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中文摘要

隨著資訊科技的進步，企業面臨全球性的競爭，企業追求即時、快速及整合的資訊以

利正確而快速的決策，大型的企業資訊系統如SAP ERP等就被需求著，這類的大型企業系統

大都架構在N-tier的主從式架構底下，在這個架構底下就牽涉到使用者在應用伺服器的分

配，這樣的分配法則，SAP等大型企業系統並無好的法則，只是依使用者的身份分配可能會

使用的模組，這樣的結果使得企業系統的使用效率無法提昇，這類的問題屬於類別資料的

使用者分配，國去所提出的演算法如Euclidean distances、Jaccard 係數並不適用在本研究上，過

去文獻上並無更合適的文獻提出，本研究曾於九十三年有所討論與相關的發表，這次本研

究所討論的是假設應用伺服器是在有限的記憶容量之下所設計的演算法，稱為HBC2A。

HBC2A演算法的特色是利用只用者的使用記錄並在有限的記憶體之下，進行使用者分

配，這個演算法的特色使分配速度極快並能獲得合理的最佳解，本研究也利用台中某一家

企業的資料進行模擬，模擬的結果以Hit-Ratio及Entropy等指標來看，顯示良好，值得推廣

並應用到實務界，以利提升系統使用效率，並提昇競爭優勢。
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Abstract. As enterprises worldwide race to improve their real-time management turnaround, which
is essential requirement to improvements in productivity and service deployments, and therefore, large
amount of resources have been invested into Enterprise Systems (ESs). All modern and robust ESs
adopt a n-tier client-server architecture, which includes several application servers to hold users and
applications. Currently, most web systems are stateless, which means that each request is routed inde-
pendently to a different server at each time. However, for ESs, each request from same user is routed
to the same application server.

Distributions in application and web servers are different in granularity. In the former scenario, a user
represented by a set of transactions is the atomic element, while in the latter scenario, single request
is the atomic element and different requests issued by the same user can be directed to different web
servers. Until present time, few researches have been devoted in the user distribution to application
servers in n-tier architecture.

In this paper, it is proposed a Heuristic Buffer Constraint Clustering Algorithm, namely HBC2A ,
which is a Greedy-based strategy algorithm. The algorithm give suggestions of user distributions, the
number of servers needed, and the similarity of user requests in each server. In addition, this algorithm
is applied on a set of real data which is derived from the access log of an Enterprise System, in order
to evaluate the quality of suggested distributions.

1 Introduction

For ESs that process daily business transactions, users typically have low tolerance on system performance.

If a system responds to data entries or queries too slowly, users lose patience and complain loudly. Yet, the

number of ES users keeps growing in most companies as the number of business processes incorporated into

ESs increases. Therefore, keeping response time under control is a vital issue for most system administra-

tors. To boost performances, activating more than one application servers become common practices in the

industry.

When an ES has multiple application servers, distributing users to similar applications and application

servers plays an important role in tuning overall system performance, as pointed out by documents of major

ES systems [1, 13]. Throughout our text, an application in an ES corresponds to an atomic and unbreakable

transaction, transactions and applications are used interchangeably.

In current practices, ESs do not automatically switch users to other application servers, due to the

resources involved in the transmissions. As a user logs onto an application server, all related data such as

authorizations, preferences, and created data are collected in the server’s virtual memory, in order to create

time-sharing working environment and reduce user effort in keying data. Besides, all applications executed

by users are compiled and stored in memory. Data accessed by applications are also cached in memory to



improve the efficiency of systems. In many cases, the amount of data cached are huge, and as consequence,

transferring a user to a different application server may trigger a transmission of huge amount of data. Thus,

users are not switched automatically among servers in current practice.

In ESs, the dispatching mechanism needs to consider two criteria to gain reasonable performance: the

number of users log on in each application server and the collection of applications executed in servers.

Therefore, as each user consume hardware resources and the n-tier architecture has more than one application

server, user distribution becomes one of the important issues in tuning ES performance [2]. In ESs, each

application is evoked by a user who logs on an application server, and stays connected to the server for an

entire working session, which can last for several hours and includes the execution of a set of applications.

Therefore, admitting a user into an application server is equivalent to admitting a set of transactions into

an application server, which marks a sharp difference between the distribution of application severs and

traditional web servers.

In traditional web servers, requests are examined individually and those issued by the same user can be

routed to different web servers. Commercial products, such as SAP R/3, equipped with a simple dispatching

algorithm, considers only number of users and server response time. The task of grouping users is left to

system administrators [1, 13]. In addition to the rough guideline of grouping financial users into one server and

logistic users into another, system administrators need specific suggestions, such as explicit user distributions,

the number of servers needed and the similarity of user requests in each server. To address the needs, this

research paper proposes algorithm to suggest distribution based on user profiles. The distribution algorithm

can the least number of servers needed that satisfy all the constraints of a system.

The scheme of the proposed research is shown in figure 1. The procedure is started with the collection of

user profiles from an enterprise system. The profile is consisted of a set of transactions accessed by users in a

given period of time. The transactions that are accessed frequently are labelled as regular transactions. The

frequent accesses are compared against profile support threshold and user support threshold. The purpose of

profile support is to screen transactions that are seldom used by all users and user support threshold is to find

transactions which are accessed frequently by each user. The regular transactions are further analyzed to form

associated regular transaction in the third step with confidence threshold. Associated regular transactions

are designed to predicted the behavior of new and not frequent users, who do not have enough records in

the user profile. In the distribution, regular transactions are used to cluster users with the novel algorithm

prosed in this research paper, namely HBC2A .

To explain the algorithms and related procedures, the rest of the paper is organized into the following

sections. Applications are grouped into large itemsets with traditional Apriori algorithm[7, 11] to find frequent

patterns. The process is explained in section 2. A group of users forms a cluster if the union of the users’

transaction sets has an Application Match Ratio( AMR ) exceeds a given threshold. AMR is a similarity

measure of user patterns grouped in the same set. The definition of AMR and related properties are proved

in section 3. An example of AMR based hybrid distributing approach is shown in section 4 Simulations

with real data and comparisions with Round-Robin users distribution are shown in section 5. A review of

distributed web server architectures and clustering of categorical sets is shown in section 6. Conclusion and

possible extension of HBC2A are discussed in section 7.



Fig. 1. Research scheme.

2 Finding Users’ Regular Transactions

To record system and user statuses, most enterprise systems include various tracing mechanisms. Among the

various recordable data are user sessions and applications executed in sessions. For the purpose of the paper,

these data are transformed into user profiles. A user profile is a set of 〈user − id, transaction− set〉, where

user-id is the account name of a user and transaction-set is the set of transactions accessed by the user in a

session. A sample user profile is shown in Table 1, which records the sessions of ten users. User 1, 3 and 6

have more than one sessions in the profile. User 1 access transaction A, B, E, F, and H in one session and

A, B, E, and F in another session.

Table 1. User Profiles

User-Id Transaction-Set

1 {A, B, E, F, H}
1 {A, B, E, F}
2 {A, B, E, F, G}
2 {A, B, E, H}
3 {A, B, E}
3 {B, E, F, H}
4 {I, J, K, L}
5 {B, I, J, K}
6 {B, I, J, L}
6 {B, I, J, K}
7 {O, P, Q, R}
8 {O, P, Q, R}
9 {P, Q, R, K}
10 {W, X, Y}



As careful readers may have found that the transactions accessed by user 10 in the profile shown in

Table 1 is special because most of his/her transactions are unique and are not shared by others. Transaction

G of users 2 in the first session is also unique. If the rarely used transactions are all stored in buffers,

large sizes of buffers are needed and the utilization rates of these buffers are low. Therefore, only regularly

accessed transactions are considered. A user’s regularly accessed transactions,termed as regular transactions,

are transactions which occur in enough number of sessions in the corresponding user profile and are accessed

often enough by the user.

Definition 1 Given a user,u, a user profile, U, and a transaction, t, t is one of u’s regular transaction

in U if
|{s|t ∈ s.transaction-set, s ∈ U}|

|U |
≥ profile support threshold, and

|{s|s ∈ U, s.user-id = u ∧ t ∈ s.transaction-set}|
|{s|s ∈ U, s.user-id = u}|

≥ user support threshold.

Profile support threshold and user support threshold are given by system administrators. The higher the

threshold, the fewer the regular transactions users have.

To compute or estimate regular transactions for each user, three steps are employed. The first one

computes large itemsets with any existing set oriented pattern discovering algorithm, such as [4, 14]. The

large itemsets computed from the algorithms have supports higher than the profile support threshold in

the associated user profile. In the second algorithm, each large 1-itemset is examined against each user to

form users’ regular transactions. For new users who do not have accumulated enough entries to computer

personal regular transactions, the paper propose to predicate their regular transactions with the association

rules computed with known algorithms. Figure 2 shows the stages in computing regular transactions.

Fig. 2. The Stages of Computing Regular Transactions

If profile support threshold is set at 20%, the set of level 1 large itemsets of the sample user profile is

{A, B, E, F, H, I, J, K, P, Q, R}; the level 2 set is {AB, AE, AF, BE, BF, BH, BI, BJ, EF, EH, IJ, IK, JK,

PQ, PR, QR}; the level 3 set is {ABE, ABF, AEF, BEF, BEH, BIJ, IJK, PQR}; the level 4 set is {ABEF}.

Therefore, the set of patterns generated from the Apriori-Like Algorithm is {A, B, E, F, H, I, J, K, P, Q,

AB, AE, AF, BE, BF, BH, BI, BJ, EF, EH, IJ, IK, JK, PQ, PR, QR, ABE, ABF, AEF, BEF, BEH, BIJ,

IJK, PQR, ABEF}.



The second step in computing users’ regular transactions is to map transactions in large itemsets to

users. A transaction is a user’s regular transaction if it happens in enough number of the user’s sessions.

One obvious way to do so is taking every Level 1 large itemsets and check it against each users’ transaction

sets. The itemset is one of the user’s regular transaction if the item occurs in enough number of the user’s

transaction sets.

Assume the user support threshold is set at 40%, the regular transactions of the the running example is

shown in Table 2.

Table 2. Regular Transactions

User-Id Regular Transactions

1 {A, B, E, F, H}
2 {A, B, E, F, H}
3 {A, B, E, F, H}
4 {I, J, K}
5 {B, I, J, K}
6 {B, I, J, K}
7 {P, Q, R}
8 {P, Q, R}
9 {P, Q, R}
10 ∅

New users do not have any records in the user profiles and do not have associated regular transactions.

However, dispatching programs still need to dispatch them in run-time. Therefore, help for dispatching

programs to guess the patterns of new users are in order.

If each new user provides one of the transactions she/he wishes to access after logging on, the dispatching

program can check if the transaction has high association with any large itemsets. If so, the union of the

large itemsets dentoe the user’s Predicted Regular Transaction set.

Definition 2 The Associated Regular Transactions of a transaction, t, under a set of large itemsets,

P , a user profile, U , is

AT(t) = ∪{p ∈ P |t ∈ p,CPU (p|t) ≥ confidence threshold},

where CPU (p|t) = |{s|s∈U,p∈s.transaction set}|
|{s|s∈U,t∈s.transaction set}|

By setting the confidence threshold at 80%, the Associated Regular Transactions of transactions

in large-1 itemsets in the running example is shown in Table 3.

Since the algorithms needed to find the Associated Regular Transactions are trivial when large itemsets

are ready. The paper does not include the algorithm either.

3 Clustering and Distributing by HBC2A

Systems with multiple servers gain performance speed at the cost of keeping duplicated programs and data

in more than one servers. In sophisticated application servers with hundreds or thousands of users on-line all

the time, the memory needed are considerable [2]. Therefore, users share similar transactions are grouped



Table 3. Associated Regular Transactions with Confidence Threshold at 80%

Transaction PT Confidence

A ABE 100%
B AB 100%
E ABE 83%
F BEF 100%
H BEH 100%
J IJK 100%
K IJK 100%
P PQR 100%
Q PQR 100%
R PQR 100%

into one cluster, which is then assigned to an application server. This section proposes HBC2A to cluster

users and a straightforward algorithm to distribute clusters.

Definition 3 A cluster is a set of users that share common applications in an Enterprise system.

The quality of a cluster is measured by AMR , Application Match Ratio. The AMR of a cluster is defined

as the ratio of AC versus the applications in the cluster, where AC denotes the number of applications that

can be hosted in an application server without causing buffer swap. AMR is smaller than one when users

in the cluster have more regular transactions than the buffers can hold. In this case, buffer swap occurs and

the smaller the AMR is, the more the buffer swap will occur.

Definition 4 The AC of an enterprise system is an integer number. The number denotes the number

of applications that can resides in application servers of the enterprise systems without causing buffer

swap.

The regular transactions in a cluster are defined as the union of regular transactions of users grouped in

the cluster.

Definition 5 The number of regular transactions in a cluster, c, is defined as

||c|| = | ∪u∈c u.regular transactions|

The AMR of a cluster, c, is defined as the ratio of AC to ||c||. AMR (c) = AC
||c|| .

Lemma 1 The AMR of each cluster has a value between 0 and AC .

Proof

AMR ’s are positive and therefore are always greater than to 0.

Given a cluster, c

AMR (c) =
AC

||c||

≤ AC

1

≤ AC

AMR of a cluster, therefore has values between 0 and AC .



2

Hence, system administrators can assign an AMR threshold between 0 and AC . By setting the threshold is

between 0 and AC , the system administrators can tune the tolerance degree of buffer overflow.

Theorem 1 Anti-Monotonicity of AMR AMR of a cluster decreases with the addition of any user

with non-empty regular transaction set to the cluster.

Proof

If a cluster, c, has the AMR of AC
p where p is the number of different transactions in the

cluster. If a user with q new transactions is added to the cluster then the new AMR is AC
p+q .

AC

p
− AC

p+ q
=

AC ∗ (p+ q)− AC ∗ p
p ∗ (p+ q)

=
AC ∗ q

p ∗ (p+ q)

≥ 0

The case of AC∗q
p∗(p+q) = 0 occurs when q=0, which means the regular transaction set of the new

user does not contain any new transactions.

2

Therefore, AMR has the property of Anti-Monotonicity, which means that adding a user to a cluster can only

reduce the AMR of the cluster, unless the new transaction set does not contain any new transactions. The

property can be used to prune hapless candidate clusters that have AMR under a threshold in the cluster

forming algorithm, HBC2A . In this paper, system administrators are requested to supply an AMR threshold.

Candidate clusters with AMR smaller than the threshold are discarded.

Theorem 2 The threshold of AMR must be smaller than or equal to AC
|tmax| , where tmax is the largest

regular transaction set in the user profile , to have all users grouped into at least one cluster.

Proof

Any cluster c containing users with tmax has AMR (c) ≤ AC
|tmax| . If the threshold is larger than

AC
|tmax| , then the users can not be included in any cluster.

2

Definition 6

– A qualified cluster is a cluster whose AMR exceeds a given threshold.



– A set of clusters is comprehensive under a user profile, U, if the union of the clusters includes

all users with regular transactions in U.

– A set of clusters is disjoined if the intersections of any two clusters are empty.

– A set of qualified clusters is a distribution under a user profile, U, if they are comprehensive

under U and disjoined.

In the running example, if AC is set at 3, and AMR threshold at 0.5 , then the cluster of {1,2,3}

,{4,5,6} and {7,8,9} have AMR of 0.6, 0.75 and 1, respectively. The set composed by the three clusters is

comprehensive, disjoined and forms a valid distribution. The running example is shown in Table 4.

Table 4. A set of qualified clusters when AC=3 and AMR=0.5

Qualified cluster Users Regular Transactions AMR

Cluster 1 1,2,3 A,B,E,F,H 0.6
Cluster 2 4,5,6 B,I,J,K 0.75
Cluster 3 7,8,9 P,Q,R 1

We propose a Heuristic BC2A , namely HBC2A , HBC2A returns distributions that satisfy constraints

with the fewest number of clusters, and the rules associating single transactions to predicted regular trans-

actions. The constraints include AC , an AMR threshold, profile support threshold, user support threshold,

and rule confidence threshold. The recommendations guarantee that when all frequent users logging on the

system and accessing all regular transactions, each server still has an AMR above the given AMR Threshold.

Information included in the recommendations are number of servers, clusters of users, and AMR s of clusters.

The HBC2A includes three steps in computing the recommendations - computing the set of qualified

clusters and selecting clusters to form distribution. The main steps are listed as following:

Initialization: for each user with regular transactions, and these users form qure, Q. Sort Q on users by

the number of their regular transactions and form new queue, Q’.

Composing Ci from Q’: A user ui in Q′ is added to Ci by the user in Q′ from Ci if the new cluster Ci

has an AMR value exceeding the given threshold. In the mean time, Removing the new user from Q′.

Repeating the step until Ci has an AMR value lower than the given threshold.

Repeating the Last Step Until Q′ is emptyset : If Q′ is empty then HBC2A has found all qualified clusters

in C1, . . . , and Ci; Otherwise, HBC2A has to repeat the last step.

The algorithm returns all the distributions that satisfy the requirements with the least number of appli-

cation servers and let system administrators to decide which distribution they prefer.

4 An AMR Based Hybrid Dispatching Approach

Each ES typically has a dispatching program listening to networks and accepts user requests. The program

resides an application server, intercepts user requests, and direct them to application servers.

Assuming the system administrator in our running example picks the distribution of {{1, 2, 3}, {4, 5, 6},

{7, 8, 9}}. The case of user 1, 2, 4, 7, and 8 have logged on and user 5 and 6 are waiting in the web server

is depicted in Figure 3.



Fig. 3. Users are Distributed through a Dispatching Program

The distributions suggested by HBC2A bases on frequent patterns in user profiles. For new and infrequent

users, HBC2A does not suggest their distributions directly but returns association rules, PR (Prediction

Rules), in the output to help dispatching program make the decision. To apply the rules, a new user only

needs to provide a transaction he/she plan to evoke after logging on the ES. With the association rules, a

dispatching program can distribute a user according to its associated predicted regulation transactions. If

the first transaction does not lead to any predicted regular transactions, then the single transaction works

as the basis for dispatching.

The running example is shown in figure 3. An AMR Based Hybrid dispatching algorithm distributes

users while keeping the AMR of each server as high as possible. In the dispatching procedure, users are

distributed to a server according to one of the three alternatives:

– If a regular user logs on, then send the user to the recommended server and return to listening mode.

– If an infrequent user logs on with a transaction, then find the predicted regular transactions implied by

the transaction. If no entry matched then the single transaction is treated as the predicted transaction.

– Compute the potential new AMR in each server with the addition of the user. Assign the user to the

server with the highest AMR , and update the AMR in the corresponding server.

The distribution in the running example has AMR s of 3/5, 3/4, and 1 in the three servers. If a new user

with user-id 11 wishes to log on the system and submits an A as the first transaction then the user has a

predicted regular transaction set of ABE, according to Table 3. The AMR after adding ABE to the three

servers would be 3/5, 3/6, and 3/6, respectively. Because the first server has the highest AMR value, the

new user is distributed to the first server, and the distribution becomes {1, 2, 3, 11}, {4, 5, 6}, and {7, 8, 9}.



5 Simulation

Several experiments are conducted on real data collected from a mid size machinery company based in

Taichung, Taiwan. The company has their SAP system up and running since 2002. Five weeks of user access

logs are extracted from the system to perform the experiment. Four weeks of the data are used to suggest

distributions. The fifth week of data are used to evaluate the quality of the suggested distributions.

In the experiment, 1,853,689 access logs are collected which include 56 users have regular patterns. The

average number of transactions in user profiles is 7.7. The quality of suggested distributions are measured

by Application Hit Ratios and Entropy. The Application Hit Ratio of a server is defined as the number

of transaction accesses hits a stored version of the transactions in the memory over the total number of

transactions accessed in the server. The Application Hit Ratio of a distribution is the average Application

Hit Ratios of servers suggested in the distribution. The entropy of a server is defined as −
∑

pi log2(pi), where

pi is the probability of transaction i being accessed by users in the cluster. Since AR and AMR thresholds

are typically smaller than 1, some frequent transactions are not stored in the memory. In the experiment, we

assume that servers automatically store the applications that are accessed the most in the training data in

the memory. Infrequent users appearing in the testing data are assigned to servers according to the hybrid

distribution algorithm.

The Experiment of HBC2A and Round-Robin are implemented on Matlab 6.1 and executed on a Pentium

4-1.8 GHz Microsoft XP Server system with 256 Megabytes of main memory. With the improved algorithm,

distributions can be suggested within one minites.

5.1 Experimental Results of HBC2A

Seven distributions are suggested against the collected data. These distributions have AMR threshold set at

0.8 with AC ranging from 21 to 28, respectively. These simulations all have profile support threshold at 0.1

and user support threshold set at 0.3.

The number of servers needed for each distribution is shown in Figure 4. With AMR =0.8, HBC2A suggests

a distribution with five servers when AC=21, four servers when AC = 22, three servers when AC = 23 , two

servers when AC=24, 25, 26 and 27, and 1 server when AC = 28.

Fig. 4. Distribution Experiments with HBC2A



The quality of each distribution is evaluated in Figure 5 and Figure 6. The Application Hit Ratio of the

distributions with AMR =0.8 is 0.91714 when AC = 21, 0.94924 when AC = 22, 0.95687 when AC = 23,

0.95674 when AC = 24 , 0.96696 when AC = 25, 0.96565 when AC = 26, 0.96474 when AC = 27 and 0.9559

when AC = 28. The Entropy of the distributions with AMR =0.8 is 6.6595 when AC = 21, 8.3807 when AC

= 22, 9.542 when AC = 23, 10.0652 when AC = 24 , 10.0263 when AC = 25, 10.435 when AC = 26, 8.7664

when AC = 27 and 11.755 when AC = 28.

Fig. 5. The Application Hit Ratios of Distributions with HBC2A

Fig. 6. The Entropy of Distributions with HBC2A

From data shown in Figure 4, Figure 5, and Figure 6, we find that the hit-ratios of the distributions

ranging from 0.91714 to 0.96696. From figure 5, we find that the more AC , the more average the higher

hit-ratios machines have, because each machine can hold more transactions. The more number transactions

manchine can hold, The more chances the high-ratios machine have. From figure 6, we find that the more

AC, the more average entropy machines have. We conclude that the company should use one server to hold

all users if hardware capacity is large enough. The second to the best distributions have Application Hit

Ratios of 0.96696 which occurs when AMR =0.8, AC = 25(two machined need). Since the former settings

requires fewer memory resource, system administrators are advised to adapt the former distribution.



5.2 Comparision of HBC2A and Round-Robin User Distribution

HBC2A considers the constraints and tries to find groups of users whose combinations of accessed transac-

tions do not cause too many page faults if they are clustered into one application. Round-Robin distributes

user to one of the several application servers in a server group by a rotated order. The approach ensure users

are fairly distributed in a server group.

For the purpose of comparision, We set the same memory constraints to HBC2A and Round-Robin. In

terms of users and transactions allocations, HBC2A can get better result than Round-Robin since given the

same number of machines, the transaction distributions in HBC has lower entropy than Round-Robin, the

hit-ratio of user distributed in each machine by HBC2A get better result than Round-Robin. (Please refer

figure 7, figure 8).

Fig. 7. Comparision of HBC2A and Robin in Hit Ratios of the Experiment

Fig. 8. Comparision of HBC2A and Robin in Entropy of the Experiment

In summary, if the memory of each machine is seriously limited , HBC2A should be used to distribute

users, because the result generated by them is guaranteed to satisfy the memory consumption criteria.

6 Related Work

With the Internet rush, many researches have been devoted to distribute user requests in Distributed Web

Server Architecture, in order to improve the performance of web servers. Depending on the locations where



request distributions happen, these researches are classified in client-based, DNS (Domain Name Server)-

based, dispatcher-based, and server-based, as in [6, 5, 18, 8, 20]. Since current Http protocol is stateless,

each request is routed independently to a web server[5, 3, 16, 17, 19]. All of the above researches assume that

requests can be independently routed to different servers, where as in the application servers of ESs, requests

from the same users have to be routed to the same server.

Clustering literatures are classified into two models: partitioning clustering and hierarchical clustering

[15, 9, 12]. If k clusters are needed, partitioning clustering choose k centroids initially and gradually, tune the

constituents of each clusters or centroids with some criteria function until a locally optimized characteristic

is reached. Hierarchical clustering can be further divided into agglomerative and divisive clustering. As the

name suggested, agglomerative clustering gradually merge smaller clusters into larger clusters until k clusters

are found. Divisive clustering, on the other hand, splits larger clusters into smaller clusters until k clusters

are found.

Most clustering algorithms employ Euclidean distances to compute similarity. The shorter the distances

the more similar the data points in the clusters are. However, Euclidean distances are not ideal for clustering

categorical data. For example, to cluster transaction sets with Euclidean distances, each set has to be trans-

lated into a sparse binary vector. In the running example, the second session of user 1, {A, B, E, F} is trans-

lated into 〈1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0〉. The huge number of zeros can easily skew the distances between

transaction sets. For example, a transaction set of {A} is translated into 〈1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0〉

and {I} is translated into 〈0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0〉. Since {A} and {I} have a distance of two bits,

and {A} and {A, B, E, F} have a distance of three bits, the former pairs has shorter distance than the latter.

The conclusion violates the general perception of set operations. Therefore, Euclidean distances are not ideal

for clustering categorial data.

Many set oriented algorithms use Jaccard coefficient [15] to compute distances. Given two sets T1 and T2,

their Jaccard coefficient is |T1∩T2|
|T1∪T2| . However, Jaccard coefficient has two drawbacks for our application. The

first is that it cannot describe the number of elements in each cluster, which are important to calculate the

buffer efficiency. The second is that Jaccard coefficient is not accurate in computing the similarity between

transactions sets. For example, the Jaccard coefficient of {A,B,C},{A} and {A,B,C},{B,C,D} are 1/3 and

2/4, respectively. However, in HBC2A , the distance of the former pair is 0, since {A, B, C} include {A}.

Another major work in clustering categorical data is ROCK [10], which proposes to cluster transaction sets

based on links between nodes, which are composed by common neighbors between any pair of nodes. A

common neighbor of two transaction sets is a transaction set sharing similar items with the two sets. ROCK

puts two elements into the same cluster if the count of common neighbors exceed certain threshold. ROCK

also has the same drawbacks as Jaccard coefficient. For instance, if a profile includes transaction sets {A}, {A,

B, C},{A, C, D},{B, C, D},{B, C, E} and the threshold of a qualified common neighbor(link) is set at 1/3 of

Jaccard coefficient. The ROCK coefficient of {A,B,C},{A} and {A,B,C},{B,C,D} are 1 (due to the common

neighbor {A, C, D}) and 2 (due to the common neighbor {A, C, D} and {B, C, E}), respectively. From view

of ROCK, the similarity of the former pair is lower than later pair. On the other hand, the distance of the

former pair is 0 in HBC2A , which is more close to our intuition in the application of user distribution, since

{A} is a subset of {A, B, C}. Many set oriented algorithms use Jaccard coefficient and ROCK. However,

Jaccard coefficient and ROCK along cannot describe the number of elements in each cluster, which are



important to calculate the buffer efficiency. Hence, common categorial clustering technology is not suitable

for clustering users in the application.

7 Conclusion

Managers in enterprises often add users to ESs, as they extend E-business practices to various divisions of

corporate operations. With the addition of each user, new pressures on performances are brought upon to

the systems. Yet, system response time is one of the most important factors in measuring user satisfactions.

Since ESs tend to consume considerable amount of hardware memory, application servers can easily run

out all memory available, which induce to hardware limitations. When this happens, a common procedure

adopted in boosting performance is adding application servers to ESs. With multiple application servers in

the scene, distributing users with similar application requirements to the same application servers increases

buffer utilization and lead time to next hardware upgrades.

The procedure of HBC2A roots its development on AMR , which is a similarity measure of user

transactions grouped in the same cluster. A cluster with high AMR means users in the cluster share similar

applications under a given buffer limitation. AMR has the property of Anti-Monotonicity, which states that

AMR of a cluster decreases with the addition of each new transaction set. With the property, HBC2A can

prune hopeless search branches and stop the iterations when an empty cluster set is found. Distributions are

combinations of clusters which cover all users with regular transactions and each user is included in only one

cluster. The distributions composed of fewest number of clusters are returned as suggestions.

Although frequent users and regular transactions are stable in ESs, new users are added to the systems

from time to time. These users have no entries in user profiles and are distributed by a hybrid dispatching

program that distributes frequent users according to a selected distribution and new users with dynamic

A AMR s. A transaction of the new user is checked to find its predicted regular transactions. If an entry is

found, the dispatching program associating the user with the predicated transactions, otherwise, the single

transaction is associated with the user. The associated transactions are then used to decide the target server

for the new user. The user goes to the server with the highest AMR after accepting the user.

As future work, HBC2A is among a series of study in distributing users with historical user profiles,

and are by no means the last two. Several issues require further studies, such as modelling user profiles with

sequences, dynamically updating user patterns, incorporating CPU and systems loads into dispatching and

distribution algorithms.
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出席國際會議報告書
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一、 參加會議經過

今年的The Seventh International Conference on Web-Age Information
Management在香港理工學院舉辦，這個會議涵蓋的內容相當廣泛，從
Advanced application of databases 、 Biological and genome information
systems、Data mining and knowledge discovery、Web service and information
management、Mobile data management、Workflow and E-services，包括25種
研究方向，世界各地的學者在此齊聚一堂，交換研究心得，會期由6/17/2006
到6/19/2006共3天，除了Lecture外，還有Workshop、 tutorial和Keynote
Speech，第一天主要是Workshop的舉行，第二天及第三天才有論文的發表，
但也都有安排keynote speaker演講，本次研討會所接受的論文將刊登到
Lecture Notes in Computer Science(LNCS)，具有SCI INDEX，所以論文品
質是有一定水準的，參與程度相當踴躍。 在會場觀摩其他學者的論文，海
報發表以觀察海報格式、和作者交流為要點，口頭報告則以發表者的表達技
巧、研究方向、和台下聽眾問答情況為觀察重點。 面對網際網路的快速發
展，本研會從設計面，應用面及管理面來探討以web-based的資訊系統(從理
論到實務) ，本人有一篇論文和本研會相關的研究，關於Parallel and
distributed database systems ， 題 目 為 : Development of User
Distributions in Enterprise Systems with limited Buffer Sizes in
Application Servers，文章將放於後面，供委員們參考。

二、 與會心得

出席國際研討會最能增長自己的見聞，看到國外的學者對他們的研究的敬業
及報告時專注並專業的的眼神，令人敬佩，演講者所展現的powerpoint做得
很漂亮也很專業，配合著流利的思維與口才，一方面感受到自己語文能力的
不足，不免激勵自己加強語文能力的心，有時會有聽不懂與停頓的情形，有
時和別人溝通自己的想法，有時會有表答不順暢或說不清楚的情形發生。參
加研討和來自全世界各地的朋友交換名片是一個很重要的事，藉著這樣的機
會大家彼此交換資訊與心得，以利研究的澄清及後續研究的共同努力，是一
個很好的機會，正式的論文討論及休息期間的餐會都是一個很好把握的場合。

因為是第二次參加國際會議，還在累積經驗，往往無法一眼看透其他人研究
的重點所在，當keynote speaker演講時，人數還算多，但分開場地發表論文，
尤其主辦單位還分不同主題不同場地，再加錄取的論文不到50篇，使得發表
的現場顯得聽的人並不會很多，有些人或許因為太緊張而導致在台上吞吞吐
吐，有些人則能夠非常清楚明白的將自己的研究向聽眾分享。對我來說，用



英文和外國學者交換心得是很新鮮的體驗，因為世界各地口音各各不同，有
時候很難聽懂，有時候自己也會詞不達意，回國後必須要好好的加強英文，
希望很快能夠再度出國見世面長見識。

另外，我也看到香港這城市都市化及國際化的情形，令人欣賞，地鐵捷運四
通八達非常方便，有英語國語客語等廣播及指示標誌非常完全，此地雖為海
島地型盆地，高低起浮不平，但到處都有電扶梯輔助，非常方便‧此外，也
看到金融體系的發達及世界貿易展的人潮，另外抽空參觀科學館及歷史博物
館，做得非常詳細與用心，令人印象深刻

三、 建議

主辦單位在會場安排上並不完善，場地分散在相當多的學院及房間，不能輕
易依指示找到位置，我繞很多地點才找到研討會位止，且進入校園的每一
個 building皆有警衛看守，皆要出示證件登記，相當不便，休息期間想要進
入圖書館參觀，竟然被拒絕，顯然不受到尊重，殊不知全校共同體的觀念，
學術單位辦研討會，行政單位應配合以利形象的建立。

四、 攜回資料名稱及內容
1. 6個重要研討會相關訊息及會議相關資料
a. APWEB/WAIM 2007
b. The 2006 IEEE International Conference on Data Mining
c. The fifth International Conference on Web-based Learning
d. Fourth International Conference on Cooperative Internet Computing
e. 2nd International Conference on Trends in Enterprise Application

Architecture
f.26th ACM SIGMOD International Conference on Management of Data
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Abstract. As enterprises worldwide race to improve their real-time management turnaround, which
is essential requirement to improvements in productivity and service deployments, and therefore, large
amount of resources have been invested into Enterprise Systems (ESs). All modern and robust ESs
adopt a n-tier client-server architecture, which includes several application servers to hold users and
applications. Currently, most web systems are stateless, which means that each request is routed inde-
pendently to a different server at each time. However, for ESs, each request from same user is routed
to the same application server.

Distributions in application and web servers are different in granularity. In the former scenario, a user
represented by a set of transactions is the atomic element, while in the latter scenario, single request
is the atomic element and different requests issued by the same user can be directed to different web
servers. Until present time, few researches have been devoted in the user distribution to application
servers in n-tier architecture.

In this paper, it is proposed a Heuristic Buffer Constraint Clustering Algorithm, namely HBC2A ,
which is a Greedy-based strategy algorithm. The algorithm give suggestions of user distributions, the
number of servers needed, and the similarity of user requests in each server. In addition, this algorithm
is applied on a set of real data which is derived from the access log of an Enterprise System, in order
to evaluate the quality of suggested distributions.

1 Introduction

For ESs that process daily business transactions, users typically have low tolerance on system performance.

If a system responds to data entries or queries too slowly, users lose patience and complain loudly. Yet, the

number of ES users keeps growing in most companies as the number of business processes incorporated into

ESs increases. Therefore, keeping response time under control is a vital issue for most system administra-

tors. To boost performances, activating more than one application servers become common practices in the

industry.

When an ES has multiple application servers, distributing users to similar applications and application

servers plays an important role in tuning overall system performance, as pointed out by documents of major

ES systems [1, 13]. Throughout our text, an application in an ES corresponds to an atomic and unbreakable

transaction, transactions and applications are used interchangeably.

In current practices, ESs do not automatically switch users to other application servers, due to the

resources involved in the transmissions. As a user logs onto an application server, all related data such as

authorizations, preferences, and created data are collected in the server’s virtual memory, in order to create

time-sharing working environment and reduce user effort in keying data. Besides, all applications executed

by users are compiled and stored in memory. Data accessed by applications are also cached in memory to



improve the efficiency of systems. In many cases, the amount of data cached are huge, and as consequence,

transferring a user to a different application server may trigger a transmission of huge amount of data. Thus,

users are not switched automatically among servers in current practice.

In ESs, the dispatching mechanism needs to consider two criteria to gain reasonable performance: the

number of users log on in each application server and the collection of applications executed in servers.

Therefore, as each user consume hardware resources and the n-tier architecture has more than one application

server, user distribution becomes one of the important issues in tuning ES performance [2]. In ESs, each

application is evoked by a user who logs on an application server, and stays connected to the server for an

entire working session, which can last for several hours and includes the execution of a set of applications.

Therefore, admitting a user into an application server is equivalent to admitting a set of transactions into

an application server, which marks a sharp difference between the distribution of application severs and

traditional web servers.

In traditional web servers, requests are examined individually and those issued by the same user can be

routed to different web servers. Commercial products, such as SAP R/3, equipped with a simple dispatching

algorithm, considers only number of users and server response time. The task of grouping users is left to

system administrators [1, 13]. In addition to the rough guideline of grouping financial users into one server and

logistic users into another, system administrators need specific suggestions, such as explicit user distributions,

the number of servers needed and the similarity of user requests in each server. To address the needs, this

research paper proposes algorithm to suggest distribution based on user profiles. The distribution algorithm

can the least number of servers needed that satisfy all the constraints of a system.

The scheme of the proposed research is shown in figure 1. The procedure is started with the collection of

user profiles from an enterprise system. The profile is consisted of a set of transactions accessed by users in a

given period of time. The transactions that are accessed frequently are labelled as regular transactions. The

frequent accesses are compared against profile support threshold and user support threshold. The purpose of

profile support is to screen transactions that are seldom used by all users and user support threshold is to find

transactions which are accessed frequently by each user. The regular transactions are further analyzed to form

associated regular transaction in the third step with confidence threshold. Associated regular transactions

are designed to predicted the behavior of new and not frequent users, who do not have enough records in

the user profile. In the distribution, regular transactions are used to cluster users with the novel algorithm

prosed in this research paper, namely HBC2A .

To explain the algorithms and related procedures, the rest of the paper is organized into the following

sections. Applications are grouped into large itemsets with traditional Apriori algorithm[7, 11] to find frequent

patterns. The process is explained in section 2. A group of users forms a cluster if the union of the users’

transaction sets has an Application Match Ratio( AMR ) exceeds a given threshold. AMR is a similarity

measure of user patterns grouped in the same set. The definition of AMR and related properties are proved

in section 3. An example of AMR based hybrid distributing approach is shown in section 4 Simulations

with real data and comparisions with Round-Robin users distribution are shown in section 5. A review of

distributed web server architectures and clustering of categorical sets is shown in section 6. Conclusion and

possible extension of HBC2A are discussed in section 7.



Fig. 1. Research scheme.

