English  |  正體中文  |  简体中文  |  Items with full text/Total items : 21921/27947 (78%)
Visitors : 4207742      Online Users : 805
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://140.128.103.80:8080/handle/310901/1662


    Title: HJM架構下波動函數對交換利率選擇權之評價績效分析
    Other Titles: The Performance of Implied Volatility Functions for Pricing Interest Rate Swaptions under the HJM Framework
    Authors: 趙哲寬
    Chao, Che-Kuan
    Contributors: 郭一棟
    Kuo, I-Doun
    東海大學財務金融學系
    Keywords: 交換利率選擇權;HJM架構;駝峰波動;主成分分析;隱含波動函數
    Interest rate swaption;HJM model;Humped volatility;Principle component analysis;Volatility function
    Date: 2009
    Issue Date: 2011-03-07T07:19:39Z (UTC)
    Abstract: 本文使用先前文獻中被廣為應用於評價利率衍生性金融商品的HJM架構,輔以四種不同的隱含波動函數,對於歐式價平交換利率選擇權商品進行評價以及預測。由於波動率並非行恆常不變,因此本文採用了四種不同的波動函數結構,包含(1)常數型波動函數(ABS)、(2)與利率有方差關係之波動函數(SQR)、(3)指數遞減型波動函數(EXP)與(4)駝峰型波動函數(HUMP)。上述函數之因子個數決定於主成分分析的結果。藉由比較不同波動結構,進行模型間,樣本內評價誤差以及樣本外預測誤差的分析比較。實證結果顯示,HUMP模型無論在樣本內的評價誤差或是兩組樣本外預測誤差皆有最出色的表現,顯示具備捕捉駝峰型波動結構的波動函數之評價與預測績效皆勝過於無駝峰型波動結構的模型。EXP模型則在所有模型中表現次佳。雖然其波動函數未具備駝峰型態,然其捕捉駝峰型波動曲面的效果也相當出色。至於ABS模型以及SQR模型,其評價以及預測的表現皆不盡理想,顯示其捕捉駝峰型波動曲面的效果不明顯。
    This study evaluates four one-factor implied volatility functions in the HJM class, with the use of swaps and at-the-money European swap options. The aim of this study is to observe the difference between these four models in in-sample pricing errors and out-of-sample prediction errors. The implied volatility functions applied in this study includes four models: (1) Constant volatility(ABS)、(2) Square-root volatility(SQR)、(3) Exponential decaying volatility(EXP), and(4) Hump-shaped Volatility(HUMP). By using of Principle Component Analysis, we are able to determine the number of factor that would affect implied volatility. The results indicate that the HUMP model outperforms other modes in both in-sample and out-of-sample pricing and predicting fit. This shows that model with humped displays a better pricing and predicting result than those without humped. The EXP model, which performs well in capturing the hump-shaped implied volatility surface, is the second-best model. Other models are inferior to the HUMP model and the EXP model in both cases.
    Appears in Collections:[財務金融學系所] 碩士論文

    Files in This Item:

    File SizeFormat
    index.html0KbHTML515View/Open


    All items in THUIR are protected by copyright, with all rights reserved.


    本網站之東海大學機構典藏數位內容,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback