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ABSTRACT

In this work, we establish some new discrete Gronwall-Bellman-Ou-Iang-type inequal-

ities with explicit bounds, which on one hand generalize some existing results and on the

other hand furnish a convenient tool in the study of qualitative as well as quantitative

properties of solutions of certain classes of di�erence equations. We illustrate this by

applying these new inequalities to study the boundedness, uniqueness, and continuous

dependence of the solutions of some boundary value problems for di�erence equations.
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1. INTRODUCTION

It is well known that the inequalities have always been of great importance for the

development of many branches of mathmatics. The inequalities of various types have

been widely studied in most subjects involving mathmatical analysis. They are par-

ticulary useful for approximation theory and numerical analysis in which estimates of

approximation errors are involved. In the past years, the application of inequalities has

greatly expanded and they are now used not only in mathematics but also in other

areas.

The theory of �nite di�erence equations has been rapidly developed in recent years

and has proved to be of fundamental importance in its applications to many di�erent

disciplines. In the meantime, �nite di�erence inequalities which exhibit explicit bounds

on unknown functions in general provide a very useful and important tool in the devel-

opment of the theory of �nite di�erence equations. During the past years, motivated

and inspired by their applications in various branches of �nite di�erence equations,

many such inequalities have been established.

Among varies types of inequalities, the so-called Gronwall-Bellman-Ou-Iang-type in-

equalities is particularly useful which over the years has proven to be extremely useful

in the study of the existence, uniqueness, stability, boundedness, and many other prop-

erties of the solutions of a wide range of di�erential equations. (see [2, 4, 5, 12, 14, 15]).

This work consists of 4 Section and references. Section 1 presents some important in-

tegral and discrete inequalities involving functions of one and two independent variables

over the years, respectively. Section 2 deals with some new discrete Gronwall-Bellman-

Ou-Iang type inequalities involving functions of two independent variables. Section 3

contains some applications in the study of some �nite di�erence equations. Section 4

we make some conclusion and conjecture about our results.
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Throughout, we shall use the following notations and de�ntions: I := [m0,M) ∩ Z

and J := [n0, N) ∩ Z are two �xed lattices of integral points in R, where m0, n0 ∈ Z,

M,N ∈ Z ∪ {∞}. Let Ω := I × J ⊂ Z2, R+ := (0,∞), R0 := [0,∞), R1 := [1,∞)

and for any (s, t) ∈ Ω, the sub-lattice [m0, s]× [n0, t]∩Ω of Ω will be denoted as Ω(s.t).

I1 := [x0, X) and I2 := [y0, Y ) are two given intervals of R, where x0, y0 ∈ R, and

χ = I1 × I2.

If U is a lattice in Z (respectively, Z2), the collections of all R-valued, R+-valued,

and R0-valued function on U are denoted by F (U), F+ (U), and F0 (U) respectively.

For convenience, we extend the domain of each function in F (U), F+ (U), and F0 (U)

trivially to the ambient space Z (respectively, Z2). So for example, a function in F (U)

is regarded as a function de�ned on Z (respectively, Z2) with support in U . As usual,

the collection of all continuous functions of a topological space X into a topological

space Y will be denoted by C (X, Y ).

If U is a lattice in Z, the di�erence operator 4 on f ∈ F (Z) or F+ (Z) is de�ned as

4f (n) := f (n+ 1)− f (n) , n ∈ U,

and if V is a lattice in Z2, the partial di�erence operators 41 and 42 on u ∈ F (Z2) or

F+ (Z2) are de�ned as

41u (m,n) := u (m+ 1, n)− u (m,n) , (m,n) ∈ V,

42u (m,n) := u (m,n+ 1)− u (m,n) , (m,n) ∈ V.
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2. RETARTED INTEGRAL AND DISCRETE INEQUALITIES

Among various branches of Gronwall-Bellman-type inequalities, a very useful one

is orginated from Ou-Iang. In his study of the boundedness of certain second order

di�erential equations, he established the following results which is generally known as

Ou-Iang's inequality:

Theorem 2.1. (Ou− Iang[8]) If u and f are non-negative functions on [0,∞) satisfying

u2 (x) ≤ k2 + 2

ˆ x

0

f (s)u (s) ds

for all x ∈ [0,∞), where k ≥ 0 is a constant, then

u (x) ≤ k +

ˆ x

0

f (s) ds

for all x ∈ [0,∞).

Recently, Pachpatte established the following further generalizations of Ou-Iang in-

equality:

Theorem 2.2. (Pachpatte[10]) Suppose u, f, g are continuous non-negative functions

on [0,∞) and w a continuous non-decreasing function on [0,∞) with w (r) > 0 for

r > 0. If

u2 (x) ≤ k2 + 2

ˆ x

0

(f (s)u (s) + g (s)u (s)w (u (s))) ds

for all x ∈ [0,∞), where k ≥ 0 is a constant, then

u (x) ≤ Ω−1
[
Ω

(
k +

ˆ x

0

f (s) ds

)
+

ˆ x

0

g (s) ds

]
for all x ∈ [0,∞), where

Ω (r) :=

ˆ r

1

ds

w (s)
, r > 0.

Ω−1 is the inverse of Ω, and x1 ∈ [0,∞) is chosen in such a way that Ω
(
k +
´ x
0
f (s) ds

)
+

´ x
0
g (s) ds ∈ Dom (Ω−1) for all x ∈ [0, x1].
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On the other hand, Lipovan oberved the following Gronwall-Bellman-Ou-Iang-type

inequality which a handy tool in the study of the global existence of solutions to certain

integral equations and functional di�erential equations.

Theorem 2.3. (Lipovan[6]) Suppose u, f are continuous non-negative functions on

[x0, X), w a continuous non-decreasing function on [0,∞) with w (r) > 0 for r > 0,

and α : [x0, X) → [x0, X) a continuous non-decreasing function with α (x) ≤ x on

[x0, X). If

u (x) ≤ k +

ˆ α(x)

α(x0)

f (s)w (u (s)) ds

for all x ∈ [x0, X), where k ≥ 0 is a constant, then

u (x) ≤ Ω−1

[
Ω (k) +

ˆ α(x)

α(x0)

f (s) ds

]

for all x ∈ [0,∞), where

Ω (r) :=

ˆ r

1

ds

w (s)
, r > 0.

Ω−1 is the inverse of Ω, and x1 ∈ [x0, X) is chosen in such a way that Ω (k) +
´ α(x)
α(x0)

f (s) ds ∈ Dom (Ω−1) for all x ∈ [x0, x1).

In the recently, some new nonlinear retarded inequalities of Gronwall-Ou-Iang type

are established, which can be used as e�ective tools in the study of integral and di�er-

ential equations. Cheung establish the following:

Theorem 2.4. (Cheung[1]) Let a, b ∈ C (χ,R0), αi ∈ C1 (I1, I1), βi ∈ C1 (I2, I2)

be nondecreasing with αi ≤ x on I1, βi ≤ y on I2, i = 1, 2, w ∈ C (R0,R0) be a

nondecreasing function with w (u) > 0 for k ≥ 0 be a constant.

If u ∈ C (4,R0) and

u (x, y) ≤ k +

ˆ α1(x)

α1(x0)

ˆ β1(y)

β1(y0)

a (s, t)u (s, t) dtds+

ˆ α2(x)

α2(x0)

ˆ β2(y)

β2(y0)

b (s, t)w (u (s, t)) dtds
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for any (x, y) ∈ χ, then

u (x, y) ≤ G−1
{
G−1 [G (kexpA1 (x, y))] +B1 (x, y)A1 (x, y)

}
(2.1)

for all x0 ≤ x ≤ x1, y0 ≤ y ≤ y1, where

A1 (x, y) :=

ˆ α1(x)

α1(x0)

ˆ β1(y)

β1(y0)

a (s, t) dtds,

B1 (x, y) :=

ˆ α2(x)

α2(x0)

ˆ β2(y)

β2(y0)

b (s, t) dtds,

G (r) :=

ˆ r

r0

ds

w (s)
, r ≥ r0 > 0.

G−1 denotes the inverse function of G, and real numbers x1 ∈ I1, y1 ∈ I2 are chosen so

that the quantity in the curly brackets of (1) is in the range of G.

Theorem 2.5. (Cheung[1]) Let a, b, αi, βi (i = 1, 2), w and k be as in Theorem1.4.

Letϕ ∈ C1 (R0,R0) and ϕ
′′ ∈ C1 (R0,R0) with ϕ

′
> 0 for u > 0. If u ∈ C (χ,R0) and

for any (x, y) ∈ χ

ϕ (u (x, y)) ≤ k +

ˆ α1(x)

α1(x0)

ˆ β1(y)

β1(y0)

a (s, t)ϕ
′
(u (s, t))u (s, t) dtds

+

ˆ α2(x)

α2(x0)

ˆ β2(y)

β2(y0)

b (s, t)ϕ
′
(u (s, t))w (u (s, t)) dtds,

then for any x0 ≤ x ≤ x2, y0 ≤ y ≤ y2,

u (x, y) ≤ G−1
{
G
[
ϕ−1 (k) expA1 (x, y)

]
+B1 (x, y) expA1 (x, y)

}
, (2.2)

where A1 (x, y) and B1 (x, y) are de�ned in Theorem1.4, G and G−1are as in Theorem

1.4, ϕ−1 is the inverse function of ϕ and x2 ∈ I1, y2 ∈ I2 are chosen so that the quantity

in the curly brackets of (2) is in the range of G.
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Among various generalizations of Ou-Iang's inequality, discretization is also an inter-

esting direction. Smilar to the contributions of the continuous versions of the inequality

to the study of di�erential equations, one naturally expects that discrete versions of the

inequality should also play an important role in the study of di�erence equations.

One of the earlier versions of discrete Ou-Iang-type inequalities was obtained by

Pachpatte.

Theorem 2.6. (Pachpatte[13]) Let u (t), a (t), b (t), h (t) be real-valued nonnegative

functions de�ned for t ∈ N0 = {0, 1, 2, · · · } and let c be a nonnegative constant. If

u2 (t) ≤ c2 +
t−1∑
s=0

(u (s+ 1) + u (s)) [a (s)u (s) + h (s)]

for all t ∈ N0, then

u (t) ≤ p (t)
t−1∏
s=0

[1 + a (s)]

for all t ∈ N0, where

p (t) := c+
t−1∑
s=0

h (s)

for all t ∈ N0.

Very recently, in the process of studying the boundedness, uniqueness, and continuous

dependence of the solutions of some boundary value problems, Cheung establish the

following:

Theorem 2.7. (Cheung[5]) Suppose u ∈ F+ (Ω). If k ≥ 0 , p > 1 are constants and

a, b ∈ F0 (Ω), ϕ ∈ C (R0,R0) are functions satisfying

(i) ϕ is non-decreasing with ϕ (r) > 0 for r > 0; and

(ii) for any (m,n) ∈ Ω,

up (m,n) ≤ k +
m−1∑
s=m◦

n−1∑
t=n◦

a (s, t)u (s, t) +
m−1∑
s=m◦

n−1∑
t=n◦

b (s, t)u (s, t)ϕ (u (s, t)) ,
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then

u (m,n) ≤
{

Φ−1p−1

[
Φp−1

(
k1−

1
p + A (m,n)

)
+B (m,n)

]} 1
p−1

for all (m,n) ∈ Ω (m1, n1), where

A (m,n) :=
m−1∑
s=m◦

n−1∑
t=n◦

a (s, t) ,

B (m,n) :=
m−1∑
s=m◦

n−1∑
t=n◦

b (s, t) ,

and (m1, n1) ∈ Ω is chosen such that Φp−1

(
k1−

1
p + A (m,n)

)
+B (m,n) ∈ Dom

(
Φ−1p−1

)
for all (m,n) ∈ Ω(m1,n1).

Theorem 2.8. (Cheung[4]) Suppose u ∈ F+ (Ω). If k > 0 ,is a constant and a, b ∈

F0 (Ω), ϕ, h ∈ C (R+,R+) are functions satisfying

(i) h (t) and H (t) := h(t)
t
, t > 0, are strictly increasing with H (t)→∞ as t→∞;

(ii) ϕ is non-decreasing; and

(iii) for any (m,n) ∈ Ω,

h (u (m,n)) ≤ k +
m−1∑
s=m◦

n−1∑
t=n◦

a (s, t)u (s, t) +
m−1∑
s=m◦

n−1∑
t=n◦

b (s, t)u (s, t)ϕ (u (s, t)) ,

then

u (m,n) ≤ H−1
{

Φ−1H

[
ΦH

(
k

h−1 (k)
+ A (m,n)

)
+B (m,n)

]}
for all (m,n) ∈ Ω (m1, n1), where

A (m,n) :=
m−1∑
s=m◦

n−1∑
t=n◦

a (s, t) ,

B (m,n) :=
m−1∑
s=m◦

n−1∑
t=n◦

b (s, t) ,
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and (m1, n1) ∈ Ω is chosen such that ΦH

(
k

h−1(k)
+ A (m,n)

)
+ B (m,n) ∈ Dom

(
Φ−1H

)
for all (m,n) ∈ Ω(m1,n1).
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3. MAIN RESULTS

The main aim here is to establish some new nonlinear discrete inequalities involving

functions of two independent variables, which discretize some results in Cheung [1].

