NSC94-2416-H-029-010-
94 08 01 95

95

07

31

10

30

THRRRATFELE R BRI

1»'\-

B E WO B L AR A G £
L =5y

|
(g ¥

= 3

iR IF

RIS

iﬂ%?ﬁ@ﬁ

Fhae W oRNAE O EEUNE

4 %t NSC94—2416—H—029—010—

HEYRF 94 & 08 *» 01 px 9 & 07 * 3l1p

FEAIFL 7 ke

EidA i xigw

FEFEAR

SEFLFIA(REFPFERTAY) WHEFRE 2

AR PR T RE 2

(AR £ Ry 4R 2 -

[JAL A B R L Y BaR L - >
NRREENERCERL I FL2LHm~ -

ORge PP aRmAFIHRES - B

&uﬁﬁi%éﬁrﬁpiﬁi\ﬁﬂ W2 A4 BTETE

\N

IE3H 2 TAEGE G B TR A

[J# 2 &1z

LR LA

SR EMARE (- 20 #6728 43

X

LG T iR o ¥ t“r’ﬂf > Pk
i‘c?" k m&rSAPERPiTMﬁt@ ' i

oo L——~E’lﬁ’ ’]‘]&ﬁﬁ—r U&r-/"r‘i]'% Jﬁ"),7?5”[’r G
EtRens e Bl SAPR < F1 g K ke d gzl R AR F hi oo e
il BROEERBELE AAMR YT AZRR > BREOFEHIER TS
—*‘A\ﬁo o B2 A3 A ey B JE doEuclidean distances ~ Jaccard TR ¥k A i A AFE Y 0 i
F e AR gwmﬂﬁﬂ’$P“%*i43&¢%ﬁa?wwmﬁﬁ’@iip
T e B Y PIREE A LR Tk aE B2 o A5 HBCA -

HBC°Ai# & i2 ends & 241 * R?ﬁm@??&j&ﬁww%ﬁwiT’éﬁ%?ﬁa

foo e BB dagdd R ofed Rpl-oan BE 6 i dfE 23S JI* 59 R - T
& F TR E 7T kg % U Hit-Ratio® Entropy 3 dp Rk 5 0 Bior 2 4F 0 BEEHA
£ BUE-F2 Y SRNVE U S RCH IS F S8 i g

w.
W3
2
H
2o

~|

Development of Users Distribution in Enterprise Systems with
limited Buffer Size in Application Servers

Ping-Ho Ting!, Kuan-Ching Li%, and Chun Chung Wei®

! Dept. of Hospitality Management, TungHai University
Taichung 40704, Taiwan
ding@thu.edu.tw
2 Dept. of Computer Science and Information Management, Providence University
Shalu, Taichung 43301, Taiwan
kuancli@pu.edu.tw
3 Dept. of Information Management,ChungChou Institute of Technology
Yuanlin, Chunghwa 51003, Taiwan
ccwei@ms15.url.com.tw

Abstract. As enterprises worldwide race to improve their real-time management turnaround, which
is essential requirement to improvements in productivity and service deployments, and therefore, large
amount of resources have been invested into Enterprise Systems (ESs). All modern and robust ESs
adopt a n-tier client-server architecture, which includes several application servers to hold users and
applications. Currently, most web systems are stateless, which means that each request is routed inde-
pendently to a different server at each time. However, for ESs, each request from same user is routed
to the same application server.

Distributions in application and web servers are different in granularity. In the former scenario, a user
represented by a set of transactions is the atomic element, while in the latter scenario, single request
is the atomic element and different requests issued by the same user can be directed to different web
servers. Until present time, few researches have been devoted in the user distribution to application
servers in n-tier architecture.

In this paper, it is proposed a Heuristic Buffer Constraint Clustering Algorithm, namely HBC?A ,
which is a Greedy-based strategy algorithm. The algorithm give suggestions of user distributions, the
number of servers needed, and the similarity of user requests in each server. In addition, this algorithm
is applied on a set of real data which is derived from the access log of an Enterprise System, in order
to evaluate the quality of suggested distributions.

1 Introduction

For ESs that process daily business transactions, users typically have low tolerance on system performance.
If a system responds to data entries or queries too slowly, users lose patience and complain loudly. Yet, the
number of ES users keeps growing in most companies as the number of business processes incorporated into
ESs increases. Therefore, keeping response time under control is a vital issue for most system administra-
tors. To boost performances, activating more than one application servers become common practices in the
industry.

When an ES has multiple application servers, distributing users to similar applications and application
servers plays an important role in tuning overall system performance, as pointed out by documents of major
ES systems [1, 13]. Throughout our text, an application in an ES corresponds to an atomic and unbreakable
transaction, transactions and applications are used interchangeably.

In current practices, ESs do not automatically switch users to other application servers, due to the
resources involved in the transmissions. As a user logs onto an application server, all related data such as
authorizations, preferences, and created data are collected in the server’s virtual memory, in order to create
time-sharing working environment and reduce user effort in keying data. Besides, all applications executed

by users are compiled and stored in memory. Data accessed by applications are also cached in memory to

improve the efficiency of systems. In many cases, the amount of data cached are huge, and as consequence,
transferring a user to a different application server may trigger a transmission of huge amount of data. Thus,

users are not switched automatically among servers in current practice.

In ESs, the dispatching mechanism needs to consider two criteria to gain reasonable performance: the
number of users log on in each application server and the collection of applications executed in servers.
Therefore, as each user consume hardware resources and the n-tier architecture has more than one application
server, user distribution becomes one of the important issues in tuning ES performance [2]. In ESs, each
application is evoked by a user who logs on an application server, and stays connected to the server for an
entire working session, which can last for several hours and includes the execution of a set of applications.
Therefore, admitting a user into an application server is equivalent to admitting a set of transactions into
an application server, which marks a sharp difference between the distribution of application severs and

traditional web servers.

In traditional web servers, requests are examined individually and those issued by the same user can be
routed to different web servers. Commercial products, such as SAP R/3, equipped with a simple dispatching
algorithm, considers only number of users and server response time. The task of grouping users is left to
system administrators [1, 13]. In addition to the rough guideline of grouping financial users into one server and
logistic users into another, system administrators need specific suggestions, such as explicit user distributions,
the number of servers needed and the similarity of user requests in each server. To address the needs, this
research paper proposes algorithm to suggest distribution based on user profiles. The distribution algorithm

can the least number of servers needed that satisfy all the constraints of a system.

The scheme of the proposed research is shown in figure 1. The procedure is started with the collection of
user profiles from an enterprise system. The profile is consisted of a set of transactions accessed by users in a
given period of time. The transactions that are accessed frequently are labelled as regular transactions. The
frequent accesses are compared against profile support threshold and user support threshold. The purpose of
profile support is to screen transactions that are seldom used by all users and user support threshold is to find
transactions which are accessed frequently by each user. The regular transactions are further analyzed to form
associated regular transaction in the third step with confidence threshold. Associated regular transactions
are designed to predicted the behavior of new and not frequent users, who do not have enough records in
the user profile. In the distribution, regular transactions are used to cluster users with the novel algorithm

prosed in this research paper, namely HBC?A .

To explain the algorithms and related procedures, the rest of the paper is organized into the following
sections. Applications are grouped into large itemsets with traditional Apriori algorithm[7, 11] to find frequent
patterns. The process is explained in section 2. A group of users forms a cluster if the union of the users’
transaction sets has an Application Match Ratio(AMR) exceeds a given threshold. AMR is a similarity
measure of user patterns grouped in the same set. The definition of AMR and related properties are proved
in section 3. An example of AMR based hybrid distributing approach is shown in section 4 Simulations
with real data and comparisions with Round-Robin users distribution are shown in section 5. A review of
distributed web server architectures and clustering of categorical sets is shown in section 6. Conclusion and

possible extension of HBC?A are discussed in section 7.

Collecting
UsersProfiles

Finding
Fregular Transactions
wwithh Thresholds of
FProfile Support
and LIser Support

Finding
Associated Regular
Transactions with
Confidence Threshold

4.
HE % £ wdth thresholds
of AR and & C

Fig. 1. Research scheme.

2 Finding Users’ Regular Transactions

To record system and user statuses, most enterprise systems include various tracing mechanisms. Among the
various recordable data are user sessions and applications executed in sessions. For the purpose of the paper,
these data are transformed into user profiles. A user profile is a set of (user — id, transaction — set), where
user-id is the account name of a user and transaction-set is the set of transactions accessed by the user in a
session. A sample user profile is shown in Table 1, which records the sessions of ten users. User 1, 3 and 6
have more than one sessions in the profile. User 1 access transaction A, B, E, F, and H in one session and

A, B, E, and F in another session.

Table 1. User Profiles

User-Id| Transaction-Set
{A, B, E, F, H}
{A, B, E, F}
{A, B, E, F, G}
{A, B, E, H}
{A, B, E}

{B, E, F, H}
{I, J, K, L}

{B, I, J, K}

{B, 1, J, L}

{B, I, J, K}
{07 P7 Q? R’}
{07 P7 Q7 R}
{P7 Q7 R7 K}

0 {W, X, Y}

= © 00O O Uik WWNN - =

As careful readers may have found that the transactions accessed by user 10 in the profile shown in
Table 1 is special because most of his/her transactions are unique and are not shared by others. Transaction
G of users 2 in the first session is also unique. If the rarely used transactions are all stored in buffers,
large sizes of buffers are needed and the utilization rates of these buffers are low. Therefore, only regularly
accessed transactions are considered. A user’s regularly accessed transactions,termed as regular transactions,
are transactions which occur in enough number of sessions in the corresponding user profile and are accessed

often enough by the user.

