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中文摘要：

Spinocerebellar ataxia type 3 (SCA3) 或稱為 Machado-Joseph disease (MJD)，為晚發性

神經退化性疾病。其造成神經退化的機制為所表達的 ataxin-3，含有一段多麩醯胺酸序列。

本實驗室過去利用微陣列分析的結果顯示，穩定表達突變 ataxin-3 的 SK-N-SH-MJD78 細

胞株，與正常 SK-N-SH 細胞株比較下，可發現碳酸酐脢相關蛋白-11 (CA-RP-11)於

SK-N-SH-MJD78 細胞株中有較高的表達含量。於接下來的研究中，本實驗室利用 CA-RPs

抗體做免疫染色相關實驗發現，CA-RP-8 及 11 於穩定表達突變 ataxin-3 的神經細胞中，

比起表達正常 ataxin-3 的神經細胞，有較高的表達含量。半定量反轉錄聚合酶酵素反應

(semi-quantitative RT-PCR)實驗證明，CA-RP-8，10 及 11 於表達突變 ataxin-3 的神經細胞

中，在轉錄層次上的表達含量皆明顯上升。當神經細胞短暫表達突變 ataxin-3 時，也可發

現 CA-RP-11 表達含量有升高趨勢。我們更發現，當細胞表達突變 ataxin-3 時，CA-RP-11

不但於核外細胞質中表達，甚至有轉移至核內表達的情況。於 MJD 轉殖基因老鼠之鼠腦

及疾病人腦組織中，仍可發現 CA-RP-11 在腦細胞的細胞質及細胞核，也有高度表達現象。

於核內堆積物中含有 CA-RP-11 及突變 ataxin-3，可能顯示 CA-RP-11 於疾病進程中，可能

扮演某種關係。雖然在中樞神經系統中，碳酸酐脢相關蛋白之確切功能仍然不清楚，但是，

於本實驗室研究發現，碳酸酐脢相關蛋白，特別是 CA-RP-11，可能於 MJD 疾病中，扮演

著重要角色。

關鍵字：第三型小腦脊隨萎縮症、突變 ataxin-3、SK-N-SH、碳酸酐脢相關蛋白 (CA-RPs)



Abstract

Spinocerebellar ataxia type 3 (SCA3) is a late-onset neurodegenerative disorder caused by

the expansion of a polyglutamine tract within the gene product, ataxin-3. Microarray analysis

revealed a dramatic differential expression of carbonic anhydrase-related protein XI in the

presence or absence of mutant ataxin-3. Therefore, we examined the expression and distributions

of CA-RP VIII, X and XI in human neuronal cells stably expressing mutant ataxin-3. The protein

expression of CA-RP VIII and CA-RP XI is significantly increased in human neuroblastoma

cells containing mutant ataxin-3, compared to cells containing normal ataxin-3.

Semi-quantitative RT-PCR demonstrated that all three CA-RPs exhibited significantly higher

transcript levels in neuronal cells expressing mutant ataxin-3. Results from transient transfection

assays also confirmed the up-regulation of CA-RPXI in mutant ataxin-3 transfected cells.

Interestingly, CA-RP XI is distributed not only in cytoplasm but also translocated within the

nucleus of the stably transfected mutant cells, compared to the cytoplasm distribution in cells

containing normal ataxin-3. Most importantly, immunohistochemical staining of the MJD

transgenic mice and postmortem MJD human brain also revealed that CA-RP XI highly

expresses in both cytoplasm and nucleus of the brain cells. Recruitment of CA-RPXI into nuclear

inclusions containing mutant ataxin-3 revealed a possible correlation between CA-RPXI and

disease progression. Although the exact function of CA-RPs is still undefined in the central

nervous system, our findings suggest that CA-RPs, especially CA-RP XI, may play specific roles

in the pathophysiology of Machado-Joseph disease.