2 Finding Users’ Regular Transactions

To record system and user statuses, most enterprise systems include various tracing mechanisms. Among the

various recordable data are user sessions and applications executed in sessions. For the purpose of the paper,

these data are transformed into user profiles. A user profile is a set of 〈user − id, transaction− set〉, where

user-id is the account name of a user and transaction-set is the set of transactions accessed by the user in a

session. A sample user profile is shown in Table 1, which records the sessions of ten users. User 1, 3 and 6

have more than one sessions in the profile. User 1 access transaction A, B, E, F, and H in one session and

A, B, E, and F in another session.

Table 1. User Profiles

User-Id Transaction-Set

1 {A, B, E, F, H}
1 {A, B, E, F}
2 {A, B, E, F, G}
2 {A, B, E, H}
3 {A, B, E}
3 {B, E, F, H}
4 {I, J, K, L}
5 {B, I, J, K}
6 {B, I, J, L}
6 {B, I, J, K}
7 {O, P, Q, R}
8 {O, P, Q, R}
9 {P, Q, R, K}
10 {W, X, Y}



As careful readers may have found that the transactions accessed by user 10 in the profile shown in

Table 1 is special because most of his/her transactions are unique and are not shared by others. Transaction

G of users 2 in the first session is also unique. If the rarely used transactions are all stored in buffers,

large sizes of buffers are needed and the utilization rates of these buffers are low. Therefore, only regularly

accessed transactions are considered. A user’s regularly accessed transactions,termed as regular transactions,

are transactions which occur in enough number of sessions in the corresponding user profile and are accessed

often enough by the user.

Definition 1 Given a user,u, a user profile, U, and a transaction, t, t is one of u’s regular transaction

in U if
|{s|t ∈ s.transaction-set, s ∈ U}|

|U |
≥ profile support threshold, and

|{s|s ∈ U, s.user-id = u ∧ t ∈ s.transaction-set}|
|{s|s ∈ U, s.user-id = u}|

≥ user support threshold.

Profile support threshold and user support threshold are given by system administrators. The higher the

threshold, the fewer the regular transactions users have.

To compute or estimate regular transactions for each user, three steps are employed. The first one

computes large itemsets with any existing set oriented pattern discovering algorithm, such as [4, 14]. The

large itemsets computed from the algorithms have supports higher than the profile support threshold in

the associated user profile. In the second algorithm, each large 1-itemset is examined against each user to

form users’ regular transactions. For new users who do not have accumulated enough entries to computer

personal regular transactions, the paper propose to predicate their regular transactions with the association

rules computed with known algorithms. Figure 2 shows the stages in computing regular transactions.

Fig. 2. The Stages of Computing Regular Transactions

If profile support threshold is set at 20%, the set of level 1 large itemsets of the sample user profile is

{A, B, E, F, H, I, J, K, P, Q, R}; the level 2 set is {AB, AE, AF, BE, BF, BH, BI, BJ, EF, EH, IJ, IK, JK,

PQ, PR, QR}; the level 3 set is {ABE, ABF, AEF, BEF, BEH, BIJ, IJK, PQR}; the level 4 set is {ABEF}.

Therefore, the set of patterns generated from the Apriori-Like Algorithm is {A, B, E, F, H, I, J, K, P, Q,

AB, AE, AF, BE, BF, BH, BI, BJ, EF, EH, IJ, IK, JK, PQ, PR, QR, ABE, ABF, AEF, BEF, BEH, BIJ,

IJK, PQR, ABEF}.



The second step in computing users’ regular transactions is to map transactions in large itemsets to

users. A transaction is a user’s regular transaction if it happens in enough number of the user’s sessions.

One obvious way to do so is taking every Level 1 large itemsets and check it against each users’ transaction

sets. The itemset is one of the user’s regular transaction if the item occurs in enough number of the user’s

transaction sets.

Assume the user support threshold is set at 40%, the regular transactions of the the running example is

shown in Table 2.

Table 2. Regular Transactions

User-Id Regular Transactions

1 {A, B, E, F, H}
2 {A, B, E, F, H}
3 {A, B, E, F, H}
4 {I, J, K}
5 {B, I, J, K}
6 {B, I, J, K}
7 {P, Q, R}
8 {P, Q, R}
9 {P, Q, R}
10 ∅

New users do not have any records in the user profiles and do not have associated regular transactions.

However, dispatching programs still need to dispatch them in run-time. Therefore, help for dispatching

programs to guess the patterns of new users are in order.

If each new user provides one of the transactions she/he wishes to access after logging on, the dispatching

program can check if the transaction has high association with any large itemsets. If so, the union of the

large itemsets dentoe the user’s Predicted Regular Transaction set.

Definition 2 The Associated Regular Transactions of a transaction, t, under a set of large itemsets,

P , a user profile, U , is

AT(t) = ∪{p ∈ P |t ∈ p,CPU (p|t) ≥ confidence threshold},

where CPU (p|t) = |{s|s∈U,p∈s.transaction set}|
|{s|s∈U,t∈s.transaction set}|

By setting the confidence threshold at 80%, the Associated Regular Transactions of transactions

in large-1 itemsets in the running example is shown in Table 3.

Since the algorithms needed to find the Associated Regular Transactions are trivial when large itemsets

are ready. The paper does not include the algorithm either.

3 Clustering and Distributing by HBC2A

Systems with multiple servers gain performance speed at the cost of keeping duplicated programs and data

in more than one servers. In sophisticated application servers with hundreds or thousands of users on-line all

the time, the memory needed are considerable [2]. Therefore, users share similar transactions are grouped



Table 3. Associated Regular Transactions with Confidence Threshold at 80%

Transaction PT Confidence

A ABE 100%
B AB 100%
E ABE 83%
F BEF 100%
H BEH 100%
J IJK 100%
K IJK 100%
P PQR 100%
Q PQR 100%
R PQR 100%

into one cluster, which is then assigned to an application server. This section proposes HBC2A to cluster

users and a straightforward algorithm to distribute clusters.

Definition 3 A cluster is a set of users that share common applications in an Enterprise system.

The quality of a cluster is measured by AMR , Application Match Ratio. The AMR of a cluster is defined

as the ratio of AC versus the applications in the cluster, where AC denotes the number of applications that

can be hosted in an application server without causing buffer swap. AMR is smaller than one when users

in the cluster have more regular transactions than the buffers can hold. In this case, buffer swap occurs and

the smaller the AMR is, the more the buffer swap will occur.

Definition 4 The AC of an enterprise system is an integer number. The number denotes the number

of applications that can resides in application servers of the enterprise systems without causing buffer

swap.

The regular transactions in a cluster are defined as the union of regular transactions of users grouped in

the cluster.

Definition 5 The number of regular transactions in a cluster, c, is defined as

||c|| = | ∪u∈c u.regular transactions|

The AMR of a cluster, c, is defined as the ratio of AC to ||c||. AMR (c) = AC
||c|| .

Lemma 1 The AMR of each cluster has a value between 0 and AC .

Proof

AMR ’s are positive and therefore are always greater than to 0.

Given a cluster, c

AMR (c) =
AC

||c||

≤ AC

1

≤ AC

AMR of a cluster, therefore has values between 0 and AC .



2

Hence, system administrators can assign an AMR threshold between 0 and AC . By setting the threshold is

between 0 and AC , the system administrators can tune the tolerance degree of buffer overflow.

Theorem 1 Anti-Monotonicity of AMR AMR of a cluster decreases with the addition of any user

with non-empty regular transaction set to the cluster.

Proof

If a cluster, c, has the AMR of AC
p where p is the number of different transactions in the

cluster. If a user with q new transactions is added to the cluster then the new AMR is AC
p+q .

AC

p
− AC

p+ q
=

AC ∗ (p+ q)− AC ∗ p
p ∗ (p+ q)

=
AC ∗ q

p ∗ (p+ q)

≥ 0

The case of AC∗q
p∗(p+q) = 0 occurs when q=0, which means the regular transaction set of the new

user does not contain any new transactions.

2

Therefore, AMR has the property of Anti-Monotonicity, which means that adding a user to a cluster can only

reduce the AMR of the cluster, unless the new transaction set does not contain any new transactions. The

property can be used to prune hapless candidate clusters that have AMR under a threshold in the cluster

forming algorithm, HBC2A . In this paper, system administrators are requested to supply an AMR threshold.

Candidate clusters with AMR smaller than the threshold are discarded.

Theorem 2 The threshold of AMR must be smaller than or equal to AC
|tmax| , where tmax is the largest

regular transaction set in the user profile , to have all users grouped into at least one cluster.

Proof

Any cluster c containing users with tmax has AMR (c) ≤ AC
|tmax| . If the threshold is larger than

AC
|tmax| , then the users can not be included in any cluster.

2

Definition 6

– A qualified cluster is a cluster whose AMR exceeds a given threshold.



– A set of clusters is comprehensive under a user profile, U, if the union of the clusters includes

all users with regular transactions in U.

– A set of clusters is disjoined if the intersections of any two clusters are empty.

– A set of qualified clusters is a distribution under a user profile, U, if they are comprehensive

under U and disjoined.

In the running example, if AC is set at 3, and AMR threshold at 0.5 , then the cluster of {1,2,3}

,{4,5,6} and {7,8,9} have AMR of 0.6, 0.75 and 1, respectively. The set composed by the three clusters is

comprehensive, disjoined and forms a valid distribution. The running example is shown in Table 4.

Table 4. A set of qualified clusters when AC=3 and AMR=0.5

Qualified cluster Users Regular Transactions AMR

Cluster 1 1,2,3 A,B,E,F,H 0.6
Cluster 2 4,5,6 B,I,J,K 0.75
Cluster 3 7,8,9 P,Q,R 1

We propose a Heuristic BC2A , namely HBC2A , HBC2A returns distributions that satisfy constraints

with the fewest number of clusters, and the rules associating single transactions to predicted regular trans-

actions. The constraints include AC , an AMR threshold, profile support threshold, user support threshold,

and rule confidence threshold. The recommendations guarantee that when all frequent users logging on the

system and accessing all regular transactions, each server still has an AMR above the given AMR Threshold.

Information included in the recommendations are number of servers, clusters of users, and AMR s of clusters.

The HBC2A includes three steps in computing the recommendations - computing the set of qualified

clusters and selecting clusters to form distribution. The main steps are listed as following:

Initialization: for each user with regular transactions, and these users form qure, Q. Sort Q on users by

the number of their regular transactions and form new queue, Q’.

Composing Ci from Q’: A user ui in Q′ is added to Ci by the user in Q′ from Ci if the new cluster Ci

has an AMR value exceeding the given threshold. In the mean time, Removing the new user from Q′.

Repeating the step until Ci has an AMR value lower than the given threshold.

Repeating the Last Step Until Q′ is emptyset : If Q′ is empty then HBC2A has found all qualified clusters

in C1, . . . , and Ci; Otherwise, HBC2A has to repeat the last step.

The algorithm returns all the distributions that satisfy the requirements with the least number of appli-

cation servers and let system administrators to decide which distribution they prefer.

4 An AMR Based Hybrid Dispatching Approach

Each ES typically has a dispatching program listening to networks and accepts user requests. The program

resides an application server, intercepts user requests, and direct them to application servers.

Assuming the system administrator in our running example picks the distribution of {{1, 2, 3}, {4, 5, 6},

{7, 8, 9}}. The case of user 1, 2, 4, 7, and 8 have logged on and user 5 and 6 are waiting in the web server

is depicted in Figure 3.



Fig. 3. Users are Distributed through a Dispatching Program

The distributions suggested by HBC2A bases on frequent patterns in user profiles. For new and infrequent

users, HBC2A does not suggest their distributions directly but returns association rules, PR (Prediction

Rules), in the output to help dispatching program make the decision. To apply the rules, a new user only

needs to provide a transaction he/she plan to evoke after logging on the ES. With the association rules, a

dispatching program can distribute a user according to its associated predicted regulation transactions. If

the first transaction does not lead to any predicted regular transactions, then the single transaction works

as the basis for dispatching.

The running example is shown in figure 3. An AMR Based Hybrid dispatching algorithm distributes

users while keeping the AMR of each server as high as possible. In the dispatching procedure, users are

distributed to a server according to one of the three alternatives:

– If a regular user logs on, then send the user to the recommended server and return to listening mode.

– If an infrequent user logs on with a transaction, then find the predicted regular transactions implied by

the transaction. If no entry matched then the single transaction is treated as the predicted transaction.

– Compute the potential new AMR in each server with the addition of the user. Assign the user to the

server with the highest AMR , and update the AMR in the corresponding server.

The distribution in the running example has AMR s of 3/5, 3/4, and 1 in the three servers. If a new user

with user-id 11 wishes to log on the system and submits an A as the first transaction then the user has a

predicted regular transaction set of ABE, according to Table 3. The AMR after adding ABE to the three

servers would be 3/5, 3/6, and 3/6, respectively. Because the first server has the highest AMR value, the

new user is distributed to the first server, and the distribution becomes {1, 2, 3, 11}, {4, 5, 6}, and {7, 8, 9}.



5 Simulation

Several experiments are conducted on real data collected from a mid size machinery company based in

Taichung, Taiwan. The company has their SAP system up and running since 2002. Five weeks of user access

logs are extracted from the system to perform the experiment. Four weeks of the data are used to suggest

distributions. The fifth week of data are used to evaluate the quality of the suggested distributions.

In the experiment, 1,853,689 access logs are collected which include 56 users have regular patterns. The

average number of transactions in user profiles is 7.7. The quality of suggested distributions are measured

by Application Hit Ratios and Entropy. The Application Hit Ratio of a server is defined as the number

of transaction accesses hits a stored version of the transactions in the memory over the total number of

transactions accessed in the server. The Application Hit Ratio of a distribution is the average Application

Hit Ratios of servers suggested in the distribution. The entropy of a server is defined as −
∑

pi log2(pi), where

pi is the probability of transaction i being accessed by users in the cluster. Since AR and AMR thresholds

are typically smaller than 1, some frequent transactions are not stored in the memory. In the experiment, we

assume that servers automatically store the applications that are accessed the most in the training data in

the memory. Infrequent users appearing in the testing data are assigned to servers according to the hybrid

distribution algorithm.

The Experiment of HBC2A and Round-Robin are implemented on Matlab 6.1 and executed on a Pentium

4-1.8 GHz Microsoft XP Server system with 256 Megabytes of main memory. With the improved algorithm,

distributions can be suggested within one minites.

5.1 Experimental Results of HBC2A

Seven distributions are suggested against the collected data. These distributions have AMR threshold set at

0.8 with AC ranging from 21 to 28, respectively. These simulations all have profile support threshold at 0.1

and user support threshold set at 0.3.

The number of servers needed for each distribution is shown in Figure 4. With AMR =0.8, HBC2A suggests

a distribution with five servers when AC=21, four servers when AC = 22, three servers when AC = 23 , two

servers when AC=24, 25, 26 and 27, and 1 server when AC = 28.

Fig. 4. Distribution Experiments with HBC2A



The quality of each distribution is evaluated in Figure 5 and Figure 6. The Application Hit Ratio of the

distributions with AMR =0.8 is 0.91714 when AC = 21, 0.94924 when AC = 22, 0.95687 when AC = 23,

0.95674 when AC = 24 , 0.96696 when AC = 25, 0.96565 when AC = 26, 0.96474 when AC = 27 and 0.9559

when AC = 28. The Entropy of the distributions with AMR =0.8 is 6.6595 when AC = 21, 8.3807 when AC

= 22, 9.542 when AC = 23, 10.0652 when AC = 24 , 10.0263 when AC = 25, 10.435 when AC = 26, 8.7664

when AC = 27 and 11.755 when AC = 28.

Fig. 5. The Application Hit Ratios of Distributions with HBC2A

Fig. 6. The Entropy of Distributions with HBC2A

From data shown in Figure 4, Figure 5, and Figure 6, we find that the hit-ratios of the distributions

ranging from 0.91714 to 0.96696. From figure 5, we find that the more AC , the more average the higher

hit-ratios machines have, because each machine can hold more transactions. The more number transactions

manchine can hold, The more chances the high-ratios machine have. From figure 6, we find that the more

AC, the more average entropy machines have. We conclude that the company should use one server to hold

all users if hardware capacity is large enough. The second to the best distributions have Application Hit

Ratios of 0.96696 which occurs when AMR =0.8, AC = 25(two machined need). Since the former settings

requires fewer memory resource, system administrators are advised to adapt the former distribution.



5.2 Comparision of HBC2A and Round-Robin User Distribution

HBC2A considers the constraints and tries to find groups of users whose combinations of accessed transac-

tions do not cause too many page faults if they are clustered into one application. Round-Robin distributes

user to one of the several application servers in a server group by a rotated order. The approach ensure users

are fairly distributed in a server group.

For the purpose of comparision, We set the same memory constraints to HBC2A and Round-Robin. In

terms of users and transactions allocations, HBC2A can get better result than Round-Robin since given the

same number of machines, the transaction distributions in HBC has lower entropy than Round-Robin, the

hit-ratio of user distributed in each machine by HBC2A get better result than Round-Robin. (Please refer

figure 7, figure 8).

Fig. 7. Comparision of HBC2A and Robin in Hit Ratios of the Experiment

Fig. 8. Comparision of HBC2A and Robin in Entropy of the Experiment

In summary, if the memory of each machine is seriously limited , HBC2A should be used to distribute

users, because the result generated by them is guaranteed to satisfy the memory consumption criteria.

6 Related Work

With the Internet rush, many researches have been devoted to distribute user requests in Distributed Web

Server Architecture, in order to improve the performance of web servers. Depending on the locations where



request distributions happen, these researches are classified in client-based, DNS (Domain Name Server)-

based, dispatcher-based, and server-based, as in [6, 5, 18, 8, 20]. Since current Http protocol is stateless,

each request is routed independently to a web server[5, 3, 16, 17, 19]. All of the above researches assume that

requests can be independently routed to different servers, where as in the application servers of ESs, requests

from the same users have to be routed to the same server.

Clustering literatures are classified into two models: partitioning clustering and hierarchical clustering

[15, 9, 12]. If k clusters are needed, partitioning clustering choose k centroids initially and gradually, tune the

constituents of each clusters or centroids with some criteria function until a locally optimized characteristic

is reached. Hierarchical clustering can be further divided into agglomerative and divisive clustering. As the

name suggested, agglomerative clustering gradually merge smaller clusters into larger clusters until k clusters

are found. Divisive clustering, on the other hand, splits larger clusters into smaller clusters until k clusters

are found.

Most clustering algorithms employ Euclidean distances to compute similarity. The shorter the distances

the more similar the data points in the clusters are. However, Euclidean distances are not ideal for clustering

categorical data. For example, to cluster transaction sets with Euclidean distances, each set has to be trans-

lated into a sparse binary vector. In the running example, the second session of user 1, {A, B, E, F} is trans-

lated into 〈1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0〉. The huge number of zeros can easily skew the distances between

transaction sets. For example, a transaction set of {A} is translated into 〈1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0〉

and {I} is translated into 〈0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0〉. Since {A} and {I} have a distance of two bits,

and {A} and {A, B, E, F} have a distance of three bits, the former pairs has shorter distance than the latter.

The conclusion violates the general perception of set operations. Therefore, Euclidean distances are not ideal

for clustering categorial data.

Many set oriented algorithms use Jaccard coefficient [15] to compute distances. Given two sets T1 and T2,

their Jaccard coefficient is |T1∩T2|
|T1∪T2| . However, Jaccard coefficient has two drawbacks for our application. The

first is that it cannot describe the number of elements in each cluster, which are important to calculate the

buffer efficiency. The second is that Jaccard coefficient is not accurate in computing the similarity between

transactions sets. For example, the Jaccard coefficient of {A,B,C},{A} and {A,B,C},{B,C,D} are 1/3 and

2/4, respectively. However, in HBC2A , the distance of the former pair is 0, since {A, B, C} include {A}.

Another major work in clustering categorical data is ROCK [10], which proposes to cluster transaction sets

based on links between nodes, which are composed by common neighbors between any pair of nodes. A

common neighbor of two transaction sets is a transaction set sharing similar items with the two sets. ROCK

puts two elements into the same cluster if the count of common neighbors exceed certain threshold. ROCK

also has the same drawbacks as Jaccard coefficient. For instance, if a profile includes transaction sets {A}, {A,

B, C},{A, C, D},{B, C, D},{B, C, E} and the threshold of a qualified common neighbor(link) is set at 1/3 of

Jaccard coefficient. The ROCK coefficient of {A,B,C},{A} and {A,B,C},{B,C,D} are 1 (due to the common

neighbor {A, C, D}) and 2 (due to the common neighbor {A, C, D} and {B, C, E}), respectively. From view

of ROCK, the similarity of the former pair is lower than later pair. On the other hand, the distance of the

former pair is 0 in HBC2A , which is more close to our intuition in the application of user distribution, since

{A} is a subset of {A, B, C}. Many set oriented algorithms use Jaccard coefficient and ROCK. However,

Jaccard coefficient and ROCK along cannot describe the number of elements in each cluster, which are



important to calculate the buffer efficiency. Hence, common categorial clustering technology is not suitable

for clustering users in the application.

7 Conclusion

Managers in enterprises often add users to ESs, as they extend E-business practices to various divisions of

corporate operations. With the addition of each user, new pressures on performances are brought upon to

the systems. Yet, system response time is one of the most important factors in measuring user satisfactions.

Since ESs tend to consume considerable amount of hardware memory, application servers can easily run

out all memory available, which induce to hardware limitations. When this happens, a common procedure

adopted in boosting performance is adding application servers to ESs. With multiple application servers in

the scene, distributing users with similar application requirements to the same application servers increases

buffer utilization and lead time to next hardware upgrades.

The procedure of HBC2A roots its development on AMR , which is a similarity measure of user

transactions grouped in the same cluster. A cluster with high AMR means users in the cluster share similar

applications under a given buffer limitation. AMR has the property of Anti-Monotonicity, which states that

AMR of a cluster decreases with the addition of each new transaction set. With the property, HBC2A can

prune hopeless search branches and stop the iterations when an empty cluster set is found. Distributions are

combinations of clusters which cover all users with regular transactions and each user is included in only one

cluster. The distributions composed of fewest number of clusters are returned as suggestions.

Although frequent users and regular transactions are stable in ESs, new users are added to the systems

from time to time. These users have no entries in user profiles and are distributed by a hybrid dispatching

program that distributes frequent users according to a selected distribution and new users with dynamic

A AMR s. A transaction of the new user is checked to find its predicted regular transactions. If an entry is

found, the dispatching program associating the user with the predicated transactions, otherwise, the single

transaction is associated with the user. The associated transactions are then used to decide the target server

for the new user. The user goes to the server with the highest AMR after accepting the user.

As future work, HBC2A is among a series of study in distributing users with historical user profiles,

and are by no means the last two. Several issues require further studies, such as modelling user profiles with

sequences, dynamically updating user patterns, incorporating CPU and systems loads into dispatching and

distribution algorithms.
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