FrlR 7 E LR ¢ & 82F

R SR

2}
[

AL E Yl A B NER
B %A G R

=21
=21
4}
4}

& o
B
wom
CaNt

i %) 2]

+ NSC 97-2118-M-029-001-
97 # 08 * 01E’98307’9 31 F

g\/q‘ = ? ju;‘L

b B

ﬁ‘l frig;n/‘;_,‘?{\fq:pémf(ﬁ —“}L-EF;E
ETOTI Iy B
FALFIFE G A -F E AR L 14
Eﬁ_—l_f—{'gﬁi“/}_%tfigé ,Aﬁ E'E’Lﬁ’;ﬁ
A &4 -l @ AR M iR
<B4 -FiEmm AR R
R4 -JliEem AR R

\

ARG FE L TEFL LR L

¢ooE R R 98# 107 29 P



This report is a short version of a working paper entitled ” Screening Active Factors

by Using Bayesian Computer Experimental Models”.
Introduction

We are concerned with a screening experiment with p candidate factors. When
only main effects and 2fi effects are taken consideration, there are o2 possible
models. It is very common to have say seven to ten factors in an screening experiment
(usually more). Then, 2.7x 109 and 3.6 x 10'®, with seven and ten factors respectively,
possible models are resulted. If 3fi effects are also considered, then 9.2 x 10'® and
4.2 x 10°? possible models should be considered ! Although, some empirical principles,
such as effect heredity principle (Wu and Hamada, 2000), can rule out most of the
models, the number of candidates is still considerable.

The reason why the number of possible models increases dramatically is that the
increase of the number of effects. In a screening experiment, what we concern the
most is if a factor is active or not. A larger scale follow-up experiment will always
be constructed. In the follow-up experiment, the factors selected in the screening
experiment are set at more levels, and the different types of effects can be studied
more precisely. Hence, in a screening experiment, we should focus on factors instead
of effects. In this project, we develop a factor screening method under a Bayesian
framework which is using a computer experimental model. Because in the model we

do not consider effects, the number of all possible models is much smaller.

Models



Suppose a screening experiment with p factors and n runs. Each factor can be ei-
ther active or inner and there are hence ¢ = 2? possible models, labeled as My, - - -, M,
(including the null model). According to Bayes theorem, the posterior probability of

the model My given the data y = (yy,---,y,) is given by

p(My) f (y| M)

p(Myly) = 9 (M) f(y| M)

where p(M;) is the prior probability of model M;, and f(y|M;) is the marginal density
of y given the model M;.

For a given model M;, let 8; denote the associated vector of parameters. Under a
Bayesian framework, we select a prior distribution of the model specific parameters
0;,denoted as f(0;|M;), and the likelihood function can be denoted as f(y|M;, 8;).
Integrating out the parameters, the marginal density of y given the model M; is
expressed as

T = | F(ylM:.0) (8, M,)dB. (1)
where (; is the set of all possible values of 6;.

Traditionally, the experimental result is analyzed by using regression, and the re-

sponses under various experimental settings are assumed to follow normal distribution

independently, which is

y ~ Nin(z), 1),

where n(x) = (n(x1), - -, n(x,))’ is the vector of the means under the n experimental
settings, @1, - - -, x,, and % is the common variance. When various types of effects are
considered, n(x) is modeled as a linear function of various effects (usually main effects

2



and 2fi effects, sometimes 3fi effects) Instead of this, we adopt a Gaussian process
(GP) model for modeling n(x), which is suitable for modeling complex relationships.
Such models are commonly employed in geostatistics (Diggle and Ribeiro, 2007) and

in computer experiments (Santner et al., 2003). We assume that

1) ~ GP (s, Ay R(R)),

where A is a turning parameter used to present the signal and noise ratio. The
sensitivity to the choice of A will be discussed later. The covariance function is
defined as cov[n(x + h),n(x)] = AfR(h), where h = (hy,---,h,) € RP and R(h)
is a correlation function. Various types of correlation functions can be found in the
literature and we adopt, in this project, the Gaussian product correlation function
which is R(h) = exp {— Y}, 11h?}, where v is the correlation parameter representing
the strength of factor [’'s impact. Factor levels are usually recoded in the interval
[—1,1]. Thus, we reparameterize v, = —i log p; so that p; represents the correlation
coefficient between the responses when the factor [ is changed from — to +. We
denote @ = (u, A\, p1,- -+, pp)’,, the collection of all the parameters. Recall that the 2P
candidate models are obtained by considering each factor is active or inner. Then,
for M;, 8; can be obtained by dropping those p;’s whose associated factor is inner.
Hence,

1
y|M;,0; ~ N(ul, X(I + AR;)), (2)

where 1 is the vector of 1’s with length n and R; is the correlation matrix in M.
Letting R be an n X n matrix with elements R,;; = R(x; — «;), then R; can be
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obtained by replacing p; = 1 for those inner factors in M; in R.

For considerations of prior selections, both a model space prior, p(M;), and model
specific parameter priors f(6|M;) need to be specified. For the prior on model space,
an empirical principle, named sparsity principle, states that there are only a few
active factors in an experiment. Hence, an equally likely prior over all 27 models is
not suitable. Letting f; be the number of active factors in model M;, and © be the

prior probability that any particular factor is active, we adopt the following prior
p(M;) = 7Tfi<1 _ ﬂ.)p*fi.

In practice, the number of active factors identified in a screening experiment is less
than a half of all the factors considered, so 7 is chosen in the range (0, 0.5]. If further
information to which factor is more likely to be active, m can be chosen dependent
on factors. Turning to the choice of parameter priors, let A; denote the index set
of active factors in M;. Given model M;, we specify the following independent and

noninformative prior

f(0ilM;) = f(u) f(N) 11:[1- m(p1), (3)
where
fp) o 1,
fO) o« g,

flor) = 1 as p €(0,1).



According to (1), (2) and (3),

fly|M;) = ///(QW)’%U + ARi\’% exp {—%(y —p) (I +AR) (y — ,ul)} dpd\dp
= CK;

1

where C' = (2r)~ "2 ['(2) and

1 21/ (I AR; 11
Kf:/H+ARJ7{ (I+AR) }

(I +AR,)""1)(y' (I +AR)'y) — (1'(I + AR;)"'y)?

(4)
The integral can be computed by using either numerical integral or Monte Carlo
method. A simple approximation of (4) can be implemented by plugging p with

given values into R; and obtain RZ We are then given

w3

R |+ AR { 21'(I + AR;) "1 }

(I(I + AR)™1)(y'(I + AR)y) — (V'(I + AR,)'y)?
()
Some other more accurate approximation methods of obtaining the marginal density

can be found in Kass and Raftery (1995).

Letting P; be the posterior probability that factor j is active, then

P; = > p(M;ly).

Mm;:factor j is active

A large value of P; indicates that factor j is more likely to be active and a small value
indicates that factor j can be an inert factor. The probability P; was also used in
Box and Meyer (1993), and they suggested that what is important is the pattern of

these P;’s not the values.

An Example

bt



In this section we analyze a data set from Box and Meyer (1993) to demonstrate
our new approach and to compare with the result from original analysis. A 12-run
Plackett-Burman design and the responses are shown in Table 1. It was originally
constructed by extracting from a 2° design which was from Box, Hunter and Hunter
(1978). Traditionally, 11 effects are estimated first then the normal plot is used to
identify significant effects. According to the result, only the main effect B is identified
as significant. Box and Meyer (1993) observed from the alias relationships that 2fi
effects BD and DE can be significant as well. They analyze the data again by using
their Bayesian approach. The result shows that, in addition to factor B, both factor

D and E are successfully screened out. For more details see Box and Meyer (1993).

Table 1: Responses for Example 1
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We use our method to analyze the data with various choices of A and 7. The
integral in (4) is computed by using Monte Carlo methods with 1000 replicates. The

result is shown in Figure 1. We can see that, first, the turning parameter representing



the signal and noise ratio, and if a factor is active or not can be distinguish easily

with a larger A. Secondly, more factors will be identified as active with a larger .

In general, all the six plots are showing the same pattern and Factor B, D and E are

identified as active, which is identical with Box and Meyer’s result.
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The most time-consuming part of using our method is to compute (4).
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Figure 1: Posterior Probability of Active Factors

If the

integrals can be replaced by (5), then the computational time can be reduced dra-

matically. In Figure 2, we are showing the marginal posterior probabilities of active

factors with different choices of p’s. We can see that it doesn’t work well to identify

active factos with larger p’s (0.9). However, the same pattern that posterior proba-



bilities of factor B, D and E being active still stand out when p’s are small (0.1 and
0.5).
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Figure 2: Sensitive Analysis of p
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Conclusion

In this project, we propose a new factors screening method based on a GP under
a Bayesian framework. This method considers only factors not effects and the total
number of possible model considered can be reduced. Due to the limit of pages, we are
only showing one example in this report from which we got the motivation. We have
analyzed several data sets and our method works well especially when there are higher

order interactions existing. We conclusion this report by the following suggestions



in general. When the number of candidate factors are large, (5) is suggested with
plugging in with smaller p’s, such as 0.1, to approximate the integral. For the choice
of A and 7, a larger A and smaller 7 are suggested. However, a sensitive analysis to

the choice of these parameter is still suggested.
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Dr. I-Tang Yu
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Taichung, Taiwan

Dear Dr. Yu,

I would like to invite you to visit us during February 2-16, 2009. During this visit we will
work on the Bayesian model selection problem and discuss the possibility of future
collaboration. I hope you will accept my invitation.

Thank you,
Sincerely
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