Definition 1 Given a user,u, a user profile, U, and a transaction, t, t is one of u’s regular transaction
in U if
[{s|t € s.transaction-set,s € U}|
U]

> profile support threshold, and

|{s|s € U, s.user-id = u At € s.transaction-set}|
{s|s € U, s.user-id = u}|

> user support threshold.

Profile support threshold and user support threshold are given by system administrators. The higher the
threshold, the fewer the regular transactions users have.

To compute or estimate regular transactions for each user, three steps are employed. The first one
computes large itemsets with any existing set oriented pattern discovering algorithm, such as [4,14]. The
large itemsets computed from the algorithms have supports higher than the profile support threshold in
the associated user profile. In the second algorithm, each large 1-itemset is examined against each user to
form users’ regular transactions. For new users who do not have accumulated enough entries to computer
personal regular transactions, the paper propose to predicate their regular transactions with the association

rules computed with known algorithms. Figure 2 shows the stages in computing regular transactions.

Fird Regular Transactions from
Long Large items

Set Oriented Mining
Technelogy

Predict Regular Transactions with
fssociation Rules

Fig. 2. The Stages of Computing Regular Transactions

If profile support threshold is set at 20%, the set of level 1 large itemsets of the sample user profile is
{A,B,E,F, H 1 J K, P, Q, R}; the level 2 set is {AB, AE, AF, BE, BF, BH, BI, BJ, EF, EH, 1J, IK, JK,
PQ, PR, QR}; the level 3 set is {ABE, ABF, AEF, BEF, BEH, B1J, IJK, PQR}; the level 4 set is {ABEF}.
Therefore, the set of patterns generated from the Apriori-Like Algorithm is {A, B, E, F, H, I, J, K, P, Q,
AB, AE, AF, BE, BF, BH, BI, BJ, EF, EH, 1J, IK, JK, PQ, PR, QR, ABE, ABF, AEF, BEF, BEH, BIJ,
1JK, PQR, ABEF}.

The second step in computing users’ regular transactions is to map transactions in large itemsets to
users. A transaction is a user’s regular transaction if it happens in enough number of the user’s sessions.
One obvious way to do so is taking every Level 1 large itemsets and check it against each users’ transaction
sets. The itemset is one of the user’s regular transaction if the item occurs in enough number of the user’s

transaction sets.

Assume the user support threshold is set at 40%, the regular transactions of the the running example is

shown in Table 2.

Table 2. Regular Transactions

|User—Id[Regular Transactions‘
1 {A, B, E, F, H}
{A, B, E, F, H}
{A, B, E, F, H}
{1, J, K}

{B, L, J, K}

{B, I, J, K}

{P, Q, R}

{P, Q, R}

{P, Q, R}

0 0

= © 00~ O Ui Wi

New users do not have any records in the user profiles and do not have associated regular transactions.
However, dispatching programs still need to dispatch them in run-time. Therefore, help for dispatching
programs to guess the patterns of new users are in order.

If each new user provides one of the transactions she/he wishes to access after logging on, the dispatching
program can check if the transaction has high association with any large itemsets. If so, the union of the

large itemsets dentoe the user’s Predicted Regular Transaction set.

Definition 2 The Associated Regular Transactions of a transaction, t, under a set of large itemsets,

P, a user profile, U, is

AT(t)=U{p € P |t € p, CPy(p|t) > confidence threshold},

_ |{s]|s€U,p€s.transaction set}|
where CPU(p|t) — |{s|seU,tes.transaction set}|

By setting the confidence threshold at 80%, the Associated Regular Transactions of transactions
in large-1 itemsets in the running example is shown in Table 3.
Since the algorithms needed to find the Associated Regular Transactions are trivial when large itemsets

are ready. The paper does not include the algorithm either.

3 Clustering and Distributing by HBC?A

Systems with multiple servers gain performance speed at the cost of keeping duplicated programs and data
in more than one servers. In sophisticated application servers with hundreds or thousands of users on-line all

the time, the memory needed are considerable [2]. Therefore, users share similar transactions are grouped

Table 3. Associated Regular Transactions with Confidence Threshold at 80%

lTransaction‘PT ‘Conﬁdence‘

ABE[100%
AB [100%
ABE (83%

BEF |100%
BEH 100%
LJK [100%
LK [100%
PQR|100%
PQR|100%
PQR|100%

TOTREIZHEHT >

into one cluster, which is then assigned to an application server. This section proposes HBC?A to cluster

users and a straightforward algorithm to distribute clusters.
Definition 3 A cluster is a set of users that share common applications in an Enterprise system.

The quality of a cluster is measured by AMR , Application Match Ratio. The AMR of a cluster is defined
as the ratio of AC versus the applications in the cluster, where AC denotes the number of applications that
can be hosted in an application server without causing buffer swap. AMR is smaller than one when users
in the cluster have more regular transactions than the buffers can hold. In this case, buffer swap occurs and

the smaller the AMR is, the more the buffer swap will occur.

Definition 4 The AC of an enterprise system is an integer number. The number denotes the number
of applications that can resides in application servers of the enterprise systems without causing buffer

swap.

The regular transactions in a cluster are defined as the union of regular transactions of users grouped in

the cluster.

Definition 5 The number of regular transactions in a cluster, c, is defined as

lel = | Uuee u-regular transactions|

The AMR of a cluster, c, is defined as the ratio of AC to |c|. AMR (c) = <1<,

lel

Lemma 1 The AMR of each cluster has a value between 0 and AC .

Proof
AMR ’s are positive and therefore are always greater than to 0.
Given a cluster, c

AC

lel
A
1

AMR (c) =

IA

< AC

AMR of a cluster, therefore has values between 0 and AC .

d

Hence, system administrators can assign an AMR, threshold between 0 and AC' . By setting the threshold is

between 0 and AC', the system administrators can tune the tolerance degree of buffer overflow.

Theorem 1 Anti-Monotonicity of AMR AMR of a cluster decreases with the addition of any user

with non-empty reqular transaction set to the cluster.

Proof

If a cluster, ¢, has the AMR of % where p is the number of different transactions in the

cluster. If a user with g new transactions is added to the cluster then the new AMR is ;‘TCq.

AC AC AC x(ptq) — AC xp

P ptq px(p+q)
 AC xq
px(p+q)
>0
The case of AC¥d_ — () occurs when q=0, which means the regular transaction set of the new

p(p+q)
user does mot contain any new transactions.

a

Therefore, AMR has the property of Anti-Monotonicity, which means that adding a user to a cluster can only
reduce the AMR of the cluster, unless the new transaction set does not contain any new transactions. The
property can be used to prune hapless candidate clusters that have AMR under a threshold in the cluster
forming algorithm, HBC?A . In this paper, system administrators are requested to supply an AMR threshold.
Candidate clusters with AMR smaller than the threshold are discarded.

Theorem 2 The threshold of AMR must be smaller than or equal to ‘tL where tyq, s the largest

J
max

reqular transaction set in the user profile , to have all users grouped into at least one cluster.

Proof
Any cluster ¢ containing users with tymq, has AMR (c) < A If the threshold is larger than

[tmacl

A€ then the users can not be included in any cluster.

[tmaz|’

Definition 6

— A qualified cluster is a cluster whose AMR exceeds a given threshold.

— A set of clusters is comprehensive under a user profile, U, if the union of the clusters includes
all users with regular transactions in U.

— A set of clusters is disjoined if the intersections of any two clusters are empty.

— A set of qualified clusters is a distribution under a user profile, U, if they are comprehensive

under U and disjoined.

In the running example, if AC is set at 3, and AMR threshold at 0.5 , then the cluster of {1,2,3}
{4,5,6} and {7,8,9} have AMR of 0.6, 0.75 and 1, respectively. The set composed by the three clusters is

comprehensive, disjoined and forms a valid distribution. The running example is shown in Table 4.

Table 4. A set of qualified clusters when AC=3 and AMR=0.5

lQualiﬁed cluster‘Users‘Regular Transactions‘AMR‘

Cluster 1 1,2,3 |AB,E,F 0 0.6
Cluster 2 4,5,6 |B,I,J,K 0.75
Cluster 3 7,8,9 [P,Q,R 1

We propose a Heuristic BC?A , namely HBC?A , HBC?A returns distributions that satisfy constraints
with the fewest number of clusters, and the rules associating single transactions to predicted regular trans-
actions. The constraints include AC' , an AMR threshold, profile support threshold, user support threshold,
and rule confidence threshold. The recommendations guarantee that when all frequent users logging on the
system and accessing all regular transactions, each server still has an AMR above the given AMR Threshold.
Information included in the recommendations are number of servers, clusters of users, and AMRSs of clusters.

The HBC?A includes three steps in computing the recommendations - computing the set of qualified

clusters and selecting clusters to form distribution. The main steps are listed as following:

Initialization: for each user with regular transactions, and these users form qure, Q. Sort Q on users by
the number of their regular transactions and form new queue, Q’.

Composing C; from Q’: A user u; in Q" is added to C; by the user in Q' from C; if the new cluster C;
has an AMR value exceeding the given threshold. In the mean time, Removing the new user from Q.
Repeating the step until C; has an AMR value lower than the given threshold.

Repeating the Last Step Until Q' is emptyset : If Q' is empty then HBC?A has found all qualified clusters
in C1, ..., and C;; Otherwise, HBC?A has to repeat the last step.

The algorithm returns all the distributions that satisfy the requirements with the least number of appli-

cation servers and let system administrators to decide which distribution they prefer.

4 An AMR Based Hybrid Dispatching Approach

Each ES typically has a dispatching program listening to networks and accepts user requests. The program
resides an application server, intercepts user requests, and direct them to application servers.

Assuming the system administrator in our running example picks the distribution of {{1, 2, 3}, {4, 5, 6},
{7, 8, 9}}. The case of user 1, 2, 4, 7, and 8 have logged on and user 5 and 6 are waiting in the web server

is depicted in Figure 3.

Digpatch
program

4 7

Application server
Application
Server

Fig. 3. Users are Distributed through a Dispatching Program

Application server

The distributions suggested by HBC?A bases on frequent patterns in user profiles. For new and infrequent
users, HBC?A does not suggest their distributions directly but returns association rules, PR (Prediction
Rules), in the output to help dispatching program make the decision. To apply the rules, a new user only
needs to provide a transaction he/she plan to evoke after logging on the ES. With the association rules, a
dispatching program can distribute a user according to its associated predicted regulation transactions. If
the first transaction does not lead to any predicted regular transactions, then the single transaction works
as the basis for dispatching.

The running example is shown in figure 3. An AMR Based Hybrid dispatching algorithm distributes
users while keeping the AMR of each server as high as possible. In the dispatching procedure, users are

distributed to a server according to one of the three alternatives:

— If a regular user logs on, then send the user to the recommended server and return to listening mode.

— If an infrequent user logs on with a transaction, then find the predicted regular transactions implied by
the transaction. If no entry matched then the single transaction is treated as the predicted transaction.

— Compute the potential new AMR in each server with the addition of the user. Assign the user to the
server with the highest AMR , and update the AMR in the corresponding server.

The distribution in the running example has AMRs of 3/5, 3/4, and 1 in the three servers. If a new user
with user-id 11 wishes to log on the system and submits an A as the first transaction then the user has a
predicted regular transaction set of ABE, according to Table 3. The AMR after adding ABE to the three
servers would be 3/5, 3/6, and 3/6, respectively. Because the first server has the highest AMR value, the
new user is distributed to the first server, and the distribution becomes {1, 2, 3, 11}, {4, 5, 6}, and {7, 8, 9}.

5 Simulation

Several experiments are conducted on real data collected from a mid size machinery company based in
Taichung, Taiwan. The company has their SAP system up and running since 2002. Five weeks of user access
logs are extracted from the system to perform the experiment. Four weeks of the data are used to suggest
distributions. The fifth week of data are used to evaluate the quality of the suggested distributions.

In the experiment, 1,853,689 access logs are collected which include 56 users have regular patterns. The
average number of transactions in user profiles is 7.7. The quality of suggested distributions are measured
by Application Hit Ratios and Entropy. The Application Hit Ratio of a server is defined as the number
of transaction accesses hits a stored version of the transactions in the memory over the total number of
transactions accessed in the server. The Application Hit Ratio of a distribution is the average Application
Hit Ratios of servers suggested in the distribution. The entropy of a server is defined as — >_ p; log, (p;), where
p; is the probability of transaction i being accessed by users in the cluster. Since AR and AMR thresholds
are typically smaller than 1, some frequent transactions are not stored in the memory. In the experiment, we
assume that servers automatically store the applications that are accessed the most in the training data in
the memory. Infrequent users appearing in the testing data are assigned to servers according to the hybrid
distribution algorithm.

The Experiment of HBC?A and Round-Robin are implemented on Matlab 6.1 and executed on a Pentium
4-1.8 GHz Microsoft XP Server system with 256 Megabytes of main memory. With the improved algorithm,

distributions can be suggested within one minites.

5.1 Experimental Results of HBC?A

Seven distributions are suggested against the collected data. These distributions have AMR threshold set at
0.8 with AC ranging from 21 to 28, respectively. These simulations all have profile support threshold at 0.1
and user support threshold set at 0.3.

The number of servers needed for each distribution is shown in Figure 4. With AMR =0.8, HBC?A suggests
a distribution with five servers when AC=21, four servers when AC = 22, three servers when AC = 23 , two

servers when AC=24, 25, 26 and 27, and 1 server when AC = 28.

Profile Support = 0.1 and User Support = 0.3

of Machines Needed
w
[2
L N

Fig. 4. Distribution Experiments with HBC?A

The quality of each distribution is evaluated in Figure 5 and Figure 6. The Application Hit Ratio of the
distributions with AMR =0.8 is 0.91714 when AC = 21, 0.94924 when AC = 22, 0.95687 when AC = 23,
0.95674 when AC = 24, 0.96696 when AC = 25, 0.96565 when AC = 26, 0.96474 when AC = 27 and 0.9559
when AC = 28. The Entropy of the distributions with AMR =0.8 is 6.6595 when AC = 21, 8.3807 when AC
= 22, 9.542 when AC = 23, 10.0652 when AC = 24 , 10.0263 when AC = 25, 10.435 when AC = 26, 8.7664
when AC = 27 and 11.755 when AC = 28.

Profile support = 0.1 and User support = 0.3
0. 98

0. 97 0. 96565

0. 86671 0. 9559

0. 96 =
0.94924 0. 96474 ——g

©0- 95 0.95687

0. 94

0.93

0.92
4

0.91 0. 91714

0.9

Total Hit-Ratio of Each Machin

089

21 20 23 24 25 26 27 28

—e— AMR=O. 8 ac

Fig. 5. The Application Hit Ratios of Distributions with HBC?A

Profile Support= 0.1 and User Support= 0.3

£ 14
=
: - 11, 755
= 35 10, 435
] 10.0652 .
= 8. 3807
= =35
& 8 B. 7664
£
= 6
= 6. 6595
&% 4
z
4
= 2
2
= 0
21 22 23 24 25 26 27 28

AC
—— AMR—O. 8

Fig. 6. The Entropy of Distributions with HBC?A

From data shown in Figure 4, Figure 5, and Figure 6, we find that the hit-ratios of the distributions
ranging from 0.91714 to 0.96696. From figure 5, we find that the more AC , the more average the higher
hit-ratios machines have, because each machine can hold more transactions. The more number transactions
manchine can hold, The more chances the high-ratios machine have. From figure 6, we find that the more
AC, the more average entropy machines have. We conclude that the company should use one server to hold
all users if hardware capacity is large enough. The second to the best distributions have Application Hit
Ratios of 0.96696 which occurs when AMR =0.8, AC = 25(two machined need). Since the former settings

requires fewer memory resource, system administrators are advised to adapt the former distribution.

5.2 Comparision of HBC?A and Round-Robin User Distribution

HBC?A considers the constraints and tries to find groups of users whose combinations of accessed transac-

tions do not cause too many page faults if they are clustered into one application. Round-Robin distributes
user to one of the several application servers in a server group by a rotated order. The approach ensure users
are fairly distributed in a server group.

For the purpose of comparision, We set the same memory constraints to HBC?A and Round-Robin. In
terms of users and transactions allocations, HBC?A can get better result than Round-Robin since given the
same number of machines, the transaction distributions in HBC has lower entropy than Round-Robin, the
hit-ratio of user distributed in each machine by HBC?A get better result than Round-Robin. (Please refer

figure 7, figure 8).

Profile Support = 0.1 and User Support = 0.3

0.9599
- QLQG3523

0. 96 S
0.948875
e T e
0. 94
0.91245 \
092 0.01714

0.88123 0.871

Total Hit-Ratio
[=3
=4

1 2 3 4 &

4 mBC2A <
Machine Needed
—&_ROUND ROBIN

Fig. 7. Comparision of HBC?A and Robin in Hit Ratios of the Experiment

Profile Support = 0.1 and User Support = 0.3
14

12 1.
10.55965
10 8983 §.6372
53741

8
7.:;%5\
6

The Value of Average Entropy

smlm
4
P
° .
1 2 2 * °

Machine Needed

Fig. 8. Comparision of HBC?A and Robin in Entropy of the Experiment

In summary, if the memory of each machine is seriously limited , HBC?A should be used to distribute

users, because the result generated by them is guaranteed to satisfy the memory consumption criteria.

6 Related Work

With the Internet rush, many researches have been devoted to distribute user requests in Distributed Web

Server Architecture, in order to improve the performance of web servers. Depending on the locations where

request distributions happen, these researches are classified in client-based, DNS (Domain Name Server)-
based, dispatcher-based, and server-based, as in [6,5,18,8,20]. Since current Http protocol is stateless,
each request is routed independently to a web server[5,3,16,17,19]. All of the above researches assume that
requests can be independently routed to different servers, where as in the application servers of ESs, requests

from the same users have to be routed to the same server.

Clustering literatures are classified into two models: partitioning clustering and hierarchical clustering
[15,9,12]. If k clusters are needed, partitioning clustering choose k centroids initially and gradually, tune the
constituents of each clusters or centroids with some criteria function until a locally optimized characteristic
is reached. Hierarchical clustering can be further divided into agglomerative and divisive clustering. As the
name suggested, agglomerative clustering gradually merge smaller clusters into larger clusters until k clusters
are found. Divisive clustering, on the other hand, splits larger clusters into smaller clusters until k clusters

are found.

Most clustering algorithms employ Euclidean distances to compute similarity. The shorter the distances
the more similar the data points in the clusters are. However, Euclidean distances are not ideal for clustering
categorical data. For example, to cluster transaction sets with Euclidean distances, each set has to be trans-
lated into a sparse binary vector. In the running example, the second session of user 1, {A, B, E, F} is trans-
lated into (1,1, 1,1,0,0,0,0,0,0,0,0,0,0,0). The huge number of zeros can easily skew the distances between
transaction sets. For example, a transaction set of {A} is translated into (1,0,0,0,0,0,0,0,0,0,0,0,0,0,0)
and {I} is translated into (0,0,0,0,0,0,1,0,0,0,0,0,0,0,0). Since {A} and {I} have a distance of two bits,
and {A} and {A, B, E, F} have a distance of three bits, the former pairs has shorter distance than the latter.
The conclusion violates the general perception of set operations. Therefore, Euclidean distances are not ideal
for clustering categorial data.

Many set oriented algorithms use Jaccard coefficient [15] to compute distances. Given two sets T} and Ty,

|[ThNT5|
|T1UT2| :

their Jaccard coefficient is However, Jaccard coefficient has two drawbacks for our application. The
first is that it cannot describe the number of elements in each cluster, which are important to calculate the
buffer efficiency. The second is that Jaccard coefficient is not accurate in computing the similarity between
transactions sets. For example, the Jaccard coefficient of {A,B,C},{A} and {A,B,C},{B,C,D} are 1/3 and
2/4, respectively. However, in HBC?A |, the distance of the former pair is 0, since {A, B, C} include {A}.
Another major work in clustering categorical data is ROCK [10], which proposes to cluster transaction sets
based on links between nodes, which are composed by common neighbors between any pair of nodes. A
common neighbor of two transaction sets is a transaction set sharing similar items with the two sets. ROCK
puts two elements into the same cluster if the count of common neighbors exceed certain threshold. ROCK
also has the same drawbacks as Jaccard coefficient. For instance, if a profile includes transaction sets {A}, {A,
B, C},{A, C, D},{B, C, D},{B, C, E} and the threshold of a qualified common neighbor(link) is set at 1/3 of
Jaccard coefficient. The ROCK coefficient of {A,B,C},{A} and {A,B,C},{B,C,D} are 1 (due to the common
neighbor {A, C, D}) and 2 (due to the common neighbor {A, C, D} and {B, C, E}), respectively. From view
of ROCK, the similarity of the former pair is lower than later pair. On the other hand, the distance of the
former pair is 0 in HBC?A , which is more close to our intuition in the application of user distribution, since
{A} is a subset of {A, B, C}. Many set oriented algorithms use Jaccard coefficient and ROCK. However,

Jaccard coefficient and ROCK along cannot describe the number of elements in each cluster, which are

important to calculate the buffer efficiency. Hence, common categorial clustering technology is not suitable

for clustering users in the application.

7 Conclusion

Managers in enterprises often add users to ESs, as they extend E-business practices to various divisions of
corporate operations. With the addition of each user, new pressures on performances are brought upon to
the systems. Yet, system response time is one of the most important factors in measuring user satisfactions.

Since ESs tend to consume considerable amount of hardware memory, application servers can easily run
out all memory available, which induce to hardware limitations. When this happens, a common procedure
adopted in boosting performance is adding application servers to ESs. With multiple application servers in
the scene, distributing users with similar application requirements to the same application servers increases
buffer utilization and lead time to next hardware upgrades.

The procedure of HBC?A roots its development on AMR , which is a similarity measure of user
transactions grouped in the same cluster. A cluster with high AMR means users in the cluster share similar
applications under a given buffer limitation. AMR has the property of Anti-Monotonicity, which states that
AMR of a cluster decreases with the addition of each new transaction set. With the property, HBC?A can
prune hopeless search branches and stop the iterations when an empty cluster set is found. Distributions are
combinations of clusters which cover all users with regular transactions and each user is included in only one
cluster. The distributions composed of fewest number of clusters are returned as suggestions.

Although frequent users and regular transactions are stable in ESs, new users are added to the systems
from time to time. These users have no entries in user profiles and are distributed by a hybrid dispatching
program that distributes frequent users according to a selected distribution and new users with dynamic
A AMRs. A transaction of the new user is checked to find its predicted regular transactions. If an entry is
found, the dispatching program associating the user with the predicated transactions, otherwise, the single
transaction is associated with the user. The associated transactions are then used to decide the target server
for the new user. The user goes to the server with the highest AMR after accepting the user.

As future work, HBC?A is among a series of study in distributing users with historical user profiles,
and are by no means the last two. Several issues require further studies, such as modelling user profiles with
sequences, dynamically updating user patterns, incorporating CPU and systems loads into dispatching and

distribution algorithms.

Acknowledgements

This study is supported by National Science Council, Taiwan, Republic of China, through the Project
No0.NSC94-2416-H-029-010-. We would like to thank anonymous referees for their invaluable comments on

this work.

References

11.

12.

13.
14.

15.
16.

17.

18.

19.

20.

. SAP AG. System R/8 Technicale Consultant Training 1 - administration, chapter R/3 WorkLoad Distribution.

SAP AG, 1998.

SAP AG. System R/8 Technicale Consultant Training 8 - Perf. Tuning, chapter R/3 Memory Management. SAP
AG, 1998.

Woo Hyun Ahn, Woo Jin Kim, and Daeyson Park. Content-aware cooperative caching for cluster-based. The
Journal of system and software, 69(1):75-86, 2004.

R. Argawal and R. Srikant. Fast algorithms for mining associations rules. In Proceedings of International
Conference in Very Large Data Bases, pages 487499, 1994.

H. Bryhni, E. Klovning, and O. Kure. A comparison of load balancing techniques for scalable web servers. IEEE
Network, 14:58-64, 2000.

V. Cardellini, M. Colajanni, and P.S. Yu. Dynamic load balancing on web-server systems. [EEE Internet
Computing, 3:28-39, 1999.

Yen-Liang Chen, Ping-Yu Hsu, and Chun-Ching Ling. Mining quantitative assocation rules in bag databases.
Journal of Information Management, 7:215-229, 2001.

Gianfranco Ciardo, Alma Riska, and Evgenia Smirni. Equiload:a load balancing policy for cluster web servers.
Performance Evaluation, 46:101-124, 2001.

R. O. Duda and P. E. Hard. Pattern Classification and Scene Analysis. Wiley-Interscience Publication, 1973.

. S. Guha, R. Rastogi, and K. Shim. Rock: A robust clustering algorithm for categorical attributes. Information

Systems, 25(5):345-366, 2000.

J. Han and M. Kamber. Data Mining: Concepts and Techniques, chapter Mining association rules in large
databases. Morgan Kaufmann Publisher, 2001.

J. Han and M. Kamber. Data Mining: Concepts and Techniques, chapter Clustersing. Morgan Kaufmann
Publisher, 2001.

J.A. Herndndes. The SAP R/8 Handbook, chapter Distributing R/3 Systems. McGraw-Hill, 2 edition, 2000.

J. Pei J. Han and Y. Yin. Mining frequent patterns without candidate generation. In Proceedings of ACM-
SIGMOD International Conference on Management of Data, pages 1-12, 2000.

A K. Jain and R.C. Dubes. Algorithms for Clustering Data. Prentice Hall, 1988.

P. Mohapatra and H. Chen. A framework for managing qos and improving performance of dynamic web content.
In Proceedings of Global Telecommunications Conference, volume 4, pages 2460-2464, 2001.

S. Nadimpalli and S. Majumdar. Techniques for achieving high performance web servers. In Proceedings of
International Conference on Parallel Processing, pages 233—241, 2000.

B. C-P. Ng and C-L. Wang. Document distribution algorithm for load balancing on an extensible web server
architecture. In Proceedings of International symposium on cluster computing and the Grid, pages 140-147, 2001.
Victor Safronov and Manish Parashar. Optimizing web servers using page rank prefetching for clustered accesses.
Information Sciences, 150:165-176, 2003.

Zhiguang Shan, Chuang Lin, and Dan Marineslu. Modeling and performance analysis of qos-aware load balancing
of web-server cluster. Computer Networks, 40(2):235-244, 2002.

I
w
R
-\
P 4
A

iy
pes
I

-2} The Seventh Web-A ge Information Management Conference - Micmsoft Infernet Explorer
BRE EED RED SMEEL TED HEE

Qrx- O [(HEG One Jaer @@ 25 ©-E

LD ‘-Ehﬂp#www, cubk ednhbdwaim06 homs htm v ﬁ% EE T @ -

The Seventh International Conference on Web-Age Information
WAIM'O6G Wanagement, 1718 June, 2008,
Hong Kang, China

act s

The rapid prevalence of Web applications requires new technologies for the design, Implementation and
Call far Papsrs fanagement of Web-based imfarmation systems JAWAINDE is an Intémational forur for tesearchiers,
Key Dates practitinners, developers and Users 1o shate and exchande cutting-etge [deas results, superence lechigues
and tools i connection with all agpects of Web data management. The conference invites original research and
Organizing Commites: industrial papers on the theory, design and irmplerentation: of Web-based information systems, as well as
- " proposals tor demonstrations, tutonals and panels: As the Tth-event intha increasingly popularseres, WalMOs
Program Commities Iz expected to attract outstanding researchers from all over the werld to Hong Kong,

Kevmte RHERIES The conference will he held at The Hong Kong Poelytechnic University, Humg Hom, Kowloon, Hong Komng.
Confergnce Program The map for conference venue is availahle.

Conforence Venue
Tutarals The online proceedings is awvailable at Springet

Faper Submission
Faper Review Systerm
Publication’

wuthor Information

B F04a00chpdt | M Mdobedembat. oo £ &) EFL

2006. 08. 20

- R g RS

4 # eThe Seventh International Conference on Web-Age Information
Management % 4 #3321 & e By BB § Rid Fhp FAE R L L
Advanced application of databases - Biologicd and genome information
systems ~ Data mining and knowledge discovery ~ Web service and information
management ~ Mobile data management ~ Workflow and E-services > ¢ 352544
By aeod f oA m?}—‘ﬁ B EFR - FoEHEATCE €84 6/17/2006
716/19/2006 % 3= ",f 7 Lecture *t » i 3 Workshop - tutorial §-Keynote
Speech> % - = i & & Workshops# 7> % = X 2 %= X 4 3 #h2 g £ >
fe s #8F % Prkeynote speakeriiik > & = ATt § ATIR X s v BT E
Lecture Notes in Computer Science(LNCS) » & 3 SCI INDEX » #7r3& =
FAG - kB FERRMFHE - AEFRAELE ?Jﬁm?ﬁ? ' A
FHLBRAERS T RS R v R R E R R IR
TAFEL e et TRAFEFRIBRZLE - o HREREDEE S
B A GGG o B b 2 P T2 G RIF 2 web-based i Rk S (JEIT
WmIRAE) 0 AAF - Rwm T e A € 4B T 3 0 M tParallel and
distributed database systems > 4% P % : Development of User
Distributions in Enterprise Systems with limited Buffer Sizes in
Application Servers: ~ ¥ #2x>{d g » B4 B P 4d o

—_fl
|
|54

N

NRREFAE R E L DLE > FRIR B K HHs PR ek
FARL PR AL R F A > £ A SR o s #7 B TR ipowerpoint w17
fRRRy REE > REFHJOLEEC A > -2 R R I F2 NS D
PR ARG 2 AeE Y o g R S BT)
Prfew] AR p e iz o g ARG AR FRAFGEL o 4
ek 2R L A A LR A BRER ST JEF e R
€ FHtAEHFTARECE S NPT OEGFE BIFLhERY S 0 -
BidF el g a2 i 2 KLY R § A - B ESE S

Flad s -2 BmEeR RAIMEHR AARZ-RaBHEB AT
e BL97 A § keynote speaker FEFc A HBRE S o o B F A KT
AHAyEE RS B BHE L i Baiihe 2 0008 0 #EF
IR ERKDA T2 1) JRANFFISREIERAS VB B
B G A QAR F P G e P e IR T o AR

2 et R s LR R R R R R
Pz RELEE > FRGR e 5 g2 d R vRELCF RO mE 2
#_{_f&} Eb}a#&]_g‘:]ﬂ»ﬁ'&{ﬂ»?ﬁ\“’

F*’*4%ﬂéﬁ¢%ﬂ%ﬂﬂﬂWWWmFﬂ’€4ﬁ$ B E

L1 \é;ﬁ'#{% '/g ~F%WF% F%i}%%ii‘ﬂ'rﬁ"wu #'?53,5_“ > gL ﬁj;
¥ AZE 3 "4«5&‘/‘-‘;’47 I e F A *"’K’ﬁ T;":##ﬁq#‘sv% e I BRI
TR AR iOFE IR T E RSP 0 ¥ u‘g,}a‘aﬁ;pgﬁg; Fe g
¢,ﬁ§¢¢1mﬁww,»Awg¢;

= 2

AppE TR EHA P T RE o FB AAARY FERE ST 2 i
2 fi‘«:}ﬁfrﬁ?] TR AER I B BT E o PR RF R -
B buildings 7 g ¥ ¥ RN T EEE T oAAF A RLDPFRL
CRIFAESE AARRIES BRI RIEL AR R REFHTRE
FHH mypect § o (TrcH e £ A1) RoguE 2 o

HE AR NE
6 £ R gAML 2 & kAP M TR
APWEB/WAIM 2007
The 2006 IEEE International Conference on Data Mining
The fifth International Conference on Web-based Learning
Fourth International Conference on Cooperative Internet Computing
2nd International Conference on Trends in Enterprise Application
Architecture
.26th ACM SIGMOD International Conference on Management of Data

oo o —"
/

—h

Development of Users Distribution in Enterprise Systems with
limited Buffer Size in Application Servers

Ping-Ho Ting!, Kuan-Ching Li%, and Chun Chung Wei®

! Dept. of Hospitality Management, TungHai University
Taichung 40704, Taiwan
ding@thu.edu.tw
2 Dept. of Computer Science and Information Management, Providence University
Shalu, Taichung 43301, Taiwan
kuancli@pu.edu.tw
3 Dept. of Information Management,ChungChou Institute of Technology
Yuanlin, Chunghwa 51003, Taiwan
ccwei@ms15.url.com.tw

Abstract. As enterprises worldwide race to improve their real-time management turnaround, which
is essential requirement to improvements in productivity and service deployments, and therefore, large
amount of resources have been invested into Enterprise Systems (ESs). All modern and robust ESs
adopt a n-tier client-server architecture, which includes several application servers to hold users and
applications. Currently, most web systems are stateless, which means that each request is routed inde-
pendently to a different server at each time. However, for ESs, each request from same user is routed
to the same application server.

Distributions in application and web servers are different in granularity. In the former scenario, a user
represented by a set of transactions is the atomic element, while in the latter scenario, single request
is the atomic element and different requests issued by the same user can be directed to different web
servers. Until present time, few researches have been devoted in the user distribution to application
servers in n-tier architecture.

In this paper, it is proposed a Heuristic Buffer Constraint Clustering Algorithm, namely HBC?A ,
which is a Greedy-based strategy algorithm. The algorithm give suggestions of user distributions, the
number of servers needed, and the similarity of user requests in each server. In addition, this algorithm
is applied on a set of real data which is derived from the access log of an Enterprise System, in order
to evaluate the quality of suggested distributions.

1 Introduction

For ESs that process daily business transactions, users typically have low tolerance on system performance.
If a system responds to data entries or queries too slowly, users lose patience and complain loudly. Yet, the
number of ES users keeps growing in most companies as the number of business processes incorporated into
ESs increases. Therefore, keeping response time under control is a vital issue for most system administra-
tors. To boost performances, activating more than one application servers become common practices in the
industry.

When an ES has multiple application servers, distributing users to similar applications and application
servers plays an important role in tuning overall system performance, as pointed out by documents of major
ES systems [1, 13]. Throughout our text, an application in an ES corresponds to an atomic and unbreakable
transaction, transactions and applications are used interchangeably.

In current practices, ESs do not automatically switch users to other application servers, due to the
resources involved in the transmissions. As a user logs onto an application server, all related data such as
authorizations, preferences, and created data are collected in the server’s virtual memory, in order to create
time-sharing working environment and reduce user effort in keying data. Besides, all applications executed

by users are compiled and stored in memory. Data accessed by applications are also cached in memory to

improve the efficiency of systems. In many cases, the amount of data cached are huge, and as consequence,
transferring a user to a different application server may trigger a transmission of huge amount of data. Thus,

users are not switched automatically among servers in current practice.

In ESs, the dispatching mechanism needs to consider two criteria to gain reasonable performance: the
number of users log on in each application server and the collection of applications executed in servers.
Therefore, as each user consume hardware resources and the n-tier architecture has more than one application
server, user distribution becomes one of the important issues in tuning ES performance [2]. In ESs, each
application is evoked by a user who logs on an application server, and stays connected to the server for an
entire working session, which can last for several hours and includes the execution of a set of applications.
Therefore, admitting a user into an application server is equivalent to admitting a set of transactions into
an application server, which marks a sharp difference between the distribution of application severs and

traditional web servers.

In traditional web servers, requests are examined individually and those issued by the same user can be
routed to different web servers. Commercial products, such as SAP R/3, equipped with a simple dispatching
algorithm, considers only number of users and server response time. The task of grouping users is left to
system administrators [1, 13]. In addition to the rough guideline of grouping financial users into one server and
logistic users into another, system administrators need specific suggestions, such as explicit user distributions,
the number of servers needed and the similarity of user requests in each server. To address the needs, this
research paper proposes algorithm to suggest distribution based on user profiles. The distribution algorithm

can the least number of servers needed that satisfy all the constraints of a system.

The scheme of the proposed research is shown in figure 1. The procedure is started with the collection of
user profiles from an enterprise system. The profile is consisted of a set of transactions accessed by users in a
given period of time. The transactions that are accessed frequently are labelled as regular transactions. The
frequent accesses are compared against profile support threshold and user support threshold. The purpose of
profile support is to screen transactions that are seldom used by all users and user support threshold is to find
transactions which are accessed frequently by each user. The regular transactions are further analyzed to form
associated regular transaction in the third step with confidence threshold. Associated regular transactions
are designed to predicted the behavior of new and not frequent users, who do not have enough records in
the user profile. In the distribution, regular transactions are used to cluster users with the novel algorithm

prosed in this research paper, namely HBC?A .

To explain the algorithms and related procedures, the rest of the paper is organized into the following
sections. Applications are grouped into large itemsets with traditional Apriori algorithm[7, 11] to find frequent
patterns. The process is explained in section 2. A group of users forms a cluster if the union of the users’
transaction sets has an Application Match Ratio(AMR) exceeds a given threshold. AMR is a similarity
measure of user patterns grouped in the same set. The definition of AMR and related properties are proved
in section 3. An example of AMR based hybrid distributing approach is shown in section 4 Simulations
with real data and comparisions with Round-Robin users distribution are shown in section 5. A review of
distributed web server architectures and clustering of categorical sets is shown in section 6. Conclusion and

possible extension of HBC?A are discussed in section 7.

Collecting
UsersProfiles

Finding
Fregular Transactions
wwithh Thresholds of
FProfile Support
and LIser Support

Finding
Associated Regular
Transactions with
Confidence Threshold

4.
HE % £ wdth thresholds
of AR and & C

Fig. 1. Research scheme.

2 Finding Users’ Regular Transactions

To record system and user statuses, most enterprise systems include various tracing mechanisms. Among the
various recordable data are user sessions and applications executed in sessions. For the purpose of the paper,
these data are transformed into user profiles. A user profile is a set of (user — id, transaction — set), where
user-id is the account name of a user and transaction-set is the set of transactions accessed by the user in a
session. A sample user profile is shown in Table 1, which records the sessions of ten users. User 1, 3 and 6
have more than one sessions in the profile. User 1 access transaction A, B, E, F, and H in one session and

A, B, E, and F in another session.

Table 1. User Profiles

User-Id| Transaction-Set
{A, B, E, F, H}
{A, B, E, F}
{A, B, E, F, G}
{A, B, E, H}
{A, B, E}

{B, E, F, H}
{I, J, K, L}

{B, I, J, K}

{B, 1, J, L}

{B, I, J, K}
{07 P7 Q? R’}
{07 P7 Q7 R}
{P7 Q7 R7 K}

0 {W, X, Y}

= © 00O O Uik WWNN - =

As careful readers may have found that the transactions accessed by user 10 in the profile shown in
Table 1 is special because most of his/her transactions are unique and are not shared by others. Transaction
G of users 2 in the first session is also unique. If the rarely used transactions are all stored in buffers,
large sizes of buffers are needed and the utilization rates of these buffers are low. Therefore, only regularly
accessed transactions are considered. A user’s regularly accessed transactions,termed as regular transactions,
are transactions which occur in enough number of sessions in the corresponding user profile and are accessed

often enough by the user.

Definition 1 Given a user,u, a user profile, U, and a transaction, t, t is one of u’s regular transaction
in U if
[{s|t € s.transaction-set,s € U}|
U]

> profile support threshold, and

|{s|s € U, s.user-id = u At € s.transaction-set}|
{s|s € U, s.user-id = u}|

> user support threshold.

Profile support threshold and user support threshold are given by system administrators. The higher the
threshold, the fewer the regular transactions users have.

To compute or estimate regular transactions for each user, three steps are employed. The first one
computes large itemsets with any existing set oriented pattern discovering algorithm, such as [4,14]. The
large itemsets computed from the algorithms have supports higher than the profile support threshold in
the associated user profile. In the second algorithm, each large 1-itemset is examined against each user to
form users’ regular transactions. For new users who do not have accumulated enough entries to computer
personal regular transactions, the paper propose to predicate their regular transactions with the association

rules computed with known algorithms. Figure 2 shows the stages in computing regular transactions.

Fird Regular Transactions from
Long Large items

Set Oriented Mining
Technelogy

Predict Regular Transactions with
fssociation Rules

Fig. 2. The Stages of Computing Regular Transactions

If profile support threshold is set at 20%, the set of level 1 large itemsets of the sample user profile is
{A,B,E,F, H 1 J K, P, Q, R}; the level 2 set is {AB, AE, AF, BE, BF, BH, BI, BJ, EF, EH, 1J, IK, JK,
PQ, PR, QR}; the level 3 set is {ABE, ABF, AEF, BEF, BEH, B1J, IJK, PQR}; the level 4 set is {ABEF}.
Therefore, the set of patterns generated from the Apriori-Like Algorithm is {A, B, E, F, H, I, J, K, P, Q,
AB, AE, AF, BE, BF, BH, BI, BJ, EF, EH, 1J, IK, JK, PQ, PR, QR, ABE, ABF, AEF, BEF, BEH, BIJ,
1JK, PQR, ABEF}.

The second step in computing users’ regular transactions is to map transactions in large itemsets to
users. A transaction is a user’s regular transaction if it happens in enough number of the user’s sessions.
One obvious way to do so is taking every Level 1 large itemsets and check it against each users’ transaction
sets. The itemset is one of the user’s regular transaction if the item occurs in enough number of the user’s

transaction sets.

Assume the user support threshold is set at 40%, the regular transactions of the the running example is

shown in Table 2.

Table 2. Regular Transactions

|User—Id[Regular Transactions‘
1 {A, B, E, F, H}
{A, B, E, F, H}
{A, B, E, F, H}
{1, J, K}

{B, L, J, K}

{B, I, J, K}

{P, Q, R}

{P, Q, R}

{P, Q, R}

0 0

= © 00~ O Ui Wi

New users do not have any records in the user profiles and do not have associated regular transactions.
However, dispatching programs still need to dispatch them in run-time. Therefore, help for dispatching
programs to guess the patterns of new users are in order.

If each new user provides one of the transactions she/he wishes to access after logging on, the dispatching
program can check if the transaction has high association with any large itemsets. If so, the union of the

large itemsets dentoe the user’s Predicted Regular Transaction set.

Definition 2 The Associated Regular Transactions of a transaction, t, under a set of large itemsets,

P, a user profile, U, is

AT(t)=U{p € P |t € p, CPy(p|t) > confidence threshold},

_ |{s]|s€U,p€s.transaction set}|
where CPU(p|t) — |{s|seU,tes.transaction set}|

By setting the confidence threshold at 80%, the Associated Regular Transactions of transactions
in large-1 itemsets in the running example is shown in Table 3.
Since the algorithms needed to find the Associated Regular Transactions are trivial when large itemsets

are ready. The paper does not include the algorithm either.

3 Clustering and Distributing by HBC?A

Systems with multiple servers gain performance speed at the cost of keeping duplicated programs and data
in more than one servers. In sophisticated application servers with hundreds or thousands of users on-line all

the time, the memory needed are considerable [2]. Therefore, users share similar transactions are grouped

Table 3. Associated Regular Transactions with Confidence Threshold at 80%

lTransaction‘PT ‘Conﬁdence‘

ABE[100%
AB [100%
ABE (83%

BEF |100%
BEH 100%
LJK [100%
LK [100%
PQR|100%
PQR|100%
PQR|100%

TOTREIZHEHT >

into one cluster, which is then assigned to an application server. This section proposes HBC?A to cluster

users and a straightforward algorithm to distribute clusters.
Definition 3 A cluster is a set of users that share common applications in an Enterprise system.

The quality of a cluster is measured by AMR , Application Match Ratio. The AMR of a cluster is defined
as the ratio of AC versus the applications in the cluster, where AC denotes the number of applications that
can be hosted in an application server without causing buffer swap. AMR is smaller than one when users
in the cluster have more regular transactions than the buffers can hold. In this case, buffer swap occurs and

the smaller the AMR is, the more the buffer swap will occur.

Definition 4 The AC of an enterprise system is an integer number. The number denotes the number
of applications that can resides in application servers of the enterprise systems without causing buffer

swap.

The regular transactions in a cluster are defined as the union of regular transactions of users grouped in

the cluster.

Definition 5 The number of regular transactions in a cluster, c, is defined as

lel = | Uuee u-regular transactions|

The AMR of a cluster, c, is defined as the ratio of AC to |c|. AMR (c) = <1<,

lel

Lemma 1 The AMR of each cluster has a value between 0 and AC .

Proof
AMR ’s are positive and therefore are always greater than to 0.
Given a cluster, c

AC

lel
A
1

AMR (c) =

IA

< AC

AMR of a cluster, therefore has values between 0 and AC .

d

Hence, system administrators can assign an AMR, threshold between 0 and AC' . By setting the threshold is

between 0 and AC', the system administrators can tune the tolerance degree of buffer overflow.

Theorem 1 Anti-Monotonicity of AMR AMR of a cluster decreases with the addition of any user

with non-empty reqular transaction set to the cluster.

Proof

If a cluster, ¢, has the AMR of % where p is the number of different transactions in the

cluster. If a user with g new transactions is added to the cluster then the new AMR is ;‘TCq.

AC AC AC x(ptq) — AC xp

P ptq px(p+q)
 AC xq
px(p+q)
>0
The case of AC¥d_ — () occurs when q=0, which means the regular transaction set of the new

p(p+q)
user does mot contain any new transactions.

a

Therefore, AMR has the property of Anti-Monotonicity, which means that adding a user to a cluster can only
reduce the AMR of the cluster, unless the new transaction set does not contain any new transactions. The
property can be used to prune hapless candidate clusters that have AMR under a threshold in the cluster
forming algorithm, HBC?A . In this paper, system administrators are requested to supply an AMR threshold.
Candidate clusters with AMR smaller than the threshold are discarded.

Theorem 2 The threshold of AMR must be smaller than or equal to ‘tL where tyq, s the largest

J
max

reqular transaction set in the user profile , to have all users grouped into at least one cluster.

Proof
Any cluster ¢ containing users with tymq, has AMR (c) < A If the threshold is larger than

[tmacl

A€ then the users can not be included in any cluster.

[tmaz|’

Definition 6

— A qualified cluster is a cluster whose AMR exceeds a given threshold.

— A set of clusters is comprehensive under a user profile, U, if the union of the clusters includes
all users with regular transactions in U.

— A set of clusters is disjoined if the intersections of any two clusters are empty.

— A set of qualified clusters is a distribution under a user profile, U, if they are comprehensive

under U and disjoined.

In the running example, if AC is set at 3, and AMR threshold at 0.5 , then the cluster of {1,2,3}
{4,5,6} and {7,8,9} have AMR of 0.6, 0.75 and 1, respectively. The set composed by the three clusters is

comprehensive, disjoined and forms a valid distribution. The running example is shown in Table 4.

