本研究先行藉由“溶膠凝膠法”製備得到銅、鐵金屬改質型之二氧化鈦奈米顆粒,接著以該粉末當成前驅物質,利用微波輔助水熱法,在短時間內製備得到金屬改質型二氧化鈦奈米管,並以Thermal Gravimetric Analyzer/Differential Scanning Calorimetry (TGA/DSC)、BET surface area、X-ray Powder Diffractometer (XRD)、Multi-Function Scanning Electron Microscope (SEM)、Transmission electron microscopy (TEM)、Diffuse Reflectance UV-visible Spectrophotometer (UV-Vis spectrophotometer)、X-ray Absorption Spectroscope (XAS)等方法分析奈米管之物化特性,並選用亞甲基藍溶液作為污染物,進行奈米管光催化降解試驗。由SEM及TEM可觀察到,奈米管管長可達數百奈米,並為中空且開端之結構,管徑約為8~10 nm;XRD及XAS證實奈米管以銳鈦礦晶相為主;BET量測比表面積約為134~230 m2/g;UV-Vis光譜分析得知,金屬改質之二氧化鈦奈米管在UV-Vis圖譜上的吸收位置會偏向較長波長區域(紅移現象),且隨著添加過渡金屬的量越多,在可見光區域的吸收值越高;在經過24小時的藍光照光時間下,添加0.1 % Cu/Ti原子百分比的奈米管,具有最佳的亞甲基藍分解效率( 29.4 % ) ,比未改質之奈米管分解效率佳。 In the present study, a modified sol-gel method was used to synthesize transition metal-doped titania nanoparticles which served as a raw material for the preparation of metal-doped Titania nanotube(TNT) via a temperature-controlled microwave process. The TNTs were characterized with SEM, TEM, XRD, BET surface area analyzer, UV-Vis spectroscopy, XAS and tested by photodegradatoin of methyl blue in water. <br> SEM and TEM micrographs showed that the TNTs have a length of a few hundred nanometers with a diameter of 8-10 nm. The TNTs are hollow and open-ended. The TNTs exist in anatase form as shown by the results from both x-ray diffraction (XRD) and x-ray absorption spectroscopy (XAS). The BET surface area of the TNTs is in the range of 134-230 m2/g. The metal-doped TNT showed a red-shift in UV-Vis absorption, as compared with the pure TNT and titania nanopowders. Under blue light illumination for 24 hours, the greatest photocatalytic activity effected by 0.1% Cu doped TNT ( Cu/Ti atomic ratio of 0.1% ).