwall-Ou-lang type
are established, which can be used as effective tools in the study of integral and differ-

ential equations. Cheung establish the following:

Theorem 2.4. (Cheung[l]) Let a,b € C(x,Ro), a; € C*(I1, ), f; € C*(Ia, 1)
be nondecreasing with «; < x on I, f; < y on I, i = 1,2, w € C(Ry,Ry) be a
nondecreasing function with w (u) > 0 for k > 0 be a constant.

Ifue C(ARy) and

ai(z) ﬁ2(y)
u(z,y) <k:+/ / a(s,t)u stdtds+/ / (u(s,t))dtds
B1(yo) (z0)  B2(yo)



for any (z,y) € x, then
u (I, y) < G_l {G_l [G (keprl ({L’, y)ﬂ + By (I,y) Ay (l’,y)} (21)

Jor all v < x < w1, yo <y < y1, where

ai(z)  rPi(y)

A (x,y) = / a(s,t) dtds,
a1(zo)  B1(yo)
az(z)  rPa(y)

Bitwy) = [ [ bistdas
az(zo) 7 B2(yo)

G~ denotes the inverse function of G, and real numbers x1 € I, y1 € Iy are chosen so

that the quantity in the curly brackets of (1) is in the range of G.

Theorem 2.5. (Cheungl[l]) Let a,b,a;, 5; (i =1,2), w and k be as in Theoreml.4.
Letp € C' (Ry,Ry) and ¢ € O (Ry,Ry) with ¢ > 0 for u > 0. If u € C(x,Ry) and

for any (x,y) € x

air(z)  rPiy)
o(u(z,y)) < k—i—/ / a(s,t) ¢ (u(s,t))u(s,t)dtds

1(z0) v B1(yo)

az(x)  rB2(y) ,
; / [ b0 (st w s, t) deds.

2(wo) v B2(vo)

then for any vo < x < x9, Yo <y < Yo,

u(z,y) <G {G [go’l (k) expA; (x, y)} + By (z,y) expA; (z, y)} , (2.2)

where Ay (z,y) and By (z,y) are defined in Theorem1.4, G and G~ are as in Theorem
1.4, o=t is the inverse function of ¢ and x5 € 11, y; € Iy are chosen so that the quantity

in the curly brackets of (2) is in the range of G.



Among various generalizations of Ou-lang’s inequality, discretization is also an inter-
esting direction. Smilar to the contributions of the continuous versions of the inequality
to the study of differential equations, one naturally expects that discrete versions of the
inequality should also play an important role in the study of difference equations.

One of the earlier versions of discrete Ou-lang-type inequalities was obtained by

Pachpatte.

Theorem 2.6. (Pachpatte[13]) Let u (t), a(t), b(t), h(t) be real-valued nonnegative

functions defined for t € Ny ={0,1,2,---} and let ¢ be a nonnegative constant. If

u? (t) < 02+§(u(8+1) +u(s))[a(s)u(s) + h(s)]
for all t € Ny, then B
w ) <p@ [0 +a (o)
for all t € Ny, where B
p (D) :c+tz§h(s)

for all t € Ny.

Very recently, in the process of studying the boundedness, uniqueness, and continuous
dependence of the solutions of some boundary value problems, Cheung establish the

following:

Theorem 2.7. (Cheung[b]) Suppose u € F. (). If k >0, p > 1 are constants and

a,b € Fy (), ¢ € C(Ry,Ry) are functions satisfying

(1) ¢ is non-decreasing with ¢ () > 0 for > 0; and
(1) for any (m,n) € €,

m—1 n—1 m—1 n—1

S=mo t=no S=mo t=no



then

1

wlm,n) < {2 [0 (K75 4+ A0mm) + B Oom )]}
for all (m,n) € Q (m1,n1), where

m—1 n—1

A(m,n) = Z Za(s,t),

S§=Mo t=No

m—1 n—1

B(m,n) = > Y b(st),

s§=Mo t=No

and (mq,ny) € s chosen such that ®,_4 (kl_% + A (m,n)) + B (m,n) € Dom (®,))

for all (m,n) € Qun, ny)-

Theorem 2.8. (Cheung[4]) Suppose uw € Fy (). If k > 0 ,is a constant and a,b €
Fo (), p,h € C(Ry,Ry) are functions satisfying
(1) h(t) and H (t) := @, t >0, are strictly increasing with H (t) — oo as t — 00;
(17) ¢ is non-decreasing; and

(i73) for any (m,n) € Q,

h(u(m,n)) <k-+ Z_: i:a(s,t)u(s,t)—i- z_: Z_:b(s,t)u(s,t)go(u(s,t)),

then

wmon < 1 {5 [ (5 A+ 5 n)

for all (m,n) € Q(my,ny), where

A(m,n) = a(s,t),

B(m,n) := Z Zb(s,t),
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and (my,ny) € Q is chosen such that ®g (h%(k) + A (m, n)) + B (m,n) € Dom (®3')

for all (m,n) € Qmy ny)-
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3. MAIN RESULTS

The main aim here is to establish some new nonlinear discrete inequalities involving

functions of two independent variables, which discretize some results in Cheung [1].

Theorem 3.1. (Cheung|2]) Suppose uw € Fo (). If ¢ > 0 is a constant and a,b €
Fo (), we C(Ry,Ry) are function satisfying

(i) w is non-decreasing with w (r) > 0 for r > 0; and

(17) for any (m,n) € Q,

m—1 n—1

u(mn) <c+ Y > bs,hw(u(s,b)), (3.1)

then
u(m,n) <G G (c)+ B (m,n)} (3.2)

for all (m,n) € Qn, n,), where

m—1 n—1

B(m,n) := Z Zb(s,t),

S=Mmo t=no

G(v) = /f%,v>0,

G(0) := lim G(v),

v—0F

G~ is the inverse of G, and (mq,n1) € Q is chosen such that G (c) + B(m,n) €
Dom (G™) for all (m,n) € Q).

Proof. Tt suffices to consider the case ¢ > 0, for then the case ¢ = 0 can be arrived at
by continuity argument. Let ¢ > 0 and define a positive non-decreasing function

m—1 n—1

z(m,n) =c+ Z Zb(s,t}w(u(s,t)),

S=MmMo t=no
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and z (mg,n) = z (m,ng) = c. Hence, for any (m,n) € Q,

Nz (myn) = z(m+1,n)—z(m,n)
= > _b(m,t)w(u(m,t))

i b(m,t)w (z(m,t))

<
< w(z(m,n—l))ib(m,t).

Therefore, by the Mean Value Theorem for Integrals, for each (m,n) € €, there exists

¢ with z(m,n) <& < z(m+ 1,n), such that

AN (Goz)(myn) = G(z(m+1,n))—G(z(m,n))

/z(m+l,n) ds
B z(m,n) w (5>
1
= ——Ajz(m,n).

w (£)

Since w is non-decreasing, w (§) > w (z (m,n)) and so

1
Al (G o Z) (’I?”L7 n) < mﬁlz (m, n)
w(z(m,n—1)) —
<
S lelmmy 2t
t=ng
n—1
< ) b(mit)
t=ngo
for all (m,n) € Q. Therefore,
m—1 m—1 n—1

Y A(Goz)(s,n) < YD b(s,t)=B(m,n).

S=myg s=mg t=ng
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It follows that

G(z(m,n)) < G(z(mg,n))+ B(m,n)

= G(c)+B(m,n).
Since G~ is increasing on DomG ™!, we have
z(m,n) < GTHG(c)+ B (m,n)},
and thus

u(m,n) < G {G(c)+ B(m,n)}.

Theorem 3.2. Suppose u € Fo (). If ¢ > 0 is a constant and a,b € Fy (), w €
C (Rg,Ry) are function satisfying
(1) w is non-decreasing with w (r) > 0 for r > 0; and

(13) for any (m,n) € Q,

u(m,n) <c+ 2 ia(s,t)u(s,t) + 2 ib(s,t)w(u(s,t)), (3.3)
then
u(m,n) < GG (cK (m,n)) + K (m,n) B (m,n)} (3.4)

for all (m,n) € Qn, n,), where

B(m,n) := Z Zb(s,t),

m—1 n—1
K (m,n) = H I—O—Za(s,t)];
s=myg t=ng

G is defined in Theorem 2.1, and (my,ny) €  is chosen such that
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G (cK (m,n)) + K (m,n) B (m,n) € Dom(G™") for all (m,n) € Qe n)-

Proof. Tt suffices to consider the case ¢ > 0, for then the case ¢ = 0 can be arrived at

by continuity argument. Let ¢ > 0 and define a positive non-decreasing function

m—1 n—1

p(m,n)=c+ > Y b(s,t)w(u(st)) (3.5)

s=mg t=ng

for (m,n) € Q, then from (3.3)

m—1 n—1

w(m,n) <p(m,n)+ Z Za(s,t)u(s,t). (3.6)

s=mg t=ng

Since p (m,n) > 0 is non-decreasing, from (3.6) we have

ulm,n) _ Sk 5.1)

o) = < q(m,n) —1—1-22(1515 ’> (3.7)

s=mg t=no

and ¢ (mg,n) = q(m,ng) = 1. Hence,

Ag (m,n) = ga (m.t) Zggg | (3.8)
and from 3.8 we have
gm+1,n)—q(m,n) = Zamt ; (3.9)
t=no
and thus .
q(m+1,n+1)—q(m,n+1):Za(m,t)ﬁézzzg (3.10)

From (3.9) and (3.10) we have
Aig(myn+1) — Aig(m,n) < a(m,n)q(m,n).

Then,



Aig(m,n+1)  Hig(m,n)

a(m,n).
) glmm = 0
By the monotonicity of ¢ it follow that
Alq <m7n+ 1) . Alq (mvn) < a(m,n).

qg(m,n+1) q(m,n)

This implies that

N (M) < a(mn),

q(m,n)
and thus
A1q (m7 n) =
a(m,t)
g (m,n) th:O
Therefore, we have
n—1
q(m,n) q(m,n) — = Y
which implies that
n—1
g(m+1,n)
— < 1+ a(m,t).
g (m,n) t;o
Now keeping n fixed, set m = s and substitute s = mg, mo + 1,--- ,m — 1, we get
m—1 m—1 n—1
q(s+1,n)
—= < 14 a(s,t)|,
e = 2
which implies that
q (m n) m—1 n—1
——= < L+ ) a(st)],
iy < T [re S )

15
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and thus
m—1 n—1
gmmn) < ] 1+Za(s,t>]-
s=my t=ng

By (3.9), (3.7) and the last inequality, we have

m—1 n—1

u(m,n) < cK (m,n) + K (m,n) Z Z b(s,t)w(u(s,t)). (3.11)

s=mg t=no
Fixing any numbers m; (mo <y — 1 <my — 1) and 73 (np <7y — 1 < ny — 1), from
(3.11) we have

m—1 n—1

u(m,n) < cK (M, M) + K (My,m) Y > b(s,t)w(u(s,t)) (3.12)

s=mg t=ng
forme<m-—1<m; —1,n, <n—1<n; — 1. Define a positive function

m—1 n—1

r(m,n) = cK (M, m) + K (m,m) Y > b(s,t)w(u(s,t)) (3.13)

s=mg t=no
with r (mg,n) = r (m,ng) = cK (M, n1) .

Forme <m—1<m; —1,n0 <n—1<m; — 1, it follows from (3.13) that

w(m,n) <r(m,n), (3.14)
and
Ar(m,n) < K (mlﬁl)g b (m,t)w (u(m,t))
< K (my,m)w(r(m,n— 1)):25 b(m,t).
Then
- ﬁz:ﬂ{”;’f)l)) = K (1, 71) nzl b(m,t). (3.15)

t=no
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Since

r(m+1,n) ds

Ay (Gor)(mn) = /

r(m,n) m
= LA r(m,n)
Cow©
for r(m,n) <& <r(m+1,n)
AN (Gor)(m,n) < ﬁl{(ml,nl) r(m,n—1) met

This implies that

m—1 n—1

(Gor)(m,n) = (Gor)(me,n) < K(my,m) Yy > blst),

s=mg t=ng

and thus

G(r(m,n)) < G(r(mo,n))+ K (my,m) B (m,n)

< G(cK (m1,m)) + K (1, 71) B (m, n)

formg<m—-—1<m; —1,n0<n—1<n; —1. Taking m = my, n = n; in the above

inequality, we obtain
G (T (mhﬁl)) S G (CK (ml,ﬁl)) + K (ml,ﬁl) B (ml,ﬁl) .

Since mg <my; —1<m;—1,ng <ny —1<n; —1 are arbitary, from the last relation,

it follows that

G (r(m,n)) < G(cK (m,n)) + K (m,n) B(m,n).
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Since G~ is increasing on DomG™!, we have
r(m,n) < GG (cK (m,n)) + K (m,n) B(m,n)} (3.16)
formo<m—1<my—1,ny <n—1<mn; —1. Hence, by (3.14) and (3.16), we get
u(m,n) < G HG (cK (m,n)) + K (m,n) B (m,n)}.
O

Remark 3.3. (i)Theorem 2.2 cannot derive from Theorem 1.7, for a > 1 is necessary in
Theorem 1.7.