Theorem 3.1. (Cheung[2]) Suppose u ∈ F0 (Ω). If c ≥ 0 is a constant and a, b ∈

F0 (Ω), w ∈ C (R0,R0) are function satisfying

(i) w is non-decreasing with w (r) > 0 for r > 0; and

(ii) for any (m,n) ∈ Ω,

u (m,n) ≤ c+
m−1∑
s=m◦

n−1∑
t=n◦

b (s, t)w (u (s, t)) , (3.1)

then

u (m,n) ≤ G−1 {G (c) +B (m,n)} (3.2)

for all (m,n) ∈ Ω(m1,n1), where

B (m,n) :=
m−1∑
s=m◦

n−1∑
t=n◦

b (s, t) ,

G (v) :=

ˆ v

1

ds

w (s)
, v > 0,

G (0) := lim
v→0+

G (v) ,

G−1 is the inverse of G, and (m1, n1) ∈ Ω is chosen such that G (c) + B (m,n) ∈

Dom (G−1) for all (m,n) ∈ Ω(m1,n1).

Proof. It su�ces to consider the case c > 0, for then the case c = 0 can be arrived at

by continuity argument. Let c > 0 and de�ne a positive non-decreasing function

z (m,n) = c+
m−1∑
s=m◦

n−1∑
t=n◦

b (s, t)w (u (s, t)) ,
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and z (m0, n) = z (m,n0) = c. Hence, for any (m,n) ∈ Ω,

41z (m,n) = z (m+ 1, n)− z (m,n)

=
n−1∑
t=n0

b (m, t)w (u (m, t))

≤
n−1∑
t=n0

b (m, t)w (z (m, t))

≤ w (z (m,n− 1))
n−1∑
t=n0

b (m, t) .

Therefore, by the Mean Value Theorem for Integrals, for each (m,n) ∈ Ω, there exists

ξ with z (m,n) ≤ ξ ≤ z (m+ 1, n), such that

41 (G ◦ z) (m,n) = G (z (m+ 1, n))−G (z (m,n))

=

ˆ z(m+1,n)

z(m,n)

ds

w (s)

=
1

w (ξ)
41z (m,n) .

Since w is non-decreasing, w (ξ) ≥ w (z (m,n)) and so

41 (G ◦ z) (m,n) ≤ 1

w (z (m,n))
41z (m,n)

≤ w (z (m,n− 1))

w (z (m,n))

n−1∑
t=n0

b (m, t)

≤
n−1∑
t=n0

b (m, t)

for all (m,n) ∈ Ω. Therefore,

m−1∑
s=m0

41 (G ◦ z) (s, n) ≤
m−1∑
s=m0

n−1∑
t=n0

b (s, t) = B (m,n) .
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It follows that

G (z (m,n)) ≤ G (z (m0, n)) +B (m,n)

= G (c) +B (m,n) .

Since G−1 is increasing on DomG−1, we have

z (m,n) ≤ G−1 {G (c) +B (m,n)} ,

and thus

u (m,n) ≤ G−1 {G (c) +B (m,n)} .

�

Theorem 3.2. Suppose u ∈ F0 (Ω). If c ≥ 0 is a constant and a, b ∈ F0 (Ω), w ∈

C (R0,R0) are function satisfying

(i) w is non-decreasing with w (r) > 0 for r > 0; and

(ii) for any (m,n) ∈ Ω,

u (m,n) ≤ c+
m−1∑
s=m0

n−1∑
t=n0

a (s, t)u (s, t) +
m−1∑
s=m0

n−1∑
t=n0

b (s, t)w (u (s, t)) , (3.3)

then

u (m,n) ≤ G−1 {G (cK (m,n)) +K (m,n)B (m,n)} (3.4)

for all (m,n) ∈ Ω(m1,n1), where

B (m,n) :=
m−1∑
s=m0

n−1∑
t=n0

b (s, t) ,

K (m,n) :=
m−1∏
s=m0

[
1 +

n−1∑
t=n0

a (s, t)

]
,

G is de�ned in Theorem 2.1, and (m1, n1) ∈ Ω is chosen such that
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G (cK (m,n)) +K (m,n)B (m,n) ∈ Dom (G−1) for all (m,n) ∈ Ω(m1,n1).

Proof. It su�ces to consider the case c > 0, for then the case c = 0 can be arrived at

by continuity argument. Let c > 0 and de�ne a positive non-decreasing function

p (m,n) = c+
m−1∑
s=m0

n−1∑
t=n0

b (s, t)w (u (s, t)) (3.5)

for (m,n) ∈ Ω, then from (3.3)

u (m,n) ≤ p (m,n) +
m−1∑
s=m0

n−1∑
t=n0

a (s, t)u (s, t) . (3.6)

Since p (m,n) > 0 is non-decreasing, from (3.6) we have

u (m,n)

p (m,n)
≤ q (m,n) := 1 +

m−1∑
s=m0

n−1∑
t=n0

a (s, t)
u (s, t)

p (s, t)
, (3.7)

and q (m0, n) = q (m,n0) = 1. Hence,

41q (m,n) =
n−1∑
t=n0

a (m, t)
u (m, t)

p (m, t)
, (3.8)

and from 3.8 we have

q (m+ 1, n)− q (m,n) =
n−1∑
t=n0

a (m, t)
u (m, t)

p (m, t)
, (3.9)

and thus

q (m+ 1, n+ 1)− q (m,n+ 1) =
n∑

t=n0

a (m, t)
u (m, t)

p (m, t)
. (3.10)

From (3.9) and (3.10) we have

41q (m,n+ 1)−41q (m,n) ≤ a (m,n) q (m,n) .

Then,
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41q (m,n+ 1)

q (m,n)
− 41q (m,n)

q (m,n)
≤ a (m,n) .

By the monotonicity of q it follow that

41q (m,n+ 1)

q (m,n+ 1)
− 41q (m,n)

q (m,n)
≤ a (m,n) .

This implies that

42

(
41q (m,n)

q (m,n)

)
≤ a (m,n) ,

and thus

41q (m,n)

q (m,n)
≤

n−1∑
t=n0

a (m, t) .

Therefore, we have

q (m+ 1, n)

q (m,n)
− q (m,n)

q (m,n)
≤

n−1∑
t=n0

a (m, t) ,

which implies that

q (m+ 1, n)

q (m,n)
≤ 1 +

n−1∑
t=n0

a (m, t) .

Now keeping n �xed, set m = s and substitute s = m0,m0 + 1, · · · ,m− 1, we get

m−1∏
s=m0

q (s+ 1, n)

q (s, n)
≤

m−1∏
s=m0

[
1 +

n−1∑
t=n0

a (s, t)

]
,

which implies that

q (m,n)

q (m0, n)
≤

m−1∏
s=m◦

[
1 +

n−1∑
t=n0

a (s, t)

]
,
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and thus

q (m,n) ≤
m−1∏
s=m0

[
1 +

n−1∑
t=n0

a (s, t)

]
.

By (3.9), (3.7) and the last inequality, we have

u (m,n) ≤ cK (m,n) +K (m,n)
m−1∑
s=m0

n−1∑
t=n0

b (s, t)w (u (s, t)) . (3.11)

Fixing any numbers m1 (m0 < m1 − 1 ≤ m1 − 1) and n1 (n0 < n1 − 1 ≤ n1 − 1), from

(3.11) we have

u (m,n) ≤ cK (m1, n1) +K (m1, n1)
m−1∑
s=m0

n−1∑
t=n0

b (s, t)w (u (s, t)) (3.12)

for m◦ ≤ m− 1 ≤ m1 − 1, n◦ ≤ n− 1 ≤ n1 − 1. De�ne a positive function

r (m,n) = cK (m1, n1) +K (m1, n1)
m−1∑
s=m0

n−1∑
t=n0

b (s, t)w (u (s, t)) (3.13)

with r (m0, n) = r (m,n0) = cK (m1, n1) .

For m◦ ≤ m− 1 ≤ m1 − 1, n0 ≤ n− 1 ≤ n1 − 1, it follows from (3.13) that

u (m,n) ≤ r (m,n) , (3.14)

and

41r (m,n) ≤ K (m1, n1)
n−1∑
t=n0

b (m, t)w (u (m, t))

≤ K (m1, n1)w (r (m,n− 1))
n−1∑
t=n0

b (m, t) .

Then
41r (m,n)

w (r (m,n− 1))
= K (m1, n1)

n−1∑
t=n0

b (m, t) . (3.15)
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Since

41 (G ◦ r) (m,n) =

ˆ r(m+1,n)

r(m,n)

ds

w (s)

=
1

w (ξ)
41r (m,n)

for r (m,n) ≤ ξ ≤ r (m+ 1, n)

41 (G ◦ r) (m,n) ≤ 1

w (ξ)
K (m1, n1)w (r (m,n− 1))

n−1∑
t=n0

b (m, t)

≤ w (r (m,n− 1))

w (r (m,n))
K (m1, n1)

n−1∑
t=n0

b (m, t)

≤ K (m1, n1)
n−1∑
t=n0

b (m, t) .

This implies that

(G ◦ r) (m,n)− (G ◦ r) (m◦, n) ≤ K (m1, n1)
m−1∑
s=m0

n−1∑
t=n0

b (s, t) ,

and thus

G (r (m,n)) ≤ G (r (m◦, n)) +K (m1, n1)B (m,n)

≤ G (cK (m1, n1)) +K (m1, n1)B (m,n)

for m0 ≤ m− 1 ≤ m1 − 1, n0 ≤ n− 1 ≤ n1 − 1. Taking m = m1, n = n1 in the above

inequality, we obtain

G (r (m1, n1)) ≤ G (cK (m1, n1)) +K (m1, n1)B (m1, n1) .

Since m0 < m1 − 1 ≤ m1 − 1, n0 < n1 − 1 ≤ n1 − 1 are arbitary, from the last relation,

it follows that

G (r (m,n)) ≤ G (cK (m,n)) +K (m,n)B (m,n) .
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Since G−1 is increasing on DomG−1, we have

r (m,n) ≤ G−1 {G (cK (m,n)) +K (m,n)B (m,n)} (3.16)

for m0 < m− 1 ≤ m1 − 1, n0 < n− 1 ≤ n1 − 1. Hence, by (3.14) and (3.16), we get

u (m,n) ≤ G−1 {G (cK (m,n)) +K (m,n)B (m,n)} .

�

Remark 3.3. (i)Theorem 2.2 cannot derive from Theorem 1.7, for α > 1 is necessary in

Theorem 1.7.

(ii) It is also easy to see that Theorem 2.2 cannot derive from Theorem 1.8.

(iii) Similarly to the previous remark, in many cases G (∞) = ∞ and in these

situations, inequality (3.4) holds for all (m,n) ∈ Ω.

Theorem 3.4. Let a, b,m, n, w and c be the same as in Theorem 2.2. Let ϕ ∈

C1 (R0,R0)

and ϕ
′′ ∈ C (R+,R0) with ϕ

′
(u) > 0 for u > 0,

ϕ (u (m,n)) ≤ c+
m−1∑
s=m0

n−1∑
t=n0

a (s, t)ϕ
′
(u (s, t))u (s, t)+

m−1∑
s=m0

n−1∑
t=n0

b (s, t)ϕ
′
(u (s, t))w (u (s, t)) ,

(3.17)

then

u (m,n) ≤ G−1
{
G
(
ϕ−1 (c)K (m,n)

)
+K (m,n)B (m,n)

}
(3.18)

for all (m,n) ∈ Ω(m1,n1), where B (m,n),K (m,n) are de�ned as in Theorem 2.2, and

(m1, n1) ∈ Ω is chosen such that G (ϕ−1 (c)K (m,n)) +K (m,n)B (m,n) ∈ Dom (G−1)

for all (m,n) ∈ Ω(m1,n1).

Proof. It su�ces to consider the case c > 0, for then the case c = 0 can be arrived
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at by continuity argument. Let c > 0. De�ne

z (m,n) := ϕ−1

{
c+

m−1∑
s=m0

n−1∑
t=n0

a (s, t)ϕ
′
(u (s, t))u (s, t) +

m−1∑
s=m0

n−1∑
t=n0

b (s, t)ϕ
′
(u (s, t))w (u (s, t))

}
.

