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中文摘要中文摘要中文摘要中文摘要    

 

由於一般追踨資料模型皆使用大量的資料，非常容易有離群值的發生，這些

離群值會影響到模型的估計及效率，因此在本研究中希望能建構出一個快速且有

效率的方法，來檢測追踨資料模型中的離群值。 

本研究主要針對追蹤資料模型中離群值的偵測及認定，吾人使用了

spectral Whittle 估計法，根據 Chen (2006) 所發表的文章，將 Chang, Tiao, 

Chen (1998) 的介入模型分析方法應用在追踨資料的分析上。在本研究中使用了

固定效果模型，而且其誤差的型態可以延申到 ARFIMA(p,q)數列的型態。其中建

立了概度比的檢定方法，可以快速的降低估計的時間及成本。 

在本研究中，吾人將模型的應用推展到 AO (additive outlier),IO 

(Innovation outlier), 及 Level Shifts 的檢測,由 Monte Carlo 模擬的方式

來驗証，當個別組數及時間長度增加時，估計式的檢定力。由結果分析可以發現

模型具相當好的檢定能力。而在在實証的分析上，以台灣地區 12 家私人銀行為

例，藉以了解模型的適用情形。 

 

闗鍵字: 介入模型、可加式離群值、創新性離群值、Level Shifts、Whittle 估

計法、譜系分析、追踨資料模型。 
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Detecting and identifying level shifts, additive outliers, and 

innovation outliers in a time series model 

 

 

Abstract 

 This article provides a fast approximation to detect and identify the interventions 

in a time series model, in which level shifts and two fundamental types of outliers 

(additive (AO) and innovation (IO) outliers) are demonstrated. This research extends 

Chang, Tiao, and Chen (1988)’s procedure to a panel data model, and a modified 

inverse Fourier transform is used to construct the statistics, which is based on the 

spectral Whittle approach.  

Through Monte Carlo experiments the consistency of the estimator is examined 

for the panel data model in which the dataset is contaminated with three types of 

interventions:  AO, IO, and level shift. From the power tests we can see that the 

estimators are quite successful and powerful.  

In the case study we focus on the performance of local private Taiwanese banks 

in the stock market from January 2000 to December 2006. By the panel data model 

we can easily estimate the impacts of the level shifts and outliers. In the result 

analysis Taitung Business Bank has the largest structure change with twice downward 

level shifts, i.e., it has the worse performance as time increases. The impacts are 

respectively -9.1882 and -10.0069, and the t-values are -4.655 and -5.2156. It makes 

sense that this debt-ridden bank was taken over by Central Deposit Insurance Corp. of 

Taiwan’s government in December 2006.  

  

 

Keyword: additive outlier, innovation outlier, level shift, long memory, panel data 

model.  
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1. Introduction 

 

In a time series model the outliers can be regarded as being generated by 

dynamic intervention models. The structure of the underlying process plays an 

important role when detecting and identifying these outliers. A fundamental approach 

for the time series model was proposed by Fox (1972), and it demonstrate two typical 

types of outliers, additive and innovation outliers, with an AR(p) process. In economic 

system different types of interventions represent different types of dynamic influences 

of events. It is therefore important to detect and identify these interventions. In the 

estimation we remove these effects from the observations to better understand the 

underlying structure of the series. Therefore, many studies in the literature discuss the 

intervention detection and identification, such as Box and Tiao (1975), Chang, Tiao, 

and Chen (1988), Bianco, Ben, Martinez, and Yohai (2001), etc.  

Because the interventions decrease the estimator’s efficiency, many robust 

estimators have been developed, such as in Martin and Yohai (1986), Yohai (1987), 

and Pena and Yohai (1999). In practice, we may find a small fraction of atypical 

observations in the case when innovation or additive outliers may not significantly 

affect the robust estimates, but it is different in the case of level shifts. This causes a 

serious bias even after applying an appropriate robust estimator. Hence, Bianco, Ben, 

Martinez and Yohai (2001) proposed a diagnostic procedure for detecting level shifts 

as well as additive and innovation outliers in a regression model.  

This article focuses on the level shifts and develops a fast approximation that can 

be used to detect and identify these interventions at unknown time points, in which we 

follow Chang, Tiao, and Chen (1988)’s useful iteration procedure and then extend to a 

panel data model. We compute the statistics herein based on the familiar spectral 

Whittle method. In conventional approaches we know that the spectral Whittle 
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approach can save much time in recursive calculation and is easily operated in 

coordination with a periodogram, especially when the time length is long and the 

model is complicated (e.g., a mixed model with fractional AR and MA). In a time 

series model we have to test the outliers by the residuals that are demonstrated in the 

time domain. It does not seem easy to have a corresponding appropriate approach to 

being with a spectral model. This paper provides an approach to solve this problem.  

 

2. Identification of level shift, additive outlier, and innovation outlier 

 

This section develops statistics for detecting and identifying the outliers and level 

shifts, in which we extend Chang, Tiao, and Chen (1988)’s method to level shift 

detection and a quick approach in the spectral domain is developed. By a fast 

calculation we can apply the model on a large dataset.  

Assume that an underlying process zt follows an ARIMA(p,d,q) model, i.e.: 

( )(1 ) ( )d

t t
B B z B aφ θ− = , (1) 

where 1( ) 1
p

B B Bφ φ φ= − −� , 1( ) 1 q

qB B Bθ θ θ= − − −� , B is the backshift operator, 

{at} is white noise, and 2var( )
t a

a σ= . φ(B) and θ(B) represent the corresponding AR 

and MA polynomial operator functions with roots outside the closed unit circle, and a 

stationary process with -0.5 ≤ d < 0.5 wherein d ∈ (0, 0.5) indicates a long memory 

process.  

In the beginning let us regard an additive outlier. From Chang, Tiao, and Chen 

(1988) whereby a process contains an additive outlier at the sth observation, we can 

set ( )s

t t AO t
y z Pα= +  where ( ) 1s

t
P =  for t = s, and ( ) 0s

t
P =  otherwise. This can be 

expressed in a vector form: 

[ ], 0 0 1 0 0
AO s

P′ = � � , (2) 
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and the observations are:  

,AO AO S
y P zα= + ,  

where [ ]1 2 T
y y y y′ = � , [ ]1 2 T

z z z z′ = � .  

 Following Chang, Tiao, and Chen (1988, eqn 2.2a) and (1), we can estimate the 

impact αAO,s through the least square regression, i.e.:  

2

, 0 0
ˆ

T s T s

AO s j j s jj j
eα π π

− −

+= =
=∑ ∑ , (3) 

where ( )
t t

e B yπ=  and 1 2

1 2( ) ( )(1 ) ( ) 1d
B B B B B Bπ φ θ π π−= − = + + −� . Here, π(B) 

is a polynomial filter function that can transform {zt} to be a white noise process {at}. 

In finite sample observations we naturally apply the covariance matrix of z and 

[ ]1 2 T
z z z z′ = �  to obtain the filter coefficients.  

 Let the covariance matrix of z be 2 ( )
a

σ Σ Θ  and 2 var( )
a t

aσ = . The Cholesky 

decomposition of the inverse covariance matrix can be written as 1( ) UU− ′Σ Θ =  

where U is an upper triangular and it can be used to transform {zt} to be white noise, 

e.g., U′z = a. In the same way we can follow Chang, Tiao, and Chen (1988) to 

transform yt to obtain the ‘residual’, i.e.: 

e U y′=  where [ ]1 2 T
e e e e= � .  

The corresponding filter coefficients can be obtained by ,AO s
P Uτ ′ ′= , which is 

approximately [ ]0 10 0
T s

π π π −� � . Thus, relative to (3) the estimator of 

,AO s
α  can be obtained by: 

1

,

,
1

, ,

( )
ˆ

( )

AO s

AO s

AO s AO s

P y
e

P P
α τ τ τ

−

−

′Σ Θ
′ ′= =

′Σ Θ
. (4) 

According to Beran (1994, page 116), we know: 

[ ]1

, 1,...,
( ) ( )

m l T
m lδ−

=
Σ Θ = − and 

( )1 1
[ ]

( ; )

ji m l

j J j

m l e
T g

λ
δ

λ

−

∈

− ≈
Θ

∑ , (5) 

where 1 1( ,..., , , ,..., )
p q

dφ φ θ θ ′Θ = ,
2

1( ; ) ( ) ( )(1 )j j ji i i d

j
g e e e

λ λ λ
λ

− − −− −Θ = Θ Φ − ,  
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{ , , } {0}J M M= − −� , and M = [T/2], [.] is the floor integer. Here, we take away the 

zero frequency by mean correction to avoid the spectral density function exploding 

when zt is a long memory process d ∈ (0, 0.5).  

 Putting the equation (5) into (4) the estimator we obtain is: 

,

1 1

( ; )2 1 1
ˆ 2 Re .

( ; ) ( ; )

j

M M
is y j

AO s

j jj j

w
e

T g M g

λ λπ
α

λ λ= =

    Θ
≈        Θ Θ    

∑ ∑  (6) 

According to Chang, Tiao, and Chen (1988) the variance of ,AO s
α�  is: 

( ) 2 2

0
var

T s

AO a jj
α σ π

−

=
= ∑� . 

This can be approximately by: 

( )
1

2

1

2 1
var

( ; )

M

AO a

j j
T g

α σ
λ

−

=

 
≈   Θ 

∑� .  

Thus, the statistics can be established by: 

H0 vs. H1:  

,

,

1 1

( )2 2 1
2 Re

( ; ) ( ; )

j

M M
is y jAO s

AO s a

j jj ja

w
e

T g T g

λ λτα π
η σ

λ λσ = =

    
= =        Θ Θ    

∑ ∑
�

� �
�

. (7) 

From (6) and (7) we see the coefficients and statistics can be calculated by the 

modified inverse Fourier transform, which can save much time especially when 

applied to a huge dataset.  

Aside from the additive outlier, another important type of outlier has been 

popularly discussed in the literature. This is the innovation outlier (IO), in which the 

impact not only affects the particular observation, but also the subsequent 

observations, which can be seen in Fox (1972) and Chang, Tiao, and Chen (1988). In 

the following we focus on IO and develop its corresponding estimator and statistics. If 

the impact affects the sth observation and the subsequent observations, then we  

rewrite (2) in the following vector form: 
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[ ], 0 10 0
IO s T s

P τ τ τ −
′ = � � , 

where τ0 start at the sth element. If it is an IO, then the coefficients have the following 

relationship:  

2 1

0 1 2( ) ( ) ( )(1 ) d
B B B B B Bτ τ τ τ θ φ − −= + + + = −� . 

According to (4), the impact can be written as:  

1

,

,
1

, ,

( )

( )

IO s

IO s

IO s IO s

P y

P P
α

−

−

′Σ Θ
=

′Σ Θ
� . 

Putting (5) into the above equation we obtain an estimator:  

,

1

( )2 ( )
2 Re

( ; ) ( )(1 )

j

j

j j

iM
isy j

IO s i i d
j j

w e
e

T g e e

λ
λ

λ λ

λπ θ
α

λ φ=

 
=  

Θ −  
∑� .  

Following Chang, Tiao, and Chen (1988) we obtain the corresponding variance:  

( ) 2

,var
s IO a

α σ=� . 

Therefore, we establish the statistics:  

H0 vs. H2: ,

1

( )2 2 ( )
Re

( ; ) ( )(1 )

j

j

j j

iM
isy j

IO s i i d
ja j

w e
e

T g e e

λ
λ

λ λ

λπ θ
η

σ λ φ=

 
=  

Θ −  
∑�

�
.  (8) 

From the above estimator and statistics we see the modified inverse Fourier transform 

still can be used to obtain the coefficients quickly which is slightly different from (6) 

and (7).  

Aside from AO and IO, the level shift is also a typical event that one often 

encounters in time series models. Relative to (2), we set the impact vector as a step 

function as the following: 

[ ], 0 0 1 1 1
L s

P = � � , 

where the unit elements begin at the sth element. Thus, following (4) we obtain the 

estimator as: 

1

,

,
1

, ,

( )
ˆ

( )

L s

L s

L s L s

P y

P P
α

−

−

′Σ Θ
=

′Σ Θ
. 
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In the same way, we put (5) into the equation and obtain the estimator as:  

1
2

( 1)

,

1 1

( ) sin ( 1) 22 1 2 1
2 Re .

( ; ) ( ; ) sin 21

j

j

j

i T sM M
isy j j

L s i

j jj j j

w T se
e

T g T ge

λ
λ

λ

λ λπ
α

λ λ λ

−
− +

= =

      − +−  =      Θ Θ −       
∑ ∑�

This can be represented by an alternative form:  

,

1 1

1
2

1

( ) ( )2
2 Re

( ; ) ( ; )1 1

sin ( 1) 22 1
.

( ; ) sin 2

j j

j j

is iM M
y j y j

L s i i

j jj j

M
j

j j j

w we e

T g ge e

T s

T g

λ λ

λ λ

λ λπ
α

λ λ

λ

λ λ

= =

−

=

  
= − ×   Θ Θ− −   

  − +
   Θ   

∑ ∑

∑

�

 

From the above equation we see the first term can be obtained by a modified 

inverse Fourier transform. In practice, it saves much time in calculation. The relative 

variance of the estimator can also be obtained by a least square method, that is: 

( ) ( )
1

1 2

, , ,
var ( )

L s L s L s a
P Pα σ

−
−′= Σ Θ� . 

This is approximately by using (5) as: 

( )

1
2

2

,

1

sin ( 1) 22 1
var

( ; ) sin 2

M
j

L s a

j j j

T s

T g

λ
α σ

λ λ

−

=

  − +
 =   Θ   
∑� . 

The corresponding statistics are established by: 

H0 vs. H3:  

,

,

,

1 1

2

1

var

( ) ( )2 2
2 Re 2

( ; ) ( ; )1 1
.

sin ( 1) 22 1

( ; ) sin 2

j j

j j

L s

L s

L s

is iM M
y j y j

i i

j jj j

M
j

a

j j j

w we e

T g T ge e

T s

T g

λ λ

λ λ

α
η

α

λ λπ π

λ λ

λ
σ

λ λ

= =

=

=

  
−   Θ Θ− −  ≈

  − +
   Θ   

∑ ∑

∑

�
�

�

�

 

From the above equation we see that the first term in the numerator part is 

obtained by the modified inverse Fourier transform, and the second term is a 

particular case when s = 1. Thus, we calculate the statistics ,L s
η�  at each time s = 1,…, 

T very fast.  
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3. Iterative procedure for outliers’ detection and identify  

 

We now follow Chang, Tiao, and Chen (1988)’s method to implement the 

iterative procedure for the outliers’ detection and identification. At the first stage of 

this procedure, the fractional ARIMA model is estimated by the observed time series 

yt in the Whittle approach and assuming that the series contains no outliers.  

 Relative to the previous section we calculate the statistics ,AO t
η� , ,IO t

η� , and ,L t
η�  

which can be calculated for each time t = 1, 2,…, T. Following Chang, Tiao, and Chen 

(1988) we calculate the largest statistics by , , ,max [max( , , )]
s t IO t AO t L t

η η η η=� � � � . If 

s
cη >�  where c is a pre-specified critical value, then we remove the intervention’s 

effect. Typically, the value c could be 3.0, 3.5, or 4.0. If ,s AO s
cη η= >� �  which 

indicates an additive outlier, then we remove the effect from the original data, i.e., 

*

,s s AO sy y α= − � ; else if ,s IO s
cη η= >� � , then *

,s r s r IO s ry y α τ+ += − �  for r = 0, …, T-s. 

Otherwise, if ,s L s
cη η= >� � , then *

,s r s r L sy y α+ += − �  for r = 0, …, T-s. The preceding 

steps are then repeated until all outliers are identified.  