(77) It is also easy to see that Theorem 2.2 cannot derive from Theorem 1.8.

(737) Similarly to the previous remark, in many cases G (00) = oo and in these

situations, inequality (3.4) holds for all (m,n) € Q.

Theorem 3.4. Lel a,b,m,n,w and c be the same as in Theorem 2.2. Lel p €

C' (Ro, Ry)

and " € C (Ry,Ry) with ¢ (u) > 0 for u > 0,

o (umm) < e+ 30 S als, )¢ (uls,)uls, )+ S S b(s,0) ¢ (uls,0)w(u(s,1))
e e (3. 17)
then
w(m.n) < GG (o7 (¢) K (m,n)) + K (m,n) B (m,n)} (3.18)

for all (m,n) € Qun,n,), where B (m,n),K (m,n) are defined as in Theorem 2.2, and
(mq,n1) € Q is chosen such that G (¢! (¢) K (m,n)) + K (m,n) B (m,n) € Dom (G 1)

for all (m,n) € Qun, ny)-

Proof. 1t suffices to consider the case ¢ > 0, for then the case ¢ = 0 can be arrived
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at by continuity argument. Let ¢ > 0. Define

z(m,n) = ¢! {c+ i ia(s,t)go/ (u(s,t))u(s,t)+ i ib(s,t)gpl (u(s,t))w(u(s,t))}.

s=mg t=ng s=mg t=ng
Then z(mg,n) = z(m,ng) = ¢ '(c), z is a position nondecreasing function, and

¢ (u(m,n)) < p(z(m,n)). Now,

Mg lmn) = 3 a(mit)g (ulm ) ulm,e) + 3 blm,t) g (u(m, ) w(u(m, 1)

= > [atm )@ (wlm ) u(mot) 4+, 1)@ (u (m, 1)) (u (m. 1)
< z_: [a (m, 1) (2 (m, 1)) 2 (m,£) + b (m, 1) @ (2 (m, 1)) w (2 (m,t))] .

Hence, by the Mean Value Theorem, for each (m,n) € Q, there exists £ with z (m,n) <

¢ < z(m+1,n), such that

D (z(m,n)) = @ (z(m+1n))—¢(z(mn))

= ¢ (§) Lz (m.n).

Since w is non-deceasing, w (§) < w (z (m,n)), then

N (z(m,n))
¢ (&)

Nz (m,n) =

n—1

90/—(5)90’ (z(m,n—1)) Y la(m,t) z (m,t) + b (m,t)w(z (m,1))]

1

IN

t=no

< ia( ,t)z(m,t)—l—ib(m,t}w(z(m,t))

for all (m,n) € Q. Therefore,
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m—1 m—1 n—1 m—1 n—1
ZAlz(s,n) < ZZast —i—Zstt s,t)) .
s=my s=mg t=ng s=mg t=ng
It follows that
m—1 n—1 m—1 n—1

z(m,n) —z(mg,n) < ZZaSt +Zzb$’t s;1))

s=mg t=ng s=mg t=ng

and thus

m—1 n—1 m—1 n—1

z(m,n) < +ZZ¢L82§ —i—Zstt s, 1)) .

s=mg t=ng s=mg t=ng

By Theorem 2.2, we get
s(mn) < GG (97 () K (mn)) + K (m.n) B (m,n)},

which implies that

u(m,n) < GG (¢ (¢)K (m,n)) + K (m,n) B(m,n)}.

Corollary 3.5. Let a,b,m,n,w and c be the same as in Theorem 2.2. Let p > 1 be a

constant. If u(m,n) € C (2, Ry) and for any (m,n) € Q,

m—1 n—1

u? (m,n) < c+zz (s,t)uP (s,t)logu(s,t)

s=mg t=ng

m—1 n—1

+ 33 b(s.t)ur (s, ) w (logu (s, 1)),

then
u(m,n) <G* {G (c%K(m,n)> + K (m,n) B (m,n)}

(3.19)

(3.20)
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for all (m,n) € Qm, n,), where B (m,n),K (m,n) are defined as in Theorem 2.2.
Proof. This follows immediately from Theorem 2.4 by letting ¢ (s) = sP. O

Corollary 3.6. Let a,b,m,n,w and c be the same as in Theorem 2.2. Let p > 1 be a

constant. If u(m,n) € C (2, Ry) and for any (m,n) € Q,

m—1 n—1 m—1 n—1
P(m,n) <c+ Z Z a(s,t)uP (s,t)logu(s,t)+ Z Z b(s,t)u” (s,t)w (logu(s,t)),
s=mg t=ng s=myg t=ng

(3.21)

then
1
u(m,n) < exp (G_l {G {(—log c) K (m,n)} + K (m,n) B (m,n)}) (3.22)
D
for all (m,n) € Qn, ny), where B (m,n),K (m,n) are defined as in Theorem 2.2.