Then z (m0, n) = z (m,n0) = ϕ−1 (c), z is a position nondecreasing function, and

ϕ (u (m,n)) ≤ ϕ (z (m,n)). Now,

41ϕ (z (m,n)) =
n−1∑
t=n0

a (m, t)ϕ
′
(u (m, t))u (m, t) +

n−1∑
t=n0

b (m, t)ϕ
′
(u (m, t))w (u (m, t))

=
n−1∑
t=n0

[
a (m, t)ϕ

′
(u (m, t))u (m, t) + b (m, t)ϕ

′
(u (m, t))w (u (m, t))

]

≤
n−1∑
t=n0

[
a (m, t)ϕ

′
(z (m, t)) z (m, t) + b (m, t)ϕ

′
(z (m, t))w (z (m, t))

]
.

Hence, by the Mean Value Theorem, for each (m,n) ∈ Ω, there exists ξ with z (m,n) ≤

ξ ≤ z (m+ 1, n), such that

41ϕ (z (m,n)) = ϕ (z (m+ 1, n))− ϕ (z (m,n))

= ϕ
′
(ξ)41z (m,n) .

Since w is non-deceasing, w (ξ) ≤ w (z (m,n)), then

41z (m,n) =
41ϕ (z (m,n))

ϕ′ (ξ)

≤ 1

ϕ′ (ξ)
ϕ
′
(z (m,n− 1))

n−1∑
t=n0

[a (m, t) z (m, t) + b (m, t)w (z (m, t))]

≤
n−1∑
t=n0

a (m, t) z (m, t) +
n−1∑
t=n0

b (m, t)w (z (m, t))

for all (m,n) ∈ Ω. Therefore,
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m−1∑
s=m0

41z (s, n) ≤
m−1∑
s=m0

n−1∑
t=n0

a (s, t) z (s, t) +
m−1∑
s=m0

n−1∑
t=n0

b (s, t)w (z (s, t)) .

It follows that

z (m,n)− z (m0, n) ≤
m−1∑
s=m0

n−1∑
t=n0

a (s, t) z (s, t) +
m−1∑
s=m0

n−1∑
t=n0

b (s, t)w (z (s, t)) ,

and thus

z (m,n) ≤ ϕ−1 (c) +
m−1∑
s=m0

n−1∑
t=n0

a (s, t) z (s, t) +
m−1∑
s=m0

n−1∑
t=n0

b (s, t)w (z (s, t)) .

By Theorem 2.2, we get

z (m,n) ≤ G−1
{
G
(
ϕ−1 (c)K (m,n)

)
+K (m,n)B (m,n)

}
,

which implies that

u (m,n) ≤ G−1
{
G
(
ϕ−1 (c)K (m,n)

)
+K (m,n)B (m,n)

}
.

�

Corollary 3.5. Let a, b,m, n, w and c be the same as in Theorem 2.2. Let p ≥ 1 be a

constant. If u (m,n) ∈ C (Ω,R0) and for any (m,n) ∈ Ω,

up (m,n) ≤ c+
m−1∑
s=m0

n−1∑
t=n0

a (s, t)up (s, t) log u (s, t)

+
m−1∑
s=m0

n−1∑
t=n0

b (s, t)up (s, t)w (log u (s, t)) , (3.19)

then

u (m,n) ≤ G−1
{
G
(
c

1
pK (m,n)

)
+K (m,n)B (m,n)

}
(3.20)
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for all (m,n) ∈ Ω(m1,n1), where B (m,n),K (m,n) are de�ned as in Theorem 2.2.

Proof. This follows immediately from Theorem 2.4 by letting ϕ (s) = sp. �

Corollary 3.6. Let a, b,m, n, w and c be the same as in Theorem 2.2. Let p ≥ 1 be a

constant. If u (m,n) ∈ C (Ω,R1) and for any (m,n) ∈ Ω,

up (m,n) ≤ c+
m−1∑
s=m0

n−1∑
t=n0

a (s, t)up (s, t) log u (s, t)+
m−1∑
s=m0

n−1∑
t=n0

b (s, t)up (s, t)w (log u (s, t)) ,

(3.21)

then

u (m,n) ≤ exp

(
G−1

{
G

[(
1

p
log c

)
K (m,n)

]
+K (m,n)B (m,n)

})
(3.22)

for all (m,n) ∈ Ω(m1,n1), where B (m,n),K (m,n) are de�ned as in Theorem 2.2.

Proof. It su�ces to consider the case c > 0, for then the case c = 0 can be arrived at

by continuity argument. Taking h (m,n) = log u (m,n), then inequality (3.19) reduces

to

eph ≤ c+
m−1∑
s=m0

n−1∑
t=n0

a (s, t) ephh (s, t) +
m−1∑
s=m0

n−1∑
t=n0

b (s, t) ephh (s, t) ,

which is a special case of inequality (3.17) which ϕ = exp (ph). By Theorem 2.4, we

get the desired inequality (3.22) directly. �

Theorem 3.7. Let ϕ, a, b,m, n, w and c be the same as in Theorem 2.4. Let k ∈

C (Ω2,R0). If u (m,n) ∈ C (Ω,R0) and for any (m,n) ∈ Ω,

ϕ (u (m,n)) ≤ c+
m−1∑
s=m0

n−1∑
t=n0

a (s, t)ϕ
′
(u (s, t))u (s, t)

+
m−1∑
s=m0

n−1∑
t=n0

b (s, t)ϕ
′
(u (s, t))

[
s∑

σ=m0

t∑
η=n0

k (s, t, σ, η)w (u (σ, η))

]
, (3.23)

then

u (m,n) ≤ G−1
{
G
(
ϕ−1 (c)K (m,n)

)
+K (m,n)B (m,n)

}
(3.24)
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for all (m,n) ∈ Ω(m1,n1), where

B (m,n) =
m−1∑
s=m0

n−1∑
t=n0

b (s, t)

[
s∑

σ=m0

t∑
η=n0

k (s, t, σ, η)

]
,

G,G−1 and K (m,n) are de�ned as in Theorem 2.2, and (m1, n1) ∈ Ω is chosen such

that G (ϕ−1 (c)K (m,n)) +K (m,n)B (m,n) ∈ Dom (G−1) for all (m,n) ∈ Ω(m1,n1).

Proof. It su�ces to consider the case c > 0, for then the case c = 0 can be arrived at

by continuity argument. Let c > 0. De�ne

z (m,n) := ϕ−1

{
c+

m−1∑
s=m0

n−1∑
t=n0

a (s, t)ϕ
′
(u (s, t))u (s, t) +

m−1∑
s=m0

n−1∑
t=n0

b (s, t)ϕ
′
(u (s, t))

[
s∑

σ=m0

t∑
η=n0

k (s, t, σ, η)w (u (σ, η))

]
.

Then z (m0, n) = z (m,n0) = ϕ−1 (c), z is a position nondecreasing function, and

ϕ (u (m,n)) ≤ ϕ (z (m,n)).

Using similar procedure as in Theorem 2.4's proof, we can obtain

z (m,n) ≤ ϕ−1 (c) +
m−1∑
s=m0

n−1∑
t=n0

a (s, t) z (s, t) +
m−1∑
s=m0

n−1∑
t=n0

b (s, t)

[
s∑

σ=m0

t∑
η=n0

k (s, t, σ, η)w (z (σ, η))

]
.

Then use the similar procedure as in Theorem 2.2's proof, we get

z (m,n) ≤ G−1
{
G
(
ϕ−1 (c)K (m,n)

)
+K (m,n)B (m,n)

}
and thus

u (m,n) ≤ G−1
{
G
(
ϕ−1 (c)K (m,n)

)
+K (m,n)B (m,n)

}
.

�
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Theorem 3.8. Let ϕ, a, b,m, n, w and c be the same as in Theorem 2.4, and L, H ∈

C (R3
0,R0) satisfy

0 ≤ L (m,n, v)− L (m,n,w) ≤ H (m,n,w) (v − w) (3.25)

for all (m,n) ∈ R2
0, with v ≤ w. If u (m,n) ∈ C (Ω,R0) and for any (m,n) ∈ Ω,

ϕ (u (m,n)) ≤ c+
m−1∑
s=m0

n−1∑
t=n0

a (s, t)ϕ
′
(u (s, t))u (s, t)

+
m−1∑
s=m0

n−1∑
t=n0

b (s, t)ϕ
′
(u (s, t))L (s, t, u (s, t)) , (3.26)

then

u (m,n) ≤ ϕ−1 (c)K (m,n) +K (m,n)L (m,n)H (m,n) , (3.27)

where K (m,n) is de�ned as in Theorem 2.2,

L (m,n) =
m−1∑
s=m0

n−1∑
t=n0

b (s, t)L
(
s, t, ϕ−1 (c)K (s, t)

)
, (3.28)

and

H (m,n) =
m−1∑
s=m0

n−1∑
t=n0

b (s, t)K (s, t)H
(
s, t, ϕ−1 (c)K (s, t)

)
. (3.29)

Proof. It su�ces to consider the case c > 0, for then the case c = 0 can be arrived at

by continuity argument. Let c > 0. De�ne

z (m,n) = ϕ−1

{
c+

m−1∑
s=m0

n−1∑
t=n0

a (s, t)ϕ
′
(u (s, t))u (s, t) +

m−1∑
s=m0

n−1∑
t=n0

b (s, t)ϕ
′
(u (s, t))L (s, t, u (s, t))

}
.

Then z (m0, n) = z (m,n0) = ϕ−1 (c), z is a position nondecreasing function, and

ϕ (u (m,n)) ≤ ϕ (z (m,n)). Now,

41ϕ (z (m,n)) =
n−1∑
t=n0

a (m, t)ϕ
′
(u (m, t))u (m, t) +

n−1∑
t=n0

b (m, t)ϕ
′
(u (m, t))L (m, t, u (m, t))
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≤
n−1∑
t=n0

[
a (m, t)ϕ

′
(z (m, t)) z (m, t) + b (m, t)ϕ

′
(z (m, t))L (m, t, z (m, t))

]
.

Hence, by the Mean Value Theorem, for each (m,n) ∈ Ω, there exists ξ with z (m,n) ≤

ξ ≤ z (m+ 1, n), such that

41ϕ (z (m,n)) = ϕ (z (m+ 1, n))− ϕ (z (m,n))

= ϕ
′
(ξ)41z (m,n) .

Since w is non-deceasing, w (ξ) ≤ w (z (m,n)) and so

41z (m,n) =
41ϕ (z (m,n))

ϕ′ (ξ)

≤ 1

ϕ′ (ξ)
ϕ
′
(z (m,n− 1))

n−1∑
t=n0

[a (m, t) z (m, t) + b (m, t)L (s, t, z (m, t))]

≤
n−1∑
t=n0

a (m, t) z (m, t) +
n−1∑
t=n0

b (m, t)L (s, t, z (m, t))

for all (m,n) ∈ Ω. Therefore,

m−1∑
s=m0

41z (s, n) ≤
m−1∑
s=m0

n−1∑
t=n0

a (s, t) z (s, t) +
m−1∑
s=m0

n−1∑
t=n0

b (s, t)L (s, t, z (s, t)) .

It follows that

z (m,n)− z (m0, n) ≤
m−1∑
s=m0

n−1∑
t=n0

a (s, t) z (s, t) +
m−1∑
s=m0

n−1∑
t=n0

b (s, t)L (s, t, z (s, t)) ,

and thus

z (m,n) ≤ ϕ−1 (c) +
m−1∑
s=m0

n−1∑
t=n0

a (s, t) z (s, t) +
m−1∑
s=m0

n−1∑
t=n0

b (s, t)L (s, t, z (s, t)) .
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By Theorem 2.2, we get

z (m,n) ≤ ϕ−1 (c)K (m,n) +K (m,n)
m−1∑
s=m0

n−1∑
t=n0

b (s, t)L (s, t, z (s, t)) .

