English  |  正體中文  |  简体中文  |  Items with full text/Total items : 21921/27947 (78%)
Visitors : 4217688      Online Users : 465
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://140.128.103.80:8080/handle/310901/1951


    Title: 廣義圖形超邊魔方缺數之研究
    Other Titles: On Generalized Super Edge Magic Deficiency of Graphs
    Authors: 張立偉
    Chang, Li-Wei
    Contributors: 王道明
    Wang, Tao-Ming
    東海大學數學系
    Keywords: 標號;完全二部圖;算數標號;超邊魔方標號;超邊魔方缺數
    Super edge magic;Super edge magic deficiency;Strongly k-indexable;Complete bipartite graph;Tree
    Date: 2008
    Issue Date: 2011-03-09T05:47:04Z (UTC)
    Abstract: 圖形標號顧名思義是給定圖形中的點(或)邊上一些數字,使得它滿足一些特定的條件。於1970年,Rosa首先提出了邊魔方(edge magic total)的觀念。之後於1998年由 Enomoto 提出超邊魔方(Super edge magic):假設圖形擁有p個點和q個邊,如果存在一對一函數f:V(G)U E(G) → {1,2,3....,p+q},使得對所有uv 屬於E(G),皆符合 f(uv)+f(u)+f(v)=m為一常數,則f稱為邊魔方(edge magic total)標號。如果進一步要求f:V(G) → {1,2,3ldots,p}$,則此邊魔方標號稱為超邊魔方標號。在2006年由Figueroa-Centeno提出了超邊魔方缺數(Super dege magic deficiency)的觀念:如果一圖形加上最少m個孤立點,使得此圖形成為超邊魔方圖。則我們將m值稱做此圖形的超邊魔方缺數。如果此圖形本身就是超魔方圖,則其缺數為0。如果無法靠加任何孤立點使此圖形成為超邊魔方圖,則缺數為無限。Figueroa-Centeno 對一些基本圖形計算超邊魔方缺數。而且猜測完全二部圖Km,n的超邊魔方缺數為(m-1)(n-1)。我們將完整證明這個猜測。我們也討論超邊魔方缺數與一些傳統標號之間的關係。更在提出了廣義超邊魔方缺數的觀念,同時針對討論了算數標號(Arithmetic labeling)的頂點標號的最小範圍作出了討論,並且也提出了一些結果。
    A (p, q) graph is a finite simple undirected graph G with p verticesand q edges. G is called edge magic if there exists a bijection f :V (G) U E(G) → {1, 2, · · · · · · , p + q} such that f(u) + f(v) + f(uv) is constant for every edge uv ? E(G). Moreover, G is called super edge magic if f(V (G)) = {1, 2, · · · · · · , p}. We study the graphs for which it is possible to add a finite number of isolated vertices, if needed, so that the resulting graph is super edge magic. The super edge magic deficiency of a graph G is the minimum number of isolated vertices added to G so that the resulting disconnected graph to be super edge magic. On the other hand, In 1990, Acharya and Hegde have introduced the concept of strongly k-indexable graphs. A (p, q) graph G is said to be strongly k-indexable if its vertices can be assigned distinct numbers 0, 1, · · · · · · , p ? 1 so that the values of the edges, obtained as the sums of the numbers assigned to their end vertices, form an arithmetic progression k, k + 1, · · · · · · , k + q ? 1. It is easy to see that a graph is super edge-magic if and only if it is strongly k-indexable for some k. Acharya and Hegde called the super edge magic deficiency of a graph G to be vertex dependent characteristic of G. Among others, for the complete bipartite graph Km,n we completely determine their super edge magic deficiency in this thesis. Also more general situations are obtained for various classes of graphs.
    Appears in Collections:[應用數學系所] 碩博士論文

    Files in This Item:

    File SizeFormat
    index.html0KbHTML286View/Open


    All items in THUIR are protected by copyright, with all rights reserved.


    本網站之東海大學機構典藏數位內容,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback