English  |  正體中文  |  简体中文  |  Items with full text/Total items : 21921/27947 (78%)
Visitors : 4202757      Online Users : 261
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://140.128.103.80:8080/handle/310901/14669


    Title: 以事後分層估計小區域
    Other Titles: Small Area Estimation Employing Poststratification
    Authors: 沈葆聖
    Shen, Pao-sheng
    Contributors: 東海大學管理學院
    Keywords: 小區域估計;事後分層;貝氏分析
    Small area estimation;Poststratification;Bayesian analysis
    Date: 2000-11-00
    Issue Date: 2012-06-07T08:19:21Z (UTC)
    Publisher: 台中市:東海大學
    Abstract: 本文提出以事後分層法為依據的小區域估計值。該估計值同時考量層內同質性假設之合理性以及小區域樣本數不足的困境。我們推導簡單隨機抽樣下該估計值的小樣本性質。在超族群模式下,經由貝氏分析可以證實估計值的合理性。此外,我們探討複雜抽樣下,該估計值的推廣。
    A compromise estimator employing poststratification is proposed for small area estimation. The estimator strikes a balance to deal with the assumption of similarity within a poststratum and small number of observations in subareas constructed by poststratification. Small sample properties are derived for the estimator from simple random samples. By assuming that the probability that poststratum size equal to zero is negiligibly small, the estimator can be justified in Bayesian terms based on an inherent superpopulation model. The generalization of poststratification from the simple random sampling to complex design is discussed.
    Relation: 東海管理評論第2卷第1期, p.47-62
    Appears in Collections:[管理學院] 校內出版品(東海管理評論)

    Files in This Item:

    File SizeFormat
    V.2(47-62).pdf1475KbAdobe PDF727View/Open


    All items in THUIR are protected by copyright, with all rights reserved.


    本網站之東海大學機構典藏數位內容,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback