Abstract: | 隨著近年來電子商務技術的逐漸成熟,國內網路購物之業者如雨後春筍般的持續成長,但面臨各家業者缺乏差異化的情況下,市場之價格競爭趨於激烈。在此研究背景下,本研究以商品企劃七工具做為研究方法與架構,期望能開發出符合消費者需求之新型態網路購物服務。 本研究採用商品企劃七工具中的焦點群體法、意見調查、定位分析、創意發想、創意選擇與聯合分析。在訪談調查中,依據受訪者意見發展出25個評價項目,並以此作為意見調查的問卷架構。接著進行因素分析獲得兩項企劃關鍵因素(「網頁購物資訊」與「售後服務」),再利用迴歸分析得出知覺圖以及新型服務最適的企劃方向。第二階段利用創意發想與選擇,評估出符合顧客需求之創意構想後,篩選出五個創意作為十個水準與聯合卡問卷之依據。最後利用聯合分析找到消費者偏好的服務組合。 聯合分析的結果顯示,整體受測者最重視的屬性與其權重依序為:「商品分類方式」(31.06%)>「促銷優惠活動」(28.87%)>「商品資訊呈現」(22.99%)>「商品諮詢服務」(10.18%)>「退換貨服務」(6.91%)。其中在整體的統計資料上顯示受測者所選擇的最適組合為:「提供真人動態影音展示」、「依顧客偏好順序設定商品分類呈現方式」、「透過各地超商收取退換貨商品」、「提供各分類商品專家線上即時問答」與「買貴以憑證由業者退還差價的方案」。最後,從本研究所得到具體的消費者新型服務需求中,如能更進一步的加以深入設計與開發,對於網路購物業者而言,勢必能帶來莫大的益處。 In recent years, with the maturity of e-commerce technology, there are more and more online stores. However, each company faces a lack of differentiation. The market tends to intense price competition. In such a setting, this study wishes to use Seven Tools for New Product Planning as research method and framework, the goal of finding consumers’ preference to feature innovative services. In this study, we used the seven tools of product planning – focus group interview, survey, positioning analysis, creative development, creative choices and conjoint analysis. In the survey, we made 25 descriptions which were based on the contents of interviews to be the framework of the survey. Then, we got two crucial factors of projecting, web shopping information and after-sales service, by a factor analysis. After that, we used regression analysis to get perceptual map and the most optimal projecting direction of the new style service. At the second stage, we used Creative development and Creative choices to connect factors to analyze proportion and sieved out five creations. In the end of the process, we used Conjoint Analysis and orthogonal design to get customers’ proper preference and then explored five kinds of attributes and 10 kinds of standards from the five creations. The result of conjoint analysis suggests that the order of the most important attributes and weight in the whole are: “Commodity classification style” (31.06%)> “Promotional activities”(28.87%)>“Commodity information presented ” (22.99%)>“Commodity advisory services ” (10.18%)> “Return and exchange service” (6.91%). In the overall statistics, it showed that the optimal combination that the subjects chose were: “Providing live audio-visual display”, “According to customers’ order preferences, Set presentation of commodity classification”, “Collecting returned and exchanged goods through each area stores”, “Providing online real-time expert Q & A by the classification of goods”, “The project of returning price difference to customers if the price is more expensive than others ” Overall, it will be more beneficial for online stores, if the new service demand from this study can be designed deeply and developed well. |