Table 4. A set of qualified clusters when AC=3 and AMR=0.5

lQualiﬁed cluster‘Users‘Regular Transactions‘AMR‘

Cluster 1 1,2,3 |AB,E,F 0 0.6
Cluster 2 4,5,6 |B,I,J,K 0.75
Cluster 3 7,8,9 [P,Q,R 1

We propose a Heuristic BC?A , namely HBC?A , HBC?A returns distributions that satisfy constraints
with the fewest number of clusters, and the rules associating single transactions to predicted regular trans-
actions. The constraints include AC' , an AMR threshold, profile support threshold, user support threshold,
and rule confidence threshold. The recommendations guarantee that when all frequent users logging on the
system and accessing all regular transactions, each server still has an AMR above the given AMR Threshold.
Information included in the recommendations are number of servers, clusters of users, and AMRSs of clusters.

The HBC?A includes three steps in computing the recommendations - computing the set of qualified

clusters and selecting clusters to form distribution. The main steps are listed as following:

Initialization: for each user with regular transactions, and these users form qure, Q. Sort Q on users by
the number of their regular transactions and form new queue, Q’.

Composing C; from Q’: A user u; in Q" is added to C; by the user in Q' from C; if the new cluster C;
has an AMR value exceeding the given threshold. In the mean time, Removing the new user from Q.
Repeating the step until C; has an AMR value lower than the given threshold.

Repeating the Last Step Until Q' is emptyset : If Q' is empty then HBC?A has found all qualified clusters
in C1, ..., and C;; Otherwise, HBC?A has to repeat the last step.

The algorithm returns all the distributions that satisfy the requirements with the least number of appli-

cation servers and let system administrators to decide which distribution they prefer.

4 An AMR Based Hybrid Dispatching Approach

Each ES typically has a dispatching program listening to networks and accepts user requests. The program
resides an application server, intercepts user requests, and direct them to application servers.

Assuming the system administrator in our running example picks the distribution of {{1, 2, 3}, {4, 5, 6},
{7, 8, 9}}. The case of user 1, 2, 4, 7, and 8 have logged on and user 5 and 6 are waiting in the web server

is depicted in Figure 3.

Digpatch
program

4 7

Application server
Application
Server

Fig. 3. Users are Distributed through a Dispatching Program

Application server

The distributions suggested by HBC?A bases on frequent patterns in user profiles. For new and infrequent
users, HBC?A does not suggest their distributions directly but returns association rules, PR (Prediction
Rules), in the output to help dispatching program make the decision. To apply the rules, a new user only
needs to provide a transaction he/she plan to evoke after logging on the ES. With the association rules, a
dispatching program can distribute a user according to its associated predicted regulation transactions. If
the first transaction does not lead to any predicted regular transactions, then the single transaction works
as the basis for dispatching.

The running example is shown in figure 3. An AMR Based Hybrid dispatching algorithm distributes
users while keeping the AMR of each server as high as possible. In the dispatching procedure, users are

distributed to a server according to one of the three alternatives:

— If a regular user logs on, then send the user to the recommended server and return to listening mode.

— If an infrequent user logs on with a transaction, then find the predicted regular transactions implied by
the transaction. If no entry matched then the single transaction is treated as the predicted transaction.

— Compute the potential new AMR in each server with the addition of the user. Assign the user to the
server with the highest AMR , and update the AMR in the corresponding server.

The distribution in the running example has AMRs of 3/5, 3/4, and 1 in the three servers. If a new user
with user-id 11 wishes to log on the system and submits an A as the first transaction then the user has a
predicted regular transaction set of ABE, according to Table 3. The AMR after adding ABE to the three
servers would be 3/5, 3/6, and 3/6, respectively. Because the first server has the highest AMR value, the
new user is distributed to the first server, and the distribution becomes {1, 2, 3, 11}, {4, 5, 6}, and {7, 8, 9}.

5 Simulation

Several experiments are conducted on real data collected from a mid size machinery company based in
Taichung, Taiwan. The company has their SAP system up and running since 2002. Five weeks of user access
logs are extracted from the system to perform the experiment. Four weeks of the data are used to suggest
distributions. The fifth week of data are used to evaluate the quality of the suggested distributions.

In the experiment, 1,853,689 access logs are collected which include 56 users have regular patterns. The
average number of transactions in user profiles is 7.7. The quality of suggested distributions are measured
by Application Hit Ratios and Entropy. The Application Hit Ratio of a server is defined as the number
of transaction accesses hits a stored version of the transactions in the memory over the total number of
transactions accessed in the server. The Application Hit Ratio of a distribution is the average Application
Hit Ratios of servers suggested in the distribution. The entropy of a server is defined as — >_ p; log, (p;), where
p; is the probability of transaction i being accessed by users in the cluster. Since AR and AMR thresholds
are typically smaller than 1, some frequent transactions are not stored in the memory. In the experiment, we
assume that servers automatically store the applications that are accessed the most in the training data in
the memory. Infrequent users appearing in the testing data are assigned to servers according to the hybrid
distribution algorithm.

The Experiment of HBC?A and Round-Robin are implemented on Matlab 6.1 and executed on a Pentium
4-1.8 GHz Microsoft XP Server system with 256 Megabytes of main memory. With the improved algorithm,

distributions can be suggested within one minites.

5.1 Experimental Results of HBC?A

Seven distributions are suggested against the collected data. These distributions have AMR threshold set at
0.8 with AC ranging from 21 to 28, respectively. These simulations all have profile support threshold at 0.1
and user support threshold set at 0.3.

The number of servers needed for each distribution is shown in Figure 4. With AMR =0.8, HBC?A suggests
a distribution with five servers when AC=21, four servers when AC = 22, three servers when AC = 23 , two

servers when AC=24, 25, 26 and 27, and 1 server when AC = 28.

Profile Support = 0.1 and User Support = 0.3

of Machines Needed
w
[2
L N

Fig. 4. Distribution Experiments with HBC?A

The quality of each distribution is evaluated in Figure 5 and Figure 6. The Application Hit Ratio of the
distributions with AMR =0.8 is 0.91714 when AC = 21, 0.94924 when AC = 22, 0.95687 when AC = 23,
0.95674 when AC = 24, 0.96696 when AC = 25, 0.96565 when AC = 26, 0.96474 when AC = 27 and 0.9559
when AC = 28. The Entropy of the distributions with AMR =0.8 is 6.6595 when AC = 21, 8.3807 when AC
= 22, 9.542 when AC = 23, 10.0652 when AC = 24 , 10.0263 when AC = 25, 10.435 when AC = 26, 8.7664
when AC = 27 and 11.755 when AC = 28.

Profile support = 0.1 and User support = 0.3
0. 98

0. 97 0. 96565

0. 86671 0. 9559

0. 96 =
0.94924 0. 96474 ——g

©0- 95 0.95687

0. 94

0.93

0.92
4

0.91 0. 91714

0.9

Total Hit-Ratio of Each Machin

089

21 20 23 24 25 26 27 28

—e— AMR=O. 8 ac

Fig. 5. The Application Hit Ratios of Distributions with HBC?A

Profile Support= 0.1 and User Support= 0.3

£ 14
=
: - 11, 755
= 35 10, 435
] 10.0652 .
= 8. 3807
= =35
& 8 B. 7664
£
= 6
= 6. 6595
&% 4
z
4
= 2
2
= 0
21 22 23 24 25 26 27 28

AC
—— AMR—O. 8

Fig. 6. The Entropy of Distributions with HBC?A

From data shown in Figure 4, Figure 5, and Figure 6, we find that the hit-ratios of the distributions
ranging from 0.91714 to 0.96696. From figure 5, we find that the more AC , the more average the higher
hit-ratios machines have, because each machine can hold more transactions. The more number transactions
manchine can hold, The more chances the high-ratios machine have. From figure 6, we find that the more
AC, the more average entropy machines have. We conclude that the company should use one server to hold
all users if hardware capacity is large enough. The second to the best distributions have Application Hit
Ratios of 0.96696 which occurs when AMR =0.8, AC = 25(two machined need). Since the former settings

requires fewer memory resource, system administrators are advised to adapt the former distribution.

5.2 Comparision of HBC?A and Round-Robin User Distribution

HBC?A considers the constraints and tries to find groups of users whose combinations of accessed transac-

tions do not cause too many page faults if they are clustered into one application. Round-Robin distributes
user to one of the several application servers in a server group by a rotated order. The approach ensure users
are fairly distributed in a server group.

For the purpose of comparision, We set the same memory constraints to HBC?A and Round-Robin. In
terms of users and transactions allocations, HBC?A can get better result than Round-Robin since given the
same number of machines, the transaction distributions in HBC has lower entropy than Round-Robin, the
hit-ratio of user distributed in each machine by HBC?A get better result than Round-Robin. (Please refer

figure 7, figure 8).

Profile Support = 0.1 and User Support = 0.3

0.9599
- QLQG3523

0. 96 S
0.948875
e T e
0. 94
0.91245 \
092 0.01714

0.88123 0.871

Total Hit-Ratio
[=3
=4

1 2 3 4 &

4 mBC2A <
Machine Needed
—&_ROUND ROBIN

Fig. 7. Comparision of HBC?A and Robin in Hit Ratios of the Experiment

Profile Support = 0.1 and User Support = 0.3
14

12 1.
10.55965
10 8983 §.6372
53741

8
7.:;%5\
6

The Value of Average Entropy

smlm
4
P
° .
1 2 2 * °

Machine Needed

Fig. 8. Comparision of HBC?A and Robin in Entropy of the Experiment

In summary, if the memory of each machine is seriously limited , HBC?A should be used to distribute

users, because the result generated by them is guaranteed to satisfy the memory consumption criteria.

6 Related Work

With the Internet rush, many researches have been devoted to distribute user requests in Distributed Web

Server Architecture, in order to improve the performance of web servers. Depending on the locations where

request distributions happen, these researches are classified in client-based, DNS (Domain Name Server)-
based, dispatcher-based, and server-based, as in [6,5,18,8,20]. Since current Http protocol is stateless,
each request is routed independently to a web server[5,3,16,17,19]. All of the above researches assume that
requests can be independently routed to different servers, where as in the application servers of ESs, requests

from the same users have to be routed to the same server.

Clustering literatures are classified into two models: partitioning clustering and hierarchical clustering
[15,9,12]. If k clusters are needed, partitioning clustering choose k centroids initially and gradually, tune the
constituents of each clusters or centroids with some criteria function until a locally optimized characteristic
is reached. Hierarchical clustering can be further divided into agglomerative and divisive clustering. As the
name suggested, agglomerative clustering gradually merge smaller clusters into larger clusters until k clusters
are found. Divisive clustering, on the other hand, splits larger clusters into smaller clusters until k clusters

are found.

Most clustering algorithms employ Euclidean distances to compute similarity. The shorter the distances
the more similar the data points in the clusters are. However, Euclidean distances are not ideal for clustering
categorical data. For example, to cluster transaction sets with Euclidean distances, each set has to be trans-
lated into a sparse binary vector. In the running example, the second session of user 1, {A, B, E, F} is trans-
lated into (1,1, 1,1,0,0,0,0,0,0,0,0,0,0,0). The huge number of zeros can easily skew the distances between
transaction sets. For example, a transaction set of {A} is translated into (1,0,0,0,0,0,0,0,0,0,0,0,0,0,0)
and {I} is translated into (0,0,0,0,0,0,1,0,0,0,0,0,0,0,0). Since {A} and {I} have a distance of two bits,
and {A} and {A, B, E, F} have a distance of three bits, the former pairs has shorter distance than the latter.
The conclusion violates the general perception of set operations. Therefore, Euclidean distances are not ideal
for clustering categorial data.

Many set oriented algorithms use Jaccard coefficient [15] to compute distances. Given two sets T} and Ty,

|[ThNT5|
|T1UT2| :

their Jaccard coefficient is However, Jaccard coefficient has two drawbacks for our application. The
first is that it cannot describe the number of elements in each cluster, which are important to calculate the
buffer efficiency. The second is that Jaccard coefficient is not accurate in computing the similarity between
transactions sets. For example, the Jaccard coefficient of {A,B,C},{A} and {A,B,C},{B,C,D} are 1/3 and
2/4, respectively. However, in HBC?A |, the distance of the former pair is 0, since {A, B, C} include {A}.
Another major work in clustering categorical data is ROCK [10], which proposes to cluster transaction sets
based on links between nodes, which are composed by common neighbors between any pair of nodes. A
common neighbor of two transaction sets is a transaction set sharing similar items with the two sets. ROCK
puts two elements into the same cluster if the count of common neighbors exceed certain threshold. ROCK
also has the same drawbacks as Jaccard coefficient. For instance, if a profile includes transaction sets {A}, {A,
B, C},{A, C, D},{B, C, D},{B, C, E} and the threshold of a qualified common neighbor(link) is set at 1/3 of
Jaccard coefficient. The ROCK coefficient of {A,B,C},{A} and {A,B,C},{B,C,D} are 1 (due to the common
neighbor {A, C, D}) and 2 (due to the common neighbor {A, C, D} and {B, C, E}), respectively. From view
of ROCK, the similarity of the former pair is lower than later pair. On the other hand, the distance of the
former pair is 0 in HBC?A , which is more close to our intuition in the application of user distribution, since
{A} is a subset of {A, B, C}. Many set oriented algorithms use Jaccard coefficient and ROCK. However,

Jaccard coefficient and ROCK along cannot describe the number of elements in each cluster, which are

important to calculate the buffer efficiency. Hence, common categorial clustering technology is not suitable

for clustering users in the application.

7 Conclusion

Managers in enterprises often add users to ESs, as they extend E-business practices to various divisions of
corporate operations. With the addition of each user, new pressures on performances are brought upon to
the systems. Yet, system response time is one of the most important factors in measuring user satisfactions.

Since ESs tend to consume considerable amount of hardware memory, application servers can easily run
out all memory available, which induce to hardware limitations. When this happens, a common procedure
adopted in boosting performance is adding application servers to ESs. With multiple application servers in
the scene, distributing users with similar application requirements to the same application servers increases
buffer utilization and lead time to next hardware upgrades.

The procedure of HBC?A roots its development on AMR , which is a similarity measure of user
transactions grouped in the same cluster. A cluster with high AMR means users in the cluster share similar
applications under a given buffer limitation. AMR has the property of Anti-Monotonicity, which states that
AMR of a cluster decreases with the addition of each new transaction set. With the property, HBC?A can
prune hopeless search branches and stop the iterations when an empty cluster set is found. Distributions are
combinations of clusters which cover all users with regular transactions and each user is included in only one
cluster. The distributions composed of fewest number of clusters are returned as suggestions.

Although frequent users and regular transactions are stable in ESs, new users are added to the systems
from time to time. These users have no entries in user profiles and are distributed by a hybrid dispatching
program that distributes frequent users according to a selected distribution and new users with dynamic
A AMRs. A transaction of the new user is checked to find its predicted regular transactions. If an entry is
found, the dispatching program associating the user with the predicated transactions, otherwise, the single
transaction is associated with the user. The associated transactions are then used to decide the target server
for the new user. The user goes to the server with the highest AMR after accepting the user.

As future work, HBC?A is among a series of study in distributing users with historical user profiles,
and are by no means the last two. Several issues require further studies, such as modelling user profiles with
sequences, dynamically updating user patterns, incorporating CPU and systems loads into dispatching and

distribution algorithms.

Acknowledgements

This study is supported by National Science Council, Taiwan, Republic of China, through the Project
No0.NSC94-2416-H-029-010-. We would like to thank anonymous referees for their invaluable comments on

this work.

References

11.

12.

13.
14.

15.
16.

17.

18.

19.

20.

. SAP AG. System R/8 Technicale Consultant Training 1 - administration, chapter R/3 WorkLoad Distribution.

SAP AG, 1998.

SAP AG. System R/8 Technicale Consultant Training 8 - Perf. Tuning, chapter R/3 Memory Management. SAP
AG, 1998.

Woo Hyun Ahn, Woo Jin Kim, and Daeyson Park. Content-aware cooperative caching for cluster-based. The
Journal of system and software, 69(1):75-86, 2004.

R. Argawal and R. Srikant. Fast algorithms for mining associations rules. In Proceedings of International
Conference in Very Large Data Bases, pages 487499, 1994.

H. Bryhni, E. Klovning, and O. Kure. A comparison of load balancing techniques for scalable web servers. IEEE
Network, 14:58-64, 2000.

V. Cardellini, M. Colajanni, and P.S. Yu. Dynamic load balancing on web-server systems. [EEE Internet
Computing, 3:28-39, 1999.

Yen-Liang Chen, Ping-Yu Hsu, and Chun-Ching Ling. Mining quantitative assocation rules in bag databases.
Journal of Information Management, 7:215-229, 2001.

Gianfranco Ciardo, Alma Riska, and Evgenia Smirni. Equiload:a load balancing policy for cluster web servers.
Performance Evaluation, 46:101-124, 2001.

R. O. Duda and P. E. Hard. Pattern Classification and Scene Analysis. Wiley-Interscience Publication, 1973.

. S. Guha, R. Rastogi, and K. Shim. Rock: A robust clustering algorithm for categorical attributes. Information

Systems, 25(5):345-366, 2000.

J. Han and M. Kamber. Data Mining: Concepts and Techniques, chapter Mining association rules in large
databases. Morgan Kaufmann Publisher, 2001.

J. Han and M. Kamber. Data Mining: Concepts and Techniques, chapter Clustersing. Morgan Kaufmann
Publisher, 2001.

J.A. Herndndes. The SAP R/8 Handbook, chapter Distributing R/3 Systems. McGraw-Hill, 2 edition, 2000.

J. Pei J. Han and Y. Yin. Mining frequent patterns without candidate generation. In Proceedings of ACM-
SIGMOD International Conference on Management of Data, pages 1-12, 2000.

A K. Jain and R.C. Dubes. Algorithms for Clustering Data. Prentice Hall, 1988.

P. Mohapatra and H. Chen. A framework for managing qos and improving performance of dynamic web content.
In Proceedings of Global Telecommunications Conference, volume 4, pages 2460-2464, 2001.

S. Nadimpalli and S. Majumdar. Techniques for achieving high performance web servers. In Proceedings of
International Conference on Parallel Processing, pages 233—241, 2000.

B. C-P. Ng and C-L. Wang. Document distribution algorithm for load balancing on an extensible web server
architecture. In Proceedings of International symposium on cluster computing and the Grid, pages 140-147, 2001.
Victor Safronov and Manish Parashar. Optimizing web servers using page rank prefetching for clustered accesses.
Information Sciences, 150:165-176, 2003.

Zhiguang Shan, Chuang Lin, and Dan Marineslu. Modeling and performance analysis of qos-aware load balancing
of web-server cluster. Computer Networks, 40(2):235-244, 2002.