After removing these outliers, we calculate the model with a traditional Whittle 

approach: 

*

( )
[ / 2]

(0)

1

( )4

( ; )

T
T

jy

j j

I
Q

T g

λπ

λ=

=
Θ

∑ , where -0.5 < d < 0.5,  

where * * * *

1 2 T
y y y y

′ =  �  and 2

(0) aQ σ→  if T → ∞. Here, 2

a
σ  is the variance 

of the noise at. Through the first-order condition, 
(0 )

(0) 0Q
Θ=Θ

∂ ∂Θ =
�

, a Taylor 

expansion can be obtained by: 
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( )
(0 ) 0 1

2

(0) (0) (0)

(0) 0

Q Q Q

Θ=Θ Θ=Θ Θ

∂ ∂ ∂
= + Θ − Θ

′∂Θ ∂Θ ∂Θ∂Θ
�

� ,  

where 1 0 (0) 0Θ − Θ ≤ Θ − Θ�  and the covariance matrix can be obtained: 

( )
01 1

1 1
2 2

(0) (0) (0)

(0)

Q Q Q
COV COV

− −

Θ=ΘΘ=Θ Θ=Θ

    ∂ ∂ ∂
   Θ =  

 ′ ′   ∂Θ∂Θ ∂Θ ∂Θ∂Θ    

� . 

As Θ1 locates between (0)Θ�  and Θ0, and (0) 0Θ → Θ�  if T → ∞, then we can use 

(0)Θ�  to instead. Under the stationary assumption we express the covariance as (see 

the proof in Appendix A):  

( )
(0 )

1

(0)

1

M

j j

j

COV η η

−

= Θ=Θ

  
 ′Θ ≈  
   
∑

�

� ,  

where ln ( ; )
j j

gη λ= ∂ Θ ∂Θ . 

 

4. Extension to a panel data model 

 

This section extends the approach to a panel data model where Chen (2006)’s 

spectral Whittle method is used, in which the remainder disturbance is a mixed 

fractional ARIMA(p,d,q) model. First, let us consider a function with a one-way panel 

data model: 

  for 1,..., ,and 1,..., ,
kt kt k kt

y x v k N t Tβ µ′= + + = =  (9) 

where k denotes individuals and t is time. The k subscript represents the cross-section 

dimension, t denotes the time-series dimension, β shows the regression coefficients if 

there are r exogenous variables (thus, β is r×1), xkt is the kt-th observation explanatory 

variable that is r×1, and ,1 ,[ , , ]
kt kt kt r

x x x′ = … , µk is the individual effect, and vkt is the 

remainder disturbance. Here, 2~ (0, ( ))
k a

v N σ Σ Θ  and vk indicates the vector of the 



 12

kth individual’s remainder disturbance and it has T elements. If we represent the panel 

data model in a vector form, then: 

y x z vµβ µ= + + .  

In this equation y is an NT×1 vector, x is an NT×r matrix such that r is the number 

of explanatory variables, v is an NT×1 vector, 
N T

z I lµ = ⊗ , and lT = [1,…,1]
′
, µ = 

[µ1, …, µN]′. According to Chen (2006, (3) and (7)), if the model is a fixed effects 

panel data model, then µk is a constant parameter. The quadratic form for the spectral 

Whittle objective function can then be expressed as:  

1

2

1 1

( ) ( ( ))( )

( ) ( )4
,

( ; )

k k

N

N M
y j x j

k j j

Q y x z I y x z

w w

NT g

µ µβ µ β µ

λ λ βπ

λ

−

= =

′= − − ⊗ Σ Θ − −

′−
=

Θ
∑∑

 (10) 

where ( )
ky j

w λ  is the Fourier transform of the kth individual’s dependent variable 

and ( )
kx j

w λ  is a r×1 vector that is the Fourier transform of the kth individual’s 

explanatory variables.  

 If the remainder disturbance includes an additive outlier at the kth individual, 

then according (9) we can express the remainder disturbance as: 

,k AO AO s k
u P vα= + , 

where   for 1,...,
k k k T k

y x l u k Nβ µ= + + = . In the same way, if the remainder 

disturbance includes an IO or level shift, then it can be represented respectively as: 

,k IO IO s k
u P vα= +  and ,k L L s k

u P vα= + .  

 Following (3), (4), and (5) the outlier estimators are obtained respectively as:  

( )
,

1 1

( ) ( )2 1 1
2 Re ,

( ; ) ( ; )

k kj

M M
y j x jis

AO ks

j jj j

w w
e

T g M g

λ λ λ βπ
α

λ λ= =

  ′−  
  ≈   Θ Θ      

∑ ∑
�

�  



 13

( )
,

1

( ) ( )2 ( )
2 Re

( ; ) ( )(1 )

j

k kj

j j

iM
y j x jis

IO ks i i d
j j

w w e
e

T g e e

λ
λ

λ λ

λ λ βπ θ
α

λ φ=

 ′−
 ≈

Θ −  
∑

�

� , 

and  

( ) ( )
,

1 1

1
2

1

( ) ( ) ( ) ( )2
2 Re

( ; ) ( ; )1 1

sin ( 1) 22 1
,

( ; ) sin 2

j j

k k k k

j j

is iM M
y j x j y j x j

L ks i i

j jj j

M
j

j j j

w w w we e

T g ge e

T s

T g

λ λ

λ λ

λ λ β λ λ βπ
α

λ λ

λ

λ λ

= =

−

=

  ′ ′− −
 =   − ×

Θ Θ − −   

  − +
   Θ   

∑ ∑

∑

�

where 
,AO ks

α� , 
,IO ks

α� , and 
,L ks

α�  represent the AO, IO, and level shift impacts at the 

sth observation of the kth individual, respectively. Among them we estimate β and Θ 

through (10). The corresponding statistics are thus represented as: 

( )
, (0)

1 1

( ) ( )2 2 1
2 Re

( ; ) ( ; )

k kj

M M
y j x jis

AO ks

j jj j

w w
e

T g T g

λ λ λ βπ
η σ

λ λ= =

  ′  −
  =  

 Θ Θ      
∑ ∑

�

� � , 

( )
, 2

1

( ) ( )2 2 ( )
Re

( ; ) ( )(1 )

j

k kj

j j

iM
y j x jis

IO ks i i d
ja j

w w e
e

T g e e

λ
λ

λ λ

λ λ βπ θ
η

σ λ φ=

 ′−
 =

Θ −  
∑

�

�
�

,  

and  

( ) ( )

,

,

,

1 1

2

1

var

( ) ( ) ( ) ( )2 2
2 Re 2

( ; ) ( ; )1 1
.

sin ( 1) 22 1

( ; ) sin 2

j j

k k k k

j j

L ks

L ks

L ks

is iM M
y j x j y j x j

i i

j jj j

M
j

a

j j j

w w w we e

T g T ge e

T s

T g

λ λ

λ λ

α
η

α

λ λ β λ λ βπ π

λ λ

λ
σ

λ λ

= =

=

=

  ′ ′− −
   −

Θ Θ − −   ≈
  − +
   Θ   

∑ ∑

∑

�
�

�

� �

�

 Following section 3 we estimate the model by an iterative procedure, in which 

the outliers are removed from ykt for k=1,…, N and t = 1,..., T and the objective 

function is obtained as: 

*

2

(0)

1 1

( ) ( )4

( ; )

kk

N M
j x jy

k j j

w w
Q

NT g

λ λ βπ

λ= =

′−
=

Θ
∑∑

�

, 
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where 
2

(0) aQ σ→ . Here, we shall note that if we minimize Q(0) to obtain (0)β�  and 

(0)Θ� , due to (0)β�  being asymptotically orthogonal to (0)Θ� , i.e, 

( ) ( )2

(0) (0) (0) (0) (0) (0) (0)
0E Q E Q Qβ β ′ ′ ∂ ∂ ∂Θ = ∂ ∂ ∂ ∂Θ =    , then we calculate (0)β�  

and (0)Θ�  separately. The properties of (0)Θ�  have been discussed in the previous 

section and the covariance matrix is equivalent to:  

(0 )

1

(0)

1

1 M

j j

j

COV
N

η η

−

= Θ=Θ

 
′ Θ ≈   

 
∑

�

� . 

The corresponding covariance matrix of (0)β�  is obtained as: 

( )

( )

1 1
2 2

(0) (0) (0) (0)

(0)

1

2

1 1 (0)

var

2 Re ( )
2 ,

( ; )

k

N M
x j

a

k j j

Q Q Q Q
E E E

I

g

β
β β β β β β

λ
σ π

λ

− −

−

= =

      ∂ ∂ ∂ ∂ 
=        ′ ′ ′∂ ∂ ∂ ∂ ∂ ∂          

  
  ≈

 Θ 
  

∑ ∑

�

 

which is devised from: 

(0) (0) 2 1

(0)

(0) (0)

4 ( ( ))a N

Q Q
E x I xσ

β β
−

 ∂ ∂
′= ⊗ Σ Θ 

′∂ ∂  
 and 

2

(0) 1

(0)

(0) (0)

2 ( ( ))N

Q
x I x

β β
−

∂
′= ⊗ Σ Θ

′∂ ∂
.  

 

5. Simulations and power test 

 

In this section we use Monte Carlo experiments to examine the power of the 

iterative outliers’ detection procedure. A panel data model with a mixed remainder 

disturbance model is applied for the evaluations, in which two types of outliers, AO 

and IO, and level shifts are scattered in the dataset. As it is a time consuming task we 

only choose a simple model and we believe that the estimator has the same power 

when the parameters values are changed.  

A panel data model is constructed by 
kt kt k kt

y x vβ µ= + +  and the remainder 
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disturbance is used with (1 )(1 ) (1 )d

kt kt
B B vφ θ ε− − = − , for k = 1, …, N, t =1,…, T, 

where µk ~ NID(0,1) and εkt ~ NID(0,1). In this simulation, without loss of generality, 

we set the parameters with φ = 0.6, θ = 0.3, and d = 0.1, and the cross-section 

dimensions (group numbers or individual numbers) are increased from 15, to 20, and 

then to 25. At the same time, the time-series dimensions T are increased from 280, to 

300, and then to 320.  

The impacts of the outliers are implemented by αL = αIO = αAO= 10, and 10 

events are encountered in the dataset, which includes four additive outliers, four 

innovation outliers, and two level shifts. The additive outliers take place at the 50
th

 

and 100
th

 observations of the 5
th

 and 15
th

 individuals, and the innovation outliers are 

encountered at the 120
th

 and 180
th

 observations of the 8
th

 and 12
th

 individuals, and 

eventually the level shifts set at the 130
th

 observations of the 10
th

 and 13
th

 individuals.  

Table 1 exhibits the power test. From Table 1 we see that though the model 

estimated by the raw data with these extreme outliers (αIO = αAO= αL = 10) could be 

invalid, after the proposed iterative procedure the estimator employs a consistent 

property. We see that when (N, T) increases from (15, 280), to (20, 350), and then to 

(25, 320), the rejected probabilities for the null hypothesis φ = 0.6 are around 0.05. 

By contrast, it is obviously different for the fault null hypothesis φ = 0.5 that the 

rejected probability increases from 0.367, to 0.472, and then to 0.558. The likely 

properties are also found in other null hypotheses. Overall, we see that the proposed 

estimators are not affected by these extreme outliers, and the larger the sample size is, 

the more powerful the estimator will be.  

 Table 2 shows the rate of the correct identification. From the table we see that the 

true IO is easier to be misidentified when compared to AO. For instance, we see that 

the percentage of correct identification as an AO at (k, t) = (5, 50) of (N, T) = (15, 280) 
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is 97.9% and the rest is misidentified as IO. In contrast, the true IO at (k, t) = (8, 120) 

of (N, T) = (15,280) is 90.8%, the misidentification rate is 9.2%, and these are all 

identified as AO, which is greater than 2.1%. In the other estimators, they have the 

same result. The reason could be that the estimations of parameters in each iteration 

have to assume that the model is free from outliers. In fact, they are not really free 

from the outliers. Therefore, when we apply these estimators to obtain these statistics, 

it will reduce the precision of outliers’ detection especially for the estimation in IO. 

However, in the detections of level shifts we see that they are totally correct. The 

reason could be that the level shifts are quite different from the other types of outliers 

and are easy to be distinguished.  

 

6. Case study 

  

 In this section we investigate Taiwanese local banks. Different from  

international business banks, the local private banks are basically conservative and 

most of them are family businesses. Here, we investigate 12 local banks and they are 

respectively Chang Hwa Bank, Hsinchu International Bank, Taitung Business Bank, 

Taichung Bank, The Chinese Bank, Taiwan Business Bank, Kaohsiung Bank, Cosmos 

Bank, Union Bank of Taiwan, Far Eastern International Bank, Tachong Bank, and 

Entie Bank. Weekly data between January 2000 and December 2006 from the Taiwan 

Stock Exchange are available for this research.  

 In the beginning a traditional market model for the i-th stock can be represented 

as:  

it i mt i it
R R uβ µ= + +  for i=1,…, N, 

where µi shows the individual effects that can be regarded as an intercept or a constant 

term. Term βi is the beta coefficient, a measure of systematic risk. Term Rit is the rate 
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of return on stock i, and Rmt is the rate of return on the market portfolio, represented 

here by TAIWX (Taiwan Weighted Index).  

Following the proposed iteration estimation we remove the outliers and level 

shifts. AIC (Akaike information criterion) and SBC (Schwartz Bayesian criterion) are 

used to choose the best model. Table 3 demonstrates the results. From the table we 

choose the best model p = 2, q = 1. In the following the proposed model and the 

traditional model are estimated for comparison:  

The raw model:  

(0.0225)
0.8327

kt mt k kt
R R uµ= + + , and ( 0.0885)

0.2235
1 2

(0.0870) (0.0387) (0.0165)
(1 ) (1 0.7804 0.0408 ) (1 0.9257 )

kt kt
B B B u B ε− − − = − ,  

where N = 12, T = 359, AIC = 3.3937, SBC = 3.4011, MSE = 29.7079.  

 

The proposed model:  

(0.0186)
0.7901

kt mt k kt
R R uµ= + + , and ( 0.1071)

0.2899
2

(0.0922) (0.0308) (0.0229)
(1 ) (1 0.6286 0.0775 )  (1 0.8945 ) 

kt kt
B B B v B ε− − − = − , 

where N = 12, T = 359, AIC = 3.0027, SBC = 3.0101, and MSE = 20.094.  

 

The MSE of the proposed model is 20.094, which is obviously smaller than the 

raw model 29.7079. From the beta coefficient, we see that both beta coefficients are 

smaller than unit (0.8327 and 0.7901), which indicates these securities are defensive. 

Table 4 shows the outliers and level shifts locations. In this model three times of level 

shifts took place. Two of the level shifts occurred at February 2000 and October 2006 

by Taitung Business Bank, and the other one came from Taichung Bank in January 

2000. Their corresponding impacts are respectively -9.1882, -10.0069, and -10.7557 

and the t-values are -4.655, -5.2156, and -4.463. This indicates these two banks have 

the largest structure changes and worse performances as time increases. Furthermore, 

Table 4 shows that there are 35 and 27 times of IO and AO scattered over these 
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private local banks, and Taitung Business Bank occupies the largest amount of IO and 

AO at respectively 14 and 16. This shows it encountered radical changes during the 

study period. From a general viewpoint, Taitung Business Bank’s reputation is 

questionable and it has been taken over by Central Deposit Insurance Corp. of 

Taiwan’s government in December 2006 due to being debt-ridden.  

 

Concluding remark 

 

This article provides a useful approach to detect and identify the interventions in 

a panel data model, in which the remainder disturbance with a fractional ARMA 

model is implemented. In the simulation we apply a dataset encountering level shifts, 

additive outliers, and innovation outliers, and from the result analysis we see it is 

quite a successful approach when the data contain different types of interventions. 

Furthermore, through the case study we see it is successfully applied on local banks. 

From the result analysis we can easily evaluate each bank’s dynamic performance in 

the stock market when compared to the others.  
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Appendix A 

As yt
*
 indicates that yt has been removed the outliers, let * *( )

t t
B y aπ = , and then 

according to (5) we obtain the derivative as: 

* *

*

(0)

2
1 1 1

( ) ( )( ; )4 4 4
( )

( ; ) ( ; )

M M M
j jy j y

j j ja
j j jj j

I IQ g
I

T g T g T

λ λλπ π π
η λ η

λ λ= = =

∂ ∂ Θ
= − = − = −

∂Θ Θ ∂Θ Θ
∑ ∑ ∑ , 

* *
2 2

(0)

3 2
1 1

( ) ( )( ; ) ( ; ) ( ; )8 4

( ; ) ( ; )

M M
j jy j j y j

j jj j

I IQ g g g

T g T g

λ λλ λ λπ π

λ λ= =

∂ ∂ Θ ∂ Θ ∂ Θ
= −

′ ′ ′∂Θ∂Θ Θ ∂Θ ∂Θ Θ ∂Θ∂Θ
∑ ∑ . 

