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This report is a short version of a working paper entitled ”Screening Active Factors

by Using Bayesian Computer Experimental Models”.

Introduction

We are concerned with a screening experiment with p candidate factors. When

only main effects and 2fi effects are taken consideration, there are 2p+
p(p−1)

2 possible

models. It is very common to have say seven to ten factors in an screening experiment

(usually more). Then, 2.7×109 and 3.6×1016, with seven and ten factors respectively,

possible models are resulted. If 3fi effects are also considered, then 9.2 × 1018 and

4.2×1052 possible models should be considered ! Although, some empirical principles,

such as effect heredity principle (Wu and Hamada, 2000), can rule out most of the

models, the number of candidates is still considerable.

The reason why the number of possible models increases dramatically is that the

increase of the number of effects. In a screening experiment, what we concern the

most is if a factor is active or not. A larger scale follow-up experiment will always

be constructed. In the follow-up experiment, the factors selected in the screening

experiment are set at more levels, and the different types of effects can be studied

more precisely. Hence, in a screening experiment, we should focus on factors instead

of effects. In this project, we develop a factor screening method under a Bayesian

framework which is using a computer experimental model. Because in the model we

do not consider effects, the number of all possible models is much smaller.

Models

1



Suppose a screening experiment with p factors and n runs. Each factor can be ei-

ther active or inner and there are hence q = 2p possible models, labeled as M1, · · · , Mq

(including the null model). According to Bayes theorem, the posterior probability of

the model Mk given the data y = (y1, · · · , yn)
′ is given by

p(Mk|y) =
p(Mk)f(y|Mk)

∑q
i=1 p(Mi)f(y|Mi)

,

where p(Mi) is the prior probability of model Mi, and f(y|Mi) is the marginal density

of y given the model Mi.

For a given model Mi, let θi denote the associated vector of parameters. Under a

Bayesian framework, we select a prior distribution of the model specific parameters

θi,denoted as f(θi|Mi), and the likelihood function can be denoted as f(y|Mi, θi).

Integrating out the parameters, the marginal density of y given the model Mi is

expressed as

f(y|Mi) =
∫

Ωi

f(y|Mi, θi)f(θi|Mi)dθi, (1)

where Ωi is the set of all possible values of θi.

Traditionally, the experimental result is analyzed by using regression, and the re-

sponses under various experimental settings are assumed to follow normal distribution

independently, which is

y ∼ N(η(x),
1

λ
I),

where η(x) = (η(x1), · · · , η(xn))′ is the vector of the means under the n experimental

settings, x1, · · · , xn, and 1

λ
is the common variance. When various types of effects are

considered, η(x) is modeled as a linear function of various effects (usually main effects
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and 2fi effects, sometimes 3fi effects) Instead of this, we adopt a Gaussian process

(GP) model for modeling η(x), which is suitable for modeling complex relationships.

Such models are commonly employed in geostatistics (Diggle and Ribeiro, 2007) and

in computer experiments (Santner et al., 2003). We assume that

η(x) ∼ GP (µ, ∆
1

λ
R(h)),

where ∆ is a turning parameter used to present the signal and noise ratio. The

sensitivity to the choice of ∆ will be discussed later. The covariance function is

defined as cov[η(x + h), η(x)] = ∆ 1

λ
R(h), where h = (h1, · · · , hp)

′ ∈ Rp and R(h)

is a correlation function. Various types of correlation functions can be found in the

literature and we adopt, in this project, the Gaussian product correlation function

which is R(h) = exp {−
∑p

l=1 γlh
2
l }, where γl is the correlation parameter representing

the strength of factor l’s impact. Factor levels are usually recoded in the interval

[−1, 1]. Thus, we reparameterize γl = −1

4
log ρl so that ρl represents the correlation

coefficient between the responses when the factor l is changed from − to +. We

denote θ = (µ, λ, ρ1, · · · , ρp)
′,, the collection of all the parameters. Recall that the 2p

candidate models are obtained by considering each factor is active or inner. Then,

for Mi, θi can be obtained by dropping those ρl’s whose associated factor is inner.

Hence,

y|Mi, θi ∼ N(µ1,
1

λ
(I + ∆Ri)), (2)

where 1 is the vector of 1’s with length n and Ri is the correlation matrix in Mi.

Letting R be an n × n matrix with elements Rij = R(xi − xj), then Ri can be
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obtained by replacing ρl = 1 for those inner factors in Mi in R.

For considerations of prior selections, both a model space prior, p(Mi), and model

specific parameter priors f(θ|Mi) need to be specified. For the prior on model space,

an empirical principle, named sparsity principle, states that there are only a few

active factors in an experiment. Hence, an equally likely prior over all 2p models is

not suitable. Letting fi be the number of active factors in model Mi, and π be the

prior probability that any particular factor is active, we adopt the following prior

p(Mi) = πfi(1 − π)p−fi.

In practice, the number of active factors identified in a screening experiment is less

than a half of all the factors considered, so π is chosen in the range (0, 0.5]. If further

information to which factor is more likely to be active, π can be chosen dependent

on factors. Turning to the choice of parameter priors, let Ai denote the index set

of active factors in Mi. Given model Mi, we specify the following independent and

noninformative prior

f(θi|Mi) = f(µ)f(λ)
∏

l∈Ai

π(ρl), (3)

where

f(µ) ∝ 1,

f(λ) ∝ 1

λ
,

f(ρl) = 1 as ρl ∈ (0, 1).

4



According to (1), (2) and (3),

f(y|Mi) =
∫ ∫ ∫

(2π)−
n
2 |I + ∆Ri|

−
1
2 exp

{

−
λ

2
(y − µ1)′(I + ∆Ri)

−1(y − µ1)

}

dρdλdµ

= CKi

where C = (2π)−
n−1

2 Γ(n
2
) and

Ki =
∫

|I+∆Ri|
−

1
2

{

21′(I + ∆Ri)
−11

(1′(I + ∆Ri)−11)(y′(I + ∆Ri)−1y) − (1′(I + ∆Ri)−1y)2

}
n
2

dρ.

(4)

The integral can be computed by using either numerical integral or Monte Carlo

method. A simple approximation of (4) can be implemented by plugging ρ with

given values into Ri and obtain R̂i. We are then given

K̂i = |I + ∆R̂i|
−

1
2

{

21′(I + ∆R̂i)
−11

(1′(I + ∆R̂i)−11)(y′(I + ∆R̂i)−1y) − (1′(I + ∆R̂i)−1y)2

}

n

2

.

(5)

Some other more accurate approximation methods of obtaining the marginal density

can be found in Kass and Raftery (1995).

Letting Pj be the posterior probability that factor j is active, then

Pj =
∑

Mi:factor j is active

p(Mi|y).

A large value of Pj indicates that factor j is more likely to be active and a small value

indicates that factor j can be an inert factor. The probability Pj was also used in

Box and Meyer (1993), and they suggested that what is important is the pattern of

these Pj’s not the values.

An Example
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In this section we analyze a data set from Box and Meyer (1993) to demonstrate

our new approach and to compare with the result from original analysis. A 12-run

Plackett-Burman design and the responses are shown in Table 1. It was originally

constructed by extracting from a 25 design which was from Box, Hunter and Hunter

(1978). Traditionally, 11 effects are estimated first then the normal plot is used to

identify significant effects. According to the result, only the main effect B is identified

as significant. Box and Meyer (1993) observed from the alias relationships that 2fi

effects BD and DE can be significant as well. They analyze the data again by using

their Bayesian approach. The result shows that, in addition to factor B, both factor

D and E are successfully screened out. For more details see Box and Meyer (1993).

Table 1: Responses for Example 1

Run A B C D E Y
1 + – + – – 56
2 + + – + – 93
3 – + + – + 67
4 + – + + – 60
5 + + – + + 77
6 + + + – + 65
7 – + + + – 95
8 – – + + + 49
9 – – – + + 44
10 + – – – + 63
11 – + – – – 63
12 – – – – – 61

We use our method to analyze the data with various choices of ∆ and π. The

integral in (4) is computed by using Monte Carlo methods with 1000 replicates. The

result is shown in Figure 1. We can see that, first, the turning parameter representing
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the signal and noise ratio, and if a factor is active or not can be distinguish easily

with a larger ∆. Secondly, more factors will be identified as active with a larger π.

In general, all the six plots are showing the same pattern and Factor B, D and E are

identified as active, which is identical with Box and Meyer’s result.
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Figure 1: Posterior Probability of Active Factors

The most time-consuming part of using our method is to compute (4). If the

integrals can be replaced by (5), then the computational time can be reduced dra-

matically. In Figure 2, we are showing the marginal posterior probabilities of active

factors with different choices of ρ’s. We can see that it doesn’t work well to identify

active factos with larger ρ’s (0.9). However, the same pattern that posterior proba-

7



bilities of factor B, D and E being active still stand out when ρ’s are small (0.1 and

0.5).
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Figure 2: Sensitive Analysis of ρ

Conclusion

In this project, we propose a new factors screening method based on a GP under

a Bayesian framework. This method considers only factors not effects and the total

number of possible model considered can be reduced. Due to the limit of pages, we are

only showing one example in this report from which we got the motivation. We have

analyzed several data sets and our method works well especially when there are higher

order interactions existing. We conclusion this report by the following suggestions
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in general. When the number of candidate factors are large, (5) is suggested with

plugging in with smaller ρ’s, such as 0.1, to approximate the integral. For the choice

of ∆ and π, a larger ∆ and smaller π are suggested. However, a sensitive analysis to

the choice of these parameter is still suggested.
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本人(俞一唐)於民國 98 年 2 月 4 日至 16 日按計畫赴美喬志亞理

工學院工業工程系(School of Industrial and Systems Engineering in   

Georgia Institute of Technology)訪問 V.R. Joseph 博士。期間，針對貝

氏模式選取在工業實驗上的應用進行實質上的探討，並討論將來合作

的可能性。 