Proof. Tt suffices to consider the case ¢ > 0, for then the case ¢ = 0 can be arrived at

by continuity argument. Taking h (m,n) = logu (m,n), then inequality (3.19) reduces

to
m—1 n—1 m—1 n—1
eph<c+zz (5,t) eP"h (s,t) + Zstte”hhst)
s=mg t=ng s=myg t=ng

which is a special case of inequality (3.17) which ¢ = exp (ph). By Theorem 2.4, we

get the desired inequality (3.22) directly. O

Theorem 3.7. Let ¢,a,b,m,n,w and c be the same as in Theorem 2.4. Let k €
C (2, Ry). If u(m,n) € C (L Ry) and for any (m,n) € €,

m—1 n—1

¢ (u(m,n) <C+ZZ (s,t) p (u(s,t))u(s,t)

s=mg t=no

m—1 n—1

+ Z Zb(s,t) ¢ (u(s,t)) Z Z k(s t,on)w(u(o,n))|, (3.23)

s=mg t=ng g=mo N=no

then

u(m,n) <G {G (¢~ (¢) K (m,n)) + K (m,n) B(m,n)} (3.24)
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for all (m,n) € Qm, n,), where

B(m,n) = i ib(s,t) [Z > k(s,t,a,n)] :

s=mg t=no g=mo N=no

G,G7' and K (m,n) are defined as in Theorem 2.2, and (my,n;y) € S is chosen such

that G (¢~ (¢) K (m,n)) + K (m,n) B (m,n) € Dom (G™") for all (m,n) € Qun, n,)-

Proof. Tt suffices to consider the case ¢ > 0, for then the case ¢ = 0 can be arrived at

by continuity argument. Let ¢ > 0. Define

z(m,n) = ¢! {c—i— Z_ ia(s,t)gol(u(s,t))u(s,t)#—

s=mg t=ng
m—1 n—1 S i
5 S0 ¢ 0 | 3 ket aien)|.
s=mg t=nog o=mg N=ng
Then z(mg,n) = z(m,ng) = ¢ '(c), z is a position nondecreasing function, and
¢ (u(m,n)) < ¢ (z(m,n)).

Using similar procedure as in Theorem 2.4’s proof, we can obtain

z(m,n) < 90_1(0)4—2Za(s,t)z(s,t)+ZZb(s,t)[Z Zk(s,t,a,n)w(z(a,n))].

Then use the similar procedure as in Theorem 2.2’s proof, we get
2(mn) < GG (¢ () K (mn)) + K (m,n) B (m,n)}

and thus

S|

u(m,n) < GG (¢ (¢)K (m,n)) + K (m,n) B(m,n)}.
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Theorem 3.8. Let ¢,a,b,m,n,w and c be the same as in Theorem 2.4, and L, H €
C (R}, Ry) satisfy

0 < L(m,n,v)—L(m,n,w)<H(m,n,w)(v—uw) (3.25)

for all (m,n) € R3, with v < w. If u(m,n) € C(Q,Ry) and for any (m,n) € Q,

m—1 n—1

pu(mm) <ct D Y alst)e (uls,t)u(st)

s=mg t=ng

m—1 n—1

Y Y b(sit) e (uls, ) Lis tyu(s,1)), (3.26)

s=mg t=no

then
u(m,n) <o t(c)K (m,n)+ K (m,n) L (m,n)H (m,n), (3.27)

where K (m,n) is defined as in Theorem 2.2,

m—1 n—1

Lmn)=Y > b(s,t)L(s,t,o7" (c) K (s,1)), (3.28)

s=mg t=ng

and
m—1 n—1

H(mn)=> Y b(s,t)K(s,t)H (s,t, 07" (c) K (s,1)). (3.29)

s=mg t=ng

Proof. 1t suffices to consider the case ¢ > 0, for then the case ¢ = 0 can be arrived at

by continuity argument. Let ¢ > 0. Define

z(m,n)=p* {c+ i ia(s,t)go/ (u(s,t))u(s,t)+ i ib(s,t)g@l (u(s,t))L(s,t,u(s,t))}.