Setting

ρ (m,n) =
m−1∑
s=m0

n−1∑
t=n0

b (s, t)L (s, t, z (s, t)) ,

then

z (m,n) ≤ ϕ−1 (c)K (m,n) +K (m,n) ρ (m,n) . (3.30)

Since L (m,n, v) is nondecreasing with respect to v for �xed (m,n), from (3.30) we can

obtain that

ρ (m,n) ≤
m−1∑
s=m0

n−1∑
t=n0

b (s, t)L
(
s, t, ϕ−1 (c)K (s, t) +K (s, t) ρ (s, t)

)
≤

m−1∑
s=m0

n−1∑
t=n0

b (s, t)H
[
s, t, ϕ−1 (c)K (s, t)

]
K (s, t) ρ (s, t)

+
m−1∑
s=m0

n−1∑
t=n0

b (s, t)L
[
s, t, ϕ−1 (c)K (s, t)

]
by the condition (3.25). By Theorem 2.2, we get

ρ (m,n) ≤
m−1∑
s=m0

n−1∑
t=n0

b (s, t)L
[
s, t, ϕ−1 (c)K (s, t)

]
×

{
m−1∑
s=m0

n−1∑
t=n0

b (s, t)H
[
s, t, ϕ−1 (c)K (s, t)

]
K (s, t)

}
(3.31)

Hence, from (3.30) and (3.31), it follows that

z (m,n) ≤ ϕ−1 (c)K (m,n) +K (m,n)L (m,n)H (m,n) ,

and thus

u (m,n) ≤ ϕ−1 (c)K (m,n) +K (m,n)L (m,n)H (m,n) .
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4. APPLICATIONS

In this section, we use the results obtained in Section 3 to study the boundedness,

uniqueness, and continuous dependence of the solutions of certain boundary value prob-

lems for di�erence equations involving 2 independent variables.

Subsection 1: Consider the boundary value problem (BVP):

∆12z (m,n) = f (m,n, z (m,n) , w (z (m,n)))

with

z (m,n0) = p (m) , z (m0, n) = q (n) , p (m0) = q (n0) = 0.

Here, f ∈ F (Ω× R), p ∈ F (I), and q ∈ F (J) are given.

Our �rst result deals with the boundedness of solutions.

Theorem 4.1. Consider (BVP), and suppose

|f (m,n, u, ϕ (u))| ≤ a (m,n) |u|+ b (m,n)ϕ (|u|) , (4.1)

and

|p (m) + q (n)| ≤ c (4.2)

for some c ≥ 0, where a, b ∈ F+ (Ω), then all solutions of (BVP) satisfy

|z (m,n)| ≤ G−1 {G (cK (m,n)) +K (m,n)B (m,n)} ,

where B (m,n), K (m,n) is de�ned as in Theorem 2.2. In particular, if B (m,n) is

bounded on Ω then every solution of (BV P ) is bounded on Ω.

Proof. Observe �rst that z = z (m,n) solves (BVP) if and only if it satis�es the di�er-

ence equation
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z (m,n) = p (m) + q (n) +
m−1∑
s=m0

n−1∑
t=n0

f (s, t, z (s, t) , w (z (s, t))) . (4.3)

Hence, by Inequalities (4.1) and (4.2) it follows that

|z (m,n)| ≤ c+
m−1∑
s=m0

n−1∑
t=n0

a (s, t) |z (s, t)|+
m−1∑
s=m0

n−1∑
t=n0

b (s, t)w (|z (s, t)|) .

By Theorem 2.2, we have

|z (m,n)| ≤ G−1 {G (cK (m,n)) +K (m,n)B (m,n)}

for all (m,n) ∈ Ω. �

The next result is about the uniqueness of solutions.

Theorem 4.2. Consider (BV P ), and

|f (m,n, u1, ϕ (u1))− f (m,n, u2, ϕ (u2))| ≤ a (m,n) |u1 − u2|+ b (m,n)ϕ (|u1 − u2|) ,

(4.4)

and

ϕ (|u1 − u2|) ≤ |u1 − u2| (4.5)

for some a, b ∈ F+ (Ω), then (BVP) has at most one solution on Ω.

Proof. Let z (m,n) and z (m,n) be two solutions of (BVP) on Ω. By Equations (4.4)

and (4.5), we have

|z (m,n)− z (m,n)| ≤
m−1∑
s=m0

n−1∑
t=n0

|f (s, t, z (s, t) , w (z (s, t)))− f (s, t, z (s, t) , w (z (s, t)))|

≤
m−1∑
s=m0

n−1∑
t=n0

a (s, t) |z (s, t)− z (s, t)|+
m−1∑
s=m0

n−1∑
t=n0

b (s, t)w (|z (s, t)− z (s, t)|)

≤
m−1∑
s=m0

n−1∑
t=n0

a (s, t) |z (s, t)− z (s, t)|+
m−1∑
s=m0

n−1∑
t=n0

b (s, t) |z (s, t)− z (s, t)| .
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By Theorem 2.2, let w be the identity function, we get

|z (m,n)− z (m,n)| ≤ 0

for all (s, t) ∈ Ω. Hence z = z on Ω.

�

Finally, we investigate the continuous dependence of the solutions of (BVP) on the

function f and the boundary data p and q. For this we consider the corresponding

variation of problem (BVPV):

∆12z (m,n) = f (m,n, z (m,n) , w (z (m,n)))

with

z (m,n0) = p (m) , z (m0, n) = q (n) , p (m0) = q (n0) = 0.

Here, f ∈ F (Ω× R) , p ∈ F (I), and q ∈ F (J) are given.

Theorem 4.3. Consider (BV P ) and (BV PV ). Let ε > 0. If for all (m,n) ∈ Ω,

u1, u2 ∈ R,

(i)|f (m,n, u1, ϕ (u1))− f (m,n, u2, ϕ (u2))| ≤ a (m,n) |u1 − u2|+b (m,n)ϕ (|u1 − u2|)

for some a, b ∈ F+ (Ω);

(ii) |(p (m)− p (m)) + (q (n)− q (n))| ≤ ε
2
, ϕ (|u1 − u2|) ≤ |u1 − u2|; and

(iii) for all solutions z (m,n) of (BVPV),

m−1∑
s=m0

n−1∑
t=n0

∣∣f (m,n, z, w (z))− f (m,n, z, w (z))
∣∣ ≤ ε

2
,

then

|z (m,n)− z (m,n)| ≤ εK (m,n) exp (K (m,n)B (m,n)) ,

where B (m,n), K (m,n) are de�ned as in Theorem 2.2. Hence, z depends continuously

on f , p, and q.
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Proof. Let z (m,n) and z (m,n) be solutions of (BVP) and (BVPV), respectively. Then

z satis�es Equation (4.3) and z satis�es the corresponding equation

z (m,n) = p (m) + q (n) +
m−1∑
s=m0

n−1∑
t=n0

f (s, t, z (s, t) , w (z (s, t))) .

Hence,

|z (m,n)− z (m,n)| ≤ |(p (m)− p (m)) + (q (n)− q (n))|

+
m−1∑
s=m0

n−1∑
t=n0

∣∣f (m,n, z, w (z))− f (m,n, z, w (z))
∣∣

≤ ε

2
+

m−1∑
s=m0

n−1∑
t=n0

|f (m,n, z, w (z))− f (m,n, z, w (z))|

+
m−1∑
s=m0

n−1∑
t=n0

∣∣f (m,n, z, w (z))− f (m,n, z, w (z))
∣∣

≤ ε+
m−1∑
s=m0

n−1∑
t=n0

(a (m,n) |z − z|+ b (m,n)w (|z − z|))

≤ ε+
m−1∑
s=m0

n−1∑
t=n0

(a (m,n) |z − z|+ b (m,n) |z − z|) .

By assumptions (i), (ii), (iii) and Theorem 2.2 to the function |z (m,n)− z (m,n)|, we

have

|z (m,n)− z (m,n)| ≤ εK (m,n) (K (m,n)B (m,n)) .

Now restricted to any compact sub-lattice, B (m,n), K (m,n) is bounded, so

|z (m,n)− z (m,n)| ≤ εT

for some T > 0 and for all (m,n) in this compact sub-lattice. Hence, z depends

continuously on f , p, and q. �
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Subsection 2: Consider the boundary value problem of hyperbolic partial delay equa-

tion (BVPH)

D2D1u
p (x, y) = F (x, y, u (x− h11 (x) , y − h12 (y)) , u (x− h21 (x) , y − h22 (y))) (4.6)

with

u (x, y0) = k1 (x) , u (x0, y) = k2 (n) , k1 (x0) = k2 (y0) = 0. (4.7)

Here, p ≥ 1 is a constant, I1 = [x0, X), I2 = [y0, Y ), 4 = I1 × I2, k1 ∈ C (I1,R), k2 ∈

C (I2,R), hi1 (x) ∈ C1 (I1,R0), hi2 (y) ∈ C1 (I2,R0) with x−hi1 (x) ≥ 0, y−hi2 (y) ≥ 0,

h
′
i1 (x) < 1, h

′
i2 (y) < 1 and hi1 (x0) = hi2 (y0) = 0, i = 1, 2.

Consider (BVPH). If

|F (x, y, u, v)| ≤ |u|p−1 (a (x, y) |u|+ b (x, y)w (|v|)) , (4.8)

and

|k1 (x) + k2 (y)| ≤ c, (4.9)

then

u (m,n) ≤ G−1
{
G
(
c

1
pK (m,n)

)
+K (m,n)B (m,n)

}
,

where a, b ∈ C (4,R0), c ≥ 0 is a constant, w is de�ned as in Theorem 2.1 and let

Hi1 = max
x∈I

1

1− h′i1 (x)
, Hi2 = max

y∈J

1

1− h′i2 (y)
, i = 1, 2. (4.10)

K (m,n) :=
m−1∏
s=m0

[
1 +

n−1∑
t=n0

a (σ, τ)

]
,

B (m,n) :=
m−1∑
s=m0

n−1∑
t=n0

b (σ, τ) .
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It is easy to observe that every solution u (m,n) of (4.6)-(4.7) satis�es the equivalent

integral equation

up (x, y) = k1 (x) + k2 (y) +ˆ x

x0

ˆ y

y0

F (s, t, u (s− h11 (s) , t− h12 (t)) , u (s− h21 (s) , t− h22 (t))) dtds.(4.11)

Applying (4.8)-(4.10) to (4.11) and changing the variables we obtain

|u (x, y)|p ≤ c+

ˆ α1(x)

α1(x0)

ˆ β1(y)

β1(y0)

a (σ, τ) |u (σ, τ)|p dτdσ

+

ˆ α1(x)

α1(x0)

ˆ β1(y)

β1(y0)

b (σ, τ) |u (σ, τ)|p−1w (u (σ, τ)) dτdσ, (4.12)

where αi (x) = x − hi1 (x), βi (y) = y − hi2 (y), i = 1, 2, a (σ, τ) = H11H12a
(
α−11 (σ) ,

β−11 (τ)
)
b (σ, τ) = H21H22a

(
α−12 (σ) , β−12 (τ)

)
and 4̃ denote the maximal existent in-

terval of u (x, y).

Now, we discretize the inequalities (4.12), we can obtain

|u (m,n)|p ≤ c+
m−1∑
s=m0

n−1∑
s=n0

a (σ, τ) |u (σ, τ)|p +
m−1∑
s=m0

n−1∑
s=n0

b (σ, τ) |u (σ, τ)|p−1w (u (σ, τ)) .

(4.13)

Then, by the Theorem 2.4, we get

u (m,n) ≤ G−1
{
G
(
c

1
pK (m,n)

)
+K (m,n)B (m,n)

}
.

Hence we can get the upper bound of u(m,n).
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5. CONCLUSIONS

Although our main result is far from the generalization of Theorem A and Theorem

B, it is indeed not a special case of them. As stated in Remark 3.3, Theorem 3.2 can

not be derived from Theorem 2.7. On one hand, p > 1 is one of the conditions in

Theorem 2.7. On the other hand, u (s, t) ·ϕ (u (s, t)) is not identical with ϕ (u (s, t)) for

both Theorem 2.7 and Theorem 2.8. Hence, in the future we will consider whether we

can �nd a more general pattern to cover these di�erent situations.

In this work, we discuss the case with �nite domain. In Chapter 5 of [6], Pachpatte

considered some in�nite case which is stated as follows:

Theorem. 5.4.1 Let u (m,n) a (m,n) b (m,n) ∈ D (N2
0 ,R+), where N0 = {0, 1, ...}.

(a1) Let a (m,n) be nondecreasing in m and nonincreasing in n. If

u (m,n) ≤ a (m,n) +
m−1∑
s=0

∞∑
t=n+1

b (s, t)u (s, t)

for all (m,n) ∈ N0, then

u (m,n) ≤ a (m,n)
m−1∏
s=0

[
1 +

∞∑
t=n+1

b (s, t)

]

for all (m,n) ∈ N0.

(a2) Let a (m,n) be nonincreasing in each variable m and n. If

u (m,n) ≤ a (m,n) +
∞∑

s=m+1

∞∑
t=n+1

b (s, t)u (s, t) ,

for all (m,n) ∈ N0, then

u (m,n) ≤ a (m,n)
∞∏

s=m+1

[
1 +

∞∑
t=n+1

b (s, t)

]

for all (m,n) ∈ N0.
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We conjecture that our main results can also be extended to in�nity.
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