As 
1

ln ( ; ) 0
M

j

j

g λ
=

Θ =∑ , we obtain: 

2

1 1

( ; ) ln ( ; ) ln ( ; )1

( ; )

M M
j j j

j jj

g g g

g

λ λ λ

λ= =

∂ Θ ∂ Θ ∂ Θ
=

′ ′Θ ∂Θ∂Θ ∂Θ ∂Θ
∑ ∑ . 

From Robsenblatt (2000) we know that *

2

( ) ( ; )
2

a
j jy

E I g
σ

λ λ
π

  → Θ
 

 for T →∞, and 

thus we obtain: 

2 2
(0)

1

2 M

a
j j

j

Q
E

T

σ
η η

=

 ∂
′→ 

′∂Θ∂Θ 
∑  for T →∞,  

where ln ( ; )
j j

gη λ= ∂ Θ ∂Θ . As at
*
 can be regarded as a white noise, therefore we 

obtain: 

*

2
2

2

1
( ) ~

2 2

a
ja

I
σ

λ χ
π

, and ( )* *cov ( ), ( ) 0
j ka a

I Iλ λ =  for j ≠ k.  

From the first condition we know that *

(0)

1

4
( ) 0

M

j ja
j

Q
E E I

T

π
λ η

=

∂   
= − =  ∂Θ   

∑ , and 

therefore we have the following relationship: 
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* *

* *

(0) (0) (0)

1 1

1 1
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( )
01 1

( 0)

1 1
2 2

(0) (0) (0)

(0)

1

1

.
M

j j

j

Q Q Q
COV COV

η η

− −

Θ=ΘΘ=Θ Θ=Θ

−

= Θ=Θ

    ∂ ∂ ∂
   Θ =  

 ′ ′   ∂Θ∂Θ ∂Θ ∂Θ∂Θ    

  
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Table 1. Empirical size and power test based on 1000 replications for the model ykt = xktβ+µk+ vkt, where 

(1-φB)vkt=(1-B)
-d

(1-θB)εkt, µk ~ NID(0,1), εkt ~ NID(0, 1). The sizes are respectively (N, T) = (15, 280), (20, 

300), and (25, 320), and the parameters are respectively φ = 0.6, θ =0.3, and d = 0.1. The outlier parameters 

are αIO = αAO= αLS = 10 and the additive outliers are scattered at the 50
th
 and 100

th
 observations for the 5

th
, 

and 15
th

 individuals, and simultaneously the innovation outliers are set at the 120
th

 and 180
th

 observations for 

the 8
th

 and 12
th

 individuals, and the level shifts are set at 130 observation of the 10
th

 and 13
th

 individuals. The 

critical value c = 4.0. The power test is based on 1000 replications, the significance level is at 5%, and the 

two-tailed standard normal distribution test is used.  

H0: φ =  0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 

(15, 280) 0.763  0.602  0.367  0.157  0.051  0.091  0.335  0.774  0.969  0.994  0.999 

(20, 300) 0.874  0.723  0.472  0.196  0.058  0.153  0.514  0.909  0.994  1.000  0.999 

(25,320) 0.954 0.831  0.558  0.224  0.055  0.179  0.692  0.976  0.999  1.000  1.000 

H0: θ =  0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 1.30 

(15, 280) 0.946  0.846  0.545  0.153  0.064  0.292  0.694  0.931  0.991  0.999  1.000 

(20, 300) 0.989 0.942  0.703  0.245  0.060  0.395  0.838  0.984  1.000  1.000  1.000 

(25,320) 0.999  0.985  0.853  0.308  0.045  0.451  0.938  0.998  1.000  1.000  1.000 

H0: d =  -0.10 -0.05 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 

(15, 280) 0.883  0.730  0.449  0.202  0.096  0.123  0.379  0.762  0.943  0.999  1.000 

(20, 300) 0.953  0.825  0.583  0.242  0.076  0.183  0.546  0.910  0.999  1.000  1.000 

(25,320) 0.991 0.925  0.664  0.281  0.073  0.217  0.713  0.980  0.999  1.000  1.000 

H0: β =  0.80  0.85  0.90  0.95  1.00  1.05  1.10  1.15  1.20  1.25  1.30 

(15, 280) 1.000 1.000  1.000  0.921  0.041  0.921  1.000  1.000  1.000  1.000  1.000 

(20, 300) 1.000  1.000  1.000  0.982  0.048  0.982  1.000  1.000  1.000  1.000  1.000 

(25,320) 1.000 1.000  1.000  0.998  0.051  0.997  1.000  1.000  1.000  1.000  1.000 

The means of these estimates of φ for different sizes (15, 280), (20, 300), and (25, 320) are respectively 

0.5874, 0.5915, and 0.5934, and their standard deviations are respectively 0.0732, 0.0587, and 0.0475. For θ, 

the means are respectively 0.2881, 0.2907, and 0.2932, and standard deviations are respectively 0.0477, 

0.0398, and 0.0305. For d, the means are respectively 0.1007, 0.0988, and 0.0993, and standard deviations are 

respectively 0.0674, 0.0555, and 0.0433. For β, the means are respectively 0.9997, 0.9999, and 0.9997, and 

standard deviations are respectively 0.0148, 0.0124, and 0.0104. This indicates that even the data contain the 

outliers, and the estimator by using the iterative procedure to remove these outliers still employs consistent 

properties.  
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Table 2. The identifications for the outliers’ simulations, which are based on 1000 replications for the model 

ykt = xktβ+µk+ vkt, where (1-φB)vkt=(1-B)
-d

(1-θB)εkt, µk ~ NID(0,1), εkt ~ NID(0, 1). The sizes are respectively 

(N, T) = (15, 280), (20, 300), and (25, 320), and the parameters are respectively φ = 0.6, θ =0.3, and d = 0.1. 