s=mg t=ng s=mg t=ng
Then z(mg,n) = z(m,ng) = ¢ '(c), z is a position nondecreasing function, and
¢ (u(m,n)) < p(z(m,n)). Now,

n—1

N (z(myn)) = Z a(m,t) ¢ (u(m,t))u(m,t)+ Z_: b(m,t)¢ (u(m,t)) L (m,t,u(m,t))

t=ng t=no
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< i [a (m, 1) @ (2 (m, 1)) 2 (m,t) + b (m,t) @ (2 (m,£)) L (m,t, 2 (m,t))] .

Hence, by the Mean Value Theorem, for each (m,n) € €2, there exists £ with z (m,n) <

¢ < z(m+1,n), such that

Lap(z(m,n)) = ¢(z(m+1n)) = ¢(z(m,n))

Aqp (2 (m,n))
Niz(m,n) = -
12 (m.n) ' (€)
n—1
1 ;
< 7O (z(m,n—1)) Y [a(m,t)z(m,t)+b(m,t) L(s,t,z (m,1))]
t=ng
n—1 n—1
< D a(mt)z(m,t)+ Y b(m,t)L(s,t,2(m,t))
t=ng t=ng
for all (m,n) € Q. Therefore,
m—1 m—1 n—1 m—1 n—1
> Az(sn) <Y ) alsit)z(st)+ > Y b(s,t)L(st,z(s,t)).
s=my s=mg t=no s=mg t=no
It follows that
-1 n—1 m—1 n—1
d(mon) —z(mom) < 303 alst)z(s)+ S S blst) Ls,t,z (s,1),
s=mg t=ng s=mg t=nog
and thus
m—1 n—1 m—1 n—1

z(m,n) < o t(c)+ Z Za(s,t)z(s,t)—i— Z Zb(s,t)L(s,t,z(s,t)).

s=mg t=ng s=mg t=ng
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By Theorem 2.2, we get

m—1 n—1

z(m,n) <@ () K (m,n) + K (m,n) > Y b(s,t) L(s,t,2(s,1)).

s=mg t=ng

Setting
m—1 n—1
plmn) = S S b(s,t) Ls,t,2(s,1)),
s=mg t=ng
then

z(m,n) <o (e) K (m,n) + K (m,n) p(m,n). (3.30)

Since L (m,n,v) is nondecreasing with respect to v for fixed (m,n), from (3.30) we can

obtain that

p(m,n) < 2 2 b(s,t)L(s,t,07" (c) K (s,t) + K (s,t) p(s,t))
z_: z_: b(s,t)H [s, t,p ' (c) K (s, t)} K (s,t) p(s,t)

s=mg t=no

IN

m—1 n—1

+ 3 S (s, ) L[s,to7 (0) K (s,1)]

s=mg t=ng

by the condition (3.25). By Theorem 2.2, we get

Hence, from (3.30) and (3.31), it follows that
2(mm) < @7 (e K (myn) + K (m,n) £ (m,n) H (m, ),
and thus

u(m,n) < ¢ (c)K (m,n)+ K (m,n)L(m,n)H(m,n).
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4. APPLICATIONS

In this section, we use the results obtained in Section 3 to study the boundedness,
uniqueness, and continuous dependence of the solutions of certain boundary value prob-
lems for difference equations involving 2 independent variables.

Subsection 1: Consider the boundary value problem (BVP):
AIZZ (TTI,, n) = f (TTL, n,z (m7 n) » W (Z (m7 TL)))

with
z(m,ng) =p(m), z(mo,n) =q(n), p(mo) =q(no) =0.
Here, f € F(Q xR),pe F(I), and ¢ € F (J) are given.

Our first result deals with the boundedness of solutions.

Theorem 4.1. Consider (BVP), and suppose
|f (m,nsu, @ (w)] < a(myn) ful +b(m,n) e (fuf), (4.1)

and

lp(m) +q(n)] <c (4.2)

for some ¢ > 0, where a,b € Fy (), then all solutions of (BVP) satisfy
2 (m, )| < GG (e (m, m)) + K (m, n) B (m, n)},

where B (m,n), K (m,n) is defined as in Theorem 2.2. In particular, if B (m,n) is

bounded on Q then every solution of (BV P) is bounded on Q.

