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Detecting and identifying level shifts, additive outliers, and

innovation outliers in a time series model

Abstract

This article provides a fast approximation to detect and identify the interventions
in a time series model, in which level shifts and two fundamental types of outliers
(additive (AO) and innovation (IO) outliers) are demonstrated. This research extends
Chang, Tiao, and Chen (1988)’s procedure to a panel data model, and a modified
inverse Fourier transform is used to construct the statistics, which is based on the
spectral Whittle approach.

Through Monte Carlo experiments the consistency of the estimator is examined
for the panel data model in which the dataset is contaminated with three types of
interventions: AOQO, IO, and level shift. From the power tests we can see that the
estimators are quite successful and powerful.

In the case study we focus on the performance of local private Taiwanese banks
in the stock market from January 2000 to December 2006. By the panel data model
we can easily estimate the impacts of the level shifts and outliers. In the result
analysis Taitung Business Bank has the largest structure change with twice downward
level shifts, i.e., it has the worse performance as time increases. The impacts are
respectively -9.1882 and -10.0069, and the #-values are -4.655 and -5.2156. It makes
sense that this debt-ridden bank was taken over by Central Deposit Insurance Corp. of

Taiwan’s government in December 2006.

Keyword: additive outlier, innovation outlier, level shift, long memory, panel data
model.



1. Introduction

In a time series model the outliers can be regarded as being generated by
dynamic intervention models. The structure of the underlying process plays an
important role when detecting and identifying these outliers. A fundamental approach
for the time series model was proposed by Fox (1972), and it demonstrate two typical
types of outliers, additive and innovation outliers, with an AR(p) process. In economic
system different types of interventions represent different types of dynamic influences
of events. It is therefore important to detect and identify these interventions. In the
estimation we remove these effects from the observations to better understand the
underlying structure of the series. Therefore, many studies in the literature discuss the
intervention detection and identification, such as Box and Tiao (1975), Chang, Tiao,
and Chen (1988), Bianco, Ben, Martinez, and Yohai (2001), etc.

Because the interventions decrease the estimator’s efficiency, many robust
estimators have been developed, such as in Martin and Yohai (1986), Yohai (1987),
and Pena and Yohai (1999). In practice, we may find a small fraction of atypical
observations in the case when innovation or additive outliers may not significantly
affect the robust estimates, but it is different in the case of level shifts. This causes a
serious bias even after applying an appropriate robust estimator. Hence, Bianco, Ben,
Martinez and Yohai (2001) proposed a diagnostic procedure for detecting level shifts
as well as additive and innovation outliers in a regression model.

This article focuses on the level shifts and develops a fast approximation that can
be used to detect and identify these interventions at unknown time points, in which we
follow Chang, Tiao, and Chen (1988)’s useful iteration procedure and then extend to a
panel data model. We compute the statistics herein based on the familiar spectral

Whittle method. In conventional approaches we know that the spectral Whittle



approach can save much time in recursive calculation and is easily operated in
coordination with a periodogram, especially when the time length is long and the
model is complicated (e.g., a mixed model with fractional AR and MA). In a time
series model we have to test the outliers by the residuals that are demonstrated in the
time domain. It does not seem easy to have a corresponding appropriate approach to

being with a spectral model. This paper provides an approach to solve this problem.

2. Identification of level shift, additive outlier, and innovation outlier

This section develops statistics for detecting and identifying the outliers and level
shifts, in which we extend Chang, Tiao, and Chen (1988)’s method to level shift
detection and a quick approach in the spectral domain is developed. By a fast
calculation we can apply the model on a large dataset.

Assume that an underlying process z; follows an ARIMA(p,d,q) model, i.e.:

#(B)(1-B)'z, =60(B)a,, (1)
where ¢(B)=1-¢B—---9B, 6(B)=1-6B—---— Hqu , B is the backshift operator,

{a:} 1s white noise, and var(a,) = O'j . /B) and &B) represent the corresponding AR

and MA polynomial operator functions with roots outside the closed unit circle, and a
stationary process with -0.5 < d < 0.5 wherein d € (0, 0.5) indicates a long memory
process.

In the beginning let us regard an additive outlier. From Chang, Tiao, and Chen

(1988) whereby a process contains an additive outlier at the sth observation, we can

set y, =z, +a,,P" where P =1 fort=s,and P’ =0 otherwise. This can be

expressed in a vector form:

P,.=[0 -~ 0 1 0 - 0], )



and the observations are:
y=0,,P0s+2,
where y'=[y, v, - y | Z=[z & - z]
Following Chang, Tiao, and Chen (1988, eqn 2.2a) and (1), we can estimate the

impact 0ao s through the least square regression, i.e.:

&AO» j=0 J J‘*’V/ZJO J’ 3)
where e, =7(B)y, and 7(B)=¢(B)(1-B) 6" (B)=1+7xB+7x,B>—---. Here, (B)

is a polynomial filter function that can transform {z;} to be a white noise process {a}.
In finite sample observations we naturally apply the covariance matrix of z and

7=[z, z, -+ z;] to obtain the filter coefficients.
Let the covariance matrix of z be ¢ X(®) and o’ =var(a,). The Cholesky

decomposition of the inverse covariance matrix can be written as X '(®)=UU’
where U is an upper triangular and it can be used to transform {z;} to be white noise,
e.g., Uz = a. In the same way we can follow Chang, Tiao, and Chen (1988) to

transform y; to obtain the ‘residual’, i.e

e=UYy where e=[e, e, -+ ¢].
The corresponding filter coefficients can be obtained by 7’ = P;, U, which is
approximately [0 -+ 0 7z, &, - 7, ].Thus, relative to (3) the estimator of

@,,, canbe obtained by:

O
A, =Te/TT= Pio. 2 (©)y 4)
AO s Z (®)PA0 s
According to Beran (1994, page 116), we know:
(@) =[6(m-D)],, ,and Slm-I]~ —z L jomoiy (5)

]EJ (2’ ’®)

—id 2

where ®:(¢1""’¢p’d’01"“’6q),’g(ﬂ’j;®):‘ ( ;)q) (—1/1/)(1_ —1/1) ’



J={—-M,---,M}—{0}, and M = [T/2], [.] is the floor integer. Here, we take away the
zero frequency by mean correction to avoid the spectral density function exploding
when z; is a long memory process d € (0, 0.5).

Putting the equation (5) into (4) the estimator we obtain is:

A _ 21 J isd; W}(Z'ja®) L Az 1
e i8S i)

According to Chang, Tiao, and Chen (1988) the variance of &, is:

T-s
Var /z 2

This can be approximately by:

R

Thus, the statistics can be established by:

Hyvs. H;:

I 2 w,(4)
Taos =5 = ( ZR[ g@],@) (7)

a

From (6) and (7) we see the coefficients and statistics can be calculated by the
modified inverse Fourier transform, which can save much time especially when
applied to a huge dataset.

Aside from the additive outlier, another important type of outlier has been
popularly discussed in the literature. This is the innovation outlier (IO), in which the
impact not only affects the particular observation, but also the subsequent
observations, which can be seen in Fox (1972) and Chang, Tiao, and Chen (1988). In
the following we focus on 10 and develop its corresponding estimator and statistics. If
the impact affects the sth observation and the subsequent observations, then we

rewrite (2) in the following vector form:



Fo,=[0 - 0 7 7 - 7],

where 7 start at the sth element. If it is an 1O, then the coefficients have the following
relationship:

7(B)=1,+1,B+7,B’+---=6(B)¢ " (B)1-B)™.
According to (4), the impact can be written as:

Py (®)y
10,s — A .
PIO,S Z (®) PIO,S

Putting (5) into the above equation we obtain an estimator:

M 1. i4; ,
&IO = 2 Z_ﬂ'zRe Wy( J) M.e(e )M. y 6”/1/ )
’ T = | 8(4;:0)p(e”)1-€")

Following Chang, Tiao, and Chen (1988) we obtain the corresponding variance:

var(&,,,)=o..

a

Therefore, we establish the statistics:

®)

S, j=1 g(ﬂj;(a) ¢(er )1 — eM” )d e

M l il .
HO VS. HZ: 7710’5 :Ni %ZRG{ Wy( J) H(e ) lsljj|.

From the above estimator and statistics we see the modified inverse Fourier transform
still can be used to obtain the coefficients quickly which is slightly different from (6)
and (7).