Keyword: Spinocerebellar ataxia type 3, Mutant ataxin-3, SK-N-SH, CA-RPs



Introduction and purpose

Spinocerebellar ataxia type 3 (SCA3) or Machado-Joseph disease (MJD) is an autosomal

dominantly inherited neurodegenerative disorder with a wide range of clinical manifestations,

including ataxia, ophthalmoplegia, pyramidal signs, basal ganglia symptoms, and peripheral

neuropathy. The mutation causing SCA3 is an unstable CAG trinucleotide repeat expansion

within exon 10 of a gene encoding ataxin-3 (Kawaguchi et al., 1994). All affected SCA3 patients

exhibit expanded CAG’s with 55 to 84 repeats whereas normal individuals exhibit 13 to 51 

repeats (van Alfen et al., 2001). The protein, ataxin-3, is widely expressed in neurons and outside

the CNS and mutations ultimately lead to a selective neuronal loss in restricted brain regions

(Yuasa et al., 1986). The nature of the toxic insult of a polyQ mutation and its biological

consequences for the disease are still unclear. Several studies have demonstrated that protein

fragments containing an expanded polyglutamine possess an increased vulnerability to apoptotic

death. However, the mechanisms underlying the slow cell death processes are largely unknown.

Genetic and molecular studies have suggested that polyQ causes altered gene expression,

abnormal protein interactions, alteration of proteolysis, and activation of caspases and protein

unfolding (Paulson et al., 2000; McCampbell and Fischbeck, 2001; Nucifora et al., 2001; Dunah

et al., 2002; Wen et al., 2003; Chang et al., 2005; Li et al., 2002; Evert et al., 2003). Furthermore,

expanded polyglutamine aggregates, both in vitro and in vivo, form characteristic inclusion

bodies. It was shown that the ataxin-3 accumulated in ubiquitinated intranuclear inclusions

selectively in neurons of affected brain regions (Paulson et al., 1997). Neuronal intranuclear

inclusions have become the neuropathological sign at the late stage of the triplet diseases, but the

relationship between aggregation and cytotoxicity remains controversial (Yamada et al., 2000;

Tobin and Signer, 2000).

In order to understand the putative gene expression alteration(s) in the presence of mutant

ataxin-3, microarray analysis was performed by the use of RNAs extracted from human

neuroblastoma cells SK-N-SH and SK-N-SH-MJD78, stably expressed mutant ataxin-3 (Wen et

al., 2003). From microarray analysis, the expression of carbonic anhydrase-related protein XI

showed significant alteration in the presence of mutant ataxin-3. The α-carbonic anhydrases

(CAs) (EC 4.2.1.1) constitute a family of monomeric zinc metalloenzymes that catalyze the

reversible hydration of CO2 (Sly and Hu, 1995). To date, 12 human isozymes exhibiting the

characteristic enzyme activity of CA have been reported (see review, Hewett-Emmett, 2000,

Lehtonen et al., 2004). Along with “active” CA isozymes, evolutionally conserved but 

“acatalytic” family members have been reported and designated carbonic anhydrase-related

proteins (CA-RPs): CA-RPs VIII, X, and XI (Tashian et al., 2000). CA-RPs lack one or more



histidine residues required to bind the zinc iron, which is essential for CO2 hydration activity,

and thus are believed to be inactive with regard to classical CA activity (Hewett-Emmett and

Tashian, 1996). The exact biological function of these CA-RPs have not been elucidated (Tashian

et al., 2000). Immunohistochemical analysis showed that CA-RPs VIII and XI are consistently

expressed in neural cells, astrocytes, and neurites of most parts of human and mouse brains

(Taniuchi et al., 2002 a and b). CA-RP X is expressed in both the myelin sheath and neural cells.

Furthermore, it was demonstrated recently that CA-RP VIII deficiency is associated with a

distinctive lifelong gait disorder in Waddles mice, suggesting CA-RP VIII plays a central role in

motor control (Jiao et al., 2005). However, not only the biological functions but also the

subcellular distributions of these inactive CA isozymes are still ill-defined.

In order to understand the role of CA-RPs in the pathophysiology of Machado-Joseph disease

(MJD), we used the neuron cellular model, the brain tissue of MJD transgenic mice and

postmortem MJD human to observe the expression of CA-RPs.

Methods

1. Plasmid constructs: pEGFP-N1-MJD26, pEGFP-N1-MJD78 and pEGFP-N1-trunMJD78

2. Generation of stably transfected MJD cells

3. Comparative analysis for mRNA expression of CA-RPs by RT-PCR

4. Immunocytochemical staining

5. Immunoprecipitation and immunoblotting

Results and discussion

The mRNA expressions of three CA-RPs were studied by RT-PCR with varying PCR

cycles in cells expressing normal or mutant ataxin-3. cells expressing normal ataxin-3 showed

lower expression levels of all three CA-RPs than cells expressing mutant ataxin-3. hese findings

exhibited significant higher transcript levels of all three CA-RPs in neuronal cells expressing

mutant ataxin-3.

To study the cellular distributions of all three CA-RPs in the human neuroblastoma cells

with and without mutant ataxin-3, we used monoclonal antibodies to each CA-RP isozyme. we

showed perinuclear and membranous distribution of CA-RPVIII in the parental SK-N-SH cells



without ataxin-3 mutation. Previously, CA-RP VIII was reported to bind inositol

(1,4,5)-triphosphate (IP3) receptor type I (IP3R1) and to inhibit IP3 binding to IP3R1 by reducing

the affinity of the receptor for IP3 (Hirota et al., 2003). In our study, the perinuclear localization

of CA-RP VIII observed in SK-N-SH cells may suggest its co-localization with IP3R1, which is

known to be expressed on the membrane of the endoplasmic reticulum. The inositol

(1,4,5)-triphosphate receptor (IP3R) is an intracellular calcium (Ca2+) release channel that plays

an important role in neuronal Ca2+ signaling (Berridge,1998). The exact reason of the more

intense staining and evenly distributed of CA-RP VIII in the cytoplasm of SK-N-SH-MJD78

cells is still unknown. Previous studies of Huntington’s disease (HD),caused by polyglutamine

expansion (exp) in huntingtin (Htt), revealed that hunthingtin (Htt) and huntingtin-associated

protein 1A (HAP-1A) influence neuronal calcium signaling mediated by IP3R1 (Tang et al.,

2003). It was demonstrated that IP3R1-HAP1A-Htt ternary complex is formed in vitro and in

vivo. IP3R1 activation by IP3 is sensitized by Httexp, but not by normal Htt. Therefore, our

results indicated that the expression and localization of CA-RP VIII are influenced by the

presence of mutant ataxin-3, suggesting a possible link between mutant ataxin-3 and

IP3R1-mediated neuronal Ca2+ signaling via regulation of CA-RP VIII.

Compared to the parental SK-N-SH cells or SK-N-SH stably expressing normal ataxin-3,

the expression levels and cellular localizations of CA-RP XI were altered significantly in the

cells stably expressing mutant ataxin-3, as evidenced by semi-quantitative RT-PCR,

immunocytostaining, and immunofluorescence. Cellular localization of CA-RP XI is

redistributed to not only cytoplasm but also nuclei of cultured neuroblastoma cells which are

stably expressing mutant ataxin-3, compared to the pure cytoplasmic distribution in cells

expressing normal ataxin-3. To confirm our findings from cellular environment in MJD

transgenic mouse model, immunohistochemical staining was performed in the control and MJD

transgenic mouse brain sections. The most notable finding was the intense and nuclear

localization of CA-RP XI in MJD transgenic mouse brain sections. The antibody to CA-RP XI

clearly demonstrated nuclear localization in different regions of SCA3 transgenic mouse brain

sections. Additionally, immunostaining of post-mortem SCA3 brain (cerebellar) tissues also

confirmed this observation. Taken together, the abovementioned results indicated that CA-RP XI,

expressed in the cytoplasm of the cells expressing normal ataxin-3, changes its cellular

localization and expression level in the presence of mutant ataxin-3.

It is well-known that the nuclear inclusions in MJD are the hallmark of the late stage of the

disease. Expanded polyglutamine aggregates, both in vitro and in vivo, form characteristic

inclusion bodies. It was shown that the ataxin-3 accumulated in ubiquitinated intranuclear

inclusions selectively in neurons of affected brain regions (Paulson et al., 1997). Therefore,



whether there is direct interaction between CA-RP XI and mutant ataxin-3 was also examined in

this study. Up to date, the functions of CA-RPs in neuronal cells are still ill-defined, we cannot

rule out the possibility that the redistribution of CA-RP XI to the nuclei of neuronal cells may

play critical role(s) in the disease progression. However, further investigations will be needed

before reaching conclusions.
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