Proof. Observe first that z = z (m,n) solves (BVP) if and only if it satisfies the differ-

ence equation
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m—1 n—1

2(mon) =p(m)+q(n)+ Y > flst2(s,0),w(z(s1)). (4.3)

s=mg t=ng

Hence, by Inequalities (4.1) and (4.2) it follows that

m—1 n—1 m—1 n—1

|z mn\<c+ZZast]zst\+Zstt (|2 (s, 1)]) -

s=mg t=nog s=mg t=no

By Theorem 2.2, we have
|z (m,n)| < GG (cK (m,n)) + K (m,n) B (m,n)}

for all (m,n) € Q. O

The next result is about the uniqueness of solutions.

Theorem 4.2. Consider (BV P), and

| (m,m,ug, o (w) = f (msn,us, 0 (u2))| < a(myn) fuy — ua| + b(m,n) ¢ (Jur — us),
(4.4)
and

@ (lur — uz]) < |ur — ugl (4.5)
for some a,b € F (Q), then (BVP) has at most one solution on Q.

Proof. Let z (m,n) and Z (m,n) be two solutions of (BVP) on Q. By Equations (4.4)

and (4.5), we have

m—1 n—1

|z (m,n) =2z (mn)] < YD 1f(s,tz(s.8),w(2(5,0) = [ (5,82 (s,1) ,w (2 (s,1)))]

s=mg t=ng

m—1 n—1 m—1 n—1

< ZZ (s,t) |2 (s,t) — st|+Zstt (|2 (s, t) — Z (s,1)])
s=mg t=ng s=mg t=ng
m—1 n—1 m—1 n—1

< Z Za’(sut)‘z(svt)_z(‘g?t)‘—i_ Z Zb(s,t)]z(s,t)—?(s,t)\

s=mg t=ng s=mg t=ng
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By Theorem 2.2, let w be the identity function, we get

for all (s,t) € 2. Hence z =% on €.

0J

Finally, we investigate the continuous dependence of the solutions of (BVP) on the
function f and the boundary data p and ¢. For this we consider the corresponding

variation of problem (BVPV):
AlQZ (m7 n) = T (m7 n,z (ma n) , W (Z (m7 n)))

with
z(m,ng) =p(m), z(mo,n) =q(n), P(mo) =7 (ne) =0.

Here, f € F (2 xR), p € F(I), and g € F (J) are given.

Theorem 4.3. Consider (BV P) and (BVPV). Let ¢ > 0. If for all (m,n) € Q,
U1, Us € R,

@ (m,n,ur, @ (ua)) = f (m,n, ug, 0 (ug))| < a(myn) lur — ugl+ (m, n) ¢ (Jur — )
for some a,b € Fy (2);

(@) [(p(m) =p(m)) + (¢ (n) =g ()| < 35, ¢ (Jur = us) < |ur — uaf; and

(i73) for all solutions Z (m,n) of (BVPV),

m—1 n—1

S N mnzw @) - Fmnzw ()] <

s=mg t=ng

Y

D[ ™

then

|z (m,n) —z(m,n)| <eK (m,n)exp (K (m,n)B(m,n)),

where B (m,n), K (m,n) are defined as in Theorem 2.2. Hence, z depends continuously

on f, p, and q.
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Proof. Let z (m,n) and Z (m,n) be solutions of (BVP) and (BVPV), respectively. Then
z satisfies Equation (4.3) and Z satisfies the corresponding equation

m—1 n—1

Z(m,n)=pm)+qn)+ Y Y fs,t,Z(s,t), w(Z(s,1).

s=mg t=ng

Hence,

|2 (m,n) =z (m,n)| < [(p(m) —p(m))+(¢(n) —g(n))

IN

A
Q)
_l_
-]
M
3
=
=
|
il
+
=
3
3
%
|
il

< 5+ZZ (m,n)|z—Z|+b(m,n)|z—Z|).

s=mg t=no
By assumptions (i), (ii), (iii) and Theorem 2.2 to the function |z (m,n) — Z (m,n)|, we
have

|z (m,n) —Z(m,n)| <eK (m,n) (K (m,n) B(m,n)).