Aside from AO and IO, the level shift is also a typical event that one often
encounters in time series models. Relative to (2), we set the impact vector as a step

function as the following:
P.=[0 - 0 1 1 - 1],

where the unit elements begin at the sth element. Thus, following (4) we obtain the

estimator as:

P, 2 (@®)y
P./T@©)P,,



In the same way, we put (5) into the equation and obtain the estimator as:

u A) (1=eT0% Y u in(T-s+DA./2)
oonfEEa (2 25 s

= 84O 1-e” T = g(4;;0) sin, /2

This can be represented by an alternative form:

M B isd; M iA;
6y, =2 | Sre| A 7| G ) e\,
~ T |5 [8(4:0)1-¢" | F8(4;:0)1-€”

J=1

-1

2
Zi 1 sin(T —s+1)4,/2
TS g(4,:0) sin 4, /2

From the above equation we see the first term can be obtained by a modified
inverse Fourier transform. In practice, it saves much time in calculation. The relative

variance of the estimator can also be obtained by a least square method, that is:

var(@,,)=(P,.2(©)P,) .

a

This is approximately by using (5) as:

wr(a, )=o? 23 L [sn@=s+DA,/2 2
T TS 8(4,:0) sin 4, /2

-1

The corresponding statistics are established by:
Hy vs. Hs:

a,.

77L,s = ~
A [ var aL s

L,s
M 1 ish; M A iA;
2 %ZRC Wy( .1) e - -2 2l Wy( ./) e .
T S g(4;;0)1-¢” T = g(4;;0)1-€"

f2a (sin(T—s+1)/lj/2j2

% ?_/-:1 g(1;;0) sin 4, /2

From the above equation we see that the first term in the numerator part is

obtained by the modified inverse Fourier transform, and the second term is a

particular case when s = 1. Thus, we calculate the statistics 77, ; at each time s =1,...,

T very fast.



3. Iterative procedure for outliers’ detection and identify

We now follow Chang, Tiao, and Chen (1988)’s method to implement the
iterative procedure for the outliers’ detection and identification. At the first stage of
this procedure, the fractional ARIMA model is estimated by the observed time series

y: in the Whittle approach and assuming that the series contains no outliers.

Relative to the previous section we calculate the statistics 7,,,, 7,,,, and 7, ,

which can be calculated for each time r =1, 2,..., T. Following Chang, Tiao, and Chen

’ ﬁAO,t ° ﬁL,t )] : If

(1988) we calculate the largest statistics by 77, :max,[max(‘ﬁm,l

1, >c where c is a pre-specified critical value, then we remove the intervention’s
effect. Typically, the value ¢ could be 3.0, 3.5, or 4.0. If 7, =‘77A0’S‘>c which

indicates an additive outlier, then we remove the effect from the original data, i.e.,

*

ys = ys - dAO,s; else lf ﬁs = ‘ﬁlO,S

>c, then y, =y, —&,7 forr=0,.., T-s.

Otherwise, if 77, = ‘ﬁm >c,then y,, =y, —&., forr=0, ... T-s. The preceding

steps are then repeated until all outliers are identified.
After removing these outliers, we calculate the model with a traditional Whittle

approach:

(T)
4zt 1T(A)

Qo = , where -0.5 <d < 0.5,

T = g (lﬁ@)
where y*:[yl* y, o yT] and Q, — 0. if T— . Here, 0. is the variance
of the noise a;. Through the first-order condition, 8Q(0) /8@‘@_(:) =0, a Taylor
—(0)

expansion can be obtained by:

10



90,
00

_8Q<0)| azQ<0>| D
a0, Taeel, O]

0=0,

and the covariance matrix can be obtained:

-1
azQ(O)
oo, )| 0090

and ®, and ®(0) — 0©, if T — oo, then we can use

where |® ®0| < ‘@w) 0‘

-1
} cov (—aQ“”
00
0=0,

2
cor,)- s

As O, locates between (:)(0)

©®,, toinstead. Under the stationary assumption we express the covariance as (see

the proof in Appendix A):

COV( <0>) (27777] ’
0=0),

where 77, = alng(/lj;®)/8® )
4. Extension to a panel data model

This section extends the approach to a panel data model where Chen (2006)’s
spectral Whittle method is used, in which the remainder disturbance is a mixed
fractional ARIMA(p,d,q) model. First, let us consider a function with a one-way panel
data model:
y,=x.f+u +v, fork=1..,Nandr=1,..,T, 9)
where k denotes individuals and ¢ is time. The k subscript represents the cross-section
dimension, # denotes the time-series dimension, £ shows the regression coefficients if

there are r exogenous variables (thus, Sis rx1), xi is the kz-th observation explanatory

variable that is »x1, and x,; =[X415--+s %15 Mk 1s the individual effect, and vy, is the

remainder disturbance. Here, v, ~ N(0, 052(@)) and vy indicates the vector of the

11



kth individual’s remainder disturbance and it has T elements. If we represent the panel
data model in a vector form, then:
y=xf+z,u+v.

In this equation y is an NTx1 vector, x is an NTxr matrix such that r is the number

of explanatory variables, v is an NTX1 vector, z,= I,®I[., and It = [1,...,1],, MU=

[t4, ..., un]’. According to Chen (2006, (3) and (7)), if the model is a fixed effects
panel data model, then £ is a constant parameter. The quadratic form for the spectral
Whittle objective function can then be expressed as:

Q=(y-xB-z,)U, L (@O)y~xf~2z,1)

A L wyk(lj)—w;k(lj)ﬁ‘z (10)
N ¢(1:0)

where wyk(/lj) is the Fourier transform of the kth individual’s dependent variable

and w, (/1_].) is a rx1 vector that is the Fourier transform of the kth individual’s

explanatory variables.
If the remainder disturbance includes an additive outlier at the kth individual,

then according (9) we can express the remainder disturbance as:

u, = aAOPAO,x

+v,,
where y, =xf+ul +u, fork=1,.. N . In the same way, if the remainder

disturbance includes an IO or level shift, then it can be represented respectively as:

u, =a,,P,

0.5 T Vi and u, = o P +v,.

Following (3), (4), and (5) the outlier estimators are obtained respectively as:

M ) ﬂ, P ﬂ, ~ ”
dIAO,ksz 2 z;z.zRe[ele (Wyk( J) ka( J),B)] (lz 1 ]’

2(4,;0) M % ¢(1,:0)

12



v |, A) =W, (A)f g
A ﬁZRe g D)=V GB) ety |
“TNT S s4:0) g -

and
) 2z [(w, A=W, (A)B) & | a(w, (A)-w, (4)B) &*
=2.2=| Y'Re : : .
o \/?[,Z g(4,;0) 1-¢ ] ,21: g(1,;0) = [
24 1 [sinT=s+DA,)2 2l
T = g(4,:0) sin 4, /2 ’

where &,,,,, @, ,and &, represent the AO, IO, and level shift impacts at the

sth observation of the kth individual, respectively. Among them we estimate £ and ®

through (10). The corresponding statistics are thus represented as:

_ |, 27 ist, (Wyk (4) - w, (/1./)18) =
Nioxs = [2 T ]Z;Re!e g(ﬂj;®) O

" 28| o (w, A=W, (ADB) 8™
IO ks ,, Z ' )

=

g(4,;0) #(e™)(1-e"
and

Lks

77Lks \/7
VaraLks
\Fi (w, (4w, (A)B) ¢ 2,;z(w A)-w, (A)B) o
T3 g(ﬁ/,@) 1—6 = g(ﬂ,ﬂ@) 1_ei/1j

2& sin(T—s+1)4,/2)
T = g(1,;0) sin 4, /2

j=1
Following section 3 we estimate the model by an iterative procedure, in which
the outliers are removed from yy, for k=1,..., N and ¢t = 1,..., T and the objective
function is obtained as:

Ni‘w (A)-w, ANB
NT & 2(4,:0)

j=1

Q(O)

b
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where Q,, — 0. . Here, we shall note that if we minimize Q) to obtain ,5’(0) and
(:)(0), due to ,5’(0) being asymptotically orthogonal to (:)(0), ie,

E [azQ(O)/a,B(O)E)@;O)] = E[(BQ(O)/E)[J’(O) ) (BQ(O)/BG);O) )] =0, then we calculate ,B(O)
and (:)(0) separately. The properties of é(o) have been discussed in the previous

section and the covariance matrix is equivalent to:

cov|8,, |~ [ZU 7 }

=0,

The corresponding covariance matrix of S is obtained as:

[ (200 (920 900 [ [ 2°Q0 )|
vl ””‘Haﬂa}f)'ﬂ % aﬂ(’)j{Eiaﬂaﬁ'H

~ 0o’ Zxkﬁ:,(i /il (/1))] 1,

=l ©))

which is devised from:

EFQ“” 9, =2x'(1, ®T(©))x.

40°x'(I, ®L7'(®,))x and
8,3(0) aﬁ(O):I ! "

5. Simulations and power test

In this section we use Monte Carlo experiments to examine the power of the

iterative outliers’ detection procedure. A panel data model with a mixed remainder

disturbance model is applied for the evaluations, in which two types of outliers, AO

and 10, and level shifts are scattered in the dataset. As it is a time consuming task we

only choose a simple model and we believe that the estimator has the same power

when the parameters values are changed.

A panel data model is constructed by y, =x, 8+ 4, +v, and the remainder
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disturbance is used with (1—¢B)(1—B)d v, =(1-0)¢,,fork=1,...,N,t=1,...,T,

where (4 ~ NID(0,1) and &, ~ NID(0,1). In this simulation, without loss of generality,
we set the parameters with ¢ = 0.6, 6 = 0.3, and d = 0.1, and the cross-section
dimensions (group numbers or individual numbers) are increased from 15, to 20, and
then to 25. At the same time, the time-series dimensions 7 are increased from 280, to
300, and then to 320.

The impacts of the outliers are implemented by o, = &0 = o= 10, and 10
events are encountered in the dataset, which includes four additive outliers, four
innovation outliers, and two level shifts. The additive outliers take place at the 50"
and 100" observations of the 5™ and 15" individuals, and the innovation outliers are
encountered at the 120" and 180™ observations of the 8" and 12" individuals, and
eventually the level shifts set at the 130™ observations of the 10™ and 13" individuals.

Table 1 exhibits the power test. From Table 1 we see that though the model
estimated by the raw data with these extreme outliers (o = aao= 0 = 10) could be
invalid, after the proposed iterative procedure the estimator employs a consistent
property. We see that when (N, T) increases from (15, 280), to (20, 350), and then to
(25, 320), the rejected probabilities for the null hypothesis ¢ = 0.6 are around 0.05.
By contrast, it is obviously different for the fault null hypothesis ¢ = 0.5 that the
rejected probability increases from 0.367, to 0.472, and then to 0.558. The likely
properties are also found in other null hypotheses. Overall, we see that the proposed
estimators are not affected by these extreme outliers, and the larger the sample size is,
the more powerful the estimator will be.

Table 2 shows the rate of the correct identification. From the table we see that the
true IO is easier to be misidentified when compared to AO. For instance, we see that

the percentage of correct identification as an AO at (k, 1) = (5, 50) of (N, T) = (15, 280)
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is 97.9% and the rest is misidentified as IO. In contrast, the true IO at (k, 1) = (8, 120)
of (N, T) = (15,280) is 90.8%, the misidentification rate is 9.2%, and these are all
identified as AO, which is greater than 2.1%. In the other estimators, they have the
same result. The reason could be that the estimations of parameters in each iteration
have to assume that the model is free from outliers. In fact, they are not really free
from the outliers. Therefore, when we apply these estimators to obtain these statistics,
it will reduce the precision of outliers’ detection especially for the estimation in 10.
However, in the detections of level shifts we see that they are totally correct. The
reason could be that the level shifts are quite different from the other types of outliers

and are easy to be distinguished.

6. Case study

In this section we investigate Taiwanese local banks. Different from
international business banks, the local private banks are basically conservative and
most of them are family businesses. Here, we investigate 12 local banks and they are
respectively Chang Hwa Bank, Hsinchu International Bank, Taitung Business Bank,
Taichung Bank, The Chinese Bank, Taiwan Business Bank, Kaohsiung Bank, Cosmos
Bank, Union Bank of Taiwan, Far Eastern International Bank, Tachong Bank, and
Entie Bank. Weekly data between January 2000 and December 2006 from the Taiwan
Stock Exchange are available for this research.

In the beginning a traditional market model for the i-th stock can be represented
as:

R, = IBiR

T +u, fori=1,..., N,
where 14 shows the individual effects that can be regarded as an intercept or a constant

term. Term /3, is the beta coefficient, a measure of systematic risk. Term Ry is the rate

16



of return on stock i, and Ry is the rate of return on the market portfolio, represented
here by TAIWX (Taiwan Weighted Index).

Following the proposed iteration estimation we remove the outliers and level
shifts. AIC (Akaike information criterion) and SBC (Schwartz Bayesian criterion) are
used to choose the best model. Table 3 demonstrates the results. From the table we
choose the best model p = 2, g = 1. In the following the proposed model and the
traditional model are estimated for comparison:

The raw model:

0.2235
— _ (0.0885) (1 _ I _ 2 —(1—
R,=08327R, + 4, +u,,and (1-B)"™(1-0.7804B' ~0.0408B")u, = (1-0.9257 B)e, .,

(0.0225)

where N =12, T =359, AIC = 3.3937, SBC = 3.4011, MSE = 29.7079.

The proposed model:

o+ +u,, and (1-B)""(1-0.6286 B—0.0775B8)v, = (1-0.8945B) €, ,

(0.0186) (0.0922) (0.0308) (0.0229)

R,=0.7901R

where N = 12, T = 359, AIC = 3.0027, SBC = 3.0101, and MSE = 20.094.

The MSE of the proposed model is 20.094, which is obviously smaller than the
raw model 29.7079. From the beta coefficient, we see that both beta coefficients are
smaller than unit (0.8327 and 0.7901), which indicates these securities are defensive.
Table 4 shows the outliers and level shifts locations. In this model three times of level
shifts took place. Two of the level shifts occurred at February 2000 and October 2006
by Taitung Business Bank, and the other one came from Taichung Bank in January
2000. Their corresponding impacts are respectively -9.1882, -10.0069, and -10.7557
and the t-values are -4.655, -5.2156, and -4.463. This indicates these two banks have
the largest structure changes and worse performances as time increases. Furthermore,

Table 4 shows that there are 35 and 27 times of IO and AO scattered over these
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private local banks, and Taitung Business Bank occupies the largest amount of IO and
AOQ at respectively 14 and 16. This shows it encountered radical changes during the
study period. From a general viewpoint, Taitung Business Bank’s reputation is
questionable and it has been taken over by Central Deposit Insurance Corp. of

Taiwan’s government in December 2006 due to being debt-ridden.

Concluding remark

This article provides a useful approach to detect and identify the interventions in
a panel data model, in which the remainder disturbance with a fractional ARMA
model is implemented. In the simulation we apply a dataset encountering level shifts,
additive outliers, and innovation outliers, and from the result analysis we see it is
quite a successful approach when the data contain different types of interventions.
Furthermore, through the case study we see it is successfully applied on local banks.
From the result analysis we can easily evaluate each bank’s dynamic performance in

the stock market when compared to the others.
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Appendix A
As y, indicates that y, has been removed the outliers, let 7(B)y, =a, ,and then

according to (5) we obtain the derivative as:

M I (A - M ] (A,
90, __4Ar Zy( % ag(/l,,®):_4_7£z - 4) ZI (A)m;,
0 T S A:0) 00 T =510 "

Jj=

'Qy, _8r & 1-(4) 0g(4;0)g(4;0) 4rd 1.(4) 9’g(1;0)

9000 T Sg'(4:;0) 90 0 T Sg'(1;0) 9090

M
As ZIn g(/ij;®) =(, we obtain:

J=1

i 1 azg(ﬂj;®)_ialng@i;@alng@i;@)
~g(1:0) 0000 & 00 0

J= J

2

From Robsenblatt (2000) we know that E| 1 .(4,) |- 20— 2(4,;;8) for T —eo, and
T

thus we obtain:

azQ 262 M
E Q| 5 =2N"ny’ for T —>oo,
[8@8@ j T ; Y
where 77, = dlng(A HC)) / 00 .As a, can be regarded as a white noise, therefore we

obtain:

2

I. (/1)~— S and cov(.(3).1.(4))=0 forj#k.
9 M
From the first condition we know that E {&} =—-E {477[21 e (/1;)77,} =0, and
j=1