The outlier parameters are αIO = αAO= αLS = 10 and the additive outliers are scattered at the 50
th
 and 100

th
 

observations for the 5
th

, and 15
th

 individuals, and the innovation outliers are set at the 120
th

 and 180
th
 

observations for the 8
th

 and 12
th

 individuals, and the level shift are set at 130 at the 10
th

 and 13
th

 individuals. 

The critical value c = 4.0.  

(N, Time) True outlier Percentage for correct and wrong identifications 

Location (k, t) (5,50) (5,100) (15,50) (15,100) 

Correct (identified as AO) 97.9% 98.2% 97.3% 98.4% AO 

Wrong (identified as IO) 2.1% 1.8% 2.7% 1.6% 

Location (k, t) (8,120) (8,180) (12,120) (12,180) 

Correct (identified as IO) 90.8% 91.8% 91.6% 90.6% IO 

Wrong (identified as AO) 9.2% 8.2% 8.4% 9.4% 

Location (k,t) (10,130) (13,130) 

(15, 280) 

level shift 
Correct (identified as LS) 100.0% 100.0% 

Location (k, t) (5,50) (5,100) (15,50) (15,100) 

Correct (identified as AO) 97.5% 98.1% 97.8% 97.4% AO 

Wrong (identified as IO) 2.5% 1.9% 2.2% 2.6% 

Location (k, t) (8,120) (8,180) (12,120) (12,180) 

Correct (identified as IO) 91.6% 91.8% 91.3% 91.6% IO 

Wrong (identified as AO) 8.4% 8.2% 8.7% 8.4% 

Location (k,t) (10,130) (13,130) 

(20, 300) 

level shift 
Correct (identified as LS) 100.0% 100.0% 

Location (k, t) (5,50) (5,100) (15,50) (15,100) 

Correct (identified as AO) 98.5% 98.2% 97.7% 98.0% AO 

Wrong (identified as IO) 1.5% 1.8% 2.3% 2.0% 

Location (k, t) (8,120) (8,180) (12,120) (12,180) 

Correct (identified as IO) 91.2% 91.1% 92.4% 92.9% IO 

Wrong (identified as AO) 8.8% 8.9% 7.6% 7.1% 

Location (k,t) (10,130) (13,130) 

(25, 320) 

level shift 
Correct (identified as LS) 100.0% 100.0% 

In the table we can see the identifications of AO rarely fail. For instance, when (N,Time) = (15, 280) the rate 

of correctly identification at the location k = 5, t = 50 is 97.9%, and similar results are seen in the other 

locations. In contrast, IO identifications are easy to be misidentified, e.g., the correct identification rate at k = 

8, t = 120 of (N, Time) = (15, 280) is 90.8%. At the same time, we also see that the identifications of level 

shifts are 100% correct.  
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Table 3. The summary of AICs (or SBCs) for different remainder 

disturbance ARIMA(p,d,q) models. 

Model: 
kt mt k kt

R R vβ µ= + + ,  

1 1
(1 ... )(1 ) (1 ... )p d q

p kt q kt
B B B v B Bφ φ θ θ ε− − − − = − − − , 

where 2~ (0, )
kt

NID εε σ . 

 q = 0 q = 1 q = 2  

p = 0 
3.0098 

(3.0128) 

3.0047 

(3.0091) 

3.0058 

(3.0117) 

p = 1 
3.0042 

(3.0087) 

3.0074 

(3.0133) 

3.0063 

(3.0137) 

p = 2 
3.0064 

(3.0123) 

3.0027 

(3.0101) 

3.0031 

(3.0120) 

p = 3 
3.0409 

(3.0483) 

3.0285 

(3.0374) 

3.0086 

(3.0189) 

Figures in the parentheses are SBC, and p and q indicate respectively the 

autoregressive and moving average orders, whereby d could be a real number and the 

interventions have been removed. 
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Table 4. The AO and IO are estimated for the bank industry, in which we implement a 

dataset with 12 banks. Weekly data from January 2000 to December 2006 are used, in 

which 359 time periods and 12 banks’ data are obtained from the Taiwan Stock Exchange.  

Individuals Type Time points 

Chang Hwa Bank IO 55 

Hsinchu International Bank AO 119, 160, 352 

AO  48, 55, 101, 109, 117, 141, 149, 163, 

201, 208, 245, 254, 339, 340, 352, 

357 

IO 4, 84, 116, 119, 140, 143, 150, 159, 

160, 166, 244, 330, 331, 334 

Taitung Business Bank 

Level shift  7, 353 

AO 48, 113, 160 

IO 119 Taichung Bank 

Level shift 5 

The Chinese Bank AO 357 

AO 117 
Taiwan Business Bank 

IO 119, 160, 215, 297 

Kaohsiung Bank IO 351 

AO 119 
Cosmos Bank 

IO 4,50,116,227 

Union Bank of Taiwan IO 4,26,160 

Far Eastern International Bank IO 4,90 

AO 163 
Tachong Bank 

IO 4,120,160 

AO 27 
Entie Bank 

IO 4,163 

There are three times of level shifts, respectively at the 7
th

 and 353
th
 observations of Taitung 

Business Bank and the 5
th

 observation of Taichung Bank. The critical value is 4.0.  

 

 

 