Now restricted to any compact sub-lattice, B (m,n), K (m,n) is bounded, so
|z (m,n) —Z(m,n)| <eT

for some T > 0 and for all (m,n) in this compact sub-lattice. Hence, z depends

continuously on f, p, and q. O
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Subsection 2: Consider the boundary value problem of hyperbolic partial delay equa-
tion (BVPH)

DyDyu? (x,y) = F (z,y,u(z — hiy (2),y — haa (¥)) ,u (v — hay () ,y — ha2 (y))) (4.6)
with
u(z,yo) = k1 (x) ,u(xo,y) = ko (n), k1 (z0) = k2 (v0) = 0. (4.7)

Here, p > 1is a constant, [} = [0, X), Iy = [y0,Y), A =11 x I, ky € C([1,R), ko €
C (I, R), hy1 (z) € C (11, Ry), hiz (y) € C (I, Rg) with x —hyy (z) > 0, y—hio (y) > 0,
hy () <1, hiy (y) < 1 and hy (z0) = kg (yo) =0, = 1,2.

Counsider (BVPH). If

|F (2,9, u,0) < [ul”™ (a (2,9) [ul +b(,y) w (o)) , (4.8)

and

|k (2) + k2 (y)| < ¢, (4.9)

then
u(m,n) <G ! {G (C%F (m, n)) —|—F(m,n)§(m,n)} ,

where a,b € C (A,Ry), ¢ > 0 is a constant, w is defined as in Theorem 2.1 and let

1 1
Hy —max———— Hp—max————  i=1,2. 4.10
T w T (410
m—1 n—1
K (m,n) = H 1+ 26(0,7)] :
s$=myo t=ng
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It is easy to observe that every solution u (m,n) of (4.6)-(4.7) satisfies the equivalent

integral equation

uP (z,y) = ki(z)+ ko (y) +

/ / Stus—hll() t—hlg()) (S—hgl(),t—hgza)))(dtd&)

Applying (4.8)-(4.10) to (4.11) and changing the variables we obtain

ﬁl(y
lu(z, )| < c+/( / (0,7) |u(o,7)|" drdo
a1(zo)

1(y0)

ai(z) ﬁl(y
/ / (0,7) |u (o, )P w (u (o, 7)) drdo, (4.12)
a Ba(

1(zo0) J B1(yo)
where a; () = 2 — hyy (z), B; (y) =y — hia (y), i = 1,2, @(0,7) = Hi1Hpza (a7’ (0),
71 (7)) b(o,7) = HyHaa (a3 (o), 5" (1)) and A denote the maximal existent in-
terval of u (x,y).

Now, we discretize the inequalities (4.12), we can obtain

m—1 n—1 m—1 n—1
wm ) <c+ > Y ale ) ulen)f + > bo7) ulo, ) wu(oT)).
s=mg S=ny §=MmMo S=No

(4.13)

Then, by the Theorem 2.4, we get
u(m,n)ﬁGil{G(%f( ))—i—?(m,n)g(m,n)}.

Hence we can get the upper bound of u(m,n).
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5. CONCLUSIONS

Although our main result is far from the generalization of Theorem A and Theorem
B, it is indeed not a special case of them. As stated in Remark 3.3, Theorem 3.2 can
not be derived from Theorem 2.7. On one hand, p > 1 is one of the conditions in
Theorem 2.7. On the other hand, u (s,t)- ¢ (u (s,t)) is not identical with ¢ (u (s,t)) for
both Theorem 2.7 and Theorem 2.8. Hence, in the future we will consider whether we
can find a more general pattern to cover these different situations.

In this work, we discuss the case with finite domain. In Chapter 5 of |6], Pachpatte

considered some infinite case which is stated as follows:
Theorem. 5.4.1 Let u(m,n) a(m,n) b(m,n) € D(NZ,Ry), where Ny = {0,1,...}.

(ay) Let a (m,n) be nondecreasing in m and nonincreasing in n. If

u(m,n) Sa(m,n)—i—z_ Z b(s,t)u(s,t)

s=0 t=n+1
for all (m,n) € Ny, then
m—1 0
u(m,n)ga(m,n)H 1+ Z b(s,t)]
s=0 t=n+1

for all (m,n) € No.

(ag) Let a(m,n) be nonincreasing in each variable m and n. If

u(m,n) <a(m,n)+ Z Z b(s,t)u(s,t),

s=m+1t=n+1

for all (m,n) € Ny, then

u(m,n) < a(m,n) H 1+ Z b(s,t)]

for all (m,n) € No.
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We conjecture that our main results can also be extended to infinity.
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