00

therefore we have the following relationship:
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Table 1. Empirical size and power test based on 1000 replications for the model y, = x[+t4+ vy, Where
(I-¢B)vk,=(]-B)'d(I-HB)Ek,, M ~ NID(0,1), & ~ NID(0, 1). The sizes are respectively (N, T) = (15, 280), (20,
300), and (25, 320), and the parameters are respectively ¢ = 0.6, 6 =0.3, and d = 0.1. The outlier parameters
are 0jo = Axo= O s = 10 and the additive outliers are scattered at the 50" and 100™ observations for the 5",
and 15" individuals, and simultaneously the innovation outliers are set at the 120" and 180™ observations for
the 8" and 12" individuals, and the level shifts are set at 130 observation of the 10" and 13" individuals. The
critical value ¢ = 4.0. The power test is based on 1000 replications, the significance level is at 5%, and the

two-tailed standard normal distribution test is used.

Hy: ¢ = 040 045 050 055 060 065 070 075 080 085 0.90

(15,280) | 0.763 0.602 0.367 0.157 0.051 0.091 0335 0.774 0.969 0.994 0.999
(20,300) | 0.874 0.723 0472 0.196 0.058 0.153 0.514 0909 0.994 1.000 0.999
(25,320) 0.954 0.831 0.558 0.224 0.055 0.179 0.692 0.976 0.999 1.000 1.000

Hy: 6= 0.10 0.15 020 025 030 035 040 045 050 055 1.30
(15,280) | 0.946 0.846 0.545 0.153 0.064 0.292 0.694 0.931 0.991 0.999 1.000
(20,300) | 0.989 0942 0.703 0.245 0.060 0.395 0.838 0.984 1.000 1.000 1.000
(25,320) 0.999 0985 0.853 0.308 0.045 0.451 0938 0.998 1.000 1.000 1.000

Hop: d = -0.10 -0.05 0.00 005 0.10 015 020 025 030 035 040
(15,280) | 0.883 0.730 0.449 0.202 0.096 0.123 0379 0.762 0.943 0.999 1.000
(20,300) | 0.953 0.825 0.583 0.242 0.076 0.183 0.546 0910 0.999 1.000 1.000
(25,320) 0991 0925 0.664 0.281 0.073 0217 0.713 0980 0.999 1.000 1.000

Hy: B= 080 085 090 095 1.00 1.05 1.10  1.15 1.20  1.25 1.30

(15, 280) 1.000 1.000 1.000 0921 0.041 0921 1.000 1.000 1.000 1.000 1.000
(20, 300) 1.000 1.000 1.000 0.982 0.048 0982 1.000 1.000 1.000 1.000 1.000
(25,320) 1.000 1.000 1.000 0.998 0.051 0.997 | 1.000 1.000 1.000 1.000 1.000

The means of these estimates of ¢ for different sizes (15, 280), (20, 300), and (25, 320) are respectively
0.5874, 0.5915, and 0.5934, and their standard deviations are respectively 0.0732, 0.0587, and 0.0475. For 6,
the means are respectively 0.2881, 0.2907, and 0.2932, and standard deviations are respectively 0.0477,
0.0398, and 0.0305. For d, the means are respectively 0.1007, 0.0988, and 0.0993, and standard deviations are
respectively 0.0674, 0.0555, and 0.0433. For f, the means are respectively 0.9997, 0.9999, and 0.9997, and
standard deviations are respectively 0.0148, 0.0124, and 0.0104. This indicates that even the data contain the
outliers, and the estimator by using the iterative procedure to remove these outliers still employs consistent

properties.
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Table 2. The identifications for the outliers’ simulations, which are based on 1000 replications for the model
Y = X+ vig, where (1-¢B)v,=(1 -B)"I( 1-6B)&y, W ~ NID(0,1), &, ~ NID(0, 1). The sizes are respectively
(N, T) = (15, 280), (20, 300), and (25, 320), and the parameters are respectively ¢ = 0.6, 6 =0.3, and d = 0.1.
The outlier parameters are 0o = o= O s = 10 and the additive outliers are scattered at the 50" and 100™
observations for the 5", and 15" individuals, and the innovation outliers are set at the 120™ and 180"
observations for the 8" and 12" individuals, and the level shift are set at 130 at the 10" and 13" individuals.

The critical value ¢ = 4.0.

(N, Time) | True outlier Percentage for correct and wrong identifications
Location (%, 1) (5,50) (5,100) (15,50) (15,100)
AO Correct (identified as AO) 97.9% 98.2% 97.3% 98.4%
Wrong (identified as 10) 2.1% 1.8% 2.7% 1.6%
Location (%, 1) (8,120) (8,180) (12,120) | (12,180)
(15, 280)
10 Correct (identified as 10) 90.8% 91.8% 91.6% 90.6%
Wrong (identified as AO) 9.2% 8.2% 8.4% 9.4%
Location (k,f) (10,130) (13,130)
level shift
Correct (identified as LS) 100.0% 100.0%
Location (%, 1) (5,50) (5,100) (15,50) (15,100)
AO Correct (identified as AO) 97.5% 98.1% 97.8% 97.4%
Wrong (identified as 10) 2.5% 1.9% 2.2% 2.6%
Location (%, 1) (8,120) (8,180) (12,120) | (12,180)
(20, 300)
10 Correct (identified as 10) 91.6% 91.8% 91.3% 91.6%
Wrong (identified as AO) 8.4% 8.2% 8.7% 8.4%
Location (k,f) (10,130) (13,130)
level shift
Correct (identified as LS) 100.0% 100.0%
Location (%, 1) (5,50) (5,100) (15,50) (15,100)
AO Correct (identified as AO) 98.5% 98.2% 97.7% 98.0%
Wrong (identified as 10) 1.5% 1.8% 2.3% 2.0%
Location (%, 1) (8,120) (8,180) (12,120) | (12,180)
(25, 320)
10 Correct (identified as 10) 91.2% 91.1% 92.4% 92.9%
Wrong (identified as AO) 8.8% 8.9% 7.6% 7.1%
Location (k,f) (10,130) (13,130)
level shift
Correct (identified as LS) 100.0% 100.0%

In the table we can see the identifications of AO rarely fail. For instance, when (N,Time) = (15, 280) the rate
of correctly identification at the location k = 5, t = 50 is 97.9%, and similar results are seen in the other
locations. In contrast, IO identifications are easy to be misidentified, e.g., the correct identification rate at k =
8, t = 120 of (N, Time) = (15, 280) is 90.8%. At the same time, we also see that the identifications of level

shifts are 100% correct.

23



Table 3. The summary of AICs (or SBCs) for different remainder
disturbance ARIMA(p,d,q) models.

Model: R, =R +u +v,,
(1-¢B—..—¢ B’ )(1-B)'v,=(1-6B~-..—60B")¢,,
where &, ~ NID(0,07).

g=0 q=1 g=2
i 3.0098 3.0047 3.0058
p= (3.0128) (3.0091) (3.0117)
_ 3.0042 3.0074 3.0063
p= (3.0087) (3.0133) (3.0137)
_> 3.0064 3.0027 3.0031
p= (3.0123) (3.0101) (3.0120)
_3 3.0409 3.0285 3.0086
p= (3.0483) (3.0374) (3.0189)

Figures in the parentheses are SBC, and p and ¢ indicate respectively the
autoregressive and moving average orders, whereby d could be a real number and the
interventions have been removed.
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Table 4. The AO and IO are estimated for the bank industry, in which we implement a
dataset with 12 banks. Weekly data from January 2000 to December 2006 are used, in

which 359 time periods and 12 banks’ data are obtained from the Taiwan Stock Exchange.

Individuals Type Time points
Chang Hwa Bank 10 55
Hsinchu International Bank AO 119, 160, 352
AO 48, 55, 101, 109, 117, 141, 149, 163,
201, 208, 245, 254, 339, 340, 352,
357

Taitung Business Bank 10 4, 84, 116, 119, 140, 143, 150, 159,

160, 166, 244, 330, 331, 334
Level shift 7, 353

AO 48, 113, 160
Taichung Bank 10 119
Level shift 5
The Chinese Bank AO 357
. . AO 117
Taiwan Business Bank ) 119, 160, 215. 297
Kaohsiung Bank 10 351
AO 119
Cosmos Bank 10 450,116,227
Union Bank of Taiwan 10 4,26,160
Far Eastern International Bank 10 4,90
AO 163
Tachong Bank ) 4.120.160
. AO 27
Entie Bank 0 4.163

There are three times of level shifts, respectively at the 7" and 353" observations of Taitung

Business Bank and the 5" observation of Taichung Bank. The critical value is 4